1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "arch-utils.h"
34 #include "parser-defs.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
53 #include "elf/ppc64.h"
55 #include "solib-svr4.h"
57 #include "ppc-ravenscar-thread.h"
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
109 /* The list of available "set powerpc ..." and "show powerpc ..."
111 static struct cmd_list_element *setpowerpccmdlist = NULL;
112 static struct cmd_list_element *showpowerpccmdlist = NULL;
114 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
116 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
117 static const char *const powerpc_vector_strings[] =
126 /* A variable that can be configured by the user. */
127 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
128 static const char *powerpc_vector_abi_string = "auto";
130 /* To be used by skip_prologue. */
132 struct rs6000_framedata
134 int offset; /* total size of frame --- the distance
135 by which we decrement sp to allocate
137 int saved_gpr; /* smallest # of saved gpr */
138 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
139 int saved_fpr; /* smallest # of saved fpr */
140 int saved_vr; /* smallest # of saved vr */
141 int saved_ev; /* smallest # of saved ev */
142 int alloca_reg; /* alloca register number (frame ptr) */
143 char frameless; /* true if frameless functions. */
144 char nosavedpc; /* true if pc not saved. */
145 char used_bl; /* true if link register clobbered */
146 int gpr_offset; /* offset of saved gprs from prev sp */
147 int fpr_offset; /* offset of saved fprs from prev sp */
148 int vr_offset; /* offset of saved vrs from prev sp */
149 int ev_offset; /* offset of saved evs from prev sp */
150 int lr_offset; /* offset of saved lr */
151 int lr_register; /* register of saved lr, if trustworthy */
152 int cr_offset; /* offset of saved cr */
153 int vrsave_offset; /* offset of saved vrsave register */
157 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
159 vsx_register_p (struct gdbarch *gdbarch, int regno)
161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
162 if (tdep->ppc_vsr0_regnum < 0)
165 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
166 <= tdep->ppc_vsr0_upper_regnum + 31);
169 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
171 altivec_register_p (struct gdbarch *gdbarch, int regno)
173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
174 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
177 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181 /* Return true if REGNO is an SPE register, false otherwise. */
183 spe_register_p (struct gdbarch *gdbarch, int regno)
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 /* Is it a reference to EV0 -- EV31, and do we have those? */
188 if (IS_SPE_PSEUDOREG (tdep, regno))
191 /* Is it a reference to one of the raw upper GPR halves? */
192 if (tdep->ppc_ev0_upper_regnum >= 0
193 && tdep->ppc_ev0_upper_regnum <= regno
194 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
197 /* Is it a reference to the 64-bit accumulator, and do we have that? */
198 if (tdep->ppc_acc_regnum >= 0
199 && tdep->ppc_acc_regnum == regno)
202 /* Is it a reference to the SPE floating-point status and control register,
203 and do we have that? */
204 if (tdep->ppc_spefscr_regnum >= 0
205 && tdep->ppc_spefscr_regnum == regno)
212 /* Return non-zero if the architecture described by GDBARCH has
213 floating-point registers (f0 --- f31 and fpscr). */
215 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 return (tdep->ppc_fp0_regnum >= 0
220 && tdep->ppc_fpscr_regnum >= 0);
223 /* Return non-zero if the architecture described by GDBARCH has
224 VSX registers (vsr0 --- vsr63). */
226 ppc_vsx_support_p (struct gdbarch *gdbarch)
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
230 return tdep->ppc_vsr0_regnum >= 0;
233 /* Return non-zero if the architecture described by GDBARCH has
234 Altivec registers (vr0 --- vr31, vrsave and vscr). */
236 ppc_altivec_support_p (struct gdbarch *gdbarch)
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240 return (tdep->ppc_vr0_regnum >= 0
241 && tdep->ppc_vrsave_regnum >= 0);
244 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
247 This is a helper function for init_sim_regno_table, constructing
248 the table mapping GDB register numbers to sim register numbers; we
249 initialize every element in that table to -1 before we start
252 set_sim_regno (int *table, int gdb_regno, int sim_regno)
254 /* Make sure we don't try to assign any given GDB register a sim
255 register number more than once. */
256 gdb_assert (table[gdb_regno] == -1);
257 table[gdb_regno] = sim_regno;
261 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
262 numbers to simulator register numbers, based on the values placed
263 in the ARCH->tdep->ppc_foo_regnum members. */
265 init_sim_regno_table (struct gdbarch *arch)
267 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
268 int total_regs = gdbarch_num_regs (arch);
269 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
271 static const char *const segment_regs[] = {
