1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "arch-utils.h"
33 #include "parser-defs.h"
36 #include "sim-regno.h"
37 #include "gdb/sim-ppc.h"
38 #include "reggroups.h"
39 #include "dwarf2-frame.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
43 #include "libbfd.h" /* for bfd_default_set_arch_mach */
44 #include "coff/internal.h" /* for libcoff.h */
45 #include "libcoff.h" /* for xcoff_data */
46 #include "coff/xcoff.h"
52 #include "solib-svr4.h"
54 #include "ppc-ravenscar-thread.h"
56 #include "gdb_assert.h"
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
63 #include "features/rs6000/powerpc-32.c"
64 #include "features/rs6000/powerpc-altivec32.c"
65 #include "features/rs6000/powerpc-vsx32.c"
66 #include "features/rs6000/powerpc-403.c"
67 #include "features/rs6000/powerpc-403gc.c"
68 #include "features/rs6000/powerpc-405.c"
69 #include "features/rs6000/powerpc-505.c"
70 #include "features/rs6000/powerpc-601.c"
71 #include "features/rs6000/powerpc-602.c"
72 #include "features/rs6000/powerpc-603.c"
73 #include "features/rs6000/powerpc-604.c"
74 #include "features/rs6000/powerpc-64.c"
75 #include "features/rs6000/powerpc-altivec64.c"
76 #include "features/rs6000/powerpc-vsx64.c"
77 #include "features/rs6000/powerpc-7400.c"
78 #include "features/rs6000/powerpc-750.c"
79 #include "features/rs6000/powerpc-860.c"
80 #include "features/rs6000/powerpc-e500.c"
81 #include "features/rs6000/rs6000.c"
83 /* Determine if regnum is an SPE pseudo-register. */
84 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
85 && (regnum) >= (tdep)->ppc_ev0_regnum \
86 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
88 /* Determine if regnum is a decimal float pseudo-register. */
89 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
90 && (regnum) >= (tdep)->ppc_dl0_regnum \
91 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
93 /* Determine if regnum is a POWER7 VSX register. */
94 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
95 && (regnum) >= (tdep)->ppc_vsr0_regnum \
96 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
98 /* Determine if regnum is a POWER7 Extended FP register. */
99 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
100 && (regnum) >= (tdep)->ppc_efpr0_regnum \
101 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
103 /* The list of available "set powerpc ..." and "show powerpc ..."
105 static struct cmd_list_element *setpowerpccmdlist = NULL;
106 static struct cmd_list_element *showpowerpccmdlist = NULL;
108 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
110 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
111 static const char *const powerpc_vector_strings[] =
120 /* A variable that can be configured by the user. */
121 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
122 static const char *powerpc_vector_abi_string = "auto";
124 /* To be used by skip_prologue. */
126 struct rs6000_framedata
128 int offset; /* total size of frame --- the distance
129 by which we decrement sp to allocate
131 int saved_gpr; /* smallest # of saved gpr */
132 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
133 int saved_fpr; /* smallest # of saved fpr */
134 int saved_vr; /* smallest # of saved vr */
135 int saved_ev; /* smallest # of saved ev */
136 int alloca_reg; /* alloca register number (frame ptr) */
137 char frameless; /* true if frameless functions. */
138 char nosavedpc; /* true if pc not saved. */
139 char used_bl; /* true if link register clobbered */
140 int gpr_offset; /* offset of saved gprs from prev sp */
141 int fpr_offset; /* offset of saved fprs from prev sp */
142 int vr_offset; /* offset of saved vrs from prev sp */
143 int ev_offset; /* offset of saved evs from prev sp */
144 int lr_offset; /* offset of saved lr */
145 int lr_register; /* register of saved lr, if trustworthy */
146 int cr_offset; /* offset of saved cr */
147 int vrsave_offset; /* offset of saved vrsave register */
151 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
153 vsx_register_p (struct gdbarch *gdbarch, int regno)
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 if (tdep->ppc_vsr0_regnum < 0)
159 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
160 <= tdep->ppc_vsr0_upper_regnum + 31);
163 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
165 altivec_register_p (struct gdbarch *gdbarch, int regno)
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
171 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
175 /* Return true if REGNO is an SPE register, false otherwise. */
177 spe_register_p (struct gdbarch *gdbarch, int regno)
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 /* Is it a reference to EV0 -- EV31, and do we have those? */
182 if (IS_SPE_PSEUDOREG (tdep, regno))
185 /* Is it a reference to one of the raw upper GPR halves? */
186 if (tdep->ppc_ev0_upper_regnum >= 0
187 && tdep->ppc_ev0_upper_regnum <= regno
188 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
191 /* Is it a reference to the 64-bit accumulator, and do we have that? */
192 if (tdep->ppc_acc_regnum >= 0
193 && tdep->ppc_acc_regnum == regno)
196 /* Is it a reference to the SPE floating-point status and control register,
197 and do we have that? */
198 if (tdep->ppc_spefscr_regnum >= 0
199 && tdep->ppc_spefscr_regnum == regno)
206 /* Return non-zero if the architecture described by GDBARCH has
207 floating-point registers (f0 --- f31 and fpscr). */
209 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 return (tdep->ppc_fp0_regnum >= 0
214 && tdep->ppc_fpscr_regnum >= 0);
217 /* Return non-zero if the architecture described by GDBARCH has
218 VSX registers (vsr0 --- vsr63). */
220 ppc_vsx_support_p (struct gdbarch *gdbarch)
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 return tdep->ppc_vsr0_regnum >= 0;
227 /* Return non-zero if the architecture described by GDBARCH has
228 Altivec registers (vr0 --- vr31, vrsave and vscr). */
230 ppc_altivec_support_p (struct gdbarch *gdbarch)
232 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 return (tdep->ppc_vr0_regnum >= 0
235 && tdep->ppc_vrsave_regnum >= 0);
238 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
241 This is a helper function for init_sim_regno_table, constructing
242 the table mapping GDB register numbers to sim register numbers; we
243 initialize every element in that table to -1 before we start
246 set_sim_regno (int *table, int gdb_regno, int sim_regno)
248 /* Make sure we don't try to assign any given GDB register a sim
249 register number more than once. */
250 gdb_assert (table[gdb_regno] == -1);
251 table[gdb_regno] = sim_regno;
255 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
256 numbers to simulator register numbers, based on the values placed
257 in the ARCH->tdep->ppc_foo_regnum members. */
259 init_sim_regno_table (struct gdbarch *arch)
261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
262 int total_regs = gdbarch_num_regs (arch);
263 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
265 static const char *const segment_regs[] = {
266 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
267 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
270 /* Presume that all registers not explicitly mentioned below are
271 unavailable from the sim. */
272 for (i = 0; i < total_regs; i++)
275 /* General-purpose registers. */
276 for (i = 0; i < ppc_num_gprs; i++)
277 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
279 /* Floating-point registers. */
280 if (tdep->ppc_fp0_regnum >= 0)
281 for (i = 0; i < ppc_num_fprs; i++)
282 set_sim_regno (sim_regno,
283 tdep->ppc_fp0_regnum + i,
284 sim_ppc_f0_regnum + i);
285 if (tdep->ppc_fpscr_regnum >= 0)
286 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
288 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
289 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
292 /* Segment registers. */
293 for (i = 0; i < ppc_num_srs; i++)
297 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
299 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
302 /* Altivec registers. */
303 if (tdep->ppc_vr0_regnum >= 0)
305 for (i = 0; i < ppc_num_vrs; i++)
306 set_sim_regno (sim_regno,
307 tdep->ppc_vr0_regnum + i,
308 sim_ppc_vr0_regnum + i);
310 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
311 we can treat this more like the other cases. */
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + ppc_num_vrs,
314 sim_ppc_vscr_regnum);
316 /* vsave is a special-purpose register, so the code below handles it. */
318 /* SPE APU (E500) registers. */
319 if (tdep->ppc_ev0_upper_regnum >= 0)
320 for (i = 0; i < ppc_num_gprs; i++)
321 set_sim_regno (sim_regno,
322 tdep->ppc_ev0_upper_regnum + i,
323 sim_ppc_rh0_regnum + i);
324 if (tdep->ppc_acc_regnum >= 0)
325 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
326 /* spefscr is a special-purpose register, so the code below handles it. */
329 /* Now handle all special-purpose registers. Verify that they
330 haven't mistakenly been assigned numbers by any of the above
332 for (i = 0; i < sim_ppc_num_sprs; i++)
334 const char *spr_name = sim_spr_register_name (i);
337 if (spr_name != NULL)
338 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
341 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
345 /* Drop the initialized array into place. */
346 tdep->sim_regno = sim_regno;
350 /* Given a GDB register number REG, return the corresponding SIM
353 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358 if (tdep->sim_regno == NULL)
359 init_sim_regno_table (gdbarch);
362 && reg <= gdbarch_num_regs (gdbarch)
363 + gdbarch_num_pseudo_regs (gdbarch));
364 sim_regno = tdep->sim_regno[reg];
369 return LEGACY_SIM_REGNO_IGNORE;
374 /* Register set support functions. */
376 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
377 Write the register to REGCACHE. */
380 ppc_supply_reg (struct regcache *regcache, int regnum,
381 const gdb_byte *regs, size_t offset, int regsize)
383 if (regnum != -1 && offset != -1)
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 int gdb_regsize = register_size (gdbarch, regnum);
389 if (gdb_regsize < regsize
390 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
391 offset += regsize - gdb_regsize;
393 regcache_raw_supply (regcache, regnum, regs + offset);
397 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
398 in a field REGSIZE wide. Zero pad as necessary. */
401 ppc_collect_reg (const struct regcache *regcache, int regnum,
402 gdb_byte *regs, size_t offset, int regsize)
404 if (regnum != -1 && offset != -1)
408 struct gdbarch *gdbarch = get_regcache_arch (regcache);
409 int gdb_regsize = register_size (gdbarch, regnum);
410 if (gdb_regsize < regsize)
412 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
414 memset (regs + offset, 0, regsize - gdb_regsize);
415 offset += regsize - gdb_regsize;
418 memset (regs + offset + regsize - gdb_regsize, 0,
419 regsize - gdb_regsize);
422 regcache_raw_collect (regcache, regnum, regs + offset);
427 ppc_greg_offset (struct gdbarch *gdbarch,
428 struct gdbarch_tdep *tdep,
429 const struct ppc_reg_offsets *offsets,
433 *regsize = offsets->gpr_size;
434 if (regnum >= tdep->ppc_gp0_regnum
435 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
436 return (offsets->r0_offset
437 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
439 if (regnum == gdbarch_pc_regnum (gdbarch))
440 return offsets->pc_offset;
442 if (regnum == tdep->ppc_ps_regnum)
443 return offsets->ps_offset;
445 if (regnum == tdep->ppc_lr_regnum)
446 return offsets->lr_offset;
448 if (regnum == tdep->ppc_ctr_regnum)
449 return offsets->ctr_offset;
451 *regsize = offsets->xr_size;
452 if (regnum == tdep->ppc_cr_regnum)
453 return offsets->cr_offset;
455 if (regnum == tdep->ppc_xer_regnum)
456 return offsets->xer_offset;
458 if (regnum == tdep->ppc_mq_regnum)
459 return offsets->mq_offset;
465 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
466 const struct ppc_reg_offsets *offsets,
469 if (regnum >= tdep->ppc_fp0_regnum
470 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
471 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
473 if (regnum == tdep->ppc_fpscr_regnum)
474 return offsets->fpscr_offset;
480 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
481 const struct ppc_reg_offsets *offsets,
484 if (regnum >= tdep->ppc_vr0_regnum
485 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
486 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
488 if (regnum == tdep->ppc_vrsave_regnum - 1)
489 return offsets->vscr_offset;
491 if (regnum == tdep->ppc_vrsave_regnum)
492 return offsets->vrsave_offset;
497 /* Supply register REGNUM in the general-purpose register set REGSET
498 from the buffer specified by GREGS and LEN to register cache
499 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
502 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
503 int regnum, const void *gregs, size_t len)
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
507 const struct ppc_reg_offsets *offsets = regset->descr;
514 int gpr_size = offsets->gpr_size;
516 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
517 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
518 i++, offset += gpr_size)
519 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
521 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
522 gregs, offsets->pc_offset, gpr_size);
523 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
524 gregs, offsets->ps_offset, gpr_size);
525 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
526 gregs, offsets->lr_offset, gpr_size);
527 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
528 gregs, offsets->ctr_offset, gpr_size);
529 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
530 gregs, offsets->cr_offset, offsets->xr_size);
531 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
532 gregs, offsets->xer_offset, offsets->xr_size);
533 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
534 gregs, offsets->mq_offset, offsets->xr_size);
538 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
539 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
542 /* Supply register REGNUM in the floating-point register set REGSET
543 from the buffer specified by FPREGS and LEN to register cache
544 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
547 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
548 int regnum, const void *fpregs, size_t len)
550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
551 struct gdbarch_tdep *tdep;
552 const struct ppc_reg_offsets *offsets;
555 if (!ppc_floating_point_unit_p (gdbarch))
558 tdep = gdbarch_tdep (gdbarch);
559 offsets = regset->descr;
564 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
565 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
567 ppc_supply_reg (regcache, i, fpregs, offset, 8);
569 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
570 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
574 offset = ppc_fpreg_offset (tdep, offsets, regnum);
575 ppc_supply_reg (regcache, regnum, fpregs, offset,
576 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
579 /* Supply register REGNUM in the VSX register set REGSET
580 from the buffer specified by VSXREGS and LEN to register cache
581 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
584 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
585 int regnum, const void *vsxregs, size_t len)
587 struct gdbarch *gdbarch = get_regcache_arch (regcache);
588 struct gdbarch_tdep *tdep;
590 if (!ppc_vsx_support_p (gdbarch))
593 tdep = gdbarch_tdep (gdbarch);
599 for (i = tdep->ppc_vsr0_upper_regnum;
600 i < tdep->ppc_vsr0_upper_regnum + 32;
602 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
607 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
610 /* Supply register REGNUM in the Altivec register set REGSET
611 from the buffer specified by VRREGS and LEN to register cache
612 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
615 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
616 int regnum, const void *vrregs, size_t len)
618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
619 struct gdbarch_tdep *tdep;
620 const struct ppc_reg_offsets *offsets;
623 if (!ppc_altivec_support_p (gdbarch))
626 tdep = gdbarch_tdep (gdbarch);
627 offsets = regset->descr;
632 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
633 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
635 ppc_supply_reg (regcache, i, vrregs, offset, 16);
637 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
638 vrregs, offsets->vscr_offset, 4);
640 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
641 vrregs, offsets->vrsave_offset, 4);
645 offset = ppc_vrreg_offset (tdep, offsets, regnum);
