* rs6000-tdep.c (rs6000_push_dummy_call): Replace references to
[external/binutils.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3    Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5    Foundation, Inc.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h"             /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h"      /* for libcoff.h */
46 #include "libcoff.h"            /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 /* If the kernel has to deliver a signal, it pushes a sigcontext
63    structure on the stack and then calls the signal handler, passing
64    the address of the sigcontext in an argument register. Usually
65    the signal handler doesn't save this register, so we have to
66    access the sigcontext structure via an offset from the signal handler
67    frame.
68    The following constants were determined by experimentation on AIX 3.2.  */
69 #define SIG_FRAME_PC_OFFSET 96
70 #define SIG_FRAME_LR_OFFSET 108
71 #define SIG_FRAME_FP_OFFSET 284
72
73 /* To be used by skip_prologue. */
74
75 struct rs6000_framedata
76   {
77     int offset;                 /* total size of frame --- the distance
78                                    by which we decrement sp to allocate
79                                    the frame */
80     int saved_gpr;              /* smallest # of saved gpr */
81     int saved_fpr;              /* smallest # of saved fpr */
82     int saved_vr;               /* smallest # of saved vr */
83     int saved_ev;               /* smallest # of saved ev */
84     int alloca_reg;             /* alloca register number (frame ptr) */
85     char frameless;             /* true if frameless functions. */
86     char nosavedpc;             /* true if pc not saved. */
87     int gpr_offset;             /* offset of saved gprs from prev sp */
88     int fpr_offset;             /* offset of saved fprs from prev sp */
89     int vr_offset;              /* offset of saved vrs from prev sp */
90     int ev_offset;              /* offset of saved evs from prev sp */
91     int lr_offset;              /* offset of saved lr */
92     int cr_offset;              /* offset of saved cr */
93     int vrsave_offset;          /* offset of saved vrsave register */
94   };
95
96 /* Description of a single register. */
97
98 struct reg
99   {
100     char *name;                 /* name of register */
101     unsigned char sz32;         /* size on 32-bit arch, 0 if nonextant */
102     unsigned char sz64;         /* size on 64-bit arch, 0 if nonextant */
103     unsigned char fpr;          /* whether register is floating-point */
104     unsigned char pseudo;       /* whether register is pseudo */
105     int spr_num;                /* PowerPC SPR number, or -1 if not an SPR.
106                                    This is an ISA SPR number, not a GDB
107                                    register number.  */
108   };
109
110 /* Breakpoint shadows for the single step instructions will be kept here. */
111
112 static struct sstep_breaks
113   {
114     /* Address, or 0 if this is not in use.  */
115     CORE_ADDR address;
116     /* Shadow contents.  */
117     char data[4];
118   }
119 stepBreaks[2];
120
121 /* Hook for determining the TOC address when calling functions in the
122    inferior under AIX. The initialization code in rs6000-nat.c sets
123    this hook to point to find_toc_address.  */
124
125 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
126
127 /* Hook to set the current architecture when starting a child process. 
128    rs6000-nat.c sets this. */
129
130 void (*rs6000_set_host_arch_hook) (int) = NULL;
131
132 /* Static function prototypes */
133
134 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
135                               CORE_ADDR safety);
136 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
137                                 struct rs6000_framedata *);
138
139 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
140 int
141 altivec_register_p (int regno)
142 {
143   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144   if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
145     return 0;
146   else
147     return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
148 }
149
150
151 /* Return true if REGNO is an SPE register, false otherwise.  */
152 int
153 spe_register_p (int regno)
154 {
155   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156   
157   /* Is it a reference to EV0 -- EV31, and do we have those?  */
158   if (tdep->ppc_ev0_regnum >= 0
159       && tdep->ppc_ev31_regnum >= 0
160       && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
161     return 1;
162
163   /* Is it a reference to one of the raw upper GPR halves?  */
164   if (tdep->ppc_ev0_upper_regnum >= 0
165       && tdep->ppc_ev0_upper_regnum <= regno
166       && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
167     return 1;
168
169   /* Is it a reference to the 64-bit accumulator, and do we have that?  */
170   if (tdep->ppc_acc_regnum >= 0
171       && tdep->ppc_acc_regnum == regno)
172     return 1;
173
174   /* Is it a reference to the SPE floating-point status and control register,
175      and do we have that?  */
176   if (tdep->ppc_spefscr_regnum >= 0
177       && tdep->ppc_spefscr_regnum == regno)
178     return 1;
179
180   return 0;
181 }
182
183
184 /* Return non-zero if the architecture described by GDBARCH has
185    floating-point registers (f0 --- f31 and fpscr).  */
186 int
187 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
188 {
189   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191   return (tdep->ppc_fp0_regnum >= 0
192           && tdep->ppc_fpscr_regnum >= 0);
193 }
194
195
196 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
197    set it to SIM_REGNO.
198
199    This is a helper function for init_sim_regno_table, constructing
200    the table mapping GDB register numbers to sim register numbers; we
201    initialize every element in that table to -1 before we start
202    filling it in.  */
203 static void
204 set_sim_regno (int *table, int gdb_regno, int sim_regno)
205 {
206   /* Make sure we don't try to assign any given GDB register a sim
207      register number more than once.  */
208   gdb_assert (table[gdb_regno] == -1);
209   table[gdb_regno] = sim_regno;
210 }
211
212
213 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
214    numbers to simulator register numbers, based on the values placed
215    in the ARCH->tdep->ppc_foo_regnum members.  */
216 static void
217 init_sim_regno_table (struct gdbarch *arch)
218 {
219   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
220   int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
221   const struct reg *regs = tdep->regs;
222   int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
223   int i;
224
225   /* Presume that all registers not explicitly mentioned below are
226      unavailable from the sim.  */
227   for (i = 0; i < total_regs; i++)
228     sim_regno[i] = -1;
229
230   /* General-purpose registers.  */
231   for (i = 0; i < ppc_num_gprs; i++)
232     set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
233   
234   /* Floating-point registers.  */
235   if (tdep->ppc_fp0_regnum >= 0)
236     for (i = 0; i < ppc_num_fprs; i++)
237       set_sim_regno (sim_regno,
238                      tdep->ppc_fp0_regnum + i,
239                      sim_ppc_f0_regnum + i);
240   if (tdep->ppc_fpscr_regnum >= 0)
241     set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
242
243   set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
244   set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
245   set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
246
247   /* Segment registers.  */
248   if (tdep->ppc_sr0_regnum >= 0)
249     for (i = 0; i < ppc_num_srs; i++)
250       set_sim_regno (sim_regno,
251                      tdep->ppc_sr0_regnum + i,
252                      sim_ppc_sr0_regnum + i);
253
254   /* Altivec registers.  */
255   if (tdep->ppc_vr0_regnum >= 0)
256     {
257       for (i = 0; i < ppc_num_vrs; i++)
258         set_sim_regno (sim_regno,
259                        tdep->ppc_vr0_regnum + i,
260                        sim_ppc_vr0_regnum + i);
261
262       /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
263          we can treat this more like the other cases.  */
264       set_sim_regno (sim_regno,
265                      tdep->ppc_vr0_regnum + ppc_num_vrs,
266                      sim_ppc_vscr_regnum);
267     }
268   /* vsave is a special-purpose register, so the code below handles it.  */
269
270   /* SPE APU (E500) registers.  */
271   if (tdep->ppc_ev0_regnum >= 0)
272     for (i = 0; i < ppc_num_gprs; i++)
273       set_sim_regno (sim_regno,
274                      tdep->ppc_ev0_regnum + i,
275                      sim_ppc_ev0_regnum + i);
276   if (tdep->ppc_ev0_upper_regnum >= 0)
277     for (i = 0; i < ppc_num_gprs; i++)
278       set_sim_regno (sim_regno,
279                      tdep->ppc_ev0_upper_regnum + i,
280                      sim_ppc_rh0_regnum + i);
281   if (tdep->ppc_acc_regnum >= 0)
282     set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
283   /* spefscr is a special-purpose register, so the code below handles it.  */
284
285   /* Now handle all special-purpose registers.  Verify that they
286      haven't mistakenly been assigned numbers by any of the above
287      code).  */
288   for (i = 0; i < total_regs; i++)
289     if (regs[i].spr_num >= 0)
290       set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
291
292   /* Drop the initialized array into place.  */
293   tdep->sim_regno = sim_regno;
294 }
295
296
297 /* Given a GDB register number REG, return the corresponding SIM
298    register number.  */
299 static int
300 rs6000_register_sim_regno (int reg)
301 {
302   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
303   int sim_regno;
304
305   gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
306   sim_regno = tdep->sim_regno[reg];
307
308   if (sim_regno >= 0)
309     return sim_regno;
310   else
311     return LEGACY_SIM_REGNO_IGNORE;
312 }
313
314 \f
315
316 /* Register set support functions.  */
317
318 static void
319 ppc_supply_reg (struct regcache *regcache, int regnum, 
320                 const char *regs, size_t offset)
321 {
322   if (regnum != -1 && offset != -1)
323     regcache_raw_supply (regcache, regnum, regs + offset);
324 }
325
326 static void
327 ppc_collect_reg (const struct regcache *regcache, int regnum,
328                  char *regs, size_t offset)
329 {
330   if (regnum != -1 && offset != -1)
331     regcache_raw_collect (regcache, regnum, regs + offset);
332 }
333     
334 /* Supply register REGNUM in the general-purpose register set REGSET
335    from the buffer specified by GREGS and LEN to register cache
336    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
337
338 void
339 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
340                     int regnum, const void *gregs, size_t len)
341 {
342   struct gdbarch *gdbarch = get_regcache_arch (regcache);
343   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344   const struct ppc_reg_offsets *offsets = regset->descr;
345   size_t offset;
346   int i;
347
348   for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
349        i < tdep->ppc_gp0_regnum + ppc_num_gprs;
350        i++, offset += 4)
351     {
352       if (regnum == -1 || regnum == i)
353         ppc_supply_reg (regcache, i, gregs, offset);
354     }
355
356   if (regnum == -1 || regnum == PC_REGNUM)
357     ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
358   if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
359     ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
360                     gregs, offsets->ps_offset);
361   if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
362     ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
363                     gregs, offsets->cr_offset);
364   if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
365     ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
366                     gregs, offsets->lr_offset);
367   if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
368     ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
369                     gregs, offsets->ctr_offset);
370   if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
371     ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
372                     gregs, offsets->cr_offset);
373   if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
374     ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
375 }
376
377 /* Supply register REGNUM in the floating-point register set REGSET
378    from the buffer specified by FPREGS and LEN to register cache
379    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
380
381 void
382 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
383                      int regnum, const void *fpregs, size_t len)
384 {
385   struct gdbarch *gdbarch = get_regcache_arch (regcache);
386   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387   const struct ppc_reg_offsets *offsets = regset->descr;
388   size_t offset;
389   int i;
390
391   gdb_assert (ppc_floating_point_unit_p (gdbarch));
392
393   offset = offsets->f0_offset;
394   for (i = tdep->ppc_fp0_regnum;
395        i < tdep->ppc_fp0_regnum + ppc_num_fprs;
396        i++, offset += 4)
397     {
398       if (regnum == -1 || regnum == i)
399         ppc_supply_reg (regcache, i, fpregs, offset);
400     }
401
402   if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
403     ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
404                     fpregs, offsets->fpscr_offset);
405 }
406
407 /* Collect register REGNUM in the general-purpose register set
408    REGSET. from register cache REGCACHE into the buffer specified by
409    GREGS and LEN.  If REGNUM is -1, do this for all registers in
410    REGSET.  */
411
412 void
413 ppc_collect_gregset (const struct regset *regset,
414                      const struct regcache *regcache,
415                      int regnum, void *gregs, size_t len)
416 {
417   struct gdbarch *gdbarch = get_regcache_arch (regcache);
418   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419   const struct ppc_reg_offsets *offsets = regset->descr;
420   size_t offset;
421   int i;
422
423   offset = offsets->r0_offset;
424   for (i = tdep->ppc_gp0_regnum;
425        i < tdep->ppc_gp0_regnum + ppc_num_gprs;
426        i++, offset += 4)
427     {
428       if (regnum == -1 || regnum == i)
429         ppc_collect_reg (regcache, i, gregs, offset);
430     }
431
432   if (regnum == -1 || regnum == PC_REGNUM)
433     ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
434   if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
435     ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
436                      gregs, offsets->ps_offset);
437   if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
438     ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
439                      gregs, offsets->cr_offset);
440   if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
441     ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
442                      gregs, offsets->lr_offset);
443   if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
444     ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
445                      gregs, offsets->ctr_offset);
446   if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
447     ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
448                      gregs, offsets->xer_offset);
449   if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
450     ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
451                      gregs, offsets->mq_offset);
452 }
453
454 /* Collect register REGNUM in the floating-point register set
