1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
32 #include "arch-utils.h"
37 #include "parser-defs.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
52 #include "solib-svr4.h"
55 #include "gdb_assert.h"
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
62 #include "reggroups.h"
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
75 /* To be used by skip_prologue. */
77 struct rs6000_framedata
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
98 /* Description of a single register. */
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
112 /* Breakpoint shadows for the single step instructions will be kept here. */
114 static struct sstep_breaks
116 /* Address, or 0 if this is not in use. */
118 /* Shadow contents. */
123 /* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
127 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
129 /* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
132 void (*rs6000_set_host_arch_hook) (int) = NULL;
134 /* Static function prototypes */
136 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
138 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
141 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
143 altivec_register_p (int regno)
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
153 /* Return true if REGNO is an SPE register, false otherwise. */
155 spe_register_p (int regno)
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
186 /* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
189 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
198 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
206 set_sim_regno (int *table, int gdb_regno, int sim_regno)
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
215 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
219 init_sim_regno_table (struct gdbarch *arch)
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
270 /* vsave is a special-purpose register, so the code below handles it. */
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
299 /* Given a GDB register number REG, return the corresponding SIM
302 rs6000_register_sim_regno (int reg)
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
313 return LEGACY_SIM_REGNO_IGNORE;
318 /* Register set support functions. */
321 ppc_supply_reg (struct regcache *regcache, int regnum,
322 const gdb_byte *regs, size_t offset)
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
329 ppc_collect_reg (const struct regcache *regcache, int regnum,
330 gdb_byte *regs, size_t offset)
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
336 /* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
341 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
379 /* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
384 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
395 offset = offsets->f0_offset;
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
409 /* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
415 ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
425 offset = offsets->r0_offset;
426 for (i = tdep->ppc_gp0_regnum;
427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
430 if (regnum == -1 || regnum == i)
431 ppc_collect_reg (regcache, i, gregs, offset);
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
456 /* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
462 ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
474 offset = offsets->f0_offset;
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
479 if (regnum == -1 || regnum == i)
480 ppc_collect_reg (regcache, i, fpregs, offset);
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
489 /* Read a LEN-byte address from debugged memory address MEMADDR. */
492 read_memory_addr (CORE_ADDR memaddr, int len)
494 return read_memory_unsigned_integer (memaddr, len);
498 rs6000_skip_prologue (CORE_ADDR pc)
500 struct rs6000_framedata frame;
501 pc = skip_prologue (pc, 0, &frame);
506 /* Fill in fi->saved_regs */
508 struct frame_extra_info
510 /* Functions calling alloca() change the value of the stack
511 pointer. We need to use initial stack pointer (which is saved in
512 r31 by gcc) in such cases. If a compiler emits traceback table,
513 then we should use the alloca register specified in traceback
515 CORE_ADDR initial_sp; /* initial stack pointer. */
518 /* Get the ith function argument for the current function. */
520 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
523 return get_frame_register_unsigned (frame, 3 + argi);
526 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
529 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
536 absolute = (int) ((instr >> 1) & 1);
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
545 dest = pc + immediate;
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
553 dest = pc + immediate;
557 ext_op = (instr >> 1) & 0x3ff;
559 if (ext_op == 16) /* br conditional register */
561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
569 struct frame_info *fi;
571 fi = get_current_frame ();
573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
574 gdbarch_tdep (current_gdbarch)->wordsize);
578 else if (ext_op == 528) /* br cond to count reg */
580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
599 /* Sequence of bytes for breakpoint instruction. */
601 const static unsigned char *
602 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
608 return big_breakpoint;
610 return little_breakpoint;
614 /* AIX does not support PT_STEP. Simulate it. */
617 rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
622 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
628 if (insert_breakpoints_p)
633 insn = read_memory_integer (loc, 4);
635 breaks[0] = loc + breakp_sz;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
643 stepBreaks[1].address = 0;
645 for (ii = 0; ii < 2; ++ii)
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
652 stepBreaks[ii].address = breaks[ii];
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
665 errno = 0; /* FIXME, don't ignore errors! */
666 /* What errors? {read,write}_memory call error(). */
670 /* return pc value after skipping a function prologue and also return
671 information about a function frame.
673 in struct rs6000_framedata fdata:
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
680 - saved_vr is the number of the first saved vr.
681 - saved_ev is the number of the first saved ev.
682 - alloca_reg is the number of the register used for alloca() handling.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
686 - vr_offset is the offset of the first saved vr from the previous frame.
687 - ev_offset is the offset of the first saved ev from the previous frame.
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
690 - vrsave_offset is the offset of the saved vrsave register
693 #define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
698 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
700 /* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702 static int max_skip_non_prologue_insns = 10;
704 /* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
711 /* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
715 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
717 struct symtab_and_line prologue_sal;
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
723 CORE_ADDR addr = prologue_sal.end;
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
736 struct symtab_and_line sal;
738 sal = find_pc_line (addr, 0);
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
755 /* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
761 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
773 *r0_contains_arg = 1;
780 /* Save a General Purpose Register on stack. */
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
788 return (rx_regno >= 3 && rx_regno <= 10);
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
811 return (src_regno >= 2 && src_regno <= 8);
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
819 return (src_regno >= 2 && src_regno <= 8);
822 /* Not an insn that saves a parameter on stack. */
827 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
829 CORE_ADDR orig_pc = pc;
830 CORE_ADDR last_prologue_pc = pc;
831 CORE_ADDR li_found_pc = 0;
835 long vr_saved_offset = 0;
844 int minimal_toc_loaded = 0;
845 int prev_insn_was_prologue_insn = 1;
846 int num_skip_non_prologue_insns = 0;
847 int r0_contains_arg = 0;
848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
864 lim_pc = refine_prologue_limit (pc, lim_pc);
866 memset (fdata, 0, sizeof (struct rs6000_framedata));
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
869 fdata->saved_vr = -1;
870 fdata->saved_ev = -1;
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
888 prev_insn_was_prologue_insn = 1;
890 /* Fetch the instruction and convert it to an integer. */
891 if (target_read_memory (pc, buf, 4))
893 op = extract_signed_integer (buf, 4);
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
912 remember just the first one, but skip over additional
915 lr_reg = (op & 0x03e00000);
920 else if ((op & 0xfc1fffff) == 0x7c000026)
922 cr_reg = (op & 0x03e00000);
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
948 fdata->saved_gpr = reg;
949 if ((op & 0xfc1f0003) == 0xf8010000)
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
956 else if ((op & 0xffff0000) == 0x60000000)
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
962 prev_insn_was_prologue_insn = 0;
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
984 else if (lr_reg >= 0 &&
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
993 fdata->nosavedpc = 0;
994 /* Invalidate lr_reg, but don't set it to -1.
995 That would mean that it had never been set. */
997 if ((op & 0xfc000003) == 0xf8000000 || /* std */
998 (op & 0xfc000000) == 0x90000000) /* stw */
1000 /* Does not update r1, so add displacement to lr_offset. */
1001 fdata->lr_offset += SIGNED_SHORT (op);
1006 else if (cr_reg >= 0 &&
1007 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1008 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1009 /* stw Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1011 /* stwu Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1013 { /* where Rx == cr */
1014 fdata->cr_offset = offset;
1015 /* Invalidate cr_reg, but don't set it to -1.