646 if (regnum != tdep->ppc_vrsave_regnum
647 && regnum != tdep->ppc_vrsave_regnum - 1)
648 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
650 ppc_supply_reg (regcache, regnum,
654 /* Collect register REGNUM in the general-purpose register set
655 REGSET from register cache REGCACHE into the buffer specified by
656 GREGS and LEN. If REGNUM is -1, do this for all registers in
660 ppc_collect_gregset (const struct regset *regset,
661 const struct regcache *regcache,
662 int regnum, void *gregs, size_t len)
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
666 const struct ppc_reg_offsets *offsets = regset->descr;
673 int gpr_size = offsets->gpr_size;
675 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
676 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
677 i++, offset += gpr_size)
678 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
680 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
681 gregs, offsets->pc_offset, gpr_size);
682 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
683 gregs, offsets->ps_offset, gpr_size);
684 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
685 gregs, offsets->lr_offset, gpr_size);
686 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
687 gregs, offsets->ctr_offset, gpr_size);
688 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
689 gregs, offsets->cr_offset, offsets->xr_size);
690 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
691 gregs, offsets->xer_offset, offsets->xr_size);
692 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
693 gregs, offsets->mq_offset, offsets->xr_size);
697 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
698 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
701 /* Collect register REGNUM in the floating-point register set
702 REGSET from register cache REGCACHE into the buffer specified by
703 FPREGS and LEN. If REGNUM is -1, do this for all registers in
707 ppc_collect_fpregset (const struct regset *regset,
708 const struct regcache *regcache,
709 int regnum, void *fpregs, size_t len)
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep;
713 const struct ppc_reg_offsets *offsets;
716 if (!ppc_floating_point_unit_p (gdbarch))
719 tdep = gdbarch_tdep (gdbarch);
720 offsets = regset->descr;
725 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
726 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
728 ppc_collect_reg (regcache, i, fpregs, offset, 8);
730 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
731 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
735 offset = ppc_fpreg_offset (tdep, offsets, regnum);
736 ppc_collect_reg (regcache, regnum, fpregs, offset,
737 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
740 /* Collect register REGNUM in the VSX register set
741 REGSET from register cache REGCACHE into the buffer specified by
742 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
746 ppc_collect_vsxregset (const struct regset *regset,
747 const struct regcache *regcache,
748 int regnum, void *vsxregs, size_t len)
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep;
753 if (!ppc_vsx_support_p (gdbarch))
756 tdep = gdbarch_tdep (gdbarch);
762 for (i = tdep->ppc_vsr0_upper_regnum;
763 i < tdep->ppc_vsr0_upper_regnum + 32;
765 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
770 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
774 /* Collect register REGNUM in the Altivec register set
775 REGSET from register cache REGCACHE into the buffer specified by
776 VRREGS and LEN. If REGNUM is -1, do this for all registers in
780 ppc_collect_vrregset (const struct regset *regset,
781 const struct regcache *regcache,
782 int regnum, void *vrregs, size_t len)
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 struct gdbarch_tdep *tdep;
786 const struct ppc_reg_offsets *offsets;
789 if (!ppc_altivec_support_p (gdbarch))
792 tdep = gdbarch_tdep (gdbarch);
793 offsets = regset->descr;
798 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
799 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
801 ppc_collect_reg (regcache, i, vrregs, offset, 16);
803 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
804 vrregs, offsets->vscr_offset, 4);
806 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
807 vrregs, offsets->vrsave_offset, 4);
811 offset = ppc_vrreg_offset (tdep, offsets, regnum);
812 if (regnum != tdep->ppc_vrsave_regnum
813 && regnum != tdep->ppc_vrsave_regnum - 1)
814 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
816 ppc_collect_reg (regcache, regnum,
822 insn_changes_sp_or_jumps (unsigned long insn)
824 int opcode = (insn >> 26) & 0x03f;
825 int sd = (insn >> 21) & 0x01f;
826 int a = (insn >> 16) & 0x01f;
827 int subcode = (insn >> 1) & 0x3ff;
829 /* Changes the stack pointer. */
831 /* NOTE: There are many ways to change the value of a given register.
832 The ways below are those used when the register is R1, the SP,
833 in a funtion's epilogue. */
835 if (opcode == 31 && subcode == 444 && a == 1)
836 return 1; /* mr R1,Rn */
837 if (opcode == 14 && sd == 1)
838 return 1; /* addi R1,Rn,simm */
839 if (opcode == 58 && sd == 1)
840 return 1; /* ld R1,ds(Rn) */
842 /* Transfers control. */
848 if (opcode == 19 && subcode == 16)
850 if (opcode == 19 && subcode == 528)
851 return 1; /* bcctr */
856 /* Return true if we are in the function's epilogue, i.e. after the
857 instruction that destroyed the function's stack frame.
859 1) scan forward from the point of execution:
860 a) If you find an instruction that modifies the stack pointer
861 or transfers control (except a return), execution is not in
863 b) Stop scanning if you find a return instruction or reach the
864 end of the function or reach the hard limit for the size of
866 2) scan backward from the point of execution:
867 a) If you find an instruction that modifies the stack pointer,
868 execution *is* in an epilogue, return.
869 b) Stop scanning if you reach an instruction that transfers
870 control or the beginning of the function or reach the hard
871 limit for the size of an epilogue. */
874 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
878 bfd_byte insn_buf[PPC_INSN_SIZE];
879 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
881 struct frame_info *curfrm;
883 /* Find the search limits based on function boundaries and hard limit. */
885 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
888 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
889 if (epilogue_start < func_start) epilogue_start = func_start;
891 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
892 if (epilogue_end > func_end) epilogue_end = func_end;
894 curfrm = get_current_frame ();
896 /* Scan forward until next 'blr'. */
898 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
903 if (insn == 0x4e800020)
905 /* Assume a bctr is a tail call unless it points strictly within
907 if (insn == 0x4e800420)
909 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
910 tdep->ppc_ctr_regnum);
911 if (ctr > func_start && ctr < func_end)
916 if (insn_changes_sp_or_jumps (insn))
920 /* Scan backward until adjustment to stack pointer (R1). */
922 for (scan_pc = pc - PPC_INSN_SIZE;
923 scan_pc >= epilogue_start;
924 scan_pc -= PPC_INSN_SIZE)
926 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
929 if (insn_changes_sp_or_jumps (insn))
936 /* Get the ith function argument for the current function. */
938 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
941 return get_frame_register_unsigned (frame, 3 + argi);
944 /* Sequence of bytes for breakpoint instruction. */
946 const static unsigned char *
947 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
950 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
951 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
953 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
954 return big_breakpoint;
956 return little_breakpoint;
959 /* Instruction masks for displaced stepping. */
960 #define BRANCH_MASK 0xfc000000
961 #define BP_MASK 0xFC0007FE
962 #define B_INSN 0x48000000
963 #define BC_INSN 0x40000000
964 #define BXL_INSN 0x4c000000
965 #define BP_INSN 0x7C000008
967 /* Fix up the state of registers and memory after having single-stepped
968 a displaced instruction. */
970 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
971 struct displaced_step_closure *closure,
972 CORE_ADDR from, CORE_ADDR to,
973 struct regcache *regs)
975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
976 /* Since we use simple_displaced_step_copy_insn, our closure is a
977 copy of the instruction. */
978 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
979 PPC_INSN_SIZE, byte_order);
981 /* Offset for non PC-relative instructions. */
982 LONGEST offset = PPC_INSN_SIZE;
984 opcode = insn & BRANCH_MASK;
987 fprintf_unfiltered (gdb_stdlog,
988 "displaced: (ppc) fixup (%s, %s)\n",
989 paddress (gdbarch, from), paddress (gdbarch, to));
992 /* Handle PC-relative branch instructions. */
993 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
997 /* Read the current PC value after the instruction has been executed
998 in a displaced location. Calculate the offset to be applied to the
999 original PC value before the displaced stepping. */
1000 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1002 offset = current_pc - to;
1004 if (opcode != BXL_INSN)
1006 /* Check for AA bit indicating whether this is an absolute
1007 addressing or PC-relative (1: absolute, 0: relative). */
1010 /* PC-relative addressing is being used in the branch. */
1011 if (debug_displaced)
1014 "displaced: (ppc) branch instruction: %s\n"
1015 "displaced: (ppc) adjusted PC from %s to %s\n",
1016 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1017 paddress (gdbarch, from + offset));
1019 regcache_cooked_write_unsigned (regs,
1020 gdbarch_pc_regnum (gdbarch),
1026 /* If we're here, it means we have a branch to LR or CTR. If the
1027 branch was taken, the offset is probably greater than 4 (the next
1028 instruction), so it's safe to assume that an offset of 4 means we
1029 did not take the branch. */
1030 if (offset == PPC_INSN_SIZE)
1031 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1032 from + PPC_INSN_SIZE);
1035 /* Check for LK bit indicating whether we should set the link
1036 register to point to the next instruction
1037 (1: Set, 0: Don't set). */
1040 /* Link register needs to be set to the next instruction's PC. */
1041 regcache_cooked_write_unsigned (regs,
1042 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1043 from + PPC_INSN_SIZE);
1044 if (debug_displaced)
1045 fprintf_unfiltered (gdb_stdlog,
1046 "displaced: (ppc) adjusted LR to %s\n",
1047 paddress (gdbarch, from + PPC_INSN_SIZE));
1051 /* Check for breakpoints in the inferior. If we've found one, place the PC
1052 right at the breakpoint instruction. */
1053 else if ((insn & BP_MASK) == BP_INSN)
1054 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1056 /* Handle any other instructions that do not fit in the categories above. */
1057 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1061 /* Always use hardware single-stepping to execute the
1062 displaced instruction. */
1064 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1065 struct displaced_step_closure *closure)
1070 /* Instruction masks used during single-stepping of atomic sequences. */
1071 #define LWARX_MASK 0xfc0007fe
1072 #define LWARX_INSTRUCTION 0x7c000028
1073 #define LDARX_INSTRUCTION 0x7c0000A8
1074 #define STWCX_MASK 0xfc0007ff
1075 #define STWCX_INSTRUCTION 0x7c00012d
1076 #define STDCX_INSTRUCTION 0x7c0001ad
1078 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1079 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1080 is found, attempt to step through it. A breakpoint is placed at the end of
1084 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1086 struct gdbarch *gdbarch = get_frame_arch (frame);
1087 struct address_space *aspace = get_frame_address_space (frame);
1088 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1089 CORE_ADDR pc = get_frame_pc (frame);
1090 CORE_ADDR breaks[2] = {-1, -1};
1092 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1093 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1096 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1097 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1098 int opcode; /* Branch instruction's OPcode. */
1099 int bc_insn_count = 0; /* Conditional branch instruction count. */
1101 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1102 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1103 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1106 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1108 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1110 loc += PPC_INSN_SIZE;
1111 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1113 /* Assume that there is at most one conditional branch in the atomic
1114 sequence. If a conditional branch is found, put a breakpoint in
1115 its destination address. */
1116 if ((insn & BRANCH_MASK) == BC_INSN)
1118 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1119 int absolute = insn & 2;
1121 if (bc_insn_count >= 1)
1122 return 0; /* More than one conditional branch found, fallback
1123 to the standard single-step code. */
1126 breaks[1] = immediate;
1128 breaks[1] = loc + immediate;
1134 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1135 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1139 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1140 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1141 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1145 loc += PPC_INSN_SIZE;
1146 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1148 /* Insert a breakpoint right after the end of the atomic sequence. */
1151 /* Check for duplicated breakpoints. Check also for a breakpoint
1152 placed (branch instruction's destination) anywhere in sequence. */
1154 && (breaks[1] == breaks[0]
1155 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1156 last_breakpoint = 0;
1158 /* Effectively inserts the breakpoints. */
1159 for (index = 0; index <= last_breakpoint; index++)
1160 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1166 #define SIGNED_SHORT(x) \
1167 ((sizeof (short) == 2) \
1168 ? ((int)(short)(x)) \
1169 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1171 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1173 /* Limit the number of skipped non-prologue instructions, as the examining
1174 of the prologue is expensive. */
1175 static int max_skip_non_prologue_insns = 10;
1177 /* Return nonzero if the given instruction OP can be part of the prologue
1178 of a function and saves a parameter on the stack. FRAMEP should be
1179 set if one of the previous instructions in the function has set the
1183 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1185 /* Move parameters from argument registers to temporary register. */
1186 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1188 /* Rx must be scratch register r0. */
1189 const int rx_regno = (op >> 16) & 31;
1190 /* Ry: Only r3 - r10 are used for parameter passing. */
1191 const int ry_regno = GET_SRC_REG (op);
1193 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1195 *r0_contains_arg = 1;
1202 /* Save a General Purpose Register on stack. */
1204 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1205 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1207 /* Rx: Only r3 - r10 are used for parameter passing. */
1208 const int rx_regno = GET_SRC_REG (op);
1210 return (rx_regno >= 3 && rx_regno <= 10);
1213 /* Save a General Purpose Register on stack via the Frame Pointer. */
1216 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1217 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1218 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1220 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1221 However, the compiler sometimes uses r0 to hold an argument. */
1222 const int rx_regno = GET_SRC_REG (op);
1224 return ((rx_regno >= 3 && rx_regno <= 10)
1225 || (rx_regno == 0 && *r0_contains_arg));
1228 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1230 /* Only f2 - f8 are used for parameter passing. */
1231 const int src_regno = GET_SRC_REG (op);
1233 return (src_regno >= 2 && src_regno <= 8);
1236 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1238 /* Only f2 - f8 are used for parameter passing. */
1239 const int src_regno = GET_SRC_REG (op);
1241 return (src_regno >= 2 && src_regno <= 8);
1244 /* Not an insn that saves a parameter on stack. */
1248 /* Assuming that INSN is a "bl" instruction located at PC, return
1249 nonzero if the destination of the branch is a "blrl" instruction.