455    REGSET. from register cache REGCACHE into the buffer specified by
456    FPREGS and LEN.  If REGNUM is -1, do this for all registers in
457    REGSET.  */
458
459 void
460 ppc_collect_fpregset (const struct regset *regset,
461                       const struct regcache *regcache,
462                       int regnum, void *fpregs, size_t len)
463 {
464   struct gdbarch *gdbarch = get_regcache_arch (regcache);
465   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466   const struct ppc_reg_offsets *offsets = regset->descr;
467   size_t offset;
468   int i;
469
470   gdb_assert (ppc_floating_point_unit_p (gdbarch));
471
472   offset = offsets->f0_offset;
473   for (i = tdep->ppc_fp0_regnum;
474        i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
475        i++, offset += 4)
476     {
477       if (regnum == -1 || regnum == i)
478         ppc_collect_reg (regcache, regnum, fpregs, offset);
479     }
480
481   if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
482     ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
483                      fpregs, offsets->fpscr_offset);
484 }
485 \f
486
487 /* Read a LEN-byte address from debugged memory address MEMADDR. */
488
489 static CORE_ADDR
490 read_memory_addr (CORE_ADDR memaddr, int len)
491 {
492   return read_memory_unsigned_integer (memaddr, len);
493 }
494
495 static CORE_ADDR
496 rs6000_skip_prologue (CORE_ADDR pc)
497 {
498   struct rs6000_framedata frame;
499   pc = skip_prologue (pc, 0, &frame);
500   return pc;
501 }
502
503
504 /* Fill in fi->saved_regs */
505
506 struct frame_extra_info
507 {
508   /* Functions calling alloca() change the value of the stack
509      pointer. We need to use initial stack pointer (which is saved in
510      r31 by gcc) in such cases. If a compiler emits traceback table,
511      then we should use the alloca register specified in traceback
512      table. FIXME. */
513   CORE_ADDR initial_sp;         /* initial stack pointer. */
514 };
515
516 /* Get the ith function argument for the current function.  */
517 static CORE_ADDR
518 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
519                                struct type *type)
520 {
521   CORE_ADDR addr;
522   get_frame_register (frame, 3 + argi, &addr);
523   return addr;
524 }
525
526 /* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
527
528 static CORE_ADDR
529 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
530 {
531   CORE_ADDR dest;
532   int immediate;
533   int absolute;
534   int ext_op;
535
536   absolute = (int) ((instr >> 1) & 1);
537
538   switch (opcode)
539     {
540     case 18:
541       immediate = ((instr & ~3) << 6) >> 6;     /* br unconditional */
542       if (absolute)
543         dest = immediate;
544       else
545         dest = pc + immediate;
546       break;
547
548     case 16:
549       immediate = ((instr & ~3) << 16) >> 16;   /* br conditional */
550       if (absolute)
551         dest = immediate;
552       else
553         dest = pc + immediate;
554       break;
555
556     case 19:
557       ext_op = (instr >> 1) & 0x3ff;
558
559       if (ext_op == 16)         /* br conditional register */
560         {
561           dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
562
563           /* If we are about to return from a signal handler, dest is
564              something like 0x3c90.  The current frame is a signal handler
565              caller frame, upon completion of the sigreturn system call
566              execution will return to the saved PC in the frame.  */
567           if (dest < TEXT_SEGMENT_BASE)
568             {
569               struct frame_info *fi;
570
571               fi = get_current_frame ();
572               if (fi != NULL)
573                 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
574                                          gdbarch_tdep (current_gdbarch)->wordsize);
575             }
576         }
577
578       else if (ext_op == 528)   /* br cond to count reg */
579         {
580           dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
581
582           /* If we are about to execute a system call, dest is something
583              like 0x22fc or 0x3b00.  Upon completion the system call
584              will return to the address in the link register.  */
585           if (dest < TEXT_SEGMENT_BASE)
586             dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
587         }
588       else
589         return -1;
590       break;
591
592     default:
593       return -1;
594     }
595   return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596 }
597
598
599 /* Sequence of bytes for breakpoint instruction.  */
600
601 const static unsigned char *
602 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
603 {
604   static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605   static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
606   *bp_size = 4;
607   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
608     return big_breakpoint;
609   else
610     return little_breakpoint;
611 }
612
613
614 /* AIX does not support PT_STEP. Simulate it. */
615
616 void
617 rs6000_software_single_step (enum target_signal signal,
618                              int insert_breakpoints_p)
619 {
620   CORE_ADDR dummy;
621   int breakp_sz;
622   const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
623   int ii, insn;
624   CORE_ADDR loc;
625   CORE_ADDR breaks[2];
626   int opcode;
627
628   if (insert_breakpoints_p)
629     {
630
631       loc = read_pc ();
632
633       insn = read_memory_integer (loc, 4);
634
635       breaks[0] = loc + breakp_sz;
636       opcode = insn >> 26;
637       breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
638
639       /* Don't put two breakpoints on the same address. */
640       if (breaks[1] == breaks[0])
641         breaks[1] = -1;
642
643       stepBreaks[1].address = 0;
644
645       for (ii = 0; ii < 2; ++ii)
646         {
647
648           /* ignore invalid breakpoint. */
649           if (breaks[ii] == -1)
650             continue;
651           target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
652           stepBreaks[ii].address = breaks[ii];
653         }
654
655     }
656   else
657     {
658
659       /* remove step breakpoints. */
660       for (ii = 0; ii < 2; ++ii)
661         if (stepBreaks[ii].address != 0)
662           target_remove_breakpoint (stepBreaks[ii].address,
663                                     stepBreaks[ii].data);
664     }
665   errno = 0;                    /* FIXME, don't ignore errors! */
666   /* What errors?  {read,write}_memory call error().  */
667 }
668
669
670 /* return pc value after skipping a function prologue and also return
671    information about a function frame.
672
673    in struct rs6000_framedata fdata:
674    - frameless is TRUE, if function does not have a frame.
675    - nosavedpc is TRUE, if function does not save %pc value in its frame.
676    - offset is the initial size of this stack frame --- the amount by
677    which we decrement the sp to allocate the frame.
678    - saved_gpr is the number of the first saved gpr.
679    - saved_fpr is the number of the first saved fpr.
680    - saved_vr is the number of the first saved vr.
681    - saved_ev is the number of the first saved ev.
682    - alloca_reg is the number of the register used for alloca() handling.
683    Otherwise -1.
684    - gpr_offset is the offset of the first saved gpr from the previous frame.
685    - fpr_offset is the offset of the first saved fpr from the previous frame.
686    - vr_offset is the offset of the first saved vr from the previous frame.
687    - ev_offset is the offset of the first saved ev from the previous frame.
688    - lr_offset is the offset of the saved lr
689    - cr_offset is the offset of the saved cr
690    - vrsave_offset is the offset of the saved vrsave register
691  */
692
693 #define SIGNED_SHORT(x)                                                 \
694   ((sizeof (short) == 2)                                                \
695    ? ((int)(short)(x))                                                  \
696    : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
700 /* Limit the number of skipped non-prologue instructions, as the examining
701    of the prologue is expensive.  */
702 static int max_skip_non_prologue_insns = 10;
703
704 /* Given PC representing the starting address of a function, and
705    LIM_PC which is the (sloppy) limit to which to scan when looking
706    for a prologue, attempt to further refine this limit by using
707    the line data in the symbol table.  If successful, a better guess
708    on where the prologue ends is returned, otherwise the previous
709    value of lim_pc is returned.  */
710
711 /* FIXME: cagney/2004-02-14: This function and logic have largely been
712    superseded by skip_prologue_using_sal.  */
713
714 static CORE_ADDR
715 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716 {
717   struct symtab_and_line prologue_sal;
718
719   prologue_sal = find_pc_line (pc, 0);
720   if (prologue_sal.line != 0)
721     {
722       int i;
723       CORE_ADDR addr = prologue_sal.end;
724
725       /* Handle the case in which compiler's optimizer/scheduler
726          has moved instructions into the prologue.  We scan ahead
727          in the function looking for address ranges whose corresponding
728          line number is less than or equal to the first one that we
729          found for the function.  (It can be less than when the
730          scheduler puts a body instruction before the first prologue
731          instruction.)  */
732       for (i = 2 * max_skip_non_prologue_insns; 
733            i > 0 && (lim_pc == 0 || addr < lim_pc);
734            i--)
735         {
736           struct symtab_and_line sal;
737
738           sal = find_pc_line (addr, 0);
739           if (sal.line == 0)
740             break;
741           if (sal.line <= prologue_sal.line 
742               && sal.symtab == prologue_sal.symtab)
743             {
744               prologue_sal = sal;
745             }
746           addr = sal.end;
747         }
748
749       if (lim_pc == 0 || prologue_sal.end < lim_pc)
750         lim_pc = prologue_sal.end;
751     }
752   return lim_pc;
753 }
754
755 /* Return nonzero if the given instruction OP can be part of the prologue
756    of a function and saves a parameter on the stack.  FRAMEP should be
757    set if one of the previous instructions in the function has set the
758    Frame Pointer.  */
759
760 static int
761 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762 {
763   /* Move parameters from argument registers to temporary register.  */
764   if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
765     {
766       /* Rx must be scratch register r0.  */
767       const int rx_regno = (op >> 16) & 31;
768       /* Ry: Only r3 - r10 are used for parameter passing.  */
769       const int ry_regno = GET_SRC_REG (op);
770
771       if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772         {
773           *r0_contains_arg = 1;
774           return 1;
775         }
776       else
777         return 0;
778     }
779
780   /* Save a General Purpose Register on stack.  */
781
782   if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
783       (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
784     {
785       /* Rx: Only r3 - r10 are used for parameter passing.  */
786       const int rx_regno = GET_SRC_REG (op);
787
788       return (rx_regno >= 3 && rx_regno <= 10);
789     }
790            
791   /* Save a General Purpose Register on stack via the Frame Pointer.  */
792
793   if (framep &&
794       ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
795        (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
796        (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
797     {
798       /* Rx: Usually, only r3 - r10 are used for parameter passing.
799          However, the compiler sometimes uses r0 to hold an argument.  */
800       const int rx_regno = GET_SRC_REG (op);
801
802       return ((rx_regno >= 3 && rx_regno <= 10)
803               || (rx_regno == 0 && *r0_contains_arg));
804     }
805
806   if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
807     {
808       /* Only f2 - f8 are used for parameter passing.  */
809       const int src_regno = GET_SRC_REG (op);
810
811       return (src_regno >= 2 && src_regno <= 8);
812     }
813
814   if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
815     {
816       /* Only f2 - f8 are used for parameter passing.  */
817       const int src_regno = GET_SRC_REG (op);
818
819       return (src_regno >= 2 && src_regno <= 8);
820     }
821
822   /* Not an insn that saves a parameter on stack.  */
823   return 0;
824 }
825
826 static CORE_ADDR
827 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
828 {
829   CORE_ADDR orig_pc = pc;
830   CORE_ADDR last_prologue_pc = pc;
831   CORE_ADDR li_found_pc = 0;
832   char buf[4];
833   unsigned long op;
834   long offset = 0;
835   long vr_saved_offset = 0;
836   int lr_reg = -1;
837   int cr_reg = -1;
838   int vr_reg = -1;
839   int ev_reg = -1;
840   long ev_offset = 0;
841   int vrsave_reg = -1;
842   int reg;
843   int framep = 0;
844   int minimal_toc_loaded = 0;
845   int prev_insn_was_prologue_insn = 1;
846   int num_skip_non_prologue_insns = 0;
847   int r0_contains_arg = 0;
848   const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
849   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
850   
851   /* Attempt to find the end of the prologue when no limit is specified.
852      Note that refine_prologue_limit() has been written so that it may
853      be used to "refine" the limits of non-zero PC values too, but this
854      is only safe if we 1) trust the line information provided by the
855      compiler and 2) iterate enough to actually find the end of the
856      prologue.  
857      
858      It may become a good idea at some point (for both performance and
859      accuracy) to unconditionally call refine_prologue_limit().  But,
860      until we can make a clear determination that this is beneficial,
861      we'll play it safe and only use it to obtain a limit when none
862      has been specified.  */
863   if (lim_pc == 0)
864     lim_pc = refine_prologue_limit (pc, lim_pc);
865
866   memset (fdata, 0, sizeof (struct rs6000_framedata));
867   fdata->saved_gpr = -1;
868   fdata->saved_fpr = -1;
869   fdata->saved_vr = -1;
870   fdata->saved_ev = -1;
871   fdata->alloca_reg = -1;
872   fdata->frameless = 1;
873   fdata->nosavedpc = 1;
874
875   for (;; pc += 4)
876     {
877       /* Sometimes it isn't clear if an instruction is a prologue
878          instruction or not.  When we encounter one of these ambiguous
879          cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880          Otherwise, we'll assume that it really is a prologue instruction. */
881       if (prev_insn_was_prologue_insn)
882         last_prologue_pc = pc;
883
884       /* Stop scanning if we've hit the limit.  */
885       if (lim_pc != 0 && pc >= lim_pc)
886         break;
887
888       prev_insn_was_prologue_insn = 1;
889
890       /* Fetch the instruction and convert it to an integer.  */
891       if (target_read_memory (pc, buf, 4))
892         break;
893       op = extract_signed_integer (buf, 4);
894
895       if ((op & 0xfc1fffff) == 0x7c0802a6)
896         {                       /* mflr Rx */
897           /* Since shared library / PIC code, which needs to get its
898              address at runtime, can appear to save more than one link
899              register vis:
900
901              *INDENT-OFF*
902              stwu r1,-304(r1)
903              mflr r3
904              bl 0xff570d0 (blrl)
905              stw r30,296(r1)
906              mflr r30
907              stw r31,300(r1)
908              stw r3,308(r1);
909              ...