1016 That would mean that it had never been set. */
1018 if ((op & 0xfc000003) == 0xf8000000 ||
1019 (op & 0xfc000000) == 0x90000000)
1021 /* Does not update r1, so add displacement to cr_offset. */
1022 fdata->cr_offset += SIGNED_SHORT (op);
1027 else if (op == 0x48000005)
1033 else if (op == 0x48000004)
1038 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1039 in V.4 -mminimal-toc */
1040 (op & 0xffff0000) == 0x3bde0000)
1041 { /* addi 30,30,foo@l */
1045 else if ((op & 0xfc000001) == 0x48000001)
1049 fdata->frameless = 0;
1050 /* Don't skip over the subroutine call if it is not within
1051 the first three instructions of the prologue and either
1052 we have no line table information or the line info tells
1053 us that the subroutine call is not part of the line
1054 associated with the prologue. */
1055 if ((pc - orig_pc) > 8)
1057 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1058 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1060 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1064 op = read_memory_integer (pc + 4, 4);
1066 /* At this point, make sure this is not a trampoline
1067 function (a function that simply calls another functions,
1068 and nothing else). If the next is not a nop, this branch
1069 was part of the function prologue. */
1071 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1072 break; /* don't skip over
1077 /* update stack pointer */
1078 else if ((op & 0xfc1f0000) == 0x94010000)
1079 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1080 fdata->frameless = 0;
1081 fdata->offset = SIGNED_SHORT (op);
1082 offset = fdata->offset;
1085 else if ((op & 0xfc1f016a) == 0x7c01016e)
1086 { /* stwux rX,r1,rY */
1087 /* no way to figure out what r1 is going to be */
1088 fdata->frameless = 0;
1089 offset = fdata->offset;
1092 else if ((op & 0xfc1f0003) == 0xf8010001)
1093 { /* stdu rX,NUM(r1) */
1094 fdata->frameless = 0;
1095 fdata->offset = SIGNED_SHORT (op & ~3UL);
1096 offset = fdata->offset;
1099 else if ((op & 0xfc1f016a) == 0x7c01016a)
1100 { /* stdux rX,r1,rY */
1101 /* no way to figure out what r1 is going to be */
1102 fdata->frameless = 0;
1103 offset = fdata->offset;
1106 /* Load up minimal toc pointer */
1107 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1108 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1109 && !minimal_toc_loaded)
1111 minimal_toc_loaded = 1;
1114 /* move parameters from argument registers to local variable
1117 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1118 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1119 (((op >> 21) & 31) <= 10) &&
1120 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1124 /* store parameters in stack */
1126 /* Move parameters from argument registers to temporary register. */
1127 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1131 /* Set up frame pointer */
1133 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1134 || op == 0x7c3f0b78)
1136 fdata->frameless = 0;
1138 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1141 /* Another way to set up the frame pointer. */
1143 else if ((op & 0xfc1fffff) == 0x38010000)
1144 { /* addi rX, r1, 0x0 */
1145 fdata->frameless = 0;
1147 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1148 + ((op & ~0x38010000) >> 21));
1151 /* AltiVec related instructions. */
1152 /* Store the vrsave register (spr 256) in another register for
1153 later manipulation, or load a register into the vrsave
1154 register. 2 instructions are used: mfvrsave and
1155 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1156 and mtspr SPR256, Rn. */
1157 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1158 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1159 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1161 vrsave_reg = GET_SRC_REG (op);
1164 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1168 /* Store the register where vrsave was saved to onto the stack:
1169 rS is the register where vrsave was stored in a previous
1171 /* 100100 sssss 00001 dddddddd dddddddd */
1172 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1174 if (vrsave_reg == GET_SRC_REG (op))
1176 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1181 /* Compute the new value of vrsave, by modifying the register
1182 where vrsave was saved to. */
1183 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1184 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1188 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1189 in a pair of insns to save the vector registers on the
1191 /* 001110 00000 00000 iiii iiii iiii iiii */
1192 /* 001110 01110 00000 iiii iiii iiii iiii */
1193 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1194 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1196 if ((op & 0xffff0000) == 0x38000000)
1197 r0_contains_arg = 0;
1199 vr_saved_offset = SIGNED_SHORT (op);
1201 /* This insn by itself is not part of the prologue, unless
1202 if part of the pair of insns mentioned above. So do not
1203 record this insn as part of the prologue yet. */
1204 prev_insn_was_prologue_insn = 0;
1206 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1207 /* 011111 sssss 11111 00000 00111001110 */
1208 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1210 if (pc == (li_found_pc + 4))
1212 vr_reg = GET_SRC_REG (op);
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1218 fdata->saved_vr = vr_reg;
1219 fdata->vr_offset = vr_saved_offset + offset;
1221 vr_saved_offset = -1;
1226 /* End AltiVec related instructions. */
1228 /* Start BookE related instructions. */
1229 /* Store gen register S at (r31+uimm).
1230 Any register less than r13 is volatile, so we don't care. */
1231 /* 000100 sssss 11111 iiiii 01100100001 */
1232 else if (arch_info->mach == bfd_mach_ppc_e500
1233 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1235 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1238 ev_reg = GET_SRC_REG (op);
1239 imm = (op >> 11) & 0x1f;
1240 ev_offset = imm * 8;
1241 /* If this is the first vector reg to be saved, or if
1242 it has a lower number than others previously seen,
1243 reupdate the frame info. */
1244 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1246 fdata->saved_ev = ev_reg;
1247 fdata->ev_offset = ev_offset + offset;
1252 /* Store gen register rS at (r1+rB). */
1253 /* 000100 sssss 00001 bbbbb 01100100000 */
1254 else if (arch_info->mach == bfd_mach_ppc_e500
1255 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1257 if (pc == (li_found_pc + 4))
1259 ev_reg = GET_SRC_REG (op);
1260 /* If this is the first vector reg to be saved, or if
1261 it has a lower number than others previously seen,
1262 reupdate the frame info. */
1263 /* We know the contents of rB from the previous instruction. */
1264 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1266 fdata->saved_ev = ev_reg;
1267 fdata->ev_offset = vr_saved_offset + offset;
1269 vr_saved_offset = -1;
1275 /* Store gen register r31 at (rA+uimm). */
1276 /* 000100 11111 aaaaa iiiii 01100100001 */
1277 else if (arch_info->mach == bfd_mach_ppc_e500
1278 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1280 /* Wwe know that the source register is 31 already, but
1281 it can't hurt to compute it. */
1282 ev_reg = GET_SRC_REG (op);
1283 ev_offset = ((op >> 11) & 0x1f) * 8;
1284 /* If this is the first vector reg to be saved, or if
1285 it has a lower number than others previously seen,
1286 reupdate the frame info. */
1287 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1289 fdata->saved_ev = ev_reg;
1290 fdata->ev_offset = ev_offset + offset;
1295 /* Store gen register S at (r31+r0).
1296 Store param on stack when offset from SP bigger than 4 bytes. */
1297 /* 000100 sssss 11111 00000 01100100000 */
1298 else if (arch_info->mach == bfd_mach_ppc_e500
1299 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1301 if (pc == (li_found_pc + 4))
1303 if ((op & 0x03e00000) >= 0x01a00000)
1305 ev_reg = GET_SRC_REG (op);
1306 /* If this is the first vector reg to be saved, or if
1307 it has a lower number than others previously seen,
1308 reupdate the frame info. */
1309 /* We know the contents of r0 from the previous
1311 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1313 fdata->saved_ev = ev_reg;
1314 fdata->ev_offset = vr_saved_offset + offset;
1318 vr_saved_offset = -1;
1323 /* End BookE related instructions. */
1327 /* Not a recognized prologue instruction.
1328 Handle optimizer code motions into the prologue by continuing
1329 the search if we have no valid frame yet or if the return
1330 address is not yet saved in the frame. */
1331 if (fdata->frameless == 0
1332 && (lr_reg == -1 || fdata->nosavedpc == 0))
1335 if (op == 0x4e800020 /* blr */
1336 || op == 0x4e800420) /* bctr */
1337 /* Do not scan past epilogue in frameless functions or
1340 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1341 /* Never skip branches. */
1344 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1345 /* Do not scan too many insns, scanning insns is expensive with
1349 /* Continue scanning. */
1350 prev_insn_was_prologue_insn = 0;
1356 /* I have problems with skipping over __main() that I need to address
1357 * sometime. Previously, I used to use misc_function_vector which
1358 * didn't work as well as I wanted to be. -MGO */
1360 /* If the first thing after skipping a prolog is a branch to a function,
1361 this might be a call to an initializer in main(), introduced by gcc2.