1251 This sequence is sometimes found in certain function prologues.
1252 It allows the function to load the LR register with a value that
1253 they can use to access PIC data using PC-relative offsets. */
1256 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1263 absolute = (int) ((insn >> 1) & 1);
1264 immediate = ((insn & ~3) << 6) >> 6;
1268 dest = pc + immediate;
1270 dest_insn = read_memory_integer (dest, 4, byte_order);
1271 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1277 /* Masks for decoding a branch-and-link (bl) instruction.
1279 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1280 The former is anded with the opcode in question; if the result of
1281 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1282 question is a ``bl'' instruction.
1284 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1285 the branch displacement. */
1287 #define BL_MASK 0xfc000001
1288 #define BL_INSTRUCTION 0x48000001
1289 #define BL_DISPLACEMENT_MASK 0x03fffffc
1291 static unsigned long
1292 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1298 /* Fetch the instruction and convert it to an integer. */
1299 if (target_read_memory (pc, buf, 4))
1301 op = extract_unsigned_integer (buf, 4, byte_order);
1306 /* GCC generates several well-known sequences of instructions at the begining
1307 of each function prologue when compiling with -fstack-check. If one of
1308 such sequences starts at START_PC, then return the address of the
1309 instruction immediately past this sequence. Otherwise, return START_PC. */
1312 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1314 CORE_ADDR pc = start_pc;
1315 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1317 /* First possible sequence: A small number of probes.
1318 stw 0, -<some immediate>(1)
1319 [repeat this instruction any (small) number of times]. */
1321 if ((op & 0xffff0000) == 0x90010000)
1323 while ((op & 0xffff0000) == 0x90010000)
1326 op = rs6000_fetch_instruction (gdbarch, pc);
1331 /* Second sequence: A probing loop.
1332 addi 12,1,-<some immediate>
1333 lis 0,-<some immediate>
1334 [possibly ori 0,0,<some immediate>]
1338 addi 12,12,-<some immediate>
1341 [possibly one last probe: stw 0,<some immediate>(12)]. */
1345 /* addi 12,1,-<some immediate> */
1346 if ((op & 0xffff0000) != 0x39810000)
1349 /* lis 0,-<some immediate> */
1351 op = rs6000_fetch_instruction (gdbarch, pc);
1352 if ((op & 0xffff0000) != 0x3c000000)
1356 op = rs6000_fetch_instruction (gdbarch, pc);
1357 /* [possibly ori 0,0,<some immediate>] */
1358 if ((op & 0xffff0000) == 0x60000000)
1361 op = rs6000_fetch_instruction (gdbarch, pc);
1364 if (op != 0x7c0c0214)
1369 op = rs6000_fetch_instruction (gdbarch, pc);
1370 if (op != 0x7c0c0000)
1375 op = rs6000_fetch_instruction (gdbarch, pc);
1376 if ((op & 0xff9f0001) != 0x41820000)
1379 /* addi 12,12,-<some immediate> */
1381 op = rs6000_fetch_instruction (gdbarch, pc);
1382 if ((op & 0xffff0000) != 0x398c0000)
1387 op = rs6000_fetch_instruction (gdbarch, pc);
1388 if (op != 0x900c0000)
1393 op = rs6000_fetch_instruction (gdbarch, pc);
1394 if ((op & 0xfc000001) != 0x48000000)
1397 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1399 op = rs6000_fetch_instruction (gdbarch, pc);
1400 if ((op & 0xffff0000) == 0x900c0000)
1403 op = rs6000_fetch_instruction (gdbarch, pc);
1406 /* We found a valid stack-check sequence, return the new PC. */
1410 /* Third sequence: No probe; instead, a comparizon between the stack size
1411 limit (saved in a run-time global variable) and the current stack
1414 addi 0,1,-<some immediate>
1415 lis 12,__gnat_stack_limit@ha
1416 lwz 12,__gnat_stack_limit@l(12)
1419 or, with a small variant in the case of a bigger stack frame:
1420 addis 0,1,<some immediate>
1421 addic 0,0,-<some immediate>
1422 lis 12,__gnat_stack_limit@ha
1423 lwz 12,__gnat_stack_limit@l(12)
1428 /* addi 0,1,-<some immediate> */
1429 if ((op & 0xffff0000) != 0x38010000)
1431 /* small stack frame variant not recognized; try the
1432 big stack frame variant: */
1434 /* addis 0,1,<some immediate> */
1435 if ((op & 0xffff0000) != 0x3c010000)
1438 /* addic 0,0,-<some immediate> */
1440 op = rs6000_fetch_instruction (gdbarch, pc);
1441 if ((op & 0xffff0000) != 0x30000000)
1445 /* lis 12,<some immediate> */
1447 op = rs6000_fetch_instruction (gdbarch, pc);
1448 if ((op & 0xffff0000) != 0x3d800000)
1451 /* lwz 12,<some immediate>(12) */
1453 op = rs6000_fetch_instruction (gdbarch, pc);
1454 if ((op & 0xffff0000) != 0x818c0000)
1459 op = rs6000_fetch_instruction (gdbarch, pc);
1460 if ((op & 0xfffffffe) != 0x7c406008)
1463 /* We found a valid stack-check sequence, return the new PC. */
1467 /* No stack check code in our prologue, return the start_pc. */
1471 /* return pc value after skipping a function prologue and also return
1472 information about a function frame.
1474 in struct rs6000_framedata fdata:
1475 - frameless is TRUE, if function does not have a frame.
1476 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1477 - offset is the initial size of this stack frame --- the amount by
1478 which we decrement the sp to allocate the frame.
1479 - saved_gpr is the number of the first saved gpr.
1480 - saved_fpr is the number of the first saved fpr.
1481 - saved_vr is the number of the first saved vr.
1482 - saved_ev is the number of the first saved ev.
1483 - alloca_reg is the number of the register used for alloca() handling.
1485 - gpr_offset is the offset of the first saved gpr from the previous frame.
1486 - fpr_offset is the offset of the first saved fpr from the previous frame.
1487 - vr_offset is the offset of the first saved vr from the previous frame.
1488 - ev_offset is the offset of the first saved ev from the previous frame.
1489 - lr_offset is the offset of the saved lr
1490 - cr_offset is the offset of the saved cr
1491 - vrsave_offset is the offset of the saved vrsave register. */
1494 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1495 struct rs6000_framedata *fdata)
1497 CORE_ADDR orig_pc = pc;
1498 CORE_ADDR last_prologue_pc = pc;
1499 CORE_ADDR li_found_pc = 0;
1503 long vr_saved_offset = 0;
1509 int vrsave_reg = -1;
1512 int minimal_toc_loaded = 0;
1513 int prev_insn_was_prologue_insn = 1;
1514 int num_skip_non_prologue_insns = 0;
1515 int r0_contains_arg = 0;
1516 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1520 memset (fdata, 0, sizeof (struct rs6000_framedata));
1521 fdata->saved_gpr = -1;
1522 fdata->saved_fpr = -1;
1523 fdata->saved_vr = -1;
1524 fdata->saved_ev = -1;
1525 fdata->alloca_reg = -1;
1526 fdata->frameless = 1;
1527 fdata->nosavedpc = 1;
1528 fdata->lr_register = -1;
1530 pc = rs6000_skip_stack_check (gdbarch, pc);
1536 /* Sometimes it isn't clear if an instruction is a prologue
1537 instruction or not. When we encounter one of these ambiguous
1538 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1539 Otherwise, we'll assume that it really is a prologue instruction. */
1540 if (prev_insn_was_prologue_insn)
1541 last_prologue_pc = pc;
1543 /* Stop scanning if we've hit the limit. */
1547 prev_insn_was_prologue_insn = 1;
1549 /* Fetch the instruction and convert it to an integer. */
1550 if (target_read_memory (pc, buf, 4))
1552 op = extract_unsigned_integer (buf, 4, byte_order);
1554 if ((op & 0xfc1fffff) == 0x7c0802a6)
1556 /* Since shared library / PIC code, which needs to get its
1557 address at runtime, can appear to save more than one link
1571 remember just the first one, but skip over additional
1574 lr_reg = (op & 0x03e00000) >> 21;
1576 r0_contains_arg = 0;
1579 else if ((op & 0xfc1fffff) == 0x7c000026)
1581 cr_reg = (op & 0x03e00000);
1583 r0_contains_arg = 0;
1587 else if ((op & 0xfc1f0000) == 0xd8010000)
1588 { /* stfd Rx,NUM(r1) */
1589 reg = GET_SRC_REG (op);
1590 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1592 fdata->saved_fpr = reg;
1593 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1598 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1599 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1600 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1601 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1604 reg = GET_SRC_REG (op);
1605 if ((op & 0xfc1f0000) == 0xbc010000)
1606 fdata->gpr_mask |= ~((1U << reg) - 1);
1608 fdata->gpr_mask |= 1U << reg;
1609 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1611 fdata->saved_gpr = reg;
1612 if ((op & 0xfc1f0003) == 0xf8010000)
1614 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1619 else if ((op & 0xffff0000) == 0x60000000)
1622 /* Allow nops in the prologue, but do not consider them to
1623 be part of the prologue unless followed by other prologue
1625 prev_insn_was_prologue_insn = 0;
1629 else if ((op & 0xffff0000) == 0x3c000000)
1630 { /* addis 0,0,NUM, used
1631 for >= 32k frames */
1632 fdata->offset = (op & 0x0000ffff) << 16;
1633 fdata->frameless = 0;
1634 r0_contains_arg = 0;
1638 else if ((op & 0xffff0000) == 0x60000000)
1639 { /* ori 0,0,NUM, 2nd ha
1640 lf of >= 32k frames */
1641 fdata->offset |= (op & 0x0000ffff);
1642 fdata->frameless = 0;
1643 r0_contains_arg = 0;
1647 else if (lr_reg >= 0 &&
1648 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1649 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1650 /* stw Rx, NUM(r1) */
1651 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1652 /* stwu Rx, NUM(r1) */
1653 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1654 { /* where Rx == lr */
1655 fdata->lr_offset = offset;
1656 fdata->nosavedpc = 0;
1657 /* Invalidate lr_reg, but don't set it to -1.