272 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
273 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
276 /* Presume that all registers not explicitly mentioned below are
277 unavailable from the sim. */
278 for (i = 0; i < total_regs; i++)
281 /* General-purpose registers. */
282 for (i = 0; i < ppc_num_gprs; i++)
283 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
285 /* Floating-point registers. */
286 if (tdep->ppc_fp0_regnum >= 0)
287 for (i = 0; i < ppc_num_fprs; i++)
288 set_sim_regno (sim_regno,
289 tdep->ppc_fp0_regnum + i,
290 sim_ppc_f0_regnum + i);
291 if (tdep->ppc_fpscr_regnum >= 0)
292 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
294 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
295 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
296 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
298 /* Segment registers. */
299 for (i = 0; i < ppc_num_srs; i++)
303 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
305 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
308 /* Altivec registers. */
309 if (tdep->ppc_vr0_regnum >= 0)
311 for (i = 0; i < ppc_num_vrs; i++)
312 set_sim_regno (sim_regno,
313 tdep->ppc_vr0_regnum + i,
314 sim_ppc_vr0_regnum + i);
316 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
317 we can treat this more like the other cases. */
318 set_sim_regno (sim_regno,
319 tdep->ppc_vr0_regnum + ppc_num_vrs,
320 sim_ppc_vscr_regnum);
322 /* vsave is a special-purpose register, so the code below handles it. */
324 /* SPE APU (E500) registers. */
325 if (tdep->ppc_ev0_upper_regnum >= 0)
326 for (i = 0; i < ppc_num_gprs; i++)
327 set_sim_regno (sim_regno,
328 tdep->ppc_ev0_upper_regnum + i,
329 sim_ppc_rh0_regnum + i);
330 if (tdep->ppc_acc_regnum >= 0)
331 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
332 /* spefscr is a special-purpose register, so the code below handles it. */
335 /* Now handle all special-purpose registers. Verify that they
336 haven't mistakenly been assigned numbers by any of the above
338 for (i = 0; i < sim_ppc_num_sprs; i++)
340 const char *spr_name = sim_spr_register_name (i);
343 if (spr_name != NULL)
344 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
347 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
351 /* Drop the initialized array into place. */
352 tdep->sim_regno = sim_regno;
356 /* Given a GDB register number REG, return the corresponding SIM
359 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
364 if (tdep->sim_regno == NULL)
365 init_sim_regno_table (gdbarch);
368 && reg <= gdbarch_num_regs (gdbarch)
369 + gdbarch_num_pseudo_regs (gdbarch));
370 sim_regno = tdep->sim_regno[reg];
375 return LEGACY_SIM_REGNO_IGNORE;
380 /* Register set support functions. */
382 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
383 Write the register to REGCACHE. */
386 ppc_supply_reg (struct regcache *regcache, int regnum,
387 const gdb_byte *regs, size_t offset, int regsize)
389 if (regnum != -1 && offset != -1)
393 struct gdbarch *gdbarch = get_regcache_arch (regcache);
394 int gdb_regsize = register_size (gdbarch, regnum);
395 if (gdb_regsize < regsize
396 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
397 offset += regsize - gdb_regsize;
399 regcache_raw_supply (regcache, regnum, regs + offset);
403 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
404 in a field REGSIZE wide. Zero pad as necessary. */
407 ppc_collect_reg (const struct regcache *regcache, int regnum,
408 gdb_byte *regs, size_t offset, int regsize)
410 if (regnum != -1 && offset != -1)
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 int gdb_regsize = register_size (gdbarch, regnum);
416 if (gdb_regsize < regsize)
418 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
420 memset (regs + offset, 0, regsize - gdb_regsize);
421 offset += regsize - gdb_regsize;
424 memset (regs + offset + regsize - gdb_regsize, 0,
425 regsize - gdb_regsize);
428 regcache_raw_collect (regcache, regnum, regs + offset);
433 ppc_greg_offset (struct gdbarch *gdbarch,
434 struct gdbarch_tdep *tdep,
435 const struct ppc_reg_offsets *offsets,
439 *regsize = offsets->gpr_size;
440 if (regnum >= tdep->ppc_gp0_regnum
441 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
442 return (offsets->r0_offset
443 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
445 if (regnum == gdbarch_pc_regnum (gdbarch))
446 return offsets->pc_offset;
448 if (regnum == tdep->ppc_ps_regnum)
449 return offsets->ps_offset;
451 if (regnum == tdep->ppc_lr_regnum)
452 return offsets->lr_offset;
454 if (regnum == tdep->ppc_ctr_regnum)
455 return offsets->ctr_offset;
457 *regsize = offsets->xr_size;
458 if (regnum == tdep->ppc_cr_regnum)
459 return offsets->cr_offset;
461 if (regnum == tdep->ppc_xer_regnum)
462 return offsets->xer_offset;
464 if (regnum == tdep->ppc_mq_regnum)
465 return offsets->mq_offset;
471 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
472 const struct ppc_reg_offsets *offsets,
475 if (regnum >= tdep->ppc_fp0_regnum
476 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