910              *INDENT-ON*
911
912              remember just the first one, but skip over additional
913              ones.  */
914           if (lr_reg < 0)
915             lr_reg = (op & 0x03e00000);
916           if (lr_reg == 0)
917             r0_contains_arg = 0;
918           continue;
919         }
920       else if ((op & 0xfc1fffff) == 0x7c000026)
921         {                       /* mfcr Rx */
922           cr_reg = (op & 0x03e00000);
923           if (cr_reg == 0)
924             r0_contains_arg = 0;
925           continue;
926
927         }
928       else if ((op & 0xfc1f0000) == 0xd8010000)
929         {                       /* stfd Rx,NUM(r1) */
930           reg = GET_SRC_REG (op);
931           if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932             {
933               fdata->saved_fpr = reg;
934               fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935             }
936           continue;
937
938         }
939       else if (((op & 0xfc1f0000) == 0xbc010000) ||     /* stm Rx, NUM(r1) */
940                (((op & 0xfc1f0000) == 0x90010000 ||     /* st rx,NUM(r1) */
941                  (op & 0xfc1f0003) == 0xf8010000) &&    /* std rx,NUM(r1) */
942                 (op & 0x03e00000) >= 0x01a00000))       /* rx >= r13 */
943         {
944
945           reg = GET_SRC_REG (op);
946           if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947             {
948               fdata->saved_gpr = reg;
949               if ((op & 0xfc1f0003) == 0xf8010000)
950                 op &= ~3UL;
951               fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952             }
953           continue;
954
955         }
956       else if ((op & 0xffff0000) == 0x60000000)
957         {
958           /* nop */
959           /* Allow nops in the prologue, but do not consider them to
960              be part of the prologue unless followed by other prologue
961              instructions. */
962           prev_insn_was_prologue_insn = 0;
963           continue;
964
965         }
966       else if ((op & 0xffff0000) == 0x3c000000)
967         {                       /* addis 0,0,NUM, used
968                                    for >= 32k frames */
969           fdata->offset = (op & 0x0000ffff) << 16;
970           fdata->frameless = 0;
971           r0_contains_arg = 0;
972           continue;
973
974         }
975       else if ((op & 0xffff0000) == 0x60000000)
976         {                       /* ori 0,0,NUM, 2nd ha
977                                    lf of >= 32k frames */
978           fdata->offset |= (op & 0x0000ffff);
979           fdata->frameless = 0;
980           r0_contains_arg = 0;
981           continue;
982
983         }
984       else if (lr_reg != -1 &&
985                /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986                (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987                 /* stw Rx, NUM(r1) */
988                 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989                 /* stwu Rx, NUM(r1) */
990                 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991         {       /* where Rx == lr */
992           fdata->lr_offset = offset;
993           fdata->nosavedpc = 0;
994           lr_reg = 0;
995           if ((op & 0xfc000003) == 0xf8000000 ||        /* std */
996               (op & 0xfc000000) == 0x90000000)          /* stw */
997             {
998               /* Does not update r1, so add displacement to lr_offset.  */
999               fdata->lr_offset += SIGNED_SHORT (op);
1000             }
1001           continue;
1002
1003         }
1004       else if (cr_reg != -1 &&
1005                /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1006                (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1007                 /* stw Rx, NUM(r1) */
1008                 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1009                 /* stwu Rx, NUM(r1) */
1010                 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1011         {       /* where Rx == cr */
1012           fdata->cr_offset = offset;
1013           cr_reg = 0;
1014           if ((op & 0xfc000003) == 0xf8000000 ||
1015               (op & 0xfc000000) == 0x90000000)
1016             {
1017               /* Does not update r1, so add displacement to cr_offset.  */
1018               fdata->cr_offset += SIGNED_SHORT (op);
1019             }
1020           continue;
1021
1022         }
1023       else if (op == 0x48000005)
1024         {                       /* bl .+4 used in 
1025                                    -mrelocatable */
1026           continue;
1027
1028         }
1029       else if (op == 0x48000004)
1030         {                       /* b .+4 (xlc) */
1031           break;
1032
1033         }
1034       else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
1035                                                       in V.4 -mminimal-toc */
1036                (op & 0xffff0000) == 0x3bde0000)
1037         {                       /* addi 30,30,foo@l */
1038           continue;
1039
1040         }
1041       else if ((op & 0xfc000001) == 0x48000001)
1042         {                       /* bl foo, 
1043                                    to save fprs??? */
1044
1045           fdata->frameless = 0;
1046           /* Don't skip over the subroutine call if it is not within
1047              the first three instructions of the prologue.  */
1048           if ((pc - orig_pc) > 8)
1049             break;
1050
1051           op = read_memory_integer (pc + 4, 4);
1052
1053           /* At this point, make sure this is not a trampoline
1054              function (a function that simply calls another functions,
1055              and nothing else).  If the next is not a nop, this branch
1056              was part of the function prologue. */
1057
1058           if (op == 0x4def7b82 || op == 0)      /* crorc 15, 15, 15 */
1059             break;              /* don't skip over 
1060                                    this branch */
1061           continue;
1062
1063         }
1064       /* update stack pointer */
1065       else if ((op & 0xfc1f0000) == 0x94010000)
1066         {               /* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
1067           fdata->frameless = 0;
1068           fdata->offset = SIGNED_SHORT (op);
1069           offset = fdata->offset;
1070           continue;
1071         }
1072       else if ((op & 0xfc1f016a) == 0x7c01016e)
1073         {                       /* stwux rX,r1,rY */
1074           /* no way to figure out what r1 is going to be */
1075           fdata->frameless = 0;
1076           offset = fdata->offset;
1077           continue;
1078         }
1079       else if ((op & 0xfc1f0003) == 0xf8010001)
1080         {                       /* stdu rX,NUM(r1) */
1081           fdata->frameless = 0;
1082           fdata->offset = SIGNED_SHORT (op & ~3UL);
1083           offset = fdata->offset;
1084           continue;
1085         }
1086       else if ((op & 0xfc1f016a) == 0x7c01016a)
1087         {                       /* stdux rX,r1,rY */
1088           /* no way to figure out what r1 is going to be */
1089           fdata->frameless = 0;
1090           offset = fdata->offset;
1091           continue;
1092         }
1093       /* Load up minimal toc pointer */
1094       else if (((op >> 22) == 0x20f     ||      /* l r31,... or l r30,... */
1095                (op >> 22) == 0x3af)             /* ld r31,... or ld r30,... */
1096                && !minimal_toc_loaded)
1097         {
1098           minimal_toc_loaded = 1;
1099           continue;
1100
1101           /* move parameters from argument registers to local variable
1102              registers */
1103         }
1104       else if ((op & 0xfc0007fe) == 0x7c000378 &&       /* mr(.)  Rx,Ry */
1105                (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
1106                (((op >> 21) & 31) <= 10) &&
1107                ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1108         {
1109           continue;
1110
1111           /* store parameters in stack */
1112         }
1113       /* Move parameters from argument registers to temporary register.  */
1114       else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1115         {
1116           continue;
1117
1118           /* Set up frame pointer */
1119         }
1120       else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1121                || op == 0x7c3f0b78)
1122         {                       /* mr r31, r1 */
1123           fdata->frameless = 0;
1124           framep = 1;
1125           fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1126           continue;
1127
1128           /* Another way to set up the frame pointer.  */
1129         }
1130       else if ((op & 0xfc1fffff) == 0x38010000)
1131         {                       /* addi rX, r1, 0x0 */
1132           fdata->frameless = 0;
1133           framep = 1;
1134           fdata->alloca_reg = (tdep->ppc_gp0_regnum
1135                                + ((op & ~0x38010000) >> 21));
1136           continue;
1137         }
1138       /* AltiVec related instructions.  */
1139       /* Store the vrsave register (spr 256) in another register for
1140          later manipulation, or load a register into the vrsave
1141          register.  2 instructions are used: mfvrsave and
1142          mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
1143          and mtspr SPR256, Rn.  */
1144       /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1145          mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
1146       else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
1147         {
1148           vrsave_reg = GET_SRC_REG (op);
1149           continue;
1150         }
1151       else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
1152         {
1153           continue;
1154         }
1155       /* Store the register where vrsave was saved to onto the stack:
1156          rS is the register where vrsave was stored in a previous
1157          instruction.  */
1158       /* 100100 sssss 00001 dddddddd dddddddd */
1159       else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
1160         {
1161           if (vrsave_reg == GET_SRC_REG (op))
1162             {
1163               fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1164               vrsave_reg = -1;
1165             }
1166           continue;
1167         }
1168       /* Compute the new value of vrsave, by modifying the register
1169          where vrsave was saved to.  */
1170       else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
1171                || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1172         {
1173           continue;
1174         }
1175       /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
1176          in a pair of insns to save the vector registers on the
1177          stack.  */
1178       /* 001110 00000 00000 iiii iiii iiii iiii  */
1179       /* 001110 01110 00000 iiii iiii iiii iiii  */
1180       else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
1181                || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
1182         {
1183           if ((op & 0xffff0000) == 0x38000000)
1184             r0_contains_arg = 0;
1185           li_found_pc = pc;
1186           vr_saved_offset = SIGNED_SHORT (op);
1187
1188           /* This insn by itself is not part of the prologue, unless
1189              if part of the pair of insns mentioned above. So do not
1190              record this insn as part of the prologue yet.  */
1191           prev_insn_was_prologue_insn = 0;
1192         }
1193       /* Store vector register S at (r31+r0) aligned to 16 bytes.  */      
1194       /* 011111 sssss 11111 00000 00111001110 */
1195       else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
1196         {
1197           if (pc == (li_found_pc + 4))
1198             {
1199               vr_reg = GET_SRC_REG (op);
1200               /* If this is the first vector reg to be saved, or if
1201                  it has a lower number than others previously seen,
1202                  reupdate the frame info.  */
1203               if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1204                 {
1205                   fdata->saved_vr = vr_reg;
1206                   fdata->vr_offset = vr_saved_offset + offset;
1207                 }
1208               vr_saved_offset = -1;
1209               vr_reg = -1;
1210               li_found_pc = 0;
1211             }
1212         }
1213       /* End AltiVec related instructions.  */
1214
1215       /* Start BookE related instructions.  */
1216       /* Store gen register S at (r31+uimm).
1217          Any register less than r13 is volatile, so we don't care.  */
1218       /* 000100 sssss 11111 iiiii 01100100001 */
1219       else if (arch_info->mach == bfd_mach_ppc_e500
1220                && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
1221         {
1222           if ((op & 0x03e00000) >= 0x01a00000)  /* Rs >= r13 */
1223             {
1224               unsigned int imm;
1225               ev_reg = GET_SRC_REG (op);
1226               imm = (op >> 11) & 0x1f;
1227               ev_offset = imm * 8;
1228               /* If this is the first vector reg to be saved, or if
1229                  it has a lower number than others previously seen,
1230                  reupdate the frame info.  */
1231               if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1232                 {
1233                   fdata->saved_ev = ev_reg;
1234                   fdata->ev_offset = ev_offset + offset;
1235                 }
1236             }
1237           continue;
1238         }
1239       /* Store gen register rS at (r1+rB).  */
1240       /* 000100 sssss 00001 bbbbb 01100100000 */
1241       else if (arch_info->mach == bfd_mach_ppc_e500
1242                && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
1243         {
1244           if (pc == (li_found_pc + 4))
1245             {
1246               ev_reg = GET_SRC_REG (op);
1247               /* If this is the first vector reg to be saved, or if
1248                  it has a lower number than others previously seen,
1249                  reupdate the frame info.  */
1250               /* We know the contents of rB from the previous instruction.  */
1251               if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1252                 {
1253                   fdata->saved_ev = ev_reg;
1254                   fdata->ev_offset = vr_saved_offset + offset;
1255                 }
1256               vr_saved_offset = -1;
1257               ev_reg = -1;
1258               li_found_pc = 0;
1259             }
1260           continue;
1261         }
1262       /* Store gen register r31 at (rA+uimm).  */
1263       /* 000100 11111 aaaaa iiiii 01100100001 */
1264       else if (arch_info->mach == bfd_mach_ppc_e500
1265                && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
1266         {
1267           /* Wwe know that the source register is 31 already, but
1268              it can't hurt to compute it.  */
1269           ev_reg = GET_SRC_REG (op);
1270           ev_offset = ((op >> 11) & 0x1f) * 8;
1271           /* If this is the first vector reg to be saved, or if
1272              it has a lower number than others previously seen,
1273              reupdate the frame info.  */
1274           if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1275             {
1276               fdata->saved_ev = ev_reg;
1277               fdata->ev_offset = ev_offset + offset;
1278             }
1279
1280           continue;
1281         }
1282       /* Store gen register S at (r31+r0).