1658 That would mean that it had never been set. */
1660 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1661 (op & 0xfc000000) == 0x90000000) /* stw */
1663 /* Does not update r1, so add displacement to lr_offset. */
1664 fdata->lr_offset += SIGNED_SHORT (op);
1669 else if (cr_reg >= 0 &&
1670 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1671 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1672 /* stw Rx, NUM(r1) */
1673 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1674 /* stwu Rx, NUM(r1) */
1675 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1676 { /* where Rx == cr */
1677 fdata->cr_offset = offset;
1678 /* Invalidate cr_reg, but don't set it to -1.
1679 That would mean that it had never been set. */
1681 if ((op & 0xfc000003) == 0xf8000000 ||
1682 (op & 0xfc000000) == 0x90000000)
1684 /* Does not update r1, so add displacement to cr_offset. */
1685 fdata->cr_offset += SIGNED_SHORT (op);
1690 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1692 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1693 prediction bits. If the LR has already been saved, we can
1697 else if (op == 0x48000005)
1704 else if (op == 0x48000004)
1709 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1710 in V.4 -mminimal-toc */
1711 (op & 0xffff0000) == 0x3bde0000)
1712 { /* addi 30,30,foo@l */
1716 else if ((op & 0xfc000001) == 0x48000001)
1720 fdata->frameless = 0;
1722 /* If the return address has already been saved, we can skip
1723 calls to blrl (for PIC). */
1724 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1730 /* Don't skip over the subroutine call if it is not within
1731 the first three instructions of the prologue and either
1732 we have no line table information or the line info tells
1733 us that the subroutine call is not part of the line
1734 associated with the prologue. */
1735 if ((pc - orig_pc) > 8)
1737 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1738 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1740 if ((prologue_sal.line == 0)
1741 || (prologue_sal.line != this_sal.line))
1745 op = read_memory_integer (pc + 4, 4, byte_order);
1747 /* At this point, make sure this is not a trampoline
1748 function (a function that simply calls another functions,
1749 and nothing else). If the next is not a nop, this branch
1750 was part of the function prologue. */
1752 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1753 break; /* Don't skip over
1759 /* update stack pointer */
1760 else if ((op & 0xfc1f0000) == 0x94010000)
1761 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1762 fdata->frameless = 0;
1763 fdata->offset = SIGNED_SHORT (op);
1764 offset = fdata->offset;
1767 else if ((op & 0xfc1f016a) == 0x7c01016e)
1768 { /* stwux rX,r1,rY */
1769 /* No way to figure out what r1 is going to be. */
1770 fdata->frameless = 0;
1771 offset = fdata->offset;
1774 else if ((op & 0xfc1f0003) == 0xf8010001)
1775 { /* stdu rX,NUM(r1) */
1776 fdata->frameless = 0;
1777 fdata->offset = SIGNED_SHORT (op & ~3UL);
1778 offset = fdata->offset;
1781 else if ((op & 0xfc1f016a) == 0x7c01016a)
1782 { /* stdux rX,r1,rY */
1783 /* No way to figure out what r1 is going to be. */
1784 fdata->frameless = 0;
1785 offset = fdata->offset;
1788 else if ((op & 0xffff0000) == 0x38210000)
1789 { /* addi r1,r1,SIMM */
1790 fdata->frameless = 0;
1791 fdata->offset += SIGNED_SHORT (op);
1792 offset = fdata->offset;
1795 /* Load up minimal toc pointer. Do not treat an epilogue restore
1796 of r31 as a minimal TOC load. */
1797 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1798 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1800 && !minimal_toc_loaded)
1802 minimal_toc_loaded = 1;
1805 /* move parameters from argument registers to local variable
1808 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1809 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1810 (((op >> 21) & 31) <= 10) &&
1811 ((long) ((op >> 16) & 31)
1812 >= fdata->saved_gpr)) /* Rx: local var reg */
1816 /* store parameters in stack */
1818 /* Move parameters from argument registers to temporary register. */
1819 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1823 /* Set up frame pointer */
1825 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1827 fdata->frameless = 0;
1829 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1832 /* Another way to set up the frame pointer. */
1834 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1835 || op == 0x7c3f0b78)
1837 fdata->frameless = 0;
1839 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1842 /* Another way to set up the frame pointer. */
1844 else if ((op & 0xfc1fffff) == 0x38010000)
1845 { /* addi rX, r1, 0x0 */
1846 fdata->frameless = 0;
1848 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1849 + ((op & ~0x38010000) >> 21));
1852 /* AltiVec related instructions. */
1853 /* Store the vrsave register (spr 256) in another register for
1854 later manipulation, or load a register into the vrsave
1855 register. 2 instructions are used: mfvrsave and
1856 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1857 and mtspr SPR256, Rn. */
1858 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1859 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1860 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1862 vrsave_reg = GET_SRC_REG (op);
1865 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1869 /* Store the register where vrsave was saved to onto the stack:
1870 rS is the register where vrsave was stored in a previous
1872 /* 100100 sssss 00001 dddddddd dddddddd */
1873 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1875 if (vrsave_reg == GET_SRC_REG (op))
1877 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1882 /* Compute the new value of vrsave, by modifying the register
1883 where vrsave was saved to. */
1884 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1885 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1889 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1890 in a pair of insns to save the vector registers on the
1892 /* 001110 00000 00000 iiii iiii iiii iiii */
1893 /* 001110 01110 00000 iiii iiii iiii iiii */
1894 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1895 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1897 if ((op & 0xffff0000) == 0x38000000)
1898 r0_contains_arg = 0;
1900 vr_saved_offset = SIGNED_SHORT (op);
1902 /* This insn by itself is not part of the prologue, unless
1903 if part of the pair of insns mentioned above. So do not
1904 record this insn as part of the prologue yet. */
1905 prev_insn_was_prologue_insn = 0;
1907 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1908 /* 011111 sssss 11111 00000 00111001110 */
1909 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1911 if (pc == (li_found_pc + 4))
1913 vr_reg = GET_SRC_REG (op);
1914 /* If this is the first vector reg to be saved, or if
1915 it has a lower number than others previously seen,
1916 reupdate the frame info. */
1917 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1919 fdata->saved_vr = vr_reg;
1920 fdata->vr_offset = vr_saved_offset + offset;
1922 vr_saved_offset = -1;
1927 /* End AltiVec related instructions. */
1929 /* Start BookE related instructions. */
1930 /* Store gen register S at (r31+uimm).
1931 Any register less than r13 is volatile, so we don't care. */
1932 /* 000100 sssss 11111 iiiii 01100100001 */
1933 else if (arch_info->mach == bfd_mach_ppc_e500
1934 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1936 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1939 ev_reg = GET_SRC_REG (op);
1940 imm = (op >> 11) & 0x1f;
1941 ev_offset = imm * 8;
1942 /* If this is the first vector reg to be saved, or if
1943 it has a lower number than others previously seen,
1944 reupdate the frame info. */
1945 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1947 fdata->saved_ev = ev_reg;
1948 fdata->ev_offset = ev_offset + offset;
1953 /* Store gen register rS at (r1+rB). */
1954 /* 000100 sssss 00001 bbbbb 01100100000 */
1955 else if (arch_info->mach == bfd_mach_ppc_e500
1956 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1958 if (pc == (li_found_pc + 4))
1960 ev_reg = GET_SRC_REG (op);
1961 /* If this is the first vector reg to be saved, or if
1962 it has a lower number than others previously seen,
1963 reupdate the frame info. */
1964 /* We know the contents of rB from the previous instruction. */
1965 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1967 fdata->saved_ev = ev_reg;
1968 fdata->ev_offset = vr_saved_offset + offset;
1970 vr_saved_offset = -1;
1976 /* Store gen register r31 at (rA+uimm). */
1977 /* 000100 11111 aaaaa iiiii 01100100001 */
1978 else if (arch_info->mach == bfd_mach_ppc_e500
1979 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1981 /* Wwe know that the source register is 31 already, but
1982 it can't hurt to compute it. */
1983 ev_reg = GET_SRC_REG (op);
1984 ev_offset = ((op >> 11) & 0x1f) * 8;
1985 /* If this is the first vector reg to be saved, or if
1986 it has a lower number than others previously seen,
1987 reupdate the frame info. */
1988 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1990 fdata->saved_ev = ev_reg;
1991 fdata->ev_offset = ev_offset + offset;
1996 /* Store gen register S at (r31+r0).
1997 Store param on stack when offset from SP bigger than 4 bytes. */
1998 /* 000100 sssss 11111 00000 01100100000 */
1999 else if (arch_info->mach == bfd_mach_ppc_e500
2000 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2002 if (pc == (li_found_pc + 4))
2004 if ((op & 0x03e00000) >= 0x01a00000)
2006 ev_reg = GET_SRC_REG (op);
2007 /* If this is the first vector reg to be saved, or if
2008 it has a lower number than others previously seen,
2009 reupdate the frame info. */
2010 /* We know the contents of r0 from the previous
2012 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2014 fdata->saved_ev = ev_reg;
2015 fdata->ev_offset = vr_saved_offset + offset;
2019 vr_saved_offset = -1;
2024 /* End BookE related instructions. */
2028 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2030 /* Not a recognized prologue instruction.
2031 Handle optimizer code motions into the prologue by continuing
2032 the search if we have no valid frame yet or if the return
2033 address is not yet saved in the frame. Also skip instructions
2034 if some of the GPRs expected to be saved are not yet saved. */
2035 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2036 && (fdata->gpr_mask & all_mask) == all_mask)
2039 if (op == 0x4e800020 /* blr */
2040 || op == 0x4e800420) /* bctr */
2041 /* Do not scan past epilogue in frameless functions or
2044 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2045 /* Never skip branches. */
2048 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2049 /* Do not scan too many insns, scanning insns is expensive with
2053 /* Continue scanning. */
2054 prev_insn_was_prologue_insn = 0;
2060 /* I have problems with skipping over __main() that I need to address
2061 * sometime. Previously, I used to use misc_function_vector which
2062 * didn't work as well as I wanted to be. -MGO */
2064 /* If the first thing after skipping a prolog is a branch to a function,
2065 this might be a call to an initializer in main(), introduced by gcc2.
2066 We'd like to skip over it as well. Fortunately, xlc does some extra
2067 work before calling a function right after a prologue, thus we can
2068 single out such gcc2 behaviour. */
2071 if ((op & 0xfc000001) == 0x48000001)
2072 { /* bl foo, an initializer function? */
2073 op = read_memory_integer (pc + 4, 4, byte_order);
2075 if (op == 0x4def7b82)
2076 { /* cror 0xf, 0xf, 0xf (nop) */
2078 /* Check and see if we are in main. If so, skip over this
2079 initializer function as well. */
2081 tmp = find_pc_misc_function (pc);
2083 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2089 if (pc == lim_pc && lr_reg >= 0)
2090 fdata->lr_register = lr_reg;
2092 fdata->offset = -fdata->offset;
2093 return last_prologue_pc;
2097 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2099 struct rs6000_framedata frame;
2100 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2102 /* See if we can determine the end of the prologue via the symbol table.
2103 If so, then return either PC, or the PC after the prologue, whichever
2105 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2107 CORE_ADDR post_prologue_pc
2108 = skip_prologue_using_sal (gdbarch, func_addr);
2109 if (post_prologue_pc != 0)
2110 return max (pc, post_prologue_pc);
2113 /* Can't determine prologue from the symbol table, need to examine
2116 /* Find an upper limit on the function prologue using the debug
2117 information. If the debug information could not be used to provide
2118 that bound, then use an arbitrary large number as the upper bound. */
2119 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2121 limit_pc = pc + 100; /* Magic. */
2123 /* Do not allow limit_pc to be past the function end, if we know
2124 where that end is... */
2125 if (func_end_addr && limit_pc > func_end_addr)
2126 limit_pc = func_end_addr;
2128 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2132 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2133 in the prologue of main().