477 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
479 if (regnum == tdep->ppc_fpscr_regnum)
480 return offsets->fpscr_offset;
486 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
487 const struct ppc_reg_offsets *offsets,
490 if (regnum >= tdep->ppc_vr0_regnum
491 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
492 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
494 if (regnum == tdep->ppc_vrsave_regnum - 1)
495 return offsets->vscr_offset;
497 if (regnum == tdep->ppc_vrsave_regnum)
498 return offsets->vrsave_offset;
503 /* Supply register REGNUM in the general-purpose register set REGSET
504 from the buffer specified by GREGS and LEN to register cache
505 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
508 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
509 int regnum, const void *gregs, size_t len)
511 struct gdbarch *gdbarch = get_regcache_arch (regcache);
512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
513 const struct ppc_reg_offsets *offsets
514 = (const struct ppc_reg_offsets *) regset->regmap;
521 int gpr_size = offsets->gpr_size;
523 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
524 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
525 i++, offset += gpr_size)
526 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
529 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
530 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
532 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
533 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
534 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
535 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
536 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
537 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
538 (const gdb_byte *) gregs, offsets->cr_offset,
540 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
541 (const gdb_byte *) gregs, offsets->xer_offset,
543 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
544 (const gdb_byte *) gregs, offsets->mq_offset,
549 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
550 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
553 /* Supply register REGNUM in the floating-point register set REGSET
554 from the buffer specified by FPREGS and LEN to register cache
555 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
558 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
559 int regnum, const void *fpregs, size_t len)
561 struct gdbarch *gdbarch = get_regcache_arch (regcache);
562 struct gdbarch_tdep *tdep;
563 const struct ppc_reg_offsets *offsets;
566 if (!ppc_floating_point_unit_p (gdbarch))
569 tdep = gdbarch_tdep (gdbarch);
570 offsets = (const struct ppc_reg_offsets *) regset->regmap;
575 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
576 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
578 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
580 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
581 (const gdb_byte *) fpregs, offsets->fpscr_offset,
582 offsets->fpscr_size);
586 offset = ppc_fpreg_offset (tdep, offsets, regnum);
587 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
588 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
591 /* Supply register REGNUM in the VSX register set REGSET
592 from the buffer specified by VSXREGS and LEN to register cache
593 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
596 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
597 int regnum, const void *vsxregs, size_t len)
599 struct gdbarch *gdbarch = get_regcache_arch (regcache);
600 struct gdbarch_tdep *tdep;
602 if (!ppc_vsx_support_p (gdbarch))
605 tdep = gdbarch_tdep (gdbarch);
611 for (i = tdep->ppc_vsr0_upper_regnum;
612 i < tdep->ppc_vsr0_upper_regnum + 32;
614 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
619 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
622 /* Supply register REGNUM in the Altivec register set REGSET
623 from the buffer specified by VRREGS and LEN to register cache
624 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
627 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
628 int regnum, const void *vrregs, size_t len)
630 struct gdbarch *gdbarch = get_regcache_arch (regcache);
631 struct gdbarch_tdep *tdep;
632 const struct ppc_reg_offsets *offsets;
635 if (!ppc_altivec_support_p (gdbarch))
638 tdep = gdbarch_tdep (gdbarch);
639 offsets = (const struct ppc_reg_offsets *) regset->regmap;
644 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
645 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
647 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
649 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
650 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
652 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
653 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
657 offset = ppc_vrreg_offset (tdep, offsets, regnum);
658 if (regnum != tdep->ppc_vrsave_regnum
659 && regnum != tdep->ppc_vrsave_regnum - 1)
660 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