1283          Store param on stack when offset from SP bigger than 4 bytes.  */
1284       /* 000100 sssss 11111 00000 01100100000 */
1285       else if (arch_info->mach == bfd_mach_ppc_e500
1286                && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
1287         {
1288           if (pc == (li_found_pc + 4))
1289             {
1290               if ((op & 0x03e00000) >= 0x01a00000)
1291                 {
1292                   ev_reg = GET_SRC_REG (op);
1293                   /* If this is the first vector reg to be saved, or if
1294                      it has a lower number than others previously seen,
1295                      reupdate the frame info.  */
1296                   /* We know the contents of r0 from the previous
1297                      instruction.  */
1298                   if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1299                     {
1300                       fdata->saved_ev = ev_reg;
1301                       fdata->ev_offset = vr_saved_offset + offset;
1302                     }
1303                   ev_reg = -1;
1304                 }
1305               vr_saved_offset = -1;
1306               li_found_pc = 0;
1307               continue;
1308             }
1309         }
1310       /* End BookE related instructions.  */
1311
1312       else
1313         {
1314           /* Not a recognized prologue instruction.
1315              Handle optimizer code motions into the prologue by continuing
1316              the search if we have no valid frame yet or if the return
1317              address is not yet saved in the frame.  */
1318           if (fdata->frameless == 0
1319               && (lr_reg == -1 || fdata->nosavedpc == 0))
1320             break;
1321
1322           if (op == 0x4e800020          /* blr */
1323               || op == 0x4e800420)      /* bctr */
1324             /* Do not scan past epilogue in frameless functions or
1325                trampolines.  */
1326             break;
1327           if ((op & 0xf4000000) == 0x40000000) /* bxx */
1328             /* Never skip branches.  */
1329             break;
1330
1331           if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1332             /* Do not scan too many insns, scanning insns is expensive with
1333                remote targets.  */
1334             break;
1335
1336           /* Continue scanning.  */
1337           prev_insn_was_prologue_insn = 0;
1338           continue;
1339         }
1340     }
1341
1342 #if 0
1343 /* I have problems with skipping over __main() that I need to address
1344  * sometime. Previously, I used to use misc_function_vector which
1345  * didn't work as well as I wanted to be.  -MGO */
1346
1347   /* If the first thing after skipping a prolog is a branch to a function,
1348      this might be a call to an initializer in main(), introduced by gcc2.
1349      We'd like to skip over it as well.  Fortunately, xlc does some extra
1350      work before calling a function right after a prologue, thus we can
1351      single out such gcc2 behaviour.  */
1352
1353
1354   if ((op & 0xfc000001) == 0x48000001)
1355     {                           /* bl foo, an initializer function? */
1356       op = read_memory_integer (pc + 4, 4);
1357
1358       if (op == 0x4def7b82)
1359         {                       /* cror 0xf, 0xf, 0xf (nop) */
1360
1361           /* Check and see if we are in main.  If so, skip over this
1362              initializer function as well.  */
1363
1364           tmp = find_pc_misc_function (pc);
1365           if (tmp >= 0
1366               && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1367             return pc + 8;
1368         }
1369     }
1370 #endif /* 0 */
1371
1372   fdata->offset = -fdata->offset;
1373   return last_prologue_pc;
1374 }
1375
1376
1377 /*************************************************************************
1378   Support for creating pushing a dummy frame into the stack, and popping
1379   frames, etc. 
1380 *************************************************************************/
1381
1382
1383 /* All the ABI's require 16 byte alignment.  */
1384 static CORE_ADDR
1385 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1386 {
1387   return (addr & -16);
1388 }
1389
1390 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1391    the first eight words of the argument list (that might be less than
1392    eight parameters if some parameters occupy more than one word) are
1393    passed in r3..r10 registers.  float and double parameters are
1394    passed in fpr's, in addition to that.  Rest of the parameters if any
1395    are passed in user stack.  There might be cases in which half of the
1396    parameter is copied into registers, the other half is pushed into
1397    stack.
1398
1399    Stack must be aligned on 64-bit boundaries when synthesizing
1400    function calls.
1401
1402    If the function is returning a structure, then the return address is passed
1403    in r3, then the first 7 words of the parameters can be passed in registers,
1404    starting from r4.  */
1405
1406 static CORE_ADDR
1407 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1408                         struct regcache *regcache, CORE_ADDR bp_addr,
1409                         int nargs, struct value **args, CORE_ADDR sp,
1410                         int struct_return, CORE_ADDR struct_addr)
1411 {
1412   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1413   int ii;
1414   int len = 0;
1415   int argno;                    /* current argument number */
1416   int argbytes;                 /* current argument byte */
1417   char tmp_buffer[50];
1418   int f_argno = 0;              /* current floating point argno */
1419   int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1420   CORE_ADDR func_addr = find_function_addr (function, NULL);
1421
1422   struct value *arg = 0;
1423   struct type *type;
1424
1425   CORE_ADDR saved_sp;
1426
1427   /* The calling convention this function implements assumes the
1428      processor has floating-point registers.  We shouldn't be using it
1429      on PPC variants that lack them.  */
1430   gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1431
1432   /* The first eight words of ther arguments are passed in registers.
1433      Copy them appropriately.  */
1434   ii = 0;
1435
1436   /* If the function is returning a `struct', then the first word
1437      (which will be passed in r3) is used for struct return address.
1438      In that case we should advance one word and start from r4
1439      register to copy parameters.  */
1440   if (struct_return)
1441     {
1442       regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1443                                    struct_addr);
1444       ii++;
1445     }
1446
1447 /* 
1448    effectively indirect call... gcc does...
1449
1450    return_val example( float, int);
1451
1452    eabi: 
1453    float in fp0, int in r3
1454    offset of stack on overflow 8/16
1455    for varargs, must go by type.
1456    power open:
1457    float in r3&r4, int in r5
1458    offset of stack on overflow different 
1459    both: 
1460    return in r3 or f0.  If no float, must study how gcc emulates floats;
1461    pay attention to arg promotion.  
1462    User may have to cast\args to handle promotion correctly 
1463    since gdb won't know if prototype supplied or not.
1464  */
1465
1466   for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1467     {
1468       int reg_size = register_size (current_gdbarch, ii + 3);
1469
1470       arg = args[argno];
1471       type = check_typedef (VALUE_TYPE (arg));
1472       len = TYPE_LENGTH (type);
1473
1474       if (TYPE_CODE (type) == TYPE_CODE_FLT)
1475         {
1476
1477           /* Floating point arguments are passed in fpr's, as well as gpr's.
1478              There are 13 fpr's reserved for passing parameters. At this point
1479              there is no way we would run out of them.  */
1480
1481           gdb_assert (len <= 8);
1482
1483           regcache_cooked_write (regcache,
1484                                  tdep->ppc_fp0_regnum + 1 + f_argno,
1485                                  VALUE_CONTENTS (arg));
1486           ++f_argno;
1487         }
1488
1489       if (len > reg_size)
1490         {
1491
1492           /* Argument takes more than one register.  */
1493           while (argbytes < len)
1494             {
1495               char word[MAX_REGISTER_SIZE];
1496               memset (word, 0, reg_size);
1497               memcpy (word,
1498                       ((char *) VALUE_CONTENTS (arg)) + argbytes,
1499                       (len - argbytes) > reg_size
1500                         ? reg_size : len - argbytes);
1501               regcache_cooked_write (regcache,
1502                                     tdep->ppc_gp0_regnum + 3 + ii,
1503                                     word);
1504               ++ii, argbytes += reg_size;
1505
1506               if (ii >= 8)
1507                 goto ran_out_of_registers_for_arguments;
1508             }
1509           argbytes = 0;
1510           --ii;
1511         }
1512       else
1513         {
1514           /* Argument can fit in one register.  No problem.  */
1515           int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1516           char word[MAX_REGISTER_SIZE];
1517
1518           memset (word, 0, reg_size);
1519           memcpy (word, VALUE_CONTENTS (arg), len);
1520           regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1521         }
1522       ++argno;
1523     }
1524
1525 ran_out_of_registers_for_arguments:
1526
1527   saved_sp = read_sp ();
1528
1529   /* Location for 8 parameters are always reserved.  */
1530   sp -= wordsize * 8;
1531
1532   /* Another six words for back chain, TOC register, link register, etc.  */
1533   sp -= wordsize * 6;
1534
1535   /* Stack pointer must be quadword aligned.  */
1536   sp &= -16;
1537
1538   /* If there are more arguments, allocate space for them in 
1539      the stack, then push them starting from the ninth one.  */
1540
1541   if ((argno < nargs) || argbytes)
1542     {
1543       int space = 0, jj;
1544
1545       if (argbytes)
1546         {
1547           space += ((len - argbytes + 3) & -4);
1548           jj = argno + 1;
1549         }
1550       else
1551         jj = argno;
1552
1553       for (; jj < nargs; ++jj)
1554         {
1555           struct value *val = args[jj];
1556           space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1557         }
1558
1559       /* Add location required for the rest of the parameters.  */
1560       space = (space + 15) & -16;
1561       sp -= space;
1562
1563       /* This is another instance we need to be concerned about
1564          securing our stack space. If we write anything underneath %sp
1565          (r1), we might conflict with the kernel who thinks he is free
1566          to use this area.  So, update %sp first before doing anything
1567          else.  */
1568
1569       regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1570
1571       /* If the last argument copied into the registers didn't fit there 
1572          completely, push the rest of it into stack.  */
1573
1574       if (argbytes)
1575         {
1576           write_memory (sp + 24 + (ii * 4),
1577                         ((char *) VALUE_CONTENTS (arg)) + argbytes,
1578                         len - argbytes);
1579           ++argno;
1580           ii += ((len - argbytes + 3) & -4) / 4;
1581         }
1582
1583       /* Push the rest of the arguments into stack.  */
1584       for (; argno < nargs; ++argno)
1585         {
1586
1587           arg = args[argno];
1588           type = check_typedef (VALUE_TYPE (arg));
1589           len = TYPE_LENGTH (type);
1590
1591
1592           /* Float types should be passed in fpr's, as well as in the
1593              stack.  */
1594           if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1595             {
1596
1597               gdb_assert (len <= 8);
1598
1599               regcache_cooked_write (regcache,
1600                                      tdep->ppc_fp0_regnum + 1 + f_argno,
1601                                      VALUE_CONTENTS (arg));
1602               ++f_argno;
1603             }
1604
1605           write_memory (sp + 24 + (ii * 4),
1606                         (char *) VALUE_CONTENTS (arg),
1607                         len);
1608           ii += ((len + 3) & -4) / 4;
1609         }
1610     }
1611
1612   /* Set the stack pointer.  According to the ABI, the SP is meant to
1613      be set _before_ the corresponding stack space is used.  On AIX,
1614      this even applies when the target has been completely stopped!
1615      Not doing this can lead to conflicts with the kernel which thinks
1616      that it still has control over this not-yet-allocated stack
1617      region.  */
1618   regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1619
1620   /* Set back chain properly.  */
1621   store_unsigned_integer (tmp_buffer, 4, saved_sp);
1622   write_memory (sp, tmp_buffer, 4);
1623
1624   /* Point the inferior function call's return address at the dummy's
1625      breakpoint.  */
1626   regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1627
1628   /* Set the TOC register, get the value from the objfile reader
1629      which, in turn, gets it from the VMAP table.  */
1630   if (rs6000_find_toc_address_hook != NULL)
1631     {
1632       CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1633       regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1634     }
1635
1636   target_store_registers (-1);
1637   return sp;
1638 }
1639
1640 /* PowerOpen always puts structures in memory.  Vectors, which were
1641    added later, do get returned in a register though.  */
1642
1643 static int     
1644 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1645 {  
1646   if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1647       && TYPE_VECTOR (value_type))
1648     return 0;                            
1649   return 1;
1650 }
1651
1652 static void
1653 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1654 {
1655   int offset = 0;
1656   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1657
1658   /* The calling convention this function implements assumes the
1659      processor has floating-point registers.  We shouldn't be using it
1660      on PPC variants that lack them.  */
1661   gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1662
1663   if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1664     {
1665
1666       /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1667          We need to truncate the return value into float size (4 byte) if
1668          necessary.  */
1669
1670       convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1671                                       (tdep->ppc_fp0_regnum + 1)],
1672                               builtin_type_double,
1673                               valbuf,
1674                               valtype);
1675     }
1676   else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1677            && TYPE_LENGTH (valtype) == 16
1678            && TYPE_VECTOR (valtype))
1679     {
1680       memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1681               TYPE_LENGTH (valtype));
1682     }
1683   else
1684     {
1685       /* return value is copied starting from r3. */
1686       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1687           && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1688         offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1689
1690       memcpy (valbuf,
1691               regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1692               TYPE_LENGTH (valtype));
1693     }
1694 }
1695
1696 /* Return whether handle_inferior_event() should proceed through code
1697    starting at PC in function NAME when stepping.
1698
1699    The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1700    handle memory references that are too distant to fit in instructions
1701    generated by the compiler.  For example, if 'foo' in the following
1702    instruction:
1703
1704      lwz r9,foo(r2)
1705
1706    is greater than 32767, the linker might replace the lwz with a branch to
1707    somewhere in @FIX1 that does the load in 2 instructions and then branches
1708    back to where execution should continue.