2135 The function below examines the code pointed at by PC and checks to
2136 see if it corresponds to a call to __eabi. If so, it returns the
2137 address of the instruction following that call. Otherwise, it simply
2141 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2147 if (target_read_memory (pc, buf, 4))
2149 op = extract_unsigned_integer (buf, 4, byte_order);
2151 if ((op & BL_MASK) == BL_INSTRUCTION)
2153 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2154 CORE_ADDR call_dest = pc + 4 + displ;
2155 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2157 /* We check for ___eabi (three leading underscores) in addition
2158 to __eabi in case the GCC option "-fleading-underscore" was
2159 used to compile the program. */
2160 if (s.minsym != NULL
2161 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
2162 && (strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2163 || strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2169 /* All the ABI's require 16 byte alignment. */
2171 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2173 return (addr & -16);
2176 /* Return whether handle_inferior_event() should proceed through code
2177 starting at PC in function NAME when stepping.
2179 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2180 handle memory references that are too distant to fit in instructions
2181 generated by the compiler. For example, if 'foo' in the following
2186 is greater than 32767, the linker might replace the lwz with a branch to
2187 somewhere in @FIX1 that does the load in 2 instructions and then branches
2188 back to where execution should continue.
2190 GDB should silently step over @FIX code, just like AIX dbx does.
2191 Unfortunately, the linker uses the "b" instruction for the
2192 branches, meaning that the link register doesn't get set.
2193 Therefore, GDB's usual step_over_function () mechanism won't work.
2195 Instead, use the gdbarch_skip_trampoline_code and
2196 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2200 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2201 CORE_ADDR pc, const char *name)
2203 return name && !strncmp (name, "@FIX", 4);
2206 /* Skip code that the user doesn't want to see when stepping:
2208 1. Indirect function calls use a piece of trampoline code to do context
2209 switching, i.e. to set the new TOC table. Skip such code if we are on
2210 its first instruction (as when we have single-stepped to here).
2212 2. Skip shared library trampoline code (which is different from
2213 indirect function call trampolines).
2215 3. Skip bigtoc fixup code.
2217 Result is desired PC to step until, or NULL if we are not in
2218 code that should be skipped. */
2221 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2223 struct gdbarch *gdbarch = get_frame_arch (frame);
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2225 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2226 unsigned int ii, op;
2228 CORE_ADDR solib_target_pc;
2229 struct bound_minimal_symbol msymbol;
2231 static unsigned trampoline_code[] =
2233 0x800b0000, /* l r0,0x0(r11) */
2234 0x90410014, /* st r2,0x14(r1) */
2235 0x7c0903a6, /* mtctr r0 */
2236 0x804b0004, /* l r2,0x4(r11) */
2237 0x816b0008, /* l r11,0x8(r11) */
2238 0x4e800420, /* bctr */
2239 0x4e800020, /* br */
2243 /* Check for bigtoc fixup code. */
2244 msymbol = lookup_minimal_symbol_by_pc (pc);
2246 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2247 SYMBOL_LINKAGE_NAME (msymbol.minsym)))
2249 /* Double-check that the third instruction from PC is relative "b". */
2250 op = read_memory_integer (pc + 8, 4, byte_order);
2251 if ((op & 0xfc000003) == 0x48000000)
2253 /* Extract bits 6-29 as a signed 24-bit relative word address and
2254 add it to the containing PC. */
2255 rel = ((int)(op << 6) >> 6);
2256 return pc + 8 + rel;
2260 /* If pc is in a shared library trampoline, return its target. */
2261 solib_target_pc = find_solib_trampoline_target (frame, pc);
2262 if (solib_target_pc)
2263 return solib_target_pc;
2265 for (ii = 0; trampoline_code[ii]; ++ii)
2267 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2268 if (op != trampoline_code[ii])
2271 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2273 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2277 /* ISA-specific vector types. */
2279 static struct type *
2280 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2284 if (!tdep->ppc_builtin_type_vec64)
2286 const struct builtin_type *bt = builtin_type (gdbarch);
2288 /* The type we're building is this: */
2290 union __gdb_builtin_type_vec64
2294 int32_t v2_int32[2];
2295 int16_t v4_int16[4];
2302 t = arch_composite_type (gdbarch,
2303 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2304 append_composite_type_field (t, "uint64", bt->builtin_int64);
2305 append_composite_type_field (t, "v2_float",
2306 init_vector_type (bt->builtin_float, 2));
2307 append_composite_type_field (t, "v2_int32",
2308 init_vector_type (bt->builtin_int32, 2));
2309 append_composite_type_field (t, "v4_int16",
2310 init_vector_type (bt->builtin_int16, 4));
2311 append_composite_type_field (t, "v8_int8",
2312 init_vector_type (bt->builtin_int8, 8));
2314 TYPE_VECTOR (t) = 1;
2315 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2316 tdep->ppc_builtin_type_vec64 = t;
2319 return tdep->ppc_builtin_type_vec64;
2322 /* Vector 128 type. */
2324 static struct type *
2325 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2329 if (!tdep->ppc_builtin_type_vec128)
2331 const struct builtin_type *bt = builtin_type (gdbarch);
2333 /* The type we're building is this
2335 type = union __ppc_builtin_type_vec128 {
2337 double v2_double[2];
2339 int32_t v4_int32[4];
2340 int16_t v8_int16[8];
2341 int8_t v16_int8[16];
2347 t = arch_composite_type (gdbarch,
2348 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2349 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2350 append_composite_type_field (t, "v2_double",
2351 init_vector_type (bt->builtin_double, 2));
2352 append_composite_type_field (t, "v4_float",
2353 init_vector_type (bt->builtin_float, 4));
2354 append_composite_type_field (t, "v4_int32",
2355 init_vector_type (bt->builtin_int32, 4));
2356 append_composite_type_field (t, "v8_int16",
2357 init_vector_type (bt->builtin_int16, 8));
2358 append_composite_type_field (t, "v16_int8",
2359 init_vector_type (bt->builtin_int8, 16));
2361 TYPE_VECTOR (t) = 1;
2362 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2363 tdep->ppc_builtin_type_vec128 = t;
2366 return tdep->ppc_builtin_type_vec128;
2369 /* Return the name of register number REGNO, or the empty string if it
2370 is an anonymous register. */
2373 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2377 /* The upper half "registers" have names in the XML description,
2378 but we present only the low GPRs and the full 64-bit registers
2380 if (tdep->ppc_ev0_upper_regnum >= 0
2381 && tdep->ppc_ev0_upper_regnum <= regno
2382 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2385 /* Hide the upper halves of the vs0~vs31 registers. */
2386 if (tdep->ppc_vsr0_regnum >= 0
2387 && tdep->ppc_vsr0_upper_regnum <= regno
2388 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2391 /* Check if the SPE pseudo registers are available. */
2392 if (IS_SPE_PSEUDOREG (tdep, regno))
2394 static const char *const spe_regnames[] = {
2395 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2396 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2397 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2398 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2400 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2403 /* Check if the decimal128 pseudo-registers are available. */
2404 if (IS_DFP_PSEUDOREG (tdep, regno))
2406 static const char *const dfp128_regnames[] = {
2407 "dl0", "dl1", "dl2", "dl3",
2408 "dl4", "dl5", "dl6", "dl7",
2409 "dl8", "dl9", "dl10", "dl11",
2410 "dl12", "dl13", "dl14", "dl15"
2412 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2415 /* Check if this is a VSX pseudo-register. */
2416 if (IS_VSX_PSEUDOREG (tdep, regno))
2418 static const char *const vsx_regnames[] = {
2419 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2420 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2421 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2422 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2423 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2424 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2425 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2426 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2427 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2429 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2432 /* Check if the this is a Extended FP pseudo-register. */
2433 if (IS_EFP_PSEUDOREG (tdep, regno))
2435 static const char *const efpr_regnames[] = {
2436 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2437 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2438 "f46", "f47", "f48", "f49", "f50", "f51",
2439 "f52", "f53", "f54", "f55", "f56", "f57",
2440 "f58", "f59", "f60", "f61", "f62", "f63"
2442 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2445 return tdesc_register_name (gdbarch, regno);
2448 /* Return the GDB type object for the "standard" data type of data in
2451 static struct type *
2452 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2456 /* These are the only pseudo-registers we support. */
2457 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2458 || IS_DFP_PSEUDOREG (tdep, regnum)
2459 || IS_VSX_PSEUDOREG (tdep, regnum)
2460 || IS_EFP_PSEUDOREG (tdep, regnum));
2462 /* These are the e500 pseudo-registers. */
2463 if (IS_SPE_PSEUDOREG (tdep, regnum))
2464 return rs6000_builtin_type_vec64 (gdbarch);
2465 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2466 /* PPC decimal128 pseudo-registers. */
2467 return builtin_type (gdbarch)->builtin_declong;
2468 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2469 /* POWER7 VSX pseudo-registers. */
2470 return rs6000_builtin_type_vec128 (gdbarch);
2472 /* POWER7 Extended FP pseudo-registers. */
2473 return builtin_type (gdbarch)->builtin_double;
2476 /* Is REGNUM a member of REGGROUP? */
2478 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2479 struct reggroup *group)
2481 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2483 /* These are the only pseudo-registers we support. */
2484 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2485 || IS_DFP_PSEUDOREG (tdep, regnum)
2486 || IS_VSX_PSEUDOREG (tdep, regnum)
2487 || IS_EFP_PSEUDOREG (tdep, regnum));
2489 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2490 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2491 return group == all_reggroup || group == vector_reggroup;
2493 /* PPC decimal128 or Extended FP pseudo-registers. */
2494 return group == all_reggroup || group == float_reggroup;
2497 /* The register format for RS/6000 floating point registers is always
2498 double, we need a conversion if the memory format is float. */
2501 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2504 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2506 return (tdep->ppc_fp0_regnum >= 0
2507 && regnum >= tdep->ppc_fp0_regnum
2508 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2509 && TYPE_CODE (type) == TYPE_CODE_FLT
2510 && TYPE_LENGTH (type)
2511 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2515 rs6000_register_to_value (struct frame_info *frame,
2519 int *optimizedp, int *unavailablep)
2521 struct gdbarch *gdbarch = get_frame_arch (frame);
2522 gdb_byte from[MAX_REGISTER_SIZE];
2524 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2526 if (!get_frame_register_bytes (frame, regnum, 0,
2527 register_size (gdbarch, regnum),
2528 from, optimizedp, unavailablep))
2531 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2533 *optimizedp = *unavailablep = 0;
2538 rs6000_value_to_register (struct frame_info *frame,
2541 const gdb_byte *from)
2543 struct gdbarch *gdbarch = get_frame_arch (frame);
2544 gdb_byte to[MAX_REGISTER_SIZE];
2546 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2548 convert_typed_floating (from, type,
2549 to, builtin_type (gdbarch)->builtin_double);
2550 put_frame_register (frame, regnum, to);
2553 /* The type of a function that moves the value of REG between CACHE
2554 or BUF --- in either direction. */
2555 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2558 /* Move SPE vector register values between a 64-bit buffer and the two
2559 32-bit raw register halves in a regcache. This function handles
2560 both splitting a 64-bit value into two 32-bit halves, and joining
2561 two halves into a whole 64-bit value, depending on the function
2562 passed as the MOVE argument.
2564 EV_REG must be the number of an SPE evN vector register --- a
2565 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2568 Call MOVE once for each 32-bit half of that register, passing
2569 REGCACHE, the number of the raw register corresponding to that
2570 half, and the address of the appropriate half of BUFFER.
2572 For example, passing 'regcache_raw_read' as the MOVE function will
2573 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2574 'regcache_raw_supply' will supply the contents of BUFFER to the
2575 appropriate pair of raw registers in REGCACHE.