662 ppc_supply_reg (regcache, regnum,
663 (const gdb_byte *) vrregs, offset, 4);
666 /* Collect register REGNUM in the general-purpose register set
667 REGSET from register cache REGCACHE into the buffer specified by
668 GREGS and LEN. If REGNUM is -1, do this for all registers in
672 ppc_collect_gregset (const struct regset *regset,
673 const struct regcache *regcache,
674 int regnum, void *gregs, size_t len)
676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
677 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
678 const struct ppc_reg_offsets *offsets
679 = (const struct ppc_reg_offsets *) regset->regmap;
686 int gpr_size = offsets->gpr_size;
688 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
689 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
690 i++, offset += gpr_size)
691 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
693 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
694 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
695 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
696 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
697 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
698 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
699 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
700 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
701 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
702 (gdb_byte *) gregs, offsets->cr_offset,
704 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
705 (gdb_byte *) gregs, offsets->xer_offset,
707 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
708 (gdb_byte *) gregs, offsets->mq_offset,
713 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
714 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
717 /* Collect register REGNUM in the floating-point register set
718 REGSET from register cache REGCACHE into the buffer specified by
719 FPREGS and LEN. If REGNUM is -1, do this for all registers in
723 ppc_collect_fpregset (const struct regset *regset,
724 const struct regcache *regcache,
725 int regnum, void *fpregs, size_t len)
727 struct gdbarch *gdbarch = get_regcache_arch (regcache);
728 struct gdbarch_tdep *tdep;
729 const struct ppc_reg_offsets *offsets;
732 if (!ppc_floating_point_unit_p (gdbarch))
735 tdep = gdbarch_tdep (gdbarch);
736 offsets = (const struct ppc_reg_offsets *) regset->regmap;
741 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
742 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
744 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
746 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
747 (gdb_byte *) fpregs, offsets->fpscr_offset,
748 offsets->fpscr_size);
752 offset = ppc_fpreg_offset (tdep, offsets, regnum);
753 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
754 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
757 /* Collect register REGNUM in the VSX register set
758 REGSET from register cache REGCACHE into the buffer specified by
759 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
763 ppc_collect_vsxregset (const struct regset *regset,
764 const struct regcache *regcache,
765 int regnum, void *vsxregs, size_t len)
767 struct gdbarch *gdbarch = get_regcache_arch (regcache);
768 struct gdbarch_tdep *tdep;
770 if (!ppc_vsx_support_p (gdbarch))
773 tdep = gdbarch_tdep (gdbarch);
779 for (i = tdep->ppc_vsr0_upper_regnum;
780 i < tdep->ppc_vsr0_upper_regnum + 32;
782 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
787 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
791 /* Collect register REGNUM in the Altivec register set
792 REGSET from register cache REGCACHE into the buffer specified by
793 VRREGS and LEN. If REGNUM is -1, do this for all registers in
797 ppc_collect_vrregset (const struct regset *regset,
798 const struct regcache *regcache,
799 int regnum, void *vrregs, size_t len)
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep;
803 const struct ppc_reg_offsets *offsets;
806 if (!ppc_altivec_support_p (gdbarch))
809 tdep = gdbarch_tdep (gdbarch);
810 offsets = (const struct ppc_reg_offsets *) regset->regmap;
815 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
816 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
818 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
820 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
821 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
823 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
824 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
828 offset = ppc_vrreg_offset (tdep, offsets, regnum);
829 if (regnum != tdep->ppc_vrsave_regnum
830 && regnum != tdep->ppc_vrsave_regnum - 1)
831 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
833 ppc_collect_reg (regcache, regnum,
834 (gdb_byte *) vrregs, offset, 4);
839 insn_changes_sp_or_jumps (unsigned long insn)
841 int opcode = (insn >> 26) & 0x03f;
842 int sd = (insn >> 21) & 0x01f;
843 int a = (insn >> 16) & 0x01f;
844 int subcode = (insn >> 1) & 0x3ff;
846 /* Changes the stack pointer. */
848 /* NOTE: There are many ways to change the value of a given register.