1709
1710    GDB should silently step over @FIX code, just like AIX dbx does.
1711    Unfortunately, the linker uses the "b" instruction for the branches,
1712    meaning that the link register doesn't get set.  Therefore, GDB's usual
1713    step_over_function() mechanism won't work.
1714
1715    Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1716    in handle_inferior_event() to skip past @FIX code.  */
1717
1718 int
1719 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1720 {
1721   return name && !strncmp (name, "@FIX", 4);
1722 }
1723
1724 /* Skip code that the user doesn't want to see when stepping:
1725
1726    1. Indirect function calls use a piece of trampoline code to do context
1727    switching, i.e. to set the new TOC table.  Skip such code if we are on
1728    its first instruction (as when we have single-stepped to here).
1729
1730    2. Skip shared library trampoline code (which is different from
1731    indirect function call trampolines).
1732
1733    3. Skip bigtoc fixup code.
1734
1735    Result is desired PC to step until, or NULL if we are not in
1736    code that should be skipped.  */
1737
1738 CORE_ADDR
1739 rs6000_skip_trampoline_code (CORE_ADDR pc)
1740 {
1741   unsigned int ii, op;
1742   int rel;
1743   CORE_ADDR solib_target_pc;
1744   struct minimal_symbol *msymbol;
1745
1746   static unsigned trampoline_code[] =
1747   {
1748     0x800b0000,                 /*     l   r0,0x0(r11)  */
1749     0x90410014,                 /*    st   r2,0x14(r1)  */
1750     0x7c0903a6,                 /* mtctr   r0           */
1751     0x804b0004,                 /*     l   r2,0x4(r11)  */
1752     0x816b0008,                 /*     l  r11,0x8(r11)  */
1753     0x4e800420,                 /*  bctr                */
1754     0x4e800020,                 /*    br                */
1755     0
1756   };
1757
1758   /* Check for bigtoc fixup code.  */
1759   msymbol = lookup_minimal_symbol_by_pc (pc);
1760   if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1761     {
1762       /* Double-check that the third instruction from PC is relative "b".  */
1763       op = read_memory_integer (pc + 8, 4);
1764       if ((op & 0xfc000003) == 0x48000000)
1765         {
1766           /* Extract bits 6-29 as a signed 24-bit relative word address and
1767              add it to the containing PC.  */
1768           rel = ((int)(op << 6) >> 6);
1769           return pc + 8 + rel;
1770         }
1771     }
1772
1773   /* If pc is in a shared library trampoline, return its target.  */
1774   solib_target_pc = find_solib_trampoline_target (pc);
1775   if (solib_target_pc)
1776     return solib_target_pc;
1777
1778   for (ii = 0; trampoline_code[ii]; ++ii)
1779     {
1780       op = read_memory_integer (pc + (ii * 4), 4);
1781       if (op != trampoline_code[ii])
1782         return 0;
1783     }
1784   ii = read_register (11);      /* r11 holds destination addr   */
1785   pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1786   return pc;
1787 }
1788
1789 /* Return the size of register REG when words are WORDSIZE bytes long.  If REG
1790    isn't available with that word size, return 0.  */
1791
1792 static int
1793 regsize (const struct reg *reg, int wordsize)
1794 {
1795   return wordsize == 8 ? reg->sz64 : reg->sz32;
1796 }
1797
1798 /* Return the name of register number N, or null if no such register exists
1799    in the current architecture.  */
1800
1801 static const char *
1802 rs6000_register_name (int n)
1803 {
1804   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1805   const struct reg *reg = tdep->regs + n;
1806
1807   if (!regsize (reg, tdep->wordsize))
1808     return NULL;
1809   return reg->name;
1810 }
1811
1812 /* Return the GDB type object for the "standard" data type
1813    of data in register N.  */
1814
1815 static struct type *
1816 rs6000_register_type (struct gdbarch *gdbarch, int n)
1817 {
1818   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1819   const struct reg *reg = tdep->regs + n;
1820
1821   if (reg->fpr)
1822     return builtin_type_double;
1823   else
1824     {
1825       int size = regsize (reg, tdep->wordsize);
1826       switch (size)
1827         {
1828         case 0:
1829           return builtin_type_int0;
1830         case 4:
1831           return builtin_type_uint32;
1832         case 8:
1833           if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1834             return builtin_type_vec64;
1835           else
1836             return builtin_type_uint64;
1837           break;
1838         case 16:
1839           return builtin_type_vec128;
1840           break;
1841         default:
1842           internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1843                           n, size);
1844         }
1845     }
1846 }
1847
1848 /* The register format for RS/6000 floating point registers is always
1849    double, we need a conversion if the memory format is float.  */
1850
1851 static int
1852 rs6000_convert_register_p (int regnum, struct type *type)
1853 {
1854   const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1855   
1856   return (reg->fpr
1857           && TYPE_CODE (type) == TYPE_CODE_FLT
1858           && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1859 }
1860
1861 static void
1862 rs6000_register_to_value (struct frame_info *frame,
1863                           int regnum,
1864                           struct type *type,
1865                           void *to)
1866 {
1867   const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1868   char from[MAX_REGISTER_SIZE];
1869   
1870   gdb_assert (reg->fpr);
1871   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1872
1873   get_frame_register (frame, regnum, from);
1874   convert_typed_floating (from, builtin_type_double, to, type);
1875 }
1876
1877 static void
1878 rs6000_value_to_register (struct frame_info *frame,
1879                           int regnum,
1880                           struct type *type,
1881                           const void *from)
1882 {
1883   const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1884   char to[MAX_REGISTER_SIZE];
1885
1886   gdb_assert (reg->fpr);
1887   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1888
1889   convert_typed_floating (from, type, to, builtin_type_double);
1890   put_frame_register (frame, regnum, to);
1891 }
1892
1893 /* Move SPE vector register values between a 64-bit buffer and the two
1894    32-bit raw register halves in a regcache.  This function handles
1895    both splitting a 64-bit value into two 32-bit halves, and joining
1896    two halves into a whole 64-bit value, depending on the function
1897    passed as the MOVE argument.
1898
1899    EV_REG must be the number of an SPE evN vector register --- a
1900    pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
1901    64-bit buffer.
1902
1903    Call MOVE once for each 32-bit half of that register, passing
1904    REGCACHE, the number of the raw register corresponding to that
1905    half, and the address of the appropriate half of BUFFER.
1906
1907    For example, passing 'regcache_raw_read' as the MOVE function will
1908    fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
1909    'regcache_raw_supply' will supply the contents of BUFFER to the
1910    appropriate pair of raw registers in REGCACHE.
1911
1912    You may need to cast away some 'const' qualifiers when passing
1913    MOVE, since this function can't tell at compile-time which of
1914    REGCACHE or BUFFER is acting as the source of the data.  If C had
1915    co-variant type qualifiers, ...  */
1916 static void
1917 e500_move_ev_register (void (*move) (struct regcache *regcache,
1918                                      int regnum, void *buf),
1919                        struct regcache *regcache, int ev_reg,
1920                        void *buffer)
1921 {
1922   struct gdbarch *arch = get_regcache_arch (regcache);
1923   struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
1924   int reg_index;
1925   char *byte_buffer = buffer;
1926
1927   gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1928               && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1929
1930   reg_index = ev_reg - tdep->ppc_ev0_regnum;
1931
1932   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1933     {
1934       move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
1935       move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
1936     }
1937   else
1938     {
1939       move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
1940       move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
1941     }
1942 }
1943
1944 static void
1945 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1946                            int reg_nr, void *buffer)
1947 {
1948   struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1949   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
1950
1951   gdb_assert (regcache_arch == gdbarch);
1952  
1953   if (tdep->ppc_ev0_regnum <= reg_nr
1954       && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1955     e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
1956   else
1957     internal_error (__FILE__, __LINE__,
1958                     "e500_pseudo_register_read: "
1959                     "called on unexpected register '%s' (%d)",
1960                     gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1961 }
1962
1963 static void
1964 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1965                             int reg_nr, const void *buffer)
1966 {
1967   struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1968   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
1969
1970   gdb_assert (regcache_arch == gdbarch);
1971  
1972   if (tdep->ppc_ev0_regnum <= reg_nr
1973       && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1974     e500_move_ev_register ((void (*) (struct regcache *, int, void *))
1975                            regcache_raw_write,
1976                            regcache, reg_nr, (void *) buffer);
1977   else
1978     internal_error (__FILE__, __LINE__,
1979                     "e500_pseudo_register_read: "
1980                     "called on unexpected register '%s' (%d)",
1981                     gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1982 }
1983
1984 /* The E500 needs a custom reggroup function: it has anonymous raw
1985    registers, and default_register_reggroup_p assumes that anonymous
1986    registers are not members of any reggroup.  */
1987 static int
1988 e500_register_reggroup_p (struct gdbarch *gdbarch,
1989                           int regnum,
1990                           struct reggroup *group)
1991 {
1992   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1993
1994   /* The save and restore register groups need to include the
1995      upper-half registers, even though they're anonymous.  */
1996   if ((group == save_reggroup
1997        || group == restore_reggroup)
1998       && (tdep->ppc_ev0_upper_regnum <= regnum
1999           && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2000     return 1;
2001
2002   /* In all other regards, the default reggroup definition is fine.  */
2003   return default_register_reggroup_p (gdbarch, regnum, group);
2004 }
2005
2006 /* Convert a DBX STABS register number to a GDB register number.  */
2007 static int
2008 rs6000_stab_reg_to_regnum (int num)
2009 {
2010   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2011
2012   if (0 <= num && num <= 31)
2013     return tdep->ppc_gp0_regnum + num;
2014   else if (32 <= num && num <= 63)
2015     /* FIXME: jimb/2004-05-05: What should we do when the debug info
2016        specifies registers the architecture doesn't have?  Our
2017        callers don't check the value we return.  */
2018     return tdep->ppc_fp0_regnum + (num - 32);
2019   else if (77 <= num && num <= 108)
2020     return tdep->ppc_vr0_regnum + (num - 77);
2021   else if (1200 <= num && num < 1200 + 32)
2022     return tdep->ppc_ev0_regnum + (num - 1200);
2023   else
2024     switch (num)
2025       {
2026       case 64: 
2027         return tdep->ppc_mq_regnum;
2028       case 65:
2029         return tdep->ppc_lr_regnum;
2030       case 66: 
2031         return tdep->ppc_ctr_regnum;
2032       case 76: 
2033         return tdep->ppc_xer_regnum;
2034       case 109:
2035         return tdep->ppc_vrsave_regnum;
2036       case 110:
2037         return tdep->ppc_vrsave_regnum - 1; /* vscr */
2038       case 111:
2039         return tdep->ppc_acc_regnum;
2040       case 112:
2041         return tdep->ppc_spefscr_regnum;
2042       default: 
2043         return num;
2044       }
2045 }
2046
2047
2048 /* Convert a Dwarf 2 register number to a GDB register number.  */
2049 static int
2050 rs6000_dwarf2_reg_to_regnum (int num)
2051 {
2052   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2053
2054   if (0 <= num && num <= 31)
2055     return tdep->ppc_gp0_regnum + num;
2056   else if (32 <= num && num <= 63)
2057     /* FIXME: jimb/2004-05-05: What should we do when the debug info
2058        specifies registers the architecture doesn't have?  Our
2059        callers don't check the value we return.  */
2060     return tdep->ppc_fp0_regnum + (num - 32);
2061   else if (1124 <= num && num < 1124 + 32)
2062     return tdep->ppc_vr0_regnum + (num - 1124);
2063   else if (1200 <= num && num < 1200 + 32)
2064     return tdep->ppc_ev0_regnum + (num - 1200);
2065   else
2066     switch (num)
2067       {
2068       case 67:
2069         return tdep->ppc_vrsave_regnum - 1; /* vscr */
2070       case 99:
2071         return tdep->ppc_acc_regnum;
2072       case 100:
2073         return tdep->ppc_mq_regnum;
2074       case 101:
2075         return tdep->ppc_xer_regnum;
2076       case 108:
2077         return tdep->ppc_lr_regnum;
2078       case 109:
2079         return tdep->ppc_ctr_regnum;
2080       case 356:
2081         return tdep->ppc_vrsave_regnum;
2082       case 612:
2083         return tdep->ppc_spefscr_regnum;
2084       default:
2085         return num;
2086       }
2087 }
2088
2089
2090 static void
2091 rs6000_store_return_value (struct type *type,
2092                            struct regcache *regcache,
2093                            const void *valbuf)
2094 {
2095   struct gdbarch *gdbarch = get_regcache_arch (regcache);
2096   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2097   int regnum = -1;
2098
2099   /* The calling convention this function implements assumes the
2100      processor has floating-point registers.  We shouldn't be using it
2101      on PPC variants that lack them.  */
2102   gdb_assert (ppc_floating_point_unit_p (gdbarch));
2103
2104   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2105     /* Floating point values are returned starting from FPR1 and up.