1362 We'd like to skip over it as well. Fortunately, xlc does some extra
1363 work before calling a function right after a prologue, thus we can
1364 single out such gcc2 behaviour. */
1367 if ((op & 0xfc000001) == 0x48000001)
1368 { /* bl foo, an initializer function? */
1369 op = read_memory_integer (pc + 4, 4);
1371 if (op == 0x4def7b82)
1372 { /* cror 0xf, 0xf, 0xf (nop) */
1374 /* Check and see if we are in main. If so, skip over this
1375 initializer function as well. */
1377 tmp = find_pc_misc_function (pc);
1379 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1385 fdata->offset = -fdata->offset;
1386 return last_prologue_pc;
1390 /*************************************************************************
1391 Support for creating pushing a dummy frame into the stack, and popping
1393 *************************************************************************/
1396 /* All the ABI's require 16 byte alignment. */
1398 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1400 return (addr & -16);
1403 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1404 the first eight words of the argument list (that might be less than
1405 eight parameters if some parameters occupy more than one word) are
1406 passed in r3..r10 registers. float and double parameters are
1407 passed in fpr's, in addition to that. Rest of the parameters if any
1408 are passed in user stack. There might be cases in which half of the
1409 parameter is copied into registers, the other half is pushed into
1412 Stack must be aligned on 64-bit boundaries when synthesizing
1415 If the function is returning a structure, then the return address is passed
1416 in r3, then the first 7 words of the parameters can be passed in registers,
1417 starting from r4. */
1420 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1421 struct regcache *regcache, CORE_ADDR bp_addr,
1422 int nargs, struct value **args, CORE_ADDR sp,
1423 int struct_return, CORE_ADDR struct_addr)
1425 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1428 int argno; /* current argument number */
1429 int argbytes; /* current argument byte */
1430 gdb_byte tmp_buffer[50];
1431 int f_argno = 0; /* current floating point argno */
1432 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1433 CORE_ADDR func_addr = find_function_addr (function, NULL);
1435 struct value *arg = 0;
1440 /* The calling convention this function implements assumes the
1441 processor has floating-point registers. We shouldn't be using it
1442 on PPC variants that lack them. */
1443 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1445 /* The first eight words of ther arguments are passed in registers.
1446 Copy them appropriately. */
1449 /* If the function is returning a `struct', then the first word
1450 (which will be passed in r3) is used for struct return address.
1451 In that case we should advance one word and start from r4
1452 register to copy parameters. */
1455 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1461 effectively indirect call... gcc does...
1463 return_val example( float, int);
1466 float in fp0, int in r3
1467 offset of stack on overflow 8/16
1468 for varargs, must go by type.
1470 float in r3&r4, int in r5
1471 offset of stack on overflow different
1473 return in r3 or f0. If no float, must study how gcc emulates floats;
1474 pay attention to arg promotion.
1475 User may have to cast\args to handle promotion correctly
1476 since gdb won't know if prototype supplied or not.
1479 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1481 int reg_size = register_size (current_gdbarch, ii + 3);
1484 type = check_typedef (value_type (arg));
1485 len = TYPE_LENGTH (type);
1487 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1490 /* Floating point arguments are passed in fpr's, as well as gpr's.
1491 There are 13 fpr's reserved for passing parameters. At this point
1492 there is no way we would run out of them. */
1494 gdb_assert (len <= 8);
1496 regcache_cooked_write (regcache,
1497 tdep->ppc_fp0_regnum + 1 + f_argno,
1498 value_contents (arg));
1505 /* Argument takes more than one register. */
1506 while (argbytes < len)
1508 gdb_byte word[MAX_REGISTER_SIZE];
1509 memset (word, 0, reg_size);
1511 ((char *) value_contents (arg)) + argbytes,
1512 (len - argbytes) > reg_size
1513 ? reg_size : len - argbytes);
1514 regcache_cooked_write (regcache,
1515 tdep->ppc_gp0_regnum + 3 + ii,
1517 ++ii, argbytes += reg_size;
1520 goto ran_out_of_registers_for_arguments;
1527 /* Argument can fit in one register. No problem. */
1528 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1529 gdb_byte word[MAX_REGISTER_SIZE];
1531 memset (word, 0, reg_size);
1532 memcpy (word, value_contents (arg), len);
1533 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1538 ran_out_of_registers_for_arguments:
1540 saved_sp = read_sp ();
1542 /* Location for 8 parameters are always reserved. */
1545 /* Another six words for back chain, TOC register, link register, etc. */
1548 /* Stack pointer must be quadword aligned. */
1551 /* If there are more arguments, allocate space for them in
1552 the stack, then push them starting from the ninth one. */
1554 if ((argno < nargs) || argbytes)
1560 space += ((len - argbytes + 3) & -4);
1566 for (; jj < nargs; ++jj)
1568 struct value *val = args[jj];
1569 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1572 /* Add location required for the rest of the parameters. */
1573 space = (space + 15) & -16;
1576 /* This is another instance we need to be concerned about
1577 securing our stack space. If we write anything underneath %sp
1578 (r1), we might conflict with the kernel who thinks he is free
1579 to use this area. So, update %sp first before doing anything
1582 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1584 /* If the last argument copied into the registers didn't fit there
1585 completely, push the rest of it into stack. */
1589 write_memory (sp + 24 + (ii * 4),
1590 value_contents (arg) + argbytes,
1593 ii += ((len - argbytes + 3) & -4) / 4;
1596 /* Push the rest of the arguments into stack. */
1597 for (; argno < nargs; ++argno)
1601 type = check_typedef (value_type (arg));
1602 len = TYPE_LENGTH (type);
1605 /* Float types should be passed in fpr's, as well as in the
1607 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1610 gdb_assert (len <= 8);
1612 regcache_cooked_write (regcache,
1613 tdep->ppc_fp0_regnum + 1 + f_argno,
1614 value_contents (arg));
1618 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1619 ii += ((len + 3) & -4) / 4;
1623 /* Set the stack pointer. According to the ABI, the SP is meant to
1624 be set _before_ the corresponding stack space is used. On AIX,
1625 this even applies when the target has been completely stopped!
1626 Not doing this can lead to conflicts with the kernel which thinks
1627 that it still has control over this not-yet-allocated stack
1629 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1631 /* Set back chain properly. */
1632 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1633 write_memory (sp, tmp_buffer, 4);
1635 /* Point the inferior function call's return address at the dummy's
1637 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1639 /* Set the TOC register, get the value from the objfile reader
1640 which, in turn, gets it from the VMAP table. */
1641 if (rs6000_find_toc_address_hook != NULL)
1643 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1644 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1647 target_store_registers (-1);
1651 /* PowerOpen always puts structures in memory. Vectors, which were
1652 added later, do get returned in a register though. */
1655 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1657 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1658 && TYPE_VECTOR (value_type))
1664 rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1668 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1670 /* The calling convention this function implements assumes the
1671 processor has floating-point registers. We shouldn't be using it
1672 on PPC variants that lack them. */
1673 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1675 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1678 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1679 We need to truncate the return value into float size (4 byte) if
1682 convert_typed_floating (®buf[DEPRECATED_REGISTER_BYTE
1683 (tdep->ppc_fp0_regnum + 1)],
1684 builtin_type_double,
1688 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1689 && TYPE_LENGTH (valtype) == 16
1690 && TYPE_VECTOR (valtype))
1692 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1693 TYPE_LENGTH (valtype));
1697 /* return value is copied starting from r3. */
1698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1699 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1700 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1703 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1704 TYPE_LENGTH (valtype));
1708 /* Return whether handle_inferior_event() should proceed through code
1709 starting at PC in function NAME when stepping.