849 The ways below are those used when the register is R1, the SP,
850 in a funtion's epilogue. */
852 if (opcode == 31 && subcode == 444 && a == 1)
853 return 1; /* mr R1,Rn */
854 if (opcode == 14 && sd == 1)
855 return 1; /* addi R1,Rn,simm */
856 if (opcode == 58 && sd == 1)
857 return 1; /* ld R1,ds(Rn) */
859 /* Transfers control. */
865 if (opcode == 19 && subcode == 16)
867 if (opcode == 19 && subcode == 528)
868 return 1; /* bcctr */
873 /* Return true if we are in the function's epilogue, i.e. after the
874 instruction that destroyed the function's stack frame.
876 1) scan forward from the point of execution:
877 a) If you find an instruction that modifies the stack pointer
878 or transfers control (except a return), execution is not in
880 b) Stop scanning if you find a return instruction or reach the
881 end of the function or reach the hard limit for the size of
883 2) scan backward from the point of execution:
884 a) If you find an instruction that modifies the stack pointer,
885 execution *is* in an epilogue, return.
886 b) Stop scanning if you reach an instruction that transfers
887 control or the beginning of the function or reach the hard
888 limit for the size of an epilogue. */
891 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
892 struct gdbarch *gdbarch, CORE_ADDR pc)
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 bfd_byte insn_buf[PPC_INSN_SIZE];
897 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
900 /* Find the search limits based on function boundaries and hard limit. */
902 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
905 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_start < func_start) epilogue_start = func_start;
908 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_end > func_end) epilogue_end = func_end;
911 /* Scan forward until next 'blr'. */
913 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
915 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
917 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
918 if (insn == 0x4e800020)
920 /* Assume a bctr is a tail call unless it points strictly within
922 if (insn == 0x4e800420)
924 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
925 tdep->ppc_ctr_regnum);
926 if (ctr > func_start && ctr < func_end)
931 if (insn_changes_sp_or_jumps (insn))
935 /* Scan backward until adjustment to stack pointer (R1). */
937 for (scan_pc = pc - PPC_INSN_SIZE;
938 scan_pc >= epilogue_start;
939 scan_pc -= PPC_INSN_SIZE)
941 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
943 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
944 if (insn_changes_sp_or_jumps (insn))
951 /* Implement the stack_frame_destroyed_p gdbarch method. */
954 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
956 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
960 /* Get the ith function argument for the current function. */
962 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
965 return get_frame_register_unsigned (frame, 3 + argi);
968 /* Sequence of bytes for breakpoint instruction. */
970 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
971 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
973 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
976 /* Instruction masks for displaced stepping. */
977 #define BRANCH_MASK 0xfc000000
978 #define BP_MASK 0xFC0007FE
979 #define B_INSN 0x48000000
980 #define BC_INSN 0x40000000
981 #define BXL_INSN 0x4c000000
982 #define BP_INSN 0x7C000008
984 /* Instruction masks used during single-stepping of atomic
986 #define LWARX_MASK 0xfc0007fe
987 #define LWARX_INSTRUCTION 0x7c000028
988 #define LDARX_INSTRUCTION 0x7c0000A8
989 #define STWCX_MASK 0xfc0007ff
990 #define STWCX_INSTRUCTION 0x7c00012d
991 #define STDCX_INSTRUCTION 0x7c0001ad
993 /* We can't displaced step atomic sequences. Otherwise this is just
994 like simple_displaced_step_copy_insn. */
996 static struct displaced_step_closure *
997 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
998 CORE_ADDR from, CORE_ADDR to,
999 struct regcache *regs)
1001 size_t len = gdbarch_max_insn_length (gdbarch);
1002 gdb_byte *buf = (gdb_byte *) xmalloc (len);
1003 struct cleanup *old_chain = make_cleanup (xfree, buf);
1004 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1007 read_memory (from, buf, len);
1009 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1011 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1012 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1013 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1015 if (debug_displaced)
1017 fprintf_unfiltered (gdb_stdlog,
1018 "displaced: can't displaced step "
1019 "atomic sequence at %s\n",
1020 paddress (gdbarch, from));
1022 do_cleanups (old_chain);
1026 write_memory (to, buf, len);
1028 if (debug_displaced)
1030 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1031 paddress (gdbarch, from), paddress (gdbarch, to));
1032 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1035 discard_cleanups (old_chain);
1036 return (struct displaced_step_closure *) buf;
1039 /* Fix up the state of registers and memory after having single-stepped
1040 a displaced instruction. */
1042 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1043 struct displaced_step_closure *closure,