2106        Say a double_double_double type could be returned in
2107        FPR1/FPR2/FPR3 triple.  */
2108     regnum = tdep->ppc_fp0_regnum + 1;
2109   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2110     {
2111       if (TYPE_LENGTH (type) == 16
2112           && TYPE_VECTOR (type))
2113         regnum = tdep->ppc_vr0_regnum + 2;
2114       else
2115         internal_error (__FILE__, __LINE__,
2116                         "rs6000_store_return_value: "
2117                         "unexpected array return type");
2118     }
2119   else
2120     /* Everything else is returned in GPR3 and up.  */
2121     regnum = tdep->ppc_gp0_regnum + 3;
2122
2123   {
2124     size_t bytes_written = 0;
2125
2126     while (bytes_written < TYPE_LENGTH (type))
2127       {
2128         /* How much of this value can we write to this register?  */
2129         size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2130                                      register_size (gdbarch, regnum));
2131         regcache_cooked_write_part (regcache, regnum,
2132                                     0, bytes_to_write,
2133                                     (char *) valbuf + bytes_written);
2134         regnum++;
2135         bytes_written += bytes_to_write;
2136       }
2137   }
2138 }
2139
2140
2141 /* Extract from an array REGBUF containing the (raw) register state
2142    the address in which a function should return its structure value,
2143    as a CORE_ADDR (or an expression that can be used as one).  */
2144
2145 static CORE_ADDR
2146 rs6000_extract_struct_value_address (struct regcache *regcache)
2147 {
2148   /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2149      function call GDB knows the address of the struct return value
2150      and hence, should not need to call this function.  Unfortunately,
2151      the current call_function_by_hand() code only saves the most
2152      recent struct address leading to occasional calls.  The code
2153      should instead maintain a stack of such addresses (in the dummy
2154      frame object).  */
2155   /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2156      really got no idea where the return value is being stored.  While
2157      r3, on function entry, contained the address it will have since
2158      been reused (scratch) and hence wouldn't be valid */
2159   return 0;
2160 }
2161
2162 /* Hook called when a new child process is started.  */
2163
2164 void
2165 rs6000_create_inferior (int pid)
2166 {
2167   if (rs6000_set_host_arch_hook)
2168     rs6000_set_host_arch_hook (pid);
2169 }
2170 \f
2171 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2172
2173    Usually a function pointer's representation is simply the address
2174    of the function. On the RS/6000 however, a function pointer is
2175    represented by a pointer to a TOC entry. This TOC entry contains
2176    three words, the first word is the address of the function, the
2177    second word is the TOC pointer (r2), and the third word is the
2178    static chain value.  Throughout GDB it is currently assumed that a
2179    function pointer contains the address of the function, which is not
2180    easy to fix.  In addition, the conversion of a function address to
2181    a function pointer would require allocation of a TOC entry in the
2182    inferior's memory space, with all its drawbacks.  To be able to
2183    call C++ virtual methods in the inferior (which are called via
2184    function pointers), find_function_addr uses this function to get the
2185    function address from a function pointer.  */
2186
2187 /* Return real function address if ADDR (a function pointer) is in the data
2188    space and is therefore a special function pointer.  */
2189
2190 static CORE_ADDR
2191 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2192                                    CORE_ADDR addr,
2193                                    struct target_ops *targ)
2194 {
2195   struct obj_section *s;
2196
2197   s = find_pc_section (addr);
2198   if (s && s->the_bfd_section->flags & SEC_CODE)
2199     return addr;
2200
2201   /* ADDR is in the data space, so it's a special function pointer. */
2202   return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2203 }
2204 \f
2205
2206 /* Handling the various POWER/PowerPC variants.  */
2207
2208
2209 /* The arrays here called registers_MUMBLE hold information about available
2210    registers.
2211
2212    For each family of PPC variants, I've tried to isolate out the
2213    common registers and put them up front, so that as long as you get
2214    the general family right, GDB will correctly identify the registers
2215    common to that family.  The common register sets are:
2216
2217    For the 60x family: hid0 hid1 iabr dabr pir
2218
2219    For the 505 and 860 family: eie eid nri
2220
2221    For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2222    tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2223    pbu1 pbl2 pbu2
2224
2225    Most of these register groups aren't anything formal.  I arrived at
2226    them by looking at the registers that occurred in more than one
2227    processor.
2228    
2229    Note: kevinb/2002-04-30: Support for the fpscr register was added
2230    during April, 2002.  Slot 70 is being used for PowerPC and slot 71
2231    for Power.  For PowerPC, slot 70 was unused and was already in the
2232    PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
2233    slot 70 was being used for "mq", so the next available slot (71)
2234    was chosen.  It would have been nice to be able to make the
2235    register numbers the same across processor cores, but this wasn't
2236    possible without either 1) renumbering some registers for some
2237    processors or 2) assigning fpscr to a really high slot that's
2238    larger than any current register number.  Doing (1) is bad because
2239    existing stubs would break.  Doing (2) is undesirable because it
2240    would introduce a really large gap between fpscr and the rest of
2241    the registers for most processors.  */
2242
2243 /* Convenience macros for populating register arrays.  */
2244
2245 /* Within another macro, convert S to a string.  */
2246
2247 #define STR(s)  #s
2248
2249 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2250    and 64 bits on 64-bit systems.  */
2251 #define R(name)         { STR(name), 4, 8, 0, 0, -1 }
2252
2253 /* Return a struct reg defining register NAME that's 32 bits on all
2254    systems.  */
2255 #define R4(name)        { STR(name), 4, 4, 0, 0, -1 }
2256
2257 /* Return a struct reg defining register NAME that's 64 bits on all
2258    systems.  */
2259 #define R8(name)        { STR(name), 8, 8, 0, 0, -1 }
2260
2261 /* Return a struct reg defining register NAME that's 128 bits on all
2262    systems.  */
2263 #define R16(name)       { STR(name), 16, 16, 0, 0, -1 }
2264
2265 /* Return a struct reg defining floating-point register NAME.  */
2266 #define F(name)         { STR(name), 8, 8, 1, 0, -1 }
2267
2268 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2269    long on all systems.  */
2270 #define P8(name)        { STR(name), 8, 8, 0, 1, -1 }
2271
2272 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2273    systems and that doesn't exist on 64-bit systems.  */
2274 #define R32(name)       { STR(name), 4, 0, 0, 0, -1 }
2275
2276 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2277    systems and that doesn't exist on 32-bit systems.  */
2278 #define R64(name)       { STR(name), 0, 8, 0, 0, -1 }
2279
2280 /* Return a struct reg placeholder for a register that doesn't exist.  */
2281 #define R0              { 0, 0, 0, 0, 0, -1 }
2282
2283 /* Return a struct reg defining an anonymous raw register that's 32
2284    bits on all systems.  */
2285 #define A4              { 0, 4, 4, 0, 0, -1 }
2286
2287 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2288    32-bit systems and 64 bits on 64-bit systems.  */
2289 #define S(name)         { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2290   
2291 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2292    all systems.  */
2293 #define S4(name)        { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2294   
2295 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2296    all systems, and whose SPR number is NUMBER.  */
2297 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2298   
2299 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2300    64-bit systems and that doesn't exist on 32-bit systems.  */
2301 #define S64(name)       { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2302   
2303 /* UISA registers common across all architectures, including POWER.  */
2304
2305 #define COMMON_UISA_REGS \
2306   /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
2307   /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2308   /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2309   /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2310   /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
2311   /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2312   /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2313   /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2314   /* 64 */ R(pc), R(ps)
2315
2316 /* UISA-level SPRs for PowerPC.  */
2317 #define PPC_UISA_SPRS \
2318   /* 66 */ R4(cr),  S(lr), S(ctr), S4(xer), R4(fpscr)
2319
2320 /* UISA-level SPRs for PowerPC without floating point support.  */
2321 #define PPC_UISA_NOFP_SPRS \
2322   /* 66 */ R4(cr),  S(lr), S(ctr), S4(xer), R0
2323
2324 /* Segment registers, for PowerPC.  */
2325 #define PPC_SEGMENT_REGS \
2326   /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
2327   /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
2328   /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
2329   /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2330
2331 /* OEA SPRs for PowerPC.  */
2332 #define PPC_OEA_SPRS \
2333   /*  87 */ S4(pvr), \
2334   /*  88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2335   /*  92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2336   /*  96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2337   /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2338   /* 104 */ S(sdr1),   S64(asr),  S(dar),    S4(dsisr), \
2339   /* 108 */ S(sprg0),  S(sprg1),  S(sprg2),  S(sprg3),  \
2340   /* 112 */ S(srr0),   S(srr1),   S(tbl),    S(tbu),    \
2341   /* 116 */ S4(dec),   S(dabr),   S4(ear)
2342
2343 /* AltiVec registers.  */
2344 #define PPC_ALTIVEC_REGS \
2345   /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
2346   /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2347   /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2348   /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2349   /*151*/R4(vscr), R4(vrsave)
2350
2351
2352 /* On machines supporting the SPE APU, the general-purpose registers
2353    are 64 bits long.  There are SIMD vector instructions to treat them
2354    as pairs of floats, but the rest of the instruction set treats them
2355    as 32-bit registers, and only operates on their lower halves.
2356
2357    In the GDB regcache, we treat their high and low halves as separate
2358    registers.  The low halves we present as the general-purpose
2359    registers, and then we have pseudo-registers that stitch together
2360    the upper and lower halves and present them as pseudo-registers.  */
2361
2362 /* SPE GPR lower halves --- raw registers.  */
2363 #define PPC_SPE_GP_REGS \
2364   /*  0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7),  \
2365   /*  8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2366   /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2367   /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2368
2369 /* SPE GPR upper halves --- anonymous raw registers.  */
2370 #define PPC_SPE_UPPER_GP_REGS                   \
2371   /*  0 */ A4, A4, A4, A4, A4, A4, A4, A4,      \
2372   /*  8 */ A4, A4, A4, A4, A4, A4, A4, A4,      \
2373   /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4,      \
2374   /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2375
2376 /* SPE GPR vector registers --- pseudo registers based on underlying
2377    gprs and the anonymous upper half raw registers.  */
2378 #define PPC_EV_PSEUDO_REGS \
2379 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2380 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2381 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2382 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2383
2384 /* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
2385    user-level SPR's.  */
2386 static const struct reg registers_power[] =
2387 {
2388   COMMON_UISA_REGS,
2389   /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2390   /* 71 */ R4(fpscr)
2391 };
2392
2393 /* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
2394    view of the PowerPC.  */
2395 static const struct reg registers_powerpc[] =
2396 {
2397   COMMON_UISA_REGS,
2398   PPC_UISA_SPRS,
2399   PPC_ALTIVEC_REGS
2400 };
2401
2402 /* IBM PowerPC 403.
2403
2404    Some notes about the "tcr" special-purpose register:
2405    - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2406      403's programmable interval timer, fixed interval timer, and
2407      watchdog timer.
2408    - On the 602, SPR 984 is named "tcr", and it controls the 602's
2409      watchdog timer, and nothing else.
2410
2411    Some of the fields are similar between the two, but they're not
2412    compatible with each other.  Since the two variants have different
2413    registers, with different numbers, but the same name, we can't
2414    splice the register name to get the SPR number.  */
2415 static const struct reg registers_403[] =
2416 {
2417   COMMON_UISA_REGS,
2418   PPC_UISA_SPRS,
2419   PPC_SEGMENT_REGS,
2420   PPC_OEA_SPRS,
2421   /* 119 */ S(icdbdr), S(esr),  S(dear), S(evpr),
2422   /* 123 */ S(cdbcr),  S(tsr),  SN4(tcr, ppc_spr_403_tcr), S(pit),
2423   /* 127 */ S(tbhi),   S(tblo), S(srr2), S(srr3),
2424   /* 131 */ S(dbsr),   S(dbcr), S(iac1), S(iac2),
2425   /* 135 */ S(dac1),   S(dac2), S(dccr), S(iccr),
2426   /* 139 */ S(pbl1),   S(pbu1), S(pbl2), S(pbu2)
2427 };
2428
2429 /* IBM PowerPC 403GC.
2430    See the comments about 'tcr' for the 403, above.  */
2431 static const struct reg registers_403GC[] =
2432 {
2433   COMMON_UISA_REGS,
2434   PPC_UISA_SPRS,
2435   PPC_SEGMENT_REGS,
2436   PPC_OEA_SPRS,
2437   /* 119 */ S(icdbdr), S(esr),  S(dear), S(evpr),
2438   /* 123 */ S(cdbcr),  S(tsr),  SN4(tcr, ppc_spr_403_tcr), S(pit),
2439   /* 127 */ S(tbhi),   S(tblo), S(srr2), S(srr3),
2440   /* 131 */ S(dbsr),   S(dbcr), S(iac1), S(iac2),
2441   /* 135 */ S(dac1),   S(dac2), S(dccr), S(iccr),
2442   /* 139 */ S(pbl1),   S(pbu1), S(pbl2), S(pbu2),
2443   /* 143 */ S(zpr),    S(pid),  S(sgr),  S(dcwr),
2444   /* 147 */ S(tbhu),   S(tblu)
2445 };
2446
2447 /* Motorola PowerPC 505.  */
2448 static const struct reg registers_505[] =
2449 {
2450   COMMON_UISA_REGS,
2451   PPC_UISA_SPRS,
2452   PPC_SEGMENT_REGS,
2453   PPC_OEA_SPRS,
2454   /* 119 */ S(eie), S(eid), S(nri)
2455 };
2456
2457 /* Motorola PowerPC 860 or 850.  */
2458 static const struct reg registers_860[] =
2459 {
2460   COMMON_UISA_REGS,
2461   PPC_UISA_SPRS,
2462   PPC_SEGMENT_REGS,
2463   PPC_OEA_SPRS,
2464   /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2465   /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2466   /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2467   /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2468   /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2469   /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2470   /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2471   /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2472   /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2473   /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2474   /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2475   /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2476 };
2477
2478 /* Motorola PowerPC 601.  Note that the 601 has different register numbers
2479    for reading and writing RTCU and RTCL.  However, how one reads and writes a
2480    register is the stub's problem.  */
2481 static const struct reg registers_601[] =
2482 {
2483   COMMON_UISA_REGS,
2484   PPC_UISA_SPRS,
2485   PPC_SEGMENT_REGS,
2486   PPC_OEA_SPRS,
2487   /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2488   /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2489 };
2490
2491 /* Motorola PowerPC 602.