1711 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1712 handle memory references that are too distant to fit in instructions
1713 generated by the compiler. For example, if 'foo' in the following
1718 is greater than 32767, the linker might replace the lwz with a branch to
1719 somewhere in @FIX1 that does the load in 2 instructions and then branches
1720 back to where execution should continue.
1722 GDB should silently step over @FIX code, just like AIX dbx does.
1723 Unfortunately, the linker uses the "b" instruction for the
1724 branches, meaning that the link register doesn't get set.
1725 Therefore, GDB's usual step_over_function () mechanism won't work.
1727 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1728 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1732 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1734 return name && !strncmp (name, "@FIX", 4);
1737 /* Skip code that the user doesn't want to see when stepping:
1739 1. Indirect function calls use a piece of trampoline code to do context
1740 switching, i.e. to set the new TOC table. Skip such code if we are on
1741 its first instruction (as when we have single-stepped to here).
1743 2. Skip shared library trampoline code (which is different from
1744 indirect function call trampolines).
1746 3. Skip bigtoc fixup code.
1748 Result is desired PC to step until, or NULL if we are not in
1749 code that should be skipped. */
1752 rs6000_skip_trampoline_code (CORE_ADDR pc)
1754 unsigned int ii, op;
1756 CORE_ADDR solib_target_pc;
1757 struct minimal_symbol *msymbol;
1759 static unsigned trampoline_code[] =
1761 0x800b0000, /* l r0,0x0(r11) */
1762 0x90410014, /* st r2,0x14(r1) */
1763 0x7c0903a6, /* mtctr r0 */
1764 0x804b0004, /* l r2,0x4(r11) */
1765 0x816b0008, /* l r11,0x8(r11) */
1766 0x4e800420, /* bctr */
1767 0x4e800020, /* br */
1771 /* Check for bigtoc fixup code. */
1772 msymbol = lookup_minimal_symbol_by_pc (pc);
1774 && rs6000_in_solib_return_trampoline (pc,
1775 DEPRECATED_SYMBOL_NAME (msymbol)))
1777 /* Double-check that the third instruction from PC is relative "b". */
1778 op = read_memory_integer (pc + 8, 4);
1779 if ((op & 0xfc000003) == 0x48000000)
1781 /* Extract bits 6-29 as a signed 24-bit relative word address and
1782 add it to the containing PC. */
1783 rel = ((int)(op << 6) >> 6);
1784 return pc + 8 + rel;
1788 /* If pc is in a shared library trampoline, return its target. */
1789 solib_target_pc = find_solib_trampoline_target (pc);
1790 if (solib_target_pc)
1791 return solib_target_pc;
1793 for (ii = 0; trampoline_code[ii]; ++ii)
1795 op = read_memory_integer (pc + (ii * 4), 4);
1796 if (op != trampoline_code[ii])
1799 ii = read_register (11); /* r11 holds destination addr */
1800 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1804 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1805 isn't available with that word size, return 0. */
1808 regsize (const struct reg *reg, int wordsize)
1810 return wordsize == 8 ? reg->sz64 : reg->sz32;
1813 /* Return the name of register number N, or null if no such register exists
1814 in the current architecture. */
1817 rs6000_register_name (int n)
1819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1820 const struct reg *reg = tdep->regs + n;
1822 if (!regsize (reg, tdep->wordsize))
1827 /* Return the GDB type object for the "standard" data type
1828 of data in register N. */
1830 static struct type *
1831 rs6000_register_type (struct gdbarch *gdbarch, int n)
1833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1834 const struct reg *reg = tdep->regs + n;
1837 return builtin_type_double;
1840 int size = regsize (reg, tdep->wordsize);
1844 return builtin_type_int0;
1846 return builtin_type_uint32;
1848 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1849 return builtin_type_vec64;
1851 return builtin_type_uint64;
1854 return builtin_type_vec128;
1857 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1863 /* Is REGNUM a member of REGGROUP? */
1865 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1866 struct reggroup *group)
1868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1873 if (REGISTER_NAME (regnum) == NULL
1874 || *REGISTER_NAME (regnum) == '\0')
1876 if (group == all_reggroup)
1879 float_p = (regnum == tdep->ppc_fpscr_regnum
1880 || (regnum >= tdep->ppc_fp0_regnum
1881 && regnum < tdep->ppc_fp0_regnum + 32));
1882 if (group == float_reggroup)
1885 vector_p = ((regnum >= tdep->ppc_vr0_regnum
1886 && regnum < tdep->ppc_vr0_regnum + 32)
1887 || (regnum >= tdep->ppc_ev0_regnum
1888 && regnum < tdep->ppc_ev0_regnum + 32)
1889 || regnum == tdep->ppc_vrsave_regnum
1890 || regnum == tdep->ppc_acc_regnum
1891 || regnum == tdep->ppc_spefscr_regnum);
1892 if (group == vector_reggroup)
1895 /* Note that PS aka MSR isn't included - it's a system register (and
1896 besides, due to GCC's CFI foobar you do not want to restore
1898 general_p = ((regnum >= tdep->ppc_gp0_regnum
1899 && regnum < tdep->ppc_gp0_regnum + 32)
1900 || regnum == tdep->ppc_toc_regnum
1901 || regnum == tdep->ppc_cr_regnum
1902 || regnum == tdep->ppc_lr_regnum
1903 || regnum == tdep->ppc_ctr_regnum
1904 || regnum == tdep->ppc_xer_regnum
1905 || regnum == PC_REGNUM);
1906 if (group == general_reggroup)
1909 if (group == save_reggroup || group == restore_reggroup)
1910 return general_p || vector_p || float_p;
1915 /* The register format for RS/6000 floating point registers is always
1916 double, we need a conversion if the memory format is float. */
1919 rs6000_convert_register_p (int regnum, struct type *type)
1921 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1924 && TYPE_CODE (type) == TYPE_CODE_FLT
1925 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1929 rs6000_register_to_value (struct frame_info *frame,
1934 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1935 gdb_byte from[MAX_REGISTER_SIZE];
1937 gdb_assert (reg->fpr);
1938 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1940 get_frame_register (frame, regnum, from);
1941 convert_typed_floating (from, builtin_type_double, to, type);
1945 rs6000_value_to_register (struct frame_info *frame,
1948 const gdb_byte *from)
1950 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1951 gdb_byte to[MAX_REGISTER_SIZE];
1953 gdb_assert (reg->fpr);
1954 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1956 convert_typed_floating (from, type, to, builtin_type_double);
1957 put_frame_register (frame, regnum, to);
1960 /* Move SPE vector register values between a 64-bit buffer and the two
1961 32-bit raw register halves in a regcache. This function handles
1962 both splitting a 64-bit value into two 32-bit halves, and joining
1963 two halves into a whole 64-bit value, depending on the function
1964 passed as the MOVE argument.
1966 EV_REG must be the number of an SPE evN vector register --- a
1967 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1970 Call MOVE once for each 32-bit half of that register, passing
1971 REGCACHE, the number of the raw register corresponding to that
1972 half, and the address of the appropriate half of BUFFER.
1974 For example, passing 'regcache_raw_read' as the MOVE function will
1975 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1976 'regcache_raw_supply' will supply the contents of BUFFER to the
1977 appropriate pair of raw registers in REGCACHE.