2577 You may need to cast away some 'const' qualifiers when passing
2578 MOVE, since this function can't tell at compile-time which of
2579 REGCACHE or BUFFER is acting as the source of the data. If C had
2580 co-variant type qualifiers, ... */
2582 static enum register_status
2583 e500_move_ev_register (move_ev_register_func move,
2584 struct regcache *regcache, int ev_reg, void *buffer)
2586 struct gdbarch *arch = get_regcache_arch (regcache);
2587 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2589 gdb_byte *byte_buffer = buffer;
2590 enum register_status status;
2592 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2594 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2596 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2598 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2600 if (status == REG_VALID)
2601 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2606 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2607 if (status == REG_VALID)
2608 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2615 static enum register_status
2616 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2618 return regcache_raw_read (regcache, regnum, buffer);
2621 static enum register_status
2622 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2624 regcache_raw_write (regcache, regnum, buffer);
2629 static enum register_status
2630 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2631 int reg_nr, gdb_byte *buffer)
2633 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2637 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2638 int reg_nr, const gdb_byte *buffer)
2640 e500_move_ev_register (do_regcache_raw_write, regcache,
2641 reg_nr, (void *) buffer);
2644 /* Read method for DFP pseudo-registers. */
2645 static enum register_status
2646 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2647 int reg_nr, gdb_byte *buffer)
2649 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2650 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2651 enum register_status status;
2653 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2655 /* Read two FP registers to form a whole dl register. */
2656 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2657 2 * reg_index, buffer);
2658 if (status == REG_VALID)
2659 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2660 2 * reg_index + 1, buffer + 8);
2664 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2665 2 * reg_index + 1, buffer + 8);
2666 if (status == REG_VALID)
2667 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2668 2 * reg_index, buffer);
2674 /* Write method for DFP pseudo-registers. */
2676 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2677 int reg_nr, const gdb_byte *buffer)
2679 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2680 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2682 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2684 /* Write each half of the dl register into a separate
2686 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2687 2 * reg_index, buffer);
2688 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2689 2 * reg_index + 1, buffer + 8);
2693 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2694 2 * reg_index + 1, buffer + 8);
2695 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2696 2 * reg_index, buffer);
2700 /* Read method for POWER7 VSX pseudo-registers. */
2701 static enum register_status
2702 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2703 int reg_nr, gdb_byte *buffer)
2705 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2706 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2707 enum register_status status;
2709 /* Read the portion that overlaps the VMX registers. */
2711 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2712 reg_index - 32, buffer);
2714 /* Read the portion that overlaps the FPR registers. */
2715 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2717 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2719 if (status == REG_VALID)
2720 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2721 reg_index, buffer + 8);
2725 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2726 reg_index, buffer + 8);
2727 if (status == REG_VALID)
2728 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2735 /* Write method for POWER7 VSX pseudo-registers. */
2737 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2738 int reg_nr, const gdb_byte *buffer)
2740 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2741 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2743 /* Write the portion that overlaps the VMX registers. */
2745 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2746 reg_index - 32, buffer);
2748 /* Write the portion that overlaps the FPR registers. */
2749 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2751 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2753 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2754 reg_index, buffer + 8);
2758 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2759 reg_index, buffer + 8);
2760 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2765 /* Read method for POWER7 Extended FP pseudo-registers. */
2766 static enum register_status
2767 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2768 int reg_nr, gdb_byte *buffer)
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2771 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2773 /* Read the portion that overlaps the VMX register. */
2774 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
2775 register_size (gdbarch, reg_nr), buffer);
2778 /* Write method for POWER7 Extended FP pseudo-registers. */
2780 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2781 int reg_nr, const gdb_byte *buffer)
2783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2784 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2786 /* Write the portion that overlaps the VMX register. */
2787 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index, 0,
2788 register_size (gdbarch, reg_nr), buffer);
2791 static enum register_status
2792 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2793 struct regcache *regcache,
2794 int reg_nr, gdb_byte *buffer)
2796 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2799 gdb_assert (regcache_arch == gdbarch);
2801 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2802 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2803 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2804 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2805 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2806 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2807 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2808 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2810 internal_error (__FILE__, __LINE__,
2811 _("rs6000_pseudo_register_read: "
2812 "called on unexpected register '%s' (%d)"),
2813 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2817 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2818 struct regcache *regcache,
2819 int reg_nr, const gdb_byte *buffer)
2821 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2824 gdb_assert (regcache_arch == gdbarch);
2826 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2827 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2828 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2829 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2830 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2831 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2832 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2833 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2835 internal_error (__FILE__, __LINE__,
2836 _("rs6000_pseudo_register_write: "
2837 "called on unexpected register '%s' (%d)"),
2838 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2841 /* Convert a DBX STABS register number to a GDB register number. */
2843 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2847 if (0 <= num && num <= 31)
2848 return tdep->ppc_gp0_regnum + num;
2849 else if (32 <= num && num <= 63)
2850 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2851 specifies registers the architecture doesn't have? Our
2852 callers don't check the value we return. */
2853 return tdep->ppc_fp0_regnum + (num - 32);
2854 else if (77 <= num && num <= 108)
2855 return tdep->ppc_vr0_regnum + (num - 77);
2856 else if (1200 <= num && num < 1200 + 32)
2857 return tdep->ppc_ev0_regnum + (num - 1200);
2862 return tdep->ppc_mq_regnum;
2864 return tdep->ppc_lr_regnum;
2866 return tdep->ppc_ctr_regnum;
2868 return tdep->ppc_xer_regnum;
2870 return tdep->ppc_vrsave_regnum;
2872 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2874 return tdep->ppc_acc_regnum;
2876 return tdep->ppc_spefscr_regnum;
2883 /* Convert a Dwarf 2 register number to a GDB register number. */
2885 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2889 if (0 <= num && num <= 31)
2890 return tdep->ppc_gp0_regnum + num;
2891 else if (32 <= num && num <= 63)
2892 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2893 specifies registers the architecture doesn't have? Our
2894 callers don't check the value we return. */
2895 return tdep->ppc_fp0_regnum + (num - 32);
2896 else if (1124 <= num && num < 1124 + 32)
2897 return tdep->ppc_vr0_regnum + (num - 1124);
2898 else if (1200 <= num && num < 1200 + 32)
2899 return tdep->ppc_ev0_regnum + (num - 1200);
2904 return tdep->ppc_cr_regnum;
2906 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2908 return tdep->ppc_acc_regnum;
2910 return tdep->ppc_mq_regnum;
2912 return tdep->ppc_xer_regnum;
2914 return tdep->ppc_lr_regnum;
2916 return tdep->ppc_ctr_regnum;
2918 return tdep->ppc_vrsave_regnum;
2920 return tdep->ppc_spefscr_regnum;
2926 /* Translate a .eh_frame register to DWARF register, or adjust a
2927 .debug_frame register. */
2930 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2932 /* GCC releases before 3.4 use GCC internal register numbering in
2933 .debug_frame (and .debug_info, et cetera). The numbering is
2934 different from the standard SysV numbering for everything except
2935 for GPRs and FPRs. We can not detect this problem in most cases
2936 - to get accurate debug info for variables living in lr, ctr, v0,
2937 et cetera, use a newer version of GCC. But we must detect
2938 one important case - lr is in column 65 in .debug_frame output,
2941 GCC 3.4, and the "hammer" branch, have a related problem. They
2942 record lr register saves in .debug_frame as 108, but still record
2943 the return column as 65. We fix that up too.
2945 We can do this because 65 is assigned to fpsr, and GCC never
2946 generates debug info referring to it. To add support for
2947 handwritten debug info that restores fpsr, we would need to add a
2948 producer version check to this. */
2957 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2958 internal register numbering; translate that to the standard DWARF2
2959 register numbering. */
2960 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2962 else if (68 <= num && num <= 75) /* cr0-cr8 */
2963 return num - 68 + 86;
2964 else if (77 <= num && num <= 108) /* vr0-vr31 */
2965 return num - 77 + 1124;
2977 case 109: /* vrsave */
2979 case 110: /* vscr */
2981 case 111: /* spe_acc */
2983 case 112: /* spefscr */
2991 /* Handling the various POWER/PowerPC variants. */
2993 /* Information about a particular processor variant. */
2997 /* Name of this variant. */
3000 /* English description of the variant. */
3003 /* bfd_arch_info.arch corresponding to variant. */
3004 enum bfd_architecture arch;
3006 /* bfd_arch_info.mach corresponding to variant. */
3009 /* Target description for this variant. */
3010 struct target_desc **tdesc;
3013 static struct variant variants[] =
3015 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3016 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3017 {"power", "POWER user-level", bfd_arch_rs6000,
3018 bfd_mach_rs6k, &tdesc_rs6000},
3019 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3020 bfd_mach_ppc_403, &tdesc_powerpc_403},
3021 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3022 bfd_mach_ppc_405, &tdesc_powerpc_405},
3023 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3024 bfd_mach_ppc_601, &tdesc_powerpc_601},
3025 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3026 bfd_mach_ppc_602, &tdesc_powerpc_602},
3027 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3028 bfd_mach_ppc_603, &tdesc_powerpc_603},
3029 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3030 604, &tdesc_powerpc_604},
3031 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3032 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3033 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3034 bfd_mach_ppc_505, &tdesc_powerpc_505},
3035 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3036 bfd_mach_ppc_860, &tdesc_powerpc_860},
3037 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3038 bfd_mach_ppc_750, &tdesc_powerpc_750},
3039 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3040 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3041 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3042 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3045 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3046 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3047 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3048 bfd_mach_ppc_620, &tdesc_powerpc_64},
3049 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3050 bfd_mach_ppc_630, &tdesc_powerpc_64},
3051 {"a35", "PowerPC A35", bfd_arch_powerpc,
3052 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3053 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3054 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3055 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3056 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3058 /* FIXME: I haven't checked the register sets of the following. */
3059 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3060 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3061 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3062 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3063 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3064 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3069 /* Return the variant corresponding to architecture ARCH and machine number
3070 MACH. If no such variant exists, return null. */
3072 static const struct variant *
3073 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3075 const struct variant *v;
3077 for (v = variants; v->name; v++)
3078 if (arch == v->arch && mach == v->mach)
3085 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3087 if (info->endian == BFD_ENDIAN_BIG)
3088 return print_insn_big_powerpc (memaddr, info);
3090 return print_insn_little_powerpc (memaddr, info);
3094 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3096 return frame_unwind_register_unsigned (next_frame,
3097 gdbarch_pc_regnum (gdbarch));
3100 static struct frame_id
3101 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3103 return frame_id_build (get_frame_register_unsigned
3104 (this_frame, gdbarch_sp_regnum (gdbarch)),
3105 get_frame_pc (this_frame));
3108 struct rs6000_frame_cache
3111 CORE_ADDR initial_sp;
3112 struct trad_frame_saved_reg *saved_regs;
3115 static struct rs6000_frame_cache *
3116 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3118 struct rs6000_frame_cache *cache;
3119 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3121 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3122 struct rs6000_framedata fdata;
3123 int wordsize = tdep->wordsize;
3126 if ((*this_cache) != NULL)
3127 return (*this_cache);
3128 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3129 (*this_cache) = cache;
3130 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3132 func = get_frame_func (this_frame);
3133 pc = get_frame_pc (this_frame);
3134 skip_prologue (gdbarch, func, pc, &fdata);
3136 /* Figure out the parent's stack pointer. */
3138 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3139 address of the current frame. Things might be easier if the
3140 ->frame pointed to the outer-most address of the frame. In
3141 the mean time, the address of the prev frame is used as the
3142 base address of this frame. */
3143 cache->base = get_frame_register_unsigned
3144 (this_frame, gdbarch_sp_regnum (gdbarch));
3146 /* If the function appears to be frameless, check a couple of likely
3147 indicators that we have simply failed to find the frame setup.