2492    See the notes under the 403 about 'tcr'.  */
2493 static const struct reg registers_602[] =
2494 {
2495   COMMON_UISA_REGS,
2496   PPC_UISA_SPRS,
2497   PPC_SEGMENT_REGS,
2498   PPC_OEA_SPRS,
2499   /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2500   /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2501   /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2502 };
2503
2504 /* Motorola/IBM PowerPC 603 or 603e.  */
2505 static const struct reg registers_603[] =
2506 {
2507   COMMON_UISA_REGS,
2508   PPC_UISA_SPRS,
2509   PPC_SEGMENT_REGS,
2510   PPC_OEA_SPRS,
2511   /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2512   /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2513   /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2514 };
2515
2516 /* Motorola PowerPC 604 or 604e.  */
2517 static const struct reg registers_604[] =
2518 {
2519   COMMON_UISA_REGS,
2520   PPC_UISA_SPRS,
2521   PPC_SEGMENT_REGS,
2522   PPC_OEA_SPRS,
2523   /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2524   /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2525   /* 127 */ S(sia), S(sda)
2526 };
2527
2528 /* Motorola/IBM PowerPC 750 or 740.  */
2529 static const struct reg registers_750[] =
2530 {
2531   COMMON_UISA_REGS,
2532   PPC_UISA_SPRS,
2533   PPC_SEGMENT_REGS,
2534   PPC_OEA_SPRS,
2535   /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2536   /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2537   /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2538   /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2539   /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2540   /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2541 };
2542
2543
2544 /* Motorola PowerPC 7400.  */
2545 static const struct reg registers_7400[] =
2546 {
2547   /* gpr0-gpr31, fpr0-fpr31 */
2548   COMMON_UISA_REGS,
2549   /* cr, lr, ctr, xer, fpscr */
2550   PPC_UISA_SPRS,
2551   /* sr0-sr15 */
2552   PPC_SEGMENT_REGS,
2553   PPC_OEA_SPRS,
2554   /* vr0-vr31, vrsave, vscr */
2555   PPC_ALTIVEC_REGS
2556   /* FIXME? Add more registers? */
2557 };
2558
2559 /* Motorola e500.  */
2560 static const struct reg registers_e500[] =
2561 {
2562   /*   0 ..  31 */ PPC_SPE_GP_REGS,
2563   /*  32 ..  63 */ PPC_SPE_UPPER_GP_REGS,
2564   /*  64 ..  65 */ R(pc), R(ps),
2565   /*  66 ..  70 */ PPC_UISA_NOFP_SPRS,
2566   /*  71 ..  72 */ R8(acc), S4(spefscr),
2567   /* NOTE: Add new registers here the end of the raw register
2568      list and just before the first pseudo register.  */
2569   /*  73 .. 104 */ PPC_EV_PSEUDO_REGS
2570 };
2571
2572 /* Information about a particular processor variant.  */
2573
2574 struct variant
2575   {
2576     /* Name of this variant.  */
2577     char *name;
2578
2579     /* English description of the variant.  */
2580     char *description;
2581
2582     /* bfd_arch_info.arch corresponding to variant.  */
2583     enum bfd_architecture arch;
2584
2585     /* bfd_arch_info.mach corresponding to variant.  */
2586     unsigned long mach;
2587
2588     /* Number of real registers.  */
2589     int nregs;
2590
2591     /* Number of pseudo registers.  */
2592     int npregs;
2593
2594     /* Number of total registers (the sum of nregs and npregs).  */
2595     int num_tot_regs;
2596
2597     /* Table of register names; registers[R] is the name of the register
2598        number R.  */
2599     const struct reg *regs;
2600   };
2601
2602 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2603
2604 static int
2605 num_registers (const struct reg *reg_list, int num_tot_regs)
2606 {
2607   int i;
2608   int nregs = 0;
2609
2610   for (i = 0; i < num_tot_regs; i++)
2611     if (!reg_list[i].pseudo)
2612       nregs++;
2613        
2614   return nregs;
2615 }
2616
2617 static int
2618 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2619 {
2620   int i;
2621   int npregs = 0;
2622
2623   for (i = 0; i < num_tot_regs; i++)
2624     if (reg_list[i].pseudo)
2625       npregs ++; 
2626
2627   return npregs;
2628 }
2629
2630 /* Information in this table comes from the following web sites:
2631    IBM:       http://www.chips.ibm.com:80/products/embedded/
2632    Motorola:  http://www.mot.com/SPS/PowerPC/
2633
2634    I'm sure I've got some of the variant descriptions not quite right.
2635    Please report any inaccuracies you find to GDB's maintainer.
2636
2637    If you add entries to this table, please be sure to allow the new
2638    value as an argument to the --with-cpu flag, in configure.in.  */
2639
2640 static struct variant variants[] =
2641 {
2642
2643   {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2644    bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2645    registers_powerpc},
2646   {"power", "POWER user-level", bfd_arch_rs6000,
2647    bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2648    registers_power},
2649   {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2650    bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2651    registers_403},
2652   {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2653    bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2654    registers_601},
2655   {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2656    bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2657    registers_602},
2658   {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2659    bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2660    registers_603},
2661   {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2662    604, -1, -1, tot_num_registers (registers_604),
2663    registers_604},
2664   {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2665    bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2666    registers_403GC},
2667   {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2668    bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2669    registers_505},
2670   {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2671    bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2672    registers_860},
2673   {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2674    bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2675    registers_750},
2676   {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2677    bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2678    registers_7400},
2679   {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2680    bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2681    registers_e500},
2682
2683   /* 64-bit */
2684   {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2685    bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2686    registers_powerpc},
2687   {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2688    bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2689    registers_powerpc},
2690   {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2691    bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2692    registers_powerpc},
2693   {"a35", "PowerPC A35", bfd_arch_powerpc,
2694    bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2695    registers_powerpc},
2696   {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2697    bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2698    registers_powerpc},
2699   {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2700    bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2701    registers_powerpc},
2702
2703   /* FIXME: I haven't checked the register sets of the following.  */
2704   {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2705    bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2706    registers_power},
2707   {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2708    bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2709    registers_power},
2710   {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2711    bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2712    registers_power},
2713
2714   {0, 0, 0, 0, 0, 0, 0, 0}
2715 };
2716
2717 /* Initialize the number of registers and pseudo registers in each variant.  */
2718
2719 static void
2720 init_variants (void)
2721 {
2722   struct variant *v;
2723
2724   for (v = variants; v->name; v++)
2725     {
2726       if (v->nregs == -1)
2727         v->nregs = num_registers (v->regs, v->num_tot_regs);
2728       if (v->npregs == -1)
2729         v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2730     }  
2731 }
2732
2733 /* Return the variant corresponding to architecture ARCH and machine number
2734    MACH.  If no such variant exists, return null.  */
2735
2736 static const struct variant *
2737 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2738 {
2739   const struct variant *v;
2740
2741   for (v = variants; v->name; v++)
2742     if (arch == v->arch && mach == v->mach)
2743       return v;
2744
2745   return NULL;
2746 }
2747
2748 static int
2749 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2750 {
2751   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2752     return print_insn_big_powerpc (memaddr, info);
2753   else
2754     return print_insn_little_powerpc (memaddr, info);
2755 }
2756 \f
2757 static CORE_ADDR
2758 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2759 {
2760   return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2761 }
2762
2763 static struct frame_id
2764 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2765 {
2766   return frame_id_build (frame_unwind_register_unsigned (next_frame,
2767                                                          SP_REGNUM),
2768                          frame_pc_unwind (next_frame));
2769 }
2770
2771 struct rs6000_frame_cache
2772 {
2773   CORE_ADDR base;
2774   CORE_ADDR initial_sp;
2775   struct trad_frame_saved_reg *saved_regs;
2776 };
2777
2778 static struct rs6000_frame_cache *
2779 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2780 {
2781   struct rs6000_frame_cache *cache;
2782   struct gdbarch *gdbarch = get_frame_arch (next_frame);
2783   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2784   struct rs6000_framedata fdata;
2785   int wordsize = tdep->wordsize;
2786
2787   if ((*this_cache) != NULL)
2788     return (*this_cache);
2789   cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2790   (*this_cache) = cache;
2791   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2792
2793   skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2794                  &fdata);
2795
2796   /* If there were any saved registers, figure out parent's stack
2797      pointer.  */
2798   /* The following is true only if the frame doesn't have a call to
2799      alloca(), FIXME.  */
2800
2801   if (fdata.saved_fpr == 0
2802       && fdata.saved_gpr == 0
2803       && fdata.saved_vr == 0
2804       && fdata.saved_ev == 0
2805       && fdata.lr_offset == 0
2806       && fdata.cr_offset == 0
2807       && fdata.vr_offset == 0
2808       && fdata.ev_offset == 0)
2809     cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2810   else
2811     {
2812       /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2813          address of the current frame.  Things might be easier if the
2814          ->frame pointed to the outer-most address of the frame.  In
2815          the mean time, the address of the prev frame is used as the
2816          base address of this frame.  */
2817       cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2818       if (!fdata.frameless)
2819         /* Frameless really means stackless.  */
2820         cache->base = read_memory_addr (cache->base, wordsize);
2821     }
2822   trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2823
2824   /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2825      All fpr's from saved_fpr to fp31 are saved.  */
2826
2827   if (fdata.saved_fpr >= 0)
2828     {
2829       int i;
2830       CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2831
2832       /* If skip_prologue says floating-point registers were saved,
2833          but the current architecture has no floating-point registers,
2834          then that's strange.  But we have no indices to even record
2835          the addresses under, so we just ignore it.  */
2836       if (ppc_floating_point_unit_p (gdbarch))
2837         for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2838           {
2839             cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2840             fpr_addr += 8;
2841           }
2842     }
2843
2844   /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2845      All gpr's from saved_gpr to gpr31 are saved.  */
2846
2847   if (fdata.saved_gpr >= 0)
2848     {
2849       int i;
2850       CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2851       for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2852         {
2853           cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2854           gpr_addr += wordsize;
2855         }
2856     }
2857
2858   /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2859      All vr's from saved_vr to vr31 are saved.  */
2860   if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2861     {
2862       if (fdata.saved_vr >= 0)
2863         {
2864           int i;
2865           CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2866           for (i = fdata.saved_vr; i < 32; i++)
2867             {
2868               cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2869               vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2870             }
2871         }
2872     }
2873
2874   /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2875      All vr's from saved_ev to ev31 are saved. ????? */
2876   if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2877     {
2878       if (fdata.saved_ev >= 0)
2879         {
2880           int i;
2881           CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2882           for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2883             {
2884               cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2885               cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2886               ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2887             }
2888         }
2889     }
2890
2891   /* If != 0, fdata.cr_offset is the offset from the frame that
2892      holds the CR.  */
2893   if (fdata.cr_offset != 0)
2894     cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2895
2896   /* If != 0, fdata.lr_offset is the offset from the frame that
2897      holds the LR.  */
2898   if (fdata.lr_offset != 0)
2899     cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2900   /* The PC is found in the link register.  */
2901   cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2902
2903   /* If != 0, fdata.vrsave_offset is the offset from the frame that
2904      holds the VRSAVE.  */
2905   if (fdata.vrsave_offset != 0)
2906     cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2907
2908   if (fdata.alloca_reg < 0)
2909     /* If no alloca register used, then fi->frame is the value of the
2910        %sp for this frame, and it is good enough.  */
2911     cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2912   else
2913     cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2914                                                         fdata.alloca_reg);
2915
2916   return cache;
2917 }
2918
2919 static void
2920 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2921                       struct frame_id *this_id)
2922 {
2923   struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2924                                                         this_cache);
2925   (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2926 }
2927
2928 static void
2929 rs6000_frame_prev_register (struct frame_info *next_frame,
2930                                  void **this_cache,
2931                                  int regnum, int *optimizedp,
2932                                  enum lval_type *lvalp, CORE_ADDR *addrp,
2933                                  int *realnump, void *valuep)
2934 {
2935   struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2936                                                         this_cache);
2937   trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2938                                 optimizedp, lvalp, addrp, realnump, valuep);
2939 }
2940
2941 static const struct frame_unwind rs6000_frame_unwind =
2942 {
2943   NORMAL_FRAME,
2944   rs6000_frame_this_id,
2945   rs6000_frame_prev_register
2946 };
2947
2948 static const struct frame_unwind *
2949 rs6000_frame_sniffer (struct frame_info *next_frame)
2950 {
2951   return &rs6000_frame_unwind;
2952 }
2953
2954 \f
2955
2956 static CORE_ADDR
2957 rs6000_frame_base_address (struct frame_info *next_frame,
2958                                 void **this_cache)
2959 {
2960   struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2961                                                         this_cache);
2962   return info->initial_sp;
2963 }
2964
2965 static const struct frame_base rs6000_frame_base = {
2966   &rs6000_frame_unwind,
2967   rs6000_frame_base_address,
2968   rs6000_frame_base_address,
2969   rs6000_frame_base_address
2970 };
2971
2972 static const struct frame_base *
2973 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2974 {
2975   return &rs6000_frame_base;
2976 }
2977
2978 /* Initialize the current architecture based on INFO.  If possible, re-use an
2979    architecture from ARCHES, which is a list of architectures already created
2980    during this debugging session.