1979 You may need to cast away some 'const' qualifiers when passing
1980 MOVE, since this function can't tell at compile-time which of
1981 REGCACHE or BUFFER is acting as the source of the data. If C had
1982 co-variant type qualifiers, ... */
1984 e500_move_ev_register (void (*move) (struct regcache *regcache,
1985 int regnum, gdb_byte *buf),
1986 struct regcache *regcache, int ev_reg,
1989 struct gdbarch *arch = get_regcache_arch (regcache);
1990 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1992 gdb_byte *byte_buffer = buffer;
1994 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1995 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1997 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1999 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2001 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2002 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2006 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2007 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2012 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2013 int reg_nr, gdb_byte *buffer)
2015 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2018 gdb_assert (regcache_arch == gdbarch);
2020 if (tdep->ppc_ev0_regnum <= reg_nr
2021 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2022 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2024 internal_error (__FILE__, __LINE__,
2025 _("e500_pseudo_register_read: "
2026 "called on unexpected register '%s' (%d)"),
2027 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2031 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2032 int reg_nr, const gdb_byte *buffer)
2034 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2037 gdb_assert (regcache_arch == gdbarch);
2039 if (tdep->ppc_ev0_regnum <= reg_nr
2040 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2041 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2043 regcache, reg_nr, (gdb_byte *) buffer);
2045 internal_error (__FILE__, __LINE__,
2046 _("e500_pseudo_register_read: "
2047 "called on unexpected register '%s' (%d)"),
2048 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2051 /* The E500 needs a custom reggroup function: it has anonymous raw
2052 registers, and default_register_reggroup_p assumes that anonymous
2053 registers are not members of any reggroup. */
2055 e500_register_reggroup_p (struct gdbarch *gdbarch,
2057 struct reggroup *group)
2059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2061 /* The save and restore register groups need to include the
2062 upper-half registers, even though they're anonymous. */
2063 if ((group == save_reggroup
2064 || group == restore_reggroup)
2065 && (tdep->ppc_ev0_upper_regnum <= regnum
2066 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2069 /* In all other regards, the default reggroup definition is fine. */
2070 return default_register_reggroup_p (gdbarch, regnum, group);
2073 /* Convert a DBX STABS register number to a GDB register number. */
2075 rs6000_stab_reg_to_regnum (int num)
2077 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2079 if (0 <= num && num <= 31)
2080 return tdep->ppc_gp0_regnum + num;
2081 else if (32 <= num && num <= 63)
2082 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2083 specifies registers the architecture doesn't have? Our
2084 callers don't check the value we return. */
2085 return tdep->ppc_fp0_regnum + (num - 32);
2086 else if (77 <= num && num <= 108)
2087 return tdep->ppc_vr0_regnum + (num - 77);
2088 else if (1200 <= num && num < 1200 + 32)
2089 return tdep->ppc_ev0_regnum + (num - 1200);
2094 return tdep->ppc_mq_regnum;
2096 return tdep->ppc_lr_regnum;
2098 return tdep->ppc_ctr_regnum;
2100 return tdep->ppc_xer_regnum;
2102 return tdep->ppc_vrsave_regnum;
2104 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2106 return tdep->ppc_acc_regnum;
2108 return tdep->ppc_spefscr_regnum;
2115 /* Convert a Dwarf 2 register number to a GDB register number. */
2117 rs6000_dwarf2_reg_to_regnum (int num)
2119 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2121 if (0 <= num && num <= 31)
2122 return tdep->ppc_gp0_regnum + num;
2123 else if (32 <= num && num <= 63)
2124 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2125 specifies registers the architecture doesn't have? Our
2126 callers don't check the value we return. */
2127 return tdep->ppc_fp0_regnum + (num - 32);
2128 else if (1124 <= num && num < 1124 + 32)
2129 return tdep->ppc_vr0_regnum + (num - 1124);
2130 else if (1200 <= num && num < 1200 + 32)
2131 return tdep->ppc_ev0_regnum + (num - 1200);
2136 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2138 return tdep->ppc_acc_regnum;
2140 return tdep->ppc_mq_regnum;
2142 return tdep->ppc_xer_regnum;
2144 return tdep->ppc_lr_regnum;
2146 return tdep->ppc_ctr_regnum;
2148 return tdep->ppc_vrsave_regnum;
2150 return tdep->ppc_spefscr_regnum;
2158 rs6000_store_return_value (struct type *type,
2159 struct regcache *regcache,
2160 const gdb_byte *valbuf)
2162 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 /* The calling convention this function implements assumes the
2167 processor has floating-point registers. We shouldn't be using it
2168 on PPC variants that lack them. */
2169 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2171 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2172 /* Floating point values are returned starting from FPR1 and up.
2173 Say a double_double_double type could be returned in
2174 FPR1/FPR2/FPR3 triple. */
2175 regnum = tdep->ppc_fp0_regnum + 1;
2176 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2178 if (TYPE_LENGTH (type) == 16
2179 && TYPE_VECTOR (type))
2180 regnum = tdep->ppc_vr0_regnum + 2;
2182 internal_error (__FILE__, __LINE__,
2183 _("rs6000_store_return_value: "
2184 "unexpected array return type"));
2187 /* Everything else is returned in GPR3 and up. */
2188 regnum = tdep->ppc_gp0_regnum + 3;
2191 size_t bytes_written = 0;
2193 while (bytes_written < TYPE_LENGTH (type))
2195 /* How much of this value can we write to this register? */
2196 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2197 register_size (gdbarch, regnum));
2198 regcache_cooked_write_part (regcache, regnum,
2200 valbuf + bytes_written);
2202 bytes_written += bytes_to_write;
2208 /* Extract from an array REGBUF containing the (raw) register state
2209 the address in which a function should return its structure value,
2210 as a CORE_ADDR (or an expression that can be used as one). */
2213 rs6000_extract_struct_value_address (struct regcache *regcache)
2215 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2216 function call GDB knows the address of the struct return value
2217 and hence, should not need to call this function. Unfortunately,
2218 the current call_function_by_hand() code only saves the most
2219 recent struct address leading to occasional calls. The code
2220 should instead maintain a stack of such addresses (in the dummy
2222 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2223 really got no idea where the return value is being stored. While
2224 r3, on function entry, contained the address it will have since
2225 been reused (scratch) and hence wouldn't be valid */
2229 /* Hook called when a new child process is started. */
2232 rs6000_create_inferior (int pid)
2234 if (rs6000_set_host_arch_hook)
2235 rs6000_set_host_arch_hook (pid);
2238 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2240 Usually a function pointer's representation is simply the address
2241 of the function. On the RS/6000 however, a function pointer is
2242 represented by a pointer to a TOC entry. This TOC entry contains
2243 three words, the first word is the address of the function, the
2244 second word is the TOC pointer (r2), and the third word is the
2245 static chain value. Throughout GDB it is currently assumed that a
2246 function pointer contains the address of the function, which is not
2247 easy to fix. In addition, the conversion of a function address to
2248 a function pointer would require allocation of a TOC entry in the
2249 inferior's memory space, with all its drawbacks. To be able to
2250 call C++ virtual methods in the inferior (which are called via
2251 function pointers), find_function_addr uses this function to get the
2252 function address from a function pointer. */
2254 /* Return real function address if ADDR (a function pointer) is in the data
2255 space and is therefore a special function pointer. */
2258 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2260 struct target_ops *targ)
2262 struct obj_section *s;
2264 s = find_pc_section (addr);
2265 if (s && s->the_bfd_section->flags & SEC_CODE)
2268 /* ADDR is in the data space, so it's a special function pointer. */
2269 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2273 /* Handling the various POWER/PowerPC variants. */
2276 /* The arrays here called registers_MUMBLE hold information about available
2279 For each family of PPC variants, I've tried to isolate out the
2280 common registers and put them up front, so that as long as you get
2281 the general family right, GDB will correctly identify the registers
2282 common to that family. The common register sets are:
2284 For the 60x family: hid0 hid1 iabr dabr pir
2286 For the 505 and 860 family: eie eid nri
2288 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2289 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2292 Most of these register groups aren't anything formal. I arrived at
2293 them by looking at the registers that occurred in more than one
2296 Note: kevinb/2002-04-30: Support for the fpscr register was added
2297 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2298 for Power. For PowerPC, slot 70 was unused and was already in the
2299 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2300 slot 70 was being used for "mq", so the next available slot (71)
2301 was chosen. It would have been nice to be able to make the
2302 register numbers the same across processor cores, but this wasn't
2303 possible without either 1) renumbering some registers for some
2304 processors or 2) assigning fpscr to a really high slot that's
2305 larger than any current register number. Doing (1) is bad because
2306 existing stubs would break. Doing (2) is undesirable because it
2307 would introduce a really large gap between fpscr and the rest of
2308 the registers for most processors. */
2310 /* Convenience macros for populating register arrays. */
2312 /* Within another macro, convert S to a string. */
2316 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2317 and 64 bits on 64-bit systems. */
2318 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2320 /* Return a struct reg defining register NAME that's 32 bits on all
2322 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2324 /* Return a struct reg defining register NAME that's 64 bits on all
2326 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2328 /* Return a struct reg defining register NAME that's 128 bits on all
2330 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2332 /* Return a struct reg defining floating-point register NAME. */