1044 CORE_ADDR from, CORE_ADDR to,
1045 struct regcache *regs)
1047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1048 /* Our closure is a copy of the instruction. */
1049 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
1050 PPC_INSN_SIZE, byte_order);
1051 ULONGEST opcode = 0;
1052 /* Offset for non PC-relative instructions. */
1053 LONGEST offset = PPC_INSN_SIZE;
1055 opcode = insn & BRANCH_MASK;
1057 if (debug_displaced)
1058 fprintf_unfiltered (gdb_stdlog,
1059 "displaced: (ppc) fixup (%s, %s)\n",
1060 paddress (gdbarch, from), paddress (gdbarch, to));
1063 /* Handle PC-relative branch instructions. */
1064 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1066 ULONGEST current_pc;
1068 /* Read the current PC value after the instruction has been executed
1069 in a displaced location. Calculate the offset to be applied to the
1070 original PC value before the displaced stepping. */
1071 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1073 offset = current_pc - to;
1075 if (opcode != BXL_INSN)
1077 /* Check for AA bit indicating whether this is an absolute
1078 addressing or PC-relative (1: absolute, 0: relative). */
1081 /* PC-relative addressing is being used in the branch. */
1082 if (debug_displaced)
1085 "displaced: (ppc) branch instruction: %s\n"
1086 "displaced: (ppc) adjusted PC from %s to %s\n",
1087 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1088 paddress (gdbarch, from + offset));
1090 regcache_cooked_write_unsigned (regs,
1091 gdbarch_pc_regnum (gdbarch),
1097 /* If we're here, it means we have a branch to LR or CTR. If the
1098 branch was taken, the offset is probably greater than 4 (the next
1099 instruction), so it's safe to assume that an offset of 4 means we
1100 did not take the branch. */
1101 if (offset == PPC_INSN_SIZE)
1102 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1103 from + PPC_INSN_SIZE);
1106 /* Check for LK bit indicating whether we should set the link
1107 register to point to the next instruction
1108 (1: Set, 0: Don't set). */
1111 /* Link register needs to be set to the next instruction's PC. */
1112 regcache_cooked_write_unsigned (regs,
1113 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1114 from + PPC_INSN_SIZE);
1115 if (debug_displaced)
1116 fprintf_unfiltered (gdb_stdlog,
1117 "displaced: (ppc) adjusted LR to %s\n",
1118 paddress (gdbarch, from + PPC_INSN_SIZE));
1122 /* Check for breakpoints in the inferior. If we've found one, place the PC
1123 right at the breakpoint instruction. */
1124 else if ((insn & BP_MASK) == BP_INSN)
1125 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1127 /* Handle any other instructions that do not fit in the categories above. */
1128 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1132 /* Always use hardware single-stepping to execute the
1133 displaced instruction. */
1135 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1136 struct displaced_step_closure *closure)
1141 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1142 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1143 is found, attempt to step through it. A breakpoint is placed at the end of
1147 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1149 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1150 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1151 CORE_ADDR pc = regcache_read_pc (regcache);
1152 CORE_ADDR breaks[2] = {-1, -1};
1154 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1155 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1158 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1159 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1160 int bc_insn_count = 0; /* Conditional branch instruction count. */
1161 VEC (CORE_ADDR) *next_pcs = NULL;
1163 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1164 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1165 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1168 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1170 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1172 loc += PPC_INSN_SIZE;
1173 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1175 /* Assume that there is at most one conditional branch in the atomic
1176 sequence. If a conditional branch is found, put a breakpoint in
1177 its destination address. */
1178 if ((insn & BRANCH_MASK) == BC_INSN)
1180 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1181 int absolute = insn & 2;
1183 if (bc_insn_count >= 1)
1184 return 0; /* More than one conditional branch found, fallback
1185 to the standard single-step code. */
1188 breaks[1] = immediate;
1190 breaks[1] = loc + immediate;
1196 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1197 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1201 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1202 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1203 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1207 loc += PPC_INSN_SIZE;
1208 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1210 /* Insert a breakpoint right after the end of the atomic sequence. */
1213 /* Check for duplicated breakpoints. Check also for a breakpoint
1214 placed (branch instruction's destination) anywhere in sequence. */