2981
2982    Called e.g. at program startup, when reading a core file, and when reading
2983    a binary file.  */
2984
2985 static struct gdbarch *
2986 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2987 {
2988   struct gdbarch *gdbarch;
2989   struct gdbarch_tdep *tdep;
2990   int wordsize, from_xcoff_exec, from_elf_exec, i, off;
2991   struct reg *regs;
2992   const struct variant *v;
2993   enum bfd_architecture arch;
2994   unsigned long mach;
2995   bfd abfd;
2996   int sysv_abi;
2997   asection *sect;
2998
2999   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3000     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3001
3002   from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3003     bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3004
3005   sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3006
3007   /* Check word size.  If INFO is from a binary file, infer it from
3008      that, else choose a likely default.  */
3009   if (from_xcoff_exec)
3010     {
3011       if (bfd_xcoff_is_xcoff64 (info.abfd))
3012         wordsize = 8;
3013       else
3014         wordsize = 4;
3015     }
3016   else if (from_elf_exec)
3017     {
3018       if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3019         wordsize = 8;
3020       else
3021         wordsize = 4;
3022     }
3023   else
3024     {
3025       if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3026         wordsize = info.bfd_arch_info->bits_per_word /
3027           info.bfd_arch_info->bits_per_byte;
3028       else
3029         wordsize = 4;
3030     }
3031
3032   /* Find a candidate among extant architectures.  */
3033   for (arches = gdbarch_list_lookup_by_info (arches, &info);
3034        arches != NULL;
3035        arches = gdbarch_list_lookup_by_info (arches->next, &info))
3036     {
3037       /* Word size in the various PowerPC bfd_arch_info structs isn't
3038          meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
3039          separate word size check.  */
3040       tdep = gdbarch_tdep (arches->gdbarch);
3041       if (tdep && tdep->wordsize == wordsize)
3042         return arches->gdbarch;
3043     }
3044
3045   /* None found, create a new architecture from INFO, whose bfd_arch_info
3046      validity depends on the source:
3047        - executable             useless
3048        - rs6000_host_arch()     good
3049        - core file              good
3050        - "set arch"             trust blindly
3051        - GDB startup            useless but harmless */
3052
3053   if (!from_xcoff_exec)
3054     {
3055       arch = info.bfd_arch_info->arch;
3056       mach = info.bfd_arch_info->mach;
3057     }
3058   else
3059     {
3060       arch = bfd_arch_powerpc;
3061       bfd_default_set_arch_mach (&abfd, arch, 0);
3062       info.bfd_arch_info = bfd_get_arch_info (&abfd);
3063       mach = info.bfd_arch_info->mach;
3064     }
3065   tdep = xmalloc (sizeof (struct gdbarch_tdep));
3066   tdep->wordsize = wordsize;
3067
3068   /* For e500 executables, the apuinfo section is of help here.  Such
3069      section contains the identifier and revision number of each
3070      Application-specific Processing Unit that is present on the
3071      chip.  The content of the section is determined by the assembler
3072      which looks at each instruction and determines which unit (and
3073      which version of it) can execute it. In our case we just look for
3074      the existance of the section.  */
3075
3076   if (info.abfd)
3077     {
3078       sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3079       if (sect)
3080         {
3081           arch = info.bfd_arch_info->arch;
3082           mach = bfd_mach_ppc_e500;
3083           bfd_default_set_arch_mach (&abfd, arch, mach);
3084           info.bfd_arch_info = bfd_get_arch_info (&abfd);
3085         }
3086     }
3087
3088   gdbarch = gdbarch_alloc (&info, tdep);
3089
3090   /* Initialize the number of real and pseudo registers in each variant.  */
3091   init_variants ();
3092
3093   /* Choose variant.  */
3094   v = find_variant_by_arch (arch, mach);
3095   if (!v)
3096     return NULL;
3097
3098   tdep->regs = v->regs;
3099
3100   tdep->ppc_gp0_regnum = 0;
3101   tdep->ppc_toc_regnum = 2;
3102   tdep->ppc_ps_regnum = 65;
3103   tdep->ppc_cr_regnum = 66;
3104   tdep->ppc_lr_regnum = 67;
3105   tdep->ppc_ctr_regnum = 68;
3106   tdep->ppc_xer_regnum = 69;
3107   if (v->mach == bfd_mach_ppc_601)
3108     tdep->ppc_mq_regnum = 124;
3109   else if (arch == bfd_arch_rs6000)
3110     tdep->ppc_mq_regnum = 70;
3111   else
3112     tdep->ppc_mq_regnum = -1;
3113   tdep->ppc_fp0_regnum = 32;
3114   tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3115   tdep->ppc_sr0_regnum = 71;
3116   tdep->ppc_vr0_regnum = -1;
3117   tdep->ppc_vrsave_regnum = -1;
3118   tdep->ppc_ev0_upper_regnum = -1;
3119   tdep->ppc_ev0_regnum = -1;
3120   tdep->ppc_ev31_regnum = -1;
3121   tdep->ppc_acc_regnum = -1;
3122   tdep->ppc_spefscr_regnum = -1;
3123
3124   set_gdbarch_pc_regnum (gdbarch, 64);
3125   set_gdbarch_sp_regnum (gdbarch, 1);
3126   set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3127   set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3128   if (sysv_abi && wordsize == 8)
3129     set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3130   else if (sysv_abi && wordsize == 4)
3131     set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3132   else
3133     {
3134       set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3135       set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3136     }
3137
3138   /* Set lr_frame_offset.  */
3139   if (wordsize == 8)
3140     tdep->lr_frame_offset = 16;
3141   else if (sysv_abi)
3142     tdep->lr_frame_offset = 4;
3143   else
3144     tdep->lr_frame_offset = 8;
3145
3146   if (v->arch == bfd_arch_rs6000)
3147     tdep->ppc_sr0_regnum = -1;
3148   else if (v->arch == bfd_arch_powerpc)
3149     switch (v->mach)
3150       {
3151       case bfd_mach_ppc: 
3152         tdep->ppc_sr0_regnum = -1;
3153         tdep->ppc_vr0_regnum = 71;
3154         tdep->ppc_vrsave_regnum = 104;
3155         break;
3156       case bfd_mach_ppc_7400:
3157         tdep->ppc_vr0_regnum = 119;
3158         tdep->ppc_vrsave_regnum = 152;
3159         break;
3160       case bfd_mach_ppc_e500:
3161         tdep->ppc_toc_regnum = -1;
3162         tdep->ppc_ev0_upper_regnum = 32;
3163         tdep->ppc_ev0_regnum = 73;
3164         tdep->ppc_ev31_regnum = 104;
3165         tdep->ppc_acc_regnum = 71;
3166         tdep->ppc_spefscr_regnum = 72;
3167         tdep->ppc_fp0_regnum = -1;
3168         tdep->ppc_fpscr_regnum = -1;
3169         tdep->ppc_sr0_regnum = -1;
3170         set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3171         set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3172         set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3173         break;
3174
3175       case bfd_mach_ppc64:
3176       case bfd_mach_ppc_620:
3177       case bfd_mach_ppc_630:
3178       case bfd_mach_ppc_a35:
3179       case bfd_mach_ppc_rs64ii:
3180       case bfd_mach_ppc_rs64iii:
3181         /* These processor's register sets don't have segment registers.  */
3182         tdep->ppc_sr0_regnum = -1;
3183         break;
3184       }   
3185   else
3186     internal_error (__FILE__, __LINE__,
3187                     "rs6000_gdbarch_init: "
3188                     "received unexpected BFD 'arch' value");
3189
3190   /* Sanity check on registers.  */
3191   gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3192
3193   /* Select instruction printer.  */
3194   if (arch == bfd_arch_rs6000)
3195     set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3196   else
3197     set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3198
3199   set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3200
3201   set_gdbarch_num_regs (gdbarch, v->nregs);
3202   set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3203   set_gdbarch_register_name (gdbarch, rs6000_register_name);
3204   set_gdbarch_register_type (gdbarch, rs6000_register_type);
3205
3206   set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3207   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3208   set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3209   set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3210   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3211   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3212   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3213   if (sysv_abi)
3214     set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3215   else
3216     set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3217   set_gdbarch_char_signed (gdbarch, 0);
3218
3219   set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3220   if (sysv_abi && wordsize == 8)
3221     /* PPC64 SYSV.  */
3222     set_gdbarch_frame_red_zone_size (gdbarch, 288);
3223   else if (!sysv_abi && wordsize == 4)
3224     /* PowerOpen / AIX 32 bit.  The saved area or red zone consists of
3225        19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3226        Problem is, 220 isn't frame (16 byte) aligned.  Round it up to
3227        224.  */
3228     set_gdbarch_frame_red_zone_size (gdbarch, 224);
3229
3230   set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3231   set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3232   set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3233
3234   set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3235   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3236   /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3237      is correct for the SysV ABI when the wordsize is 8, but I'm also
3238      fairly certain that ppc_sysv_abi_push_arguments() will give even
3239      worse results since it only works for 32-bit code.  So, for the moment,
3240      we're better off calling rs6000_push_arguments() since it works for
3241      64-bit code.  At some point in the future, this matter needs to be
3242      revisited.  */
3243   if (sysv_abi && wordsize == 4)
3244     set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3245   else if (sysv_abi && wordsize == 8)
3246     set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3247   else
3248     set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3249
3250   set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3251
3252   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3253   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3254   set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3255
3256   /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3257      for the descriptor and ".FN" for the entry-point -- a user
3258      specifying "break FN" will unexpectedly end up with a breakpoint
3259      on the descriptor and not the function.  This architecture method
3260      transforms any breakpoints on descriptors into breakpoints on the
3261      corresponding entry point.  */
3262   if (sysv_abi && wordsize == 8)
3263     set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3264
3265   /* Not sure on this. FIXMEmgo */
3266   set_gdbarch_frame_args_skip (gdbarch, 8);
3267
3268   if (!sysv_abi)
3269     set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3270
3271   if (!sysv_abi)
3272     {
3273       /* Handle RS/6000 function pointers (which are really function
3274          descriptors).  */
3275       set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3276         rs6000_convert_from_func_ptr_addr);
3277     }
3278
3279   /* Helpers for function argument information.  */
3280   set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3281
3282   /* Hook in ABI-specific overrides, if they have been registered.  */
3283   gdbarch_init_osabi (info, gdbarch);
3284
3285   switch (info.osabi)
3286     {
3287     case GDB_OSABI_NETBSD_AOUT:
3288     case GDB_OSABI_NETBSD_ELF:
3289     case GDB_OSABI_UNKNOWN:
3290     case GDB_OSABI_LINUX:
3291       set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3292       frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3293       set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3294       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3295       break;
3296     default:
3297       set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3298
3299       set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3300       frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3301       set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3302       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3303     }
3304
3305   if (from_xcoff_exec)
3306     {
3307       /* NOTE: jimix/2003-06-09: This test should really check for
3308          GDB_OSABI_AIX when that is defined and becomes
3309          available. (Actually, once things are properly split apart,
3310          the test goes away.) */
3311        /* RS6000/AIX does not support PT_STEP.  Has to be simulated.  */
3312        set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3313     }
3314
3315   init_sim_regno_table (gdbarch);
3316
3317   return gdbarch;
3318 }
3319
3320 static void
3321 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3322 {
3323   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3324
3325   if (tdep == NULL)
3326     return;
3327
3328   /* FIXME: Dump gdbarch_tdep.  */
3329 }
3330
3331 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3332
3333 static void
3334 rs6000_info_powerpc_command (char *args, int from_tty)
3335 {
3336   help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3337 }
3338
3339 /* Initialization code.  */
3340
3341 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3342
3343 void
3344 _initialize_rs6000_tdep (void)
3345 {
3346   gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3347   gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3348
3349   /* Add root prefix command for "info powerpc" commands */
3350   add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3351                   "Various POWERPC info specific commands.",
3352                   &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3353 }