3148 Two common cases of this are missing symbols (i.e.
3149 get_frame_func returns the wrong address or 0), and assembly
3150 stubs which have a fast exit path but set up a frame on the slow
3153 If the LR appears to return to this function, then presume that
3154 we have an ABI compliant frame that we failed to find. */
3155 if (fdata.frameless && fdata.lr_offset == 0)
3160 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3161 if (func == 0 && saved_lr == pc)
3165 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3166 if (func == saved_func)
3172 fdata.frameless = 0;
3173 fdata.lr_offset = tdep->lr_frame_offset;
3177 if (!fdata.frameless)
3178 /* Frameless really means stackless. */
3180 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3182 trad_frame_set_value (cache->saved_regs,
3183 gdbarch_sp_regnum (gdbarch), cache->base);
3185 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3186 All fpr's from saved_fpr to fp31 are saved. */
3188 if (fdata.saved_fpr >= 0)
3191 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3193 /* If skip_prologue says floating-point registers were saved,
3194 but the current architecture has no floating-point registers,
3195 then that's strange. But we have no indices to even record
3196 the addresses under, so we just ignore it. */
3197 if (ppc_floating_point_unit_p (gdbarch))
3198 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3200 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3205 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3206 All gpr's from saved_gpr to gpr31 are saved (except during the
3209 if (fdata.saved_gpr >= 0)
3212 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3213 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3215 if (fdata.gpr_mask & (1U << i))
3216 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3217 gpr_addr += wordsize;
3221 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3222 All vr's from saved_vr to vr31 are saved. */
3223 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3225 if (fdata.saved_vr >= 0)
3228 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3229 for (i = fdata.saved_vr; i < 32; i++)
3231 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3232 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3237 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3238 All vr's from saved_ev to ev31 are saved. ????? */
3239 if (tdep->ppc_ev0_regnum != -1)
3241 if (fdata.saved_ev >= 0)
3244 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3245 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3247 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3248 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3249 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3254 /* If != 0, fdata.cr_offset is the offset from the frame that
3256 if (fdata.cr_offset != 0)
3257 cache->saved_regs[tdep->ppc_cr_regnum].addr
3258 = cache->base + fdata.cr_offset;
3260 /* If != 0, fdata.lr_offset is the offset from the frame that
3262 if (fdata.lr_offset != 0)
3263 cache->saved_regs[tdep->ppc_lr_regnum].addr
3264 = cache->base + fdata.lr_offset;
3265 else if (fdata.lr_register != -1)
3266 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3267 /* The PC is found in the link register. */
3268 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3269 cache->saved_regs[tdep->ppc_lr_regnum];
3271 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3272 holds the VRSAVE. */
3273 if (fdata.vrsave_offset != 0)
3274 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3275 = cache->base + fdata.vrsave_offset;
3277 if (fdata.alloca_reg < 0)
3278 /* If no alloca register used, then fi->frame is the value of the
3279 %sp for this frame, and it is good enough. */
3281 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3284 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3290 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3291 struct frame_id *this_id)
3293 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3295 /* This marks the outermost frame. */
3296 if (info->base == 0)
3299 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3302 static struct value *
3303 rs6000_frame_prev_register (struct frame_info *this_frame,
3304 void **this_cache, int regnum)
3306 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3308 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3311 static const struct frame_unwind rs6000_frame_unwind =
3314 default_frame_unwind_stop_reason,
3315 rs6000_frame_this_id,
3316 rs6000_frame_prev_register,
3318 default_frame_sniffer
3323 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3325 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3327 return info->initial_sp;
3330 static const struct frame_base rs6000_frame_base = {
3331 &rs6000_frame_unwind,
3332 rs6000_frame_base_address,
3333 rs6000_frame_base_address,
3334 rs6000_frame_base_address
3337 static const struct frame_base *
3338 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3340 return &rs6000_frame_base;
3343 /* DWARF-2 frame support. Used to handle the detection of
3344 clobbered registers during function calls. */
3347 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3348 struct dwarf2_frame_state_reg *reg,
3349 struct frame_info *this_frame)
3351 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3353 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3354 non-volatile registers. We will use the same code for both. */
3356 /* Call-saved GP registers. */
3357 if ((regnum >= tdep->ppc_gp0_regnum + 14
3358 && regnum <= tdep->ppc_gp0_regnum + 31)
3359 || (regnum == tdep->ppc_gp0_regnum + 1))
3360 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3362 /* Call-clobbered GP registers. */
3363 if ((regnum >= tdep->ppc_gp0_regnum + 3
3364 && regnum <= tdep->ppc_gp0_regnum + 12)
3365 || (regnum == tdep->ppc_gp0_regnum))
3366 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3368 /* Deal with FP registers, if supported. */
3369 if (tdep->ppc_fp0_regnum >= 0)
3371 /* Call-saved FP registers. */
3372 if ((regnum >= tdep->ppc_fp0_regnum + 14
3373 && regnum <= tdep->ppc_fp0_regnum + 31))
3374 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3376 /* Call-clobbered FP registers. */
3377 if ((regnum >= tdep->ppc_fp0_regnum
3378 && regnum <= tdep->ppc_fp0_regnum + 13))
3379 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3382 /* Deal with ALTIVEC registers, if supported. */
3383 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3385 /* Call-saved Altivec registers. */
3386 if ((regnum >= tdep->ppc_vr0_regnum + 20
3387 && regnum <= tdep->ppc_vr0_regnum + 31)
3388 || regnum == tdep->ppc_vrsave_regnum)
3389 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3391 /* Call-clobbered Altivec registers. */
3392 if ((regnum >= tdep->ppc_vr0_regnum
3393 && regnum <= tdep->ppc_vr0_regnum + 19))
3394 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3397 /* Handle PC register and Stack Pointer correctly. */
3398 if (regnum == gdbarch_pc_regnum (gdbarch))
3399 reg->how = DWARF2_FRAME_REG_RA;
3400 else if (regnum == gdbarch_sp_regnum (gdbarch))
3401 reg->how = DWARF2_FRAME_REG_CFA;
3405 /* Return true if a .gnu_attributes section exists in BFD and it
3406 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3407 section exists in BFD and it indicates that SPE extensions are in
3408 use. Check the .gnu.attributes section first, as the binary might be
3409 compiled for SPE, but not actually using SPE instructions. */
3412 bfd_uses_spe_extensions (bfd *abfd)
3415 gdb_byte *contents = NULL;
3425 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3426 could be using the SPE vector abi without actually using any spe
3427 bits whatsoever. But it's close enough for now. */
3428 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3429 Tag_GNU_Power_ABI_Vector);
3430 if (vector_abi == 3)
3434 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3438 size = bfd_get_section_size (sect);
3439 contents = xmalloc (size);
3440 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3446 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3452 char name[name_len rounded up to 4-byte alignment];
3453 char data[data_len];
3456 Technically, there's only supposed to be one such structure in a
3457 given apuinfo section, but the linker is not always vigilant about
3458 merging apuinfo sections from input files. Just go ahead and parse
3459 them all, exiting early when we discover the binary uses SPE
3462 It's not specified in what endianness the information in this
3463 section is stored. Assume that it's the endianness of the BFD. */
3467 unsigned int name_len;
3468 unsigned int data_len;
3471 /* If we can't read the first three fields, we're done. */
3475 name_len = bfd_get_32 (abfd, ptr);
3476 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3477 data_len = bfd_get_32 (abfd, ptr + 4);
3478 type = bfd_get_32 (abfd, ptr + 8);
3481 /* The name must be "APUinfo\0". */
3483 && strcmp ((const char *) ptr, "APUinfo") != 0)
3487 /* The type must be 2. */
3491 /* The data is stored as a series of uint32. The upper half of
3492 each uint32 indicates the particular APU used and the lower
3493 half indicates the revision of that APU. We just care about
3496 /* Not 4-byte quantities. */
3502 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3503 unsigned int apu = apuinfo >> 16;
3507 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3509 if (apu == 0x100 || apu == 0x101)
3524 /* Initialize the current architecture based on INFO. If possible, re-use an
3525 architecture from ARCHES, which is a list of architectures already created
3526 during this debugging session.
3528 Called e.g. at program startup, when reading a core file, and when reading
3531 static struct gdbarch *
3532 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3534 struct gdbarch *gdbarch;
3535 struct gdbarch_tdep *tdep;
3536 int wordsize, from_xcoff_exec, from_elf_exec;
3537 enum bfd_architecture arch;
3540 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3542 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3543 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3545 int tdesc_wordsize = -1;
3546 const struct target_desc *tdesc = info.target_desc;
3547 struct tdesc_arch_data *tdesc_data = NULL;
3548 int num_pseudoregs = 0;
3551 /* INFO may refer to a binary that is not of the PowerPC architecture,
3552 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3553 In this case, we must not attempt to infer properties of the (PowerPC
3554 side) of the target system from properties of that executable. Trust
3555 the target description instead. */
3557 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3558 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3561 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3562 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3564 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3565 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3567 /* Check word size. If INFO is from a binary file, infer it from
3568 that, else choose a likely default. */
3569 if (from_xcoff_exec)
3571 if (bfd_xcoff_is_xcoff64 (info.abfd))
3576 else if (from_elf_exec)
3578 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3583 else if (tdesc_has_registers (tdesc))
3587 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3588 wordsize = info.bfd_arch_info->bits_per_word /
3589 info.bfd_arch_info->bits_per_byte;
3594 /* Get the architecture and machine from the BFD. */
3595 arch = info.bfd_arch_info->arch;
3596 mach = info.bfd_arch_info->mach;
3598 /* For e500 executables, the apuinfo section is of help here. Such
3599 section contains the identifier and revision number of each
3600 Application-specific Processing Unit that is present on the
3601 chip. The content of the section is determined by the assembler
3602 which looks at each instruction and determines which unit (and
3603 which version of it) can execute it. Grovel through the section
3604 looking for relevant e500 APUs. */
3606 if (bfd_uses_spe_extensions (info.abfd))
3608 arch = info.bfd_arch_info->arch;
3609 mach = bfd_mach_ppc_e500;
3610 bfd_default_set_arch_mach (&abfd, arch, mach);
3611 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3614 /* Find a default target description which describes our register
3615 layout, if we do not already have one. */
3616 if (! tdesc_has_registers (tdesc))
3618 const struct variant *v;
3620 /* Choose variant. */
3621 v = find_variant_by_arch (arch, mach);
3628 gdb_assert (tdesc_has_registers (tdesc));
3630 /* Check any target description for validity. */
3631 if (tdesc_has_registers (tdesc))
3633 static const char *const gprs[] = {
3634 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3635 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3636 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3637 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3639 static const char *const segment_regs[] = {
3640 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3641 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3643 const struct tdesc_feature *feature;
3645 static const char *const msr_names[] = { "msr", "ps" };
3646 static const char *const cr_names[] = { "cr", "cnd" };
3647 static const char *const ctr_names[] = { "ctr", "cnt" };
3649 feature = tdesc_find_feature (tdesc,
3650 "org.gnu.gdb.power.core");
3651 if (feature == NULL)
3654 tdesc_data = tdesc_data_alloc ();
3657 for (i = 0; i < ppc_num_gprs; i++)
3658 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3659 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3661 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3663 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3666 /* Allow alternate names for these registers, to accomodate GDB's
3668 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3669 PPC_MSR_REGNUM, msr_names);
3670 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3671 PPC_CR_REGNUM, cr_names);
3672 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3673 PPC_CTR_REGNUM, ctr_names);
3677 tdesc_data_cleanup (tdesc_data);
3681 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3684 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3686 wordsize = tdesc_wordsize;
3688 feature = tdesc_find_feature (tdesc,
3689 "org.gnu.gdb.power.fpu");
3690 if (feature != NULL)
3692 static const char *const fprs[] = {
3693 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3694 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3695 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3696 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3699 for (i = 0; i < ppc_num_fprs; i++)
3700 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3701 PPC_F0_REGNUM + i, fprs[i]);
3702 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3703 PPC_FPSCR_REGNUM, "fpscr");
3707 tdesc_data_cleanup (tdesc_data);
3715 /* The DFP pseudo-registers will be available when there are floating
3717 have_dfp = have_fpu;
3719 feature = tdesc_find_feature (tdesc,
3720 "org.gnu.gdb.power.altivec");
3721 if (feature != NULL)
3723 static const char *const vector_regs[] = {
3724 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3725 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3726 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3727 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3731 for (i = 0; i < ppc_num_gprs; i++)
3732 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3735 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3736 PPC_VSCR_REGNUM, "vscr");
3737 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3738 PPC_VRSAVE_REGNUM, "vrsave");
3740 if (have_spe || !valid_p)
3742 tdesc_data_cleanup (tdesc_data);
3750 /* Check for POWER7 VSX registers support. */
3751 feature = tdesc_find_feature (tdesc,
3752 "org.gnu.gdb.power.vsx");
3754 if (feature != NULL)
3756 static const char *const vsx_regs[] = {
3757 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3758 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3759 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3760 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3761 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3767 for (i = 0; i < ppc_num_vshrs; i++)
3768 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3769 PPC_VSR0_UPPER_REGNUM + i,
3773 tdesc_data_cleanup (tdesc_data);
3782 /* On machines supporting the SPE APU, the general-purpose registers
3783 are 64 bits long. There are SIMD vector instructions to treat them
3784 as pairs of floats, but the rest of the instruction set treats them
3785 as 32-bit registers, and only operates on their lower halves.
3787 In the GDB regcache, we treat their high and low halves as separate
3788 registers. The low halves we present as the general-purpose
3789 registers, and then we have pseudo-registers that stitch together
3790 the upper and lower halves and present them as pseudo-registers.