2333 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2335 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2336 long on all systems. */
2337 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2339 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2340 systems and that doesn't exist on 64-bit systems. */
2341 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2343 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2344 systems and that doesn't exist on 32-bit systems. */
2345 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2347 /* Return a struct reg placeholder for a register that doesn't exist. */
2348 #define R0 { 0, 0, 0, 0, 0, -1 }
2350 /* Return a struct reg defining an anonymous raw register that's 32
2351 bits on all systems. */
2352 #define A4 { 0, 4, 4, 0, 0, -1 }
2354 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2355 32-bit systems and 64 bits on 64-bit systems. */
2356 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2358 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2360 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2362 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2363 all systems, and whose SPR number is NUMBER. */
2364 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2366 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2367 64-bit systems and that doesn't exist on 32-bit systems. */
2368 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2370 /* UISA registers common across all architectures, including POWER. */
2372 #define COMMON_UISA_REGS \
2373 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2374 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2375 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2376 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2377 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2378 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2379 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2380 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2381 /* 64 */ R(pc), R(ps)
2383 /* UISA-level SPRs for PowerPC. */
2384 #define PPC_UISA_SPRS \
2385 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2387 /* UISA-level SPRs for PowerPC without floating point support. */
2388 #define PPC_UISA_NOFP_SPRS \
2389 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2391 /* Segment registers, for PowerPC. */
2392 #define PPC_SEGMENT_REGS \
2393 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2394 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2395 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2396 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2398 /* OEA SPRs for PowerPC. */
2399 #define PPC_OEA_SPRS \
2401 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2402 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2403 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2404 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2405 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2406 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2407 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2408 /* 116 */ S4(dec), S(dabr), S4(ear)
2410 /* AltiVec registers. */
2411 #define PPC_ALTIVEC_REGS \
2412 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2413 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2414 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2415 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2416 /*151*/R4(vscr), R4(vrsave)
2419 /* On machines supporting the SPE APU, the general-purpose registers
2420 are 64 bits long. There are SIMD vector instructions to treat them
2421 as pairs of floats, but the rest of the instruction set treats them
2422 as 32-bit registers, and only operates on their lower halves.
2424 In the GDB regcache, we treat their high and low halves as separate
2425 registers. The low halves we present as the general-purpose
2426 registers, and then we have pseudo-registers that stitch together
2427 the upper and lower halves and present them as pseudo-registers. */
2429 /* SPE GPR lower halves --- raw registers. */
2430 #define PPC_SPE_GP_REGS \
2431 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2432 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2433 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2434 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2436 /* SPE GPR upper halves --- anonymous raw registers. */
2437 #define PPC_SPE_UPPER_GP_REGS \
2438 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2439 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2440 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2441 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2443 /* SPE GPR vector registers --- pseudo registers based on underlying
2444 gprs and the anonymous upper half raw registers. */
2445 #define PPC_EV_PSEUDO_REGS \
2446 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2447 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2448 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2449 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2451 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2452 user-level SPR's. */
2453 static const struct reg registers_power[] =
2456 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2460 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2461 view of the PowerPC. */
2462 static const struct reg registers_powerpc[] =
2471 Some notes about the "tcr" special-purpose register:
2472 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2473 403's programmable interval timer, fixed interval timer, and
2475 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2476 watchdog timer, and nothing else.
2478 Some of the fields are similar between the two, but they're not
2479 compatible with each other. Since the two variants have different
2480 registers, with different numbers, but the same name, we can't
2481 splice the register name to get the SPR number. */
2482 static const struct reg registers_403[] =
2488 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2489 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2490 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2491 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2492 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2493 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2496 /* IBM PowerPC 403GC.
2497 See the comments about 'tcr' for the 403, above. */
2498 static const struct reg registers_403GC[] =
2504 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2505 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2506 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2507 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2508 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2509 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2510 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2511 /* 147 */ S(tbhu), S(tblu)
2514 /* Motorola PowerPC 505. */
2515 static const struct reg registers_505[] =
2521 /* 119 */ S(eie), S(eid), S(nri)
2524 /* Motorola PowerPC 860 or 850. */
2525 static const struct reg registers_860[] =
2531 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2532 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2533 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2534 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2535 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2536 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2537 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2538 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2539 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2540 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2541 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2542 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2545 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2546 for reading and writing RTCU and RTCL. However, how one reads and writes a
2547 register is the stub's problem. */
2548 static const struct reg registers_601[] =
2554 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2555 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2558 /* Motorola PowerPC 602.
2559 See the notes under the 403 about 'tcr'. */
2560 static const struct reg registers_602[] =
2566 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2567 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2568 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2571 /* Motorola/IBM PowerPC 603 or 603e. */
2572 static const struct reg registers_603[] =
2578 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2579 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2580 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2583 /* Motorola PowerPC 604 or 604e. */
2584 static const struct reg registers_604[] =
2590 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2591 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2592 /* 127 */ S(sia), S(sda)
2595 /* Motorola/IBM PowerPC 750 or 740. */
2596 static const struct reg registers_750[] =
2602 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2603 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2604 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2605 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2606 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2607 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2611 /* Motorola PowerPC 7400. */
2612 static const struct reg registers_7400[] =
2614 /* gpr0-gpr31, fpr0-fpr31 */
2616 /* cr, lr, ctr, xer, fpscr */
2621 /* vr0-vr31, vrsave, vscr */
2623 /* FIXME? Add more registers? */
2626 /* Motorola e500. */
2627 static const struct reg registers_e500[] =
2629 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2630 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2631 /* 64 .. 65 */ R(pc), R(ps),
2632 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2633 /* 71 .. 72 */ R8(acc), S4(spefscr),
2634 /* NOTE: Add new registers here the end of the raw register
2635 list and just before the first pseudo register. */
2636 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2639 /* Information about a particular processor variant. */
2643 /* Name of this variant. */
2646 /* English description of the variant. */
2649 /* bfd_arch_info.arch corresponding to variant. */
2650 enum bfd_architecture arch;
2652 /* bfd_arch_info.mach corresponding to variant. */
2655 /* Number of real registers. */
2658 /* Number of pseudo registers. */
2661 /* Number of total registers (the sum of nregs and npregs). */
2664 /* Table of register names; registers[R] is the name of the register
2666 const struct reg *regs;
2669 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2672 num_registers (const struct reg *reg_list, int num_tot_regs)
2677 for (i = 0; i < num_tot_regs; i++)
2678 if (!reg_list[i].pseudo)
2685 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2690 for (i = 0; i < num_tot_regs; i++)
2691 if (reg_list[i].pseudo)
2697 /* Information in this table comes from the following web sites:
2698 IBM: http://www.chips.ibm.com:80/products/embedded/
2699 Motorola: http://www.mot.com/SPS/PowerPC/
2701 I'm sure I've got some of the variant descriptions not quite right.
2702 Please report any inaccuracies you find to GDB's maintainer.
2704 If you add entries to this table, please be sure to allow the new
2705 value as an argument to the --with-cpu flag, in configure.in. */
2707 static struct variant variants[] =
2710 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2711 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2713 {"power", "POWER user-level", bfd_arch_rs6000,
2714 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2716 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2717 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2719 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2720 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2722 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2723 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2725 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2726 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2728 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2729 604, -1, -1, tot_num_registers (registers_604),
2731 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2732 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2734 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2735 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2737 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2738 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2740 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2741 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2743 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2744 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2746 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2747 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2751 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2752 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2754 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2755 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2757 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2758 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2760 {"a35", "PowerPC A35", bfd_arch_powerpc,
2761 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2763 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2764 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2766 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2767 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2770 /* FIXME: I haven't checked the register sets of the following. */
2771 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2772 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2774 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2775 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2777 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2778 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2781 {0, 0, 0, 0, 0, 0, 0, 0}
2784 /* Initialize the number of registers and pseudo registers in each variant. */
2787 init_variants (void)
2791 for (v = variants; v->name; v++)
2794 v->nregs = num_registers (v->regs, v->num_tot_regs);
2795 if (v->npregs == -1)
2796 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2800 /* Return the variant corresponding to architecture ARCH and machine number
2801 MACH. If no such variant exists, return null. */
2803 static const struct variant *
2804 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2806 const struct variant *v;
2808 for (v = variants; v->name; v++)
2809 if (arch == v->arch && mach == v->mach)
2816 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2818 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2819 return print_insn_big_powerpc (memaddr, info);
2821 return print_insn_little_powerpc (memaddr, info);
2825 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2827 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2830 static struct frame_id
2831 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2833 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2835 frame_pc_unwind (next_frame));
2838 struct rs6000_frame_cache
2841 CORE_ADDR initial_sp;
2842 struct trad_frame_saved_reg *saved_regs;
2845 static struct rs6000_frame_cache *
2846 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2848 struct rs6000_frame_cache *cache;
2849 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2850 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2851 struct rs6000_framedata fdata;
2852 int wordsize = tdep->wordsize;
2854 if ((*this_cache) != NULL)
2855 return (*this_cache);
2856 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2857 (*this_cache) = cache;
2858 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2860 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2863 /* If there were any saved registers, figure out parent's stack
2865 /* The following is true only if the frame doesn't have a call to
2868 if (fdata.saved_fpr == 0
2869 && fdata.saved_gpr == 0
2870 && fdata.saved_vr == 0
2871 && fdata.saved_ev == 0
2872 && fdata.lr_offset == 0
2873 && fdata.cr_offset == 0
2874 && fdata.vr_offset == 0
2875 && fdata.ev_offset == 0)
2876 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2879 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2880 address of the current frame. Things might be easier if the
2881 ->frame pointed to the outer-most address of the frame. In
2882 the mean time, the address of the prev frame is used as the
2883 base address of this frame. */
2884 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2885 if (!fdata.frameless)
2886 /* Frameless really means stackless. */
2887 cache->base = read_memory_addr (cache->base, wordsize);
2889 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2891 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2892 All fpr's from saved_fpr to fp31 are saved. */
2894 if (fdata.saved_fpr >= 0)
2897 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2899 /* If skip_prologue says floating-point registers were saved,
2900 but the current architecture has no floating-point registers,
2901 then that's strange. But we have no indices to even record
2902 the addresses under, so we just ignore it. */
2903 if (ppc_floating_point_unit_p (gdbarch))
2904 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2906 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2911 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2912 All gpr's from saved_gpr to gpr31 are saved. */
2914 if (fdata.saved_gpr >= 0)
2917 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2918 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2920 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2921 gpr_addr += wordsize;
2925 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2926 All vr's from saved_vr to vr31 are saved. */
2927 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2929 if (fdata.saved_vr >= 0)
2932 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2933 for (i = fdata.saved_vr; i < 32; i++)
2935 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2936 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2941 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2942 All vr's from saved_ev to ev31 are saved. ????? */
2943 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2945 if (fdata.saved_ev >= 0)
2948 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2949 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2951 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2952 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2953 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2958 /* If != 0, fdata.cr_offset is the offset from the frame that
2960 if (fdata.cr_offset != 0)
2961 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2963 /* If != 0, fdata.lr_offset is the offset from the frame that
2965 if (fdata.lr_offset != 0)
2966 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2967 /* The PC is found in the link register. */
2968 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2970 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2971 holds the VRSAVE. */
2972 if (fdata.vrsave_offset != 0)
2973 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2975 if (fdata.alloca_reg < 0)
2976 /* If no alloca register used, then fi->frame is the value of the
2977 %sp for this frame, and it is good enough. */
2978 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2980 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2987 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2988 struct frame_id *this_id)
2990 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2992 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2996 rs6000_frame_prev_register (struct frame_info *next_frame,
2998 int regnum, int *optimizedp,
2999 enum lval_type *lvalp, CORE_ADDR *addrp,
3000 int *realnump, gdb_byte *valuep)
3002 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3004 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3005 optimizedp, lvalp, addrp, realnump, valuep);
3008 static const struct frame_unwind rs6000_frame_unwind =
3011 rs6000_frame_this_id,
3012 rs6000_frame_prev_register
3015 static const struct frame_unwind *
3016 rs6000_frame_sniffer (struct frame_info *next_frame)
3018 return &rs6000_frame_unwind;
3024 rs6000_frame_base_address (struct frame_info *next_frame,
3027 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3029 return info->initial_sp;
3032 static const struct frame_base rs6000_frame_base = {
3033 &rs6000_frame_unwind,
3034 rs6000_frame_base_address,
3035 rs6000_frame_base_address,
3036 rs6000_frame_base_address
3039 static const struct frame_base *
3040 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3042 return &rs6000_frame_base;
3045 /* Initialize the current architecture based on INFO. If possible, re-use an
3046 architecture from ARCHES, which is a list of architectures already created
3047 during this debugging session.
3049 Called e.g. at program startup, when reading a core file, and when reading
3052 static struct gdbarch *
3053 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3055 struct gdbarch *gdbarch;
3056 struct gdbarch_tdep *tdep;
3057 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3059 const struct variant *v;
3060 enum bfd_architecture arch;
3066 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3067 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3069 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3070 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3072 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3074 /* Check word size. If INFO is from a binary file, infer it from
3075 that, else choose a likely default. */
3076 if (from_xcoff_exec)
3078 if (bfd_xcoff_is_xcoff64 (info.abfd))
3083 else if (from_elf_exec)
3085 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3092 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3093 wordsize = info.bfd_arch_info->bits_per_word /
3094 info.bfd_arch_info->bits_per_byte;
3099 /* Find a candidate among extant architectures. */
3100 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3102 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3104 /* Word size in the various PowerPC bfd_arch_info structs isn't
3105 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3106 separate word size check. */
3107 tdep = gdbarch_tdep (arches->gdbarch);
3108 if (tdep && tdep->wordsize == wordsize)
3109 return arches->gdbarch;
3112 /* None found, create a new architecture from INFO, whose bfd_arch_info
3113 validity depends on the source:
3114 - executable useless
3115 - rs6000_host_arch() good
3117 - "set arch" trust blindly
3118 - GDB startup useless but harmless */
3120 if (!from_xcoff_exec)
3122 arch = info.bfd_arch_info->arch;
3123 mach = info.bfd_arch_info->mach;
3127 arch = bfd_arch_powerpc;
3128 bfd_default_set_arch_mach (&abfd, arch, 0);
3129 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3130 mach = info.bfd_arch_info->mach;
3132 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3133 tdep->wordsize = wordsize;
3135 /* For e500 executables, the apuinfo section is of help here. Such
3136 section contains the identifier and revision number of each
3137 Application-specific Processing Unit that is present on the
3138 chip. The content of the section is determined by the assembler
3139 which looks at each instruction and determines which unit (and
3140 which version of it) can execute it. In our case we just look for
3141 the existance of the section. */
3145 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3148 arch = info.bfd_arch_info->arch;
3149 mach = bfd_mach_ppc_e500;
3150 bfd_default_set_arch_mach (&abfd, arch, mach);
3151 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3155 gdbarch = gdbarch_alloc (&info, tdep);
3157 /* Initialize the number of real and pseudo registers in each variant. */
3160 /* Choose variant. */
3161 v = find_variant_by_arch (arch, mach);
3165 tdep->regs = v->regs;
3167 tdep->ppc_gp0_regnum = 0;
3168 tdep->ppc_toc_regnum = 2;
3169 tdep->ppc_ps_regnum = 65;
3170 tdep->ppc_cr_regnum = 66;
3171 tdep->ppc_lr_regnum = 67;
3172 tdep->ppc_ctr_regnum = 68;
3173 tdep->ppc_xer_regnum = 69;
3174 if (v->mach == bfd_mach_ppc_601)
3175 tdep->ppc_mq_regnum = 124;
3176 else if (arch == bfd_arch_rs6000)
3177 tdep->ppc_mq_regnum = 70;
3179 tdep->ppc_mq_regnum = -1;
3180 tdep->ppc_fp0_regnum = 32;
3181 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3182 tdep->ppc_sr0_regnum = 71;
3183 tdep->ppc_vr0_regnum = -1;
3184 tdep->ppc_vrsave_regnum = -1;
3185 tdep->ppc_ev0_upper_regnum = -1;
3186 tdep->ppc_ev0_regnum = -1;
3187 tdep->ppc_ev31_regnum = -1;
3188 tdep->ppc_acc_regnum = -1;
3189 tdep->ppc_spefscr_regnum = -1;
3191 set_gdbarch_pc_regnum (gdbarch, 64);
3192 set_gdbarch_sp_regnum (gdbarch, 1);
3193 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3194 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3195 if (sysv_abi && wordsize == 8)
3196 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3197 else if (sysv_abi && wordsize == 4)
3198 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3201 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3202 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3205 /* Set lr_frame_offset. */
3207 tdep->lr_frame_offset = 16;
3209 tdep->lr_frame_offset = 4;
3211 tdep->lr_frame_offset = 8;
3213 if (v->arch == bfd_arch_rs6000)
3214 tdep->ppc_sr0_regnum = -1;
3215 else if (v->arch == bfd_arch_powerpc)
3219 tdep->ppc_sr0_regnum = -1;
3220 tdep->ppc_vr0_regnum = 71;
3221 tdep->ppc_vrsave_regnum = 104;
3223 case bfd_mach_ppc_7400:
3224 tdep->ppc_vr0_regnum = 119;
3225 tdep->ppc_vrsave_regnum = 152;
3227 case bfd_mach_ppc_e500:
3228 tdep->ppc_toc_regnum = -1;
3229 tdep->ppc_ev0_upper_regnum = 32;
3230 tdep->ppc_ev0_regnum = 73;
3231 tdep->ppc_ev31_regnum = 104;
3232 tdep->ppc_acc_regnum = 71;
3233 tdep->ppc_spefscr_regnum = 72;
3234 tdep->ppc_fp0_regnum = -1;
3235 tdep->ppc_fpscr_regnum = -1;
3236 tdep->ppc_sr0_regnum = -1;
3237 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3238 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3239 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3242 case bfd_mach_ppc64:
3243 case bfd_mach_ppc_620:
3244 case bfd_mach_ppc_630:
3245 case bfd_mach_ppc_a35:
3246 case bfd_mach_ppc_rs64ii:
3247 case bfd_mach_ppc_rs64iii:
3248 /* These processor's register sets don't have segment registers. */
3249 tdep->ppc_sr0_regnum = -1;
3253 internal_error (__FILE__, __LINE__,
3254 _("rs6000_gdbarch_init: "
3255 "received unexpected BFD 'arch' value"));
3257 /* Sanity check on registers. */
3258 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3260 /* Select instruction printer. */
3261 if (arch == bfd_arch_rs6000)
3262 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3264 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3266 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3268 set_gdbarch_num_regs (gdbarch, v->nregs);
3269 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3270 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3271 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3272 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3274 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3275 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3276 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3277 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3278 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3279 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3280 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3282 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3284 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3285 set_gdbarch_char_signed (gdbarch, 0);
3287 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3288 if (sysv_abi && wordsize == 8)
3290 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3291 else if (!sysv_abi && wordsize == 4)
3292 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3293 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3294 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3296 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3298 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3299 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3300 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3302 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3303 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3304 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3305 is correct for the SysV ABI when the wordsize is 8, but I'm also
3306 fairly certain that ppc_sysv_abi_push_arguments() will give even
3307 worse results since it only works for 32-bit code. So, for the moment,
3308 we're better off calling rs6000_push_arguments() since it works for
3309 64-bit code. At some point in the future, this matter needs to be
3311 if (sysv_abi && wordsize == 4)
3312 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3313 else if (sysv_abi && wordsize == 8)
3314 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3316 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3318 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3320 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3321 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3322 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3324 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3325 for the descriptor and ".FN" for the entry-point -- a user
3326 specifying "break FN" will unexpectedly end up with a breakpoint
3327 on the descriptor and not the function. This architecture method
3328 transforms any breakpoints on descriptors into breakpoints on the
3329 corresponding entry point. */
3330 if (sysv_abi && wordsize == 8)
3331 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3333 /* Not sure on this. FIXMEmgo */
3334 set_gdbarch_frame_args_skip (gdbarch, 8);
3337 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3341 /* Handle RS/6000 function pointers (which are really function
3343 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3344 rs6000_convert_from_func_ptr_addr);
3347 /* Helpers for function argument information. */
3348 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3350 /* Hook in ABI-specific overrides, if they have been registered. */
3351 gdbarch_init_osabi (info, gdbarch);
3355 case GDB_OSABI_NETBSD_AOUT:
3356 case GDB_OSABI_NETBSD_ELF:
3357 case GDB_OSABI_UNKNOWN:
3358 case GDB_OSABI_LINUX:
3359 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3360 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3361 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3362 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3365 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3367 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3368 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3369 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3370 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3373 if (from_xcoff_exec)
3375 /* NOTE: jimix/2003-06-09: This test should really check for
3376 GDB_OSABI_AIX when that is defined and becomes
3377 available. (Actually, once things are properly split apart,
3378 the test goes away.) */
3379 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3380 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3383 init_sim_regno_table (gdbarch);
3389 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3391 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3396 /* FIXME: Dump gdbarch_tdep. */
3399 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3402 rs6000_info_powerpc_command (char *args, int from_tty)
3404 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3407 /* Initialization code. */
3409 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3412 _initialize_rs6000_tdep (void)
3414 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3415 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3417 /* Add root prefix command for "info powerpc" commands */
3418 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3419 _("Various POWERPC info specific commands."),
3420 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);