3792 Thus, the target description is expected to supply the upper
3793 halves separately. */
3795 feature = tdesc_find_feature (tdesc,
3796 "org.gnu.gdb.power.spe");
3797 if (feature != NULL)
3799 static const char *const upper_spe[] = {
3800 "ev0h", "ev1h", "ev2h", "ev3h",
3801 "ev4h", "ev5h", "ev6h", "ev7h",
3802 "ev8h", "ev9h", "ev10h", "ev11h",
3803 "ev12h", "ev13h", "ev14h", "ev15h",
3804 "ev16h", "ev17h", "ev18h", "ev19h",
3805 "ev20h", "ev21h", "ev22h", "ev23h",
3806 "ev24h", "ev25h", "ev26h", "ev27h",
3807 "ev28h", "ev29h", "ev30h", "ev31h"
3811 for (i = 0; i < ppc_num_gprs; i++)
3812 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3813 PPC_SPE_UPPER_GP0_REGNUM + i,
3815 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3816 PPC_SPE_ACC_REGNUM, "acc");
3817 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3818 PPC_SPE_FSCR_REGNUM, "spefscr");
3820 if (have_mq || have_fpu || !valid_p)
3822 tdesc_data_cleanup (tdesc_data);
3831 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3832 complain for a 32-bit binary on a 64-bit target; we do not yet
3833 support that. For instance, the 32-bit ABI routines expect
3836 As long as there isn't an explicit target description, we'll
3837 choose one based on the BFD architecture and get a word size
3838 matching the binary (probably powerpc:common or
3839 powerpc:common64). So there is only trouble if a 64-bit target
3840 supplies a 64-bit description while debugging a 32-bit
3842 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3844 tdesc_data_cleanup (tdesc_data);
3849 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3851 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3852 Tag_GNU_Power_ABI_FP))
3855 soft_float_flag = AUTO_BOOLEAN_FALSE;
3858 soft_float_flag = AUTO_BOOLEAN_TRUE;
3865 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3867 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3868 Tag_GNU_Power_ABI_Vector))
3871 vector_abi = POWERPC_VEC_GENERIC;
3874 vector_abi = POWERPC_VEC_ALTIVEC;
3877 vector_abi = POWERPC_VEC_SPE;
3885 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3887 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3890 soft_float = !have_fpu;
3892 /* If we have a hard float binary or setting but no floating point
3893 registers, downgrade to soft float anyway. We're still somewhat
3894 useful in this scenario. */
3895 if (!soft_float && !have_fpu)
3898 /* Similarly for vector registers. */
3899 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3900 vector_abi = POWERPC_VEC_GENERIC;
3902 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3903 vector_abi = POWERPC_VEC_GENERIC;
3905 if (vector_abi == POWERPC_VEC_AUTO)
3908 vector_abi = POWERPC_VEC_ALTIVEC;
3910 vector_abi = POWERPC_VEC_SPE;
3912 vector_abi = POWERPC_VEC_GENERIC;
3915 /* Do not limit the vector ABI based on available hardware, since we
3916 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3918 /* Find a candidate among extant architectures. */
3919 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3921 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3923 /* Word size in the various PowerPC bfd_arch_info structs isn't
3924 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3925 separate word size check. */
3926 tdep = gdbarch_tdep (arches->gdbarch);
3927 if (tdep && tdep->soft_float != soft_float)
3929 if (tdep && tdep->vector_abi != vector_abi)
3931 if (tdep && tdep->wordsize == wordsize)
3933 if (tdesc_data != NULL)
3934 tdesc_data_cleanup (tdesc_data);
3935 return arches->gdbarch;
3939 /* None found, create a new architecture from INFO, whose bfd_arch_info
3940 validity depends on the source:
3941 - executable useless
3942 - rs6000_host_arch() good
3944 - "set arch" trust blindly
3945 - GDB startup useless but harmless */
3947 tdep = XCALLOC (1, struct gdbarch_tdep);
3948 tdep->wordsize = wordsize;
3949 tdep->soft_float = soft_float;
3950 tdep->vector_abi = vector_abi;
3952 gdbarch = gdbarch_alloc (&info, tdep);
3954 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3955 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3956 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3957 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3958 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3959 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3960 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3961 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3963 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3964 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3965 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
3966 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3967 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3968 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3969 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3970 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3972 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3973 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3974 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3975 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
3976 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3978 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3979 GDB traditionally called it "ps", though, so let GDB add an
3981 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3984 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3986 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3988 /* Set lr_frame_offset. */
3990 tdep->lr_frame_offset = 16;
3992 tdep->lr_frame_offset = 4;
3994 if (have_spe || have_dfp || have_vsx)
3996 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
3997 set_gdbarch_pseudo_register_write (gdbarch,
3998 rs6000_pseudo_register_write);
4001 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4003 /* Select instruction printer. */
4004 if (arch == bfd_arch_rs6000)
4005 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
4007 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
4009 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
4012 num_pseudoregs += 32;
4014 num_pseudoregs += 16;
4016 /* Include both VSX and Extended FP registers. */
4017 num_pseudoregs += 96;
4019 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
4021 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4022 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
4023 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4024 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4025 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4026 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4027 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4028 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4029 set_gdbarch_char_signed (gdbarch, 0);
4031 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4034 set_gdbarch_frame_red_zone_size (gdbarch, 288);
4036 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
4037 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
4038 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
4040 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
4041 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
4044 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4045 else if (wordsize == 8)
4046 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
4048 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
4049 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
4050 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
4052 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4053 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
4055 /* The value of symbols of type N_SO and N_FUN maybe null when
4057 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
4059 /* Handles single stepping of atomic sequences. */
4060 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
4062 /* Not sure on this. FIXMEmgo */
4063 set_gdbarch_frame_args_skip (gdbarch, 8);
4065 /* Helpers for function argument information. */
4066 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
4069 set_gdbarch_in_solib_return_trampoline
4070 (gdbarch, rs6000_in_solib_return_trampoline);
4071 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
4073 /* Hook in the DWARF CFI frame unwinder. */
4074 dwarf2_append_unwinders (gdbarch);
4075 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
4077 /* Frame handling. */
4078 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
4080 /* Setup displaced stepping. */
4081 set_gdbarch_displaced_step_copy_insn (gdbarch,
4082 simple_displaced_step_copy_insn);
4083 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
4084 ppc_displaced_step_hw_singlestep);
4085 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
4086 set_gdbarch_displaced_step_free_closure (gdbarch,
4087 simple_displaced_step_free_closure);
4088 set_gdbarch_displaced_step_location (gdbarch,
4089 displaced_step_at_entry_point);
4091 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
4093 /* Hook in ABI-specific overrides, if they have been registered. */
4094 info.target_desc = tdesc;
4095 info.tdep_info = (void *) tdesc_data;
4096 gdbarch_init_osabi (info, gdbarch);
4100 case GDB_OSABI_LINUX:
4101 case GDB_OSABI_NETBSD_AOUT:
4102 case GDB_OSABI_NETBSD_ELF:
4103 case GDB_OSABI_UNKNOWN:
4104 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4105 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4106 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4107 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4110 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
4112 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4113 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4114 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4115 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4118 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
4119 set_tdesc_pseudo_register_reggroup_p (gdbarch,
4120 rs6000_pseudo_register_reggroup_p);
4121 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
4123 /* Override the normal target description method to make the SPE upper
4124 halves anonymous. */
4125 set_gdbarch_register_name (gdbarch, rs6000_register_name);
4127 /* Choose register numbers for all supported pseudo-registers. */
4128 tdep->ppc_ev0_regnum = -1;
4129 tdep->ppc_dl0_regnum = -1;
4130 tdep->ppc_vsr0_regnum = -1;
4131 tdep->ppc_efpr0_regnum = -1;
4133 cur_reg = gdbarch_num_regs (gdbarch);
4137 tdep->ppc_ev0_regnum = cur_reg;
4142 tdep->ppc_dl0_regnum = cur_reg;
4147 tdep->ppc_vsr0_regnum = cur_reg;
4149 tdep->ppc_efpr0_regnum = cur_reg;
4153 gdb_assert (gdbarch_num_regs (gdbarch)
4154 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
4156 /* Register the ravenscar_arch_ops. */
4157 if (mach == bfd_mach_ppc_e500)
4158 register_e500_ravenscar_ops (gdbarch);
4160 register_ppc_ravenscar_ops (gdbarch);
4166 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4173 /* FIXME: Dump gdbarch_tdep. */
4176 /* PowerPC-specific commands. */
4179 set_powerpc_command (char *args, int from_tty)
4181 printf_unfiltered (_("\
4182 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4183 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4187 show_powerpc_command (char *args, int from_tty)
4189 cmd_show_list (showpowerpccmdlist, from_tty, "");
4193 powerpc_set_soft_float (char *args, int from_tty,
4194 struct cmd_list_element *c)
4196 struct gdbarch_info info;
4198 /* Update the architecture. */
4199 gdbarch_info_init (&info);
4200 if (!gdbarch_update_p (info))
4201 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4205 powerpc_set_vector_abi (char *args, int from_tty,
4206 struct cmd_list_element *c)
4208 struct gdbarch_info info;
4209 enum powerpc_vector_abi vector_abi;
4211 for (vector_abi = POWERPC_VEC_AUTO;
4212 vector_abi != POWERPC_VEC_LAST;
4214 if (strcmp (powerpc_vector_abi_string,
4215 powerpc_vector_strings[vector_abi]) == 0)
4217 powerpc_vector_abi_global = vector_abi;
4221 if (vector_abi == POWERPC_VEC_LAST)
4222 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4223 powerpc_vector_abi_string);
4225 /* Update the architecture. */
4226 gdbarch_info_init (&info);
4227 if (!gdbarch_update_p (info))
4228 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4231 /* Show the current setting of the exact watchpoints flag. */
4234 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
4235 struct cmd_list_element *c,
4238 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
4241 /* Read a PPC instruction from memory. */
4244 read_insn (struct frame_info *frame, CORE_ADDR pc)
4246 struct gdbarch *gdbarch = get_frame_arch (frame);
4247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4249 return read_memory_unsigned_integer (pc, 4, byte_order);
4252 /* Return non-zero if the instructions at PC match the series
4253 described in PATTERN, or zero otherwise. PATTERN is an array of
4254 'struct ppc_insn_pattern' objects, terminated by an entry whose
4257 When the match is successful, fill INSN[i] with what PATTERN[i]
4258 matched. If PATTERN[i] is optional, and the instruction wasn't
4259 present, set INSN[i] to 0 (which is not a valid PPC instruction).
4260 INSN should have as many elements as PATTERN. Note that, if
4261 PATTERN contains optional instructions which aren't present in
4262 memory, then INSN will have holes, so INSN[i] isn't necessarily the
4263 i'th instruction in memory. */
4266 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
4267 struct ppc_insn_pattern *pattern,
4268 unsigned int *insns)
4273 for (i = 0, insn = 0; pattern[i].mask; i++)
4276 insn = read_insn (frame, pc);
4278 if ((insn & pattern[i].mask) == pattern[i].data)
4284 else if (!pattern[i].optional)
4291 /* Return the 'd' field of the d-form instruction INSN, properly
4295 ppc_insn_d_field (unsigned int insn)
4297 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
4300 /* Return the 'ds' field of the ds-form instruction INSN, with the two
4301 zero bits concatenated at the right, and properly
4305 ppc_insn_ds_field (unsigned int insn)
4307 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
4310 /* Initialization code. */
4312 /* -Wmissing-prototypes */
4313 extern initialize_file_ftype _initialize_rs6000_tdep;
4316 _initialize_rs6000_tdep (void)
4318 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4319 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4321 /* Initialize the standard target descriptions. */
4322 initialize_tdesc_powerpc_32 ();
4323 initialize_tdesc_powerpc_altivec32 ();
4324 initialize_tdesc_powerpc_vsx32 ();
4325 initialize_tdesc_powerpc_403 ();
4326 initialize_tdesc_powerpc_403gc ();
4327 initialize_tdesc_powerpc_405 ();
4328 initialize_tdesc_powerpc_505 ();
4329 initialize_tdesc_powerpc_601 ();
4330 initialize_tdesc_powerpc_602 ();
4331 initialize_tdesc_powerpc_603 ();
4332 initialize_tdesc_powerpc_604 ();
4333 initialize_tdesc_powerpc_64 ();
4334 initialize_tdesc_powerpc_altivec64 ();
4335 initialize_tdesc_powerpc_vsx64 ();
4336 initialize_tdesc_powerpc_7400 ();
4337 initialize_tdesc_powerpc_750 ();
4338 initialize_tdesc_powerpc_860 ();
4339 initialize_tdesc_powerpc_e500 ();
4340 initialize_tdesc_rs6000 ();
4342 /* Add root prefix command for all "set powerpc"/"show powerpc"
4344 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4345 _("Various PowerPC-specific commands."),
4346 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4348 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4349 _("Various PowerPC-specific commands."),
4350 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4352 /* Add a command to allow the user to force the ABI. */
4353 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4354 &powerpc_soft_float_global,
4355 _("Set whether to use a soft-float ABI."),
4356 _("Show whether to use a soft-float ABI."),
4358 powerpc_set_soft_float, NULL,
4359 &setpowerpccmdlist, &showpowerpccmdlist);
4361 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4362 &powerpc_vector_abi_string,
4363 _("Set the vector ABI."),
4364 _("Show the vector ABI."),
4365 NULL, powerpc_set_vector_abi, NULL,
4366 &setpowerpccmdlist, &showpowerpccmdlist);
4368 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
4369 &target_exact_watchpoints,
4371 Set whether to use just one debug register for watchpoints on scalars."),
4373 Show whether to use just one debug register for watchpoints on scalars."),
4375 If true, GDB will use only one debug register when watching a variable of\n\
4376 scalar type, thus assuming that the variable is accessed through the address\n\
4377 of its first byte."),
4378 NULL, show_powerpc_exact_watchpoints,
4379 &setpowerpccmdlist, &showpowerpccmdlist);