1216 && (breaks[1] == breaks[0]
1217 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1218 last_breakpoint = 0;
1220 for (index = 0; index <= last_breakpoint; index++)
1221 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
1227 #define SIGNED_SHORT(x) \
1228 ((sizeof (short) == 2) \
1229 ? ((int)(short)(x)) \
1230 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1232 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1234 /* Limit the number of skipped non-prologue instructions, as the examining
1235 of the prologue is expensive. */
1236 static int max_skip_non_prologue_insns = 10;
1238 /* Return nonzero if the given instruction OP can be part of the prologue
1239 of a function and saves a parameter on the stack. FRAMEP should be
1240 set if one of the previous instructions in the function has set the
1244 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1246 /* Move parameters from argument registers to temporary register. */
1247 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1249 /* Rx must be scratch register r0. */
1250 const int rx_regno = (op >> 16) & 31;
1251 /* Ry: Only r3 - r10 are used for parameter passing. */
1252 const int ry_regno = GET_SRC_REG (op);
1254 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1256 *r0_contains_arg = 1;
1263 /* Save a General Purpose Register on stack. */
1265 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1266 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1268 /* Rx: Only r3 - r10 are used for parameter passing. */
1269 const int rx_regno = GET_SRC_REG (op);
1271 return (rx_regno >= 3 && rx_regno <= 10);
1274 /* Save a General Purpose Register on stack via the Frame Pointer. */
1277 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1278 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1279 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1281 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1282 However, the compiler sometimes uses r0 to hold an argument. */
1283 const int rx_regno = GET_SRC_REG (op);
1285 return ((rx_regno >= 3 && rx_regno <= 10)
1286 || (rx_regno == 0 && *r0_contains_arg));
1289 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1291 /* Only f2 - f8 are used for parameter passing. */
1292 const int src_regno = GET_SRC_REG (op);
1294 return (src_regno >= 2 && src_regno <= 8);
1297 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1299 /* Only f2 - f8 are used for parameter passing. */
1300 const int src_regno = GET_SRC_REG (op);
1302 return (src_regno >= 2 && src_regno <= 8);
1305 /* Not an insn that saves a parameter on stack. */
1309 /* Assuming that INSN is a "bl" instruction located at PC, return
1310 nonzero if the destination of the branch is a "blrl" instruction.
1312 This sequence is sometimes found in certain function prologues.
1313 It allows the function to load the LR register with a value that
1314 they can use to access PIC data using PC-relative offsets. */
1317 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1324 absolute = (int) ((insn >> 1) & 1);
1325 immediate = ((insn & ~3) << 6) >> 6;
1329 dest = pc + immediate;
1331 dest_insn = read_memory_integer (dest, 4, byte_order);
1332 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1338 /* Masks for decoding a branch-and-link (bl) instruction.
1340 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1341 The former is anded with the opcode in question; if the result of
1342 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1343 question is a ``bl'' instruction.
1345 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1346 the branch displacement. */
1348 #define BL_MASK 0xfc000001
1349 #define BL_INSTRUCTION 0x48000001
1350 #define BL_DISPLACEMENT_MASK 0x03fffffc
1352 static unsigned long
1353 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1359 /* Fetch the instruction and convert it to an integer. */
1360 if (target_read_memory (pc, buf, 4))
1362 op = extract_unsigned_integer (buf, 4, byte_order);
1367 /* GCC generates several well-known sequences of instructions at the begining
1368 of each function prologue when compiling with -fstack-check. If one of
1369 such sequences starts at START_PC, then return the address of the
1370 instruction immediately past this sequence. Otherwise, return START_PC. */
1373 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1375 CORE_ADDR pc = start_pc;
1376 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1378 /* First possible sequence: A small number of probes.
1379 stw 0, -<some immediate>(1)
1380 [repeat this instruction any (small) number of times]. */
1382 if ((op & 0xffff0000) == 0x90010000)
1384 while ((op & 0xffff0000) == 0x90010000)
1387 op = rs6000_fetch_instruction (gdbarch, pc);
1392 /* Second sequence: A probing loop.
1393 addi 12,1,-<some immediate>
1394 lis 0,-<some immediate>
1395 [possibly ori 0,0,<some immediate>]
1399 addi 12,12,-<some immediate>
1402 [possibly one last probe: stw 0,<some immediate>(12)]. */
1406 /* addi 12,1,-<some immediate> */
1407 if ((op & 0xffff0000) != 0x39810000)
1410 /* lis 0,-<some immediate> */
1412 op = rs6000_fetch_instruction (gdbarch, pc);
1413 if ((op & 0xffff0000) != 0x3c000000)
1417 op = rs6000_fetch_instruction (gdbarch, pc);
1418 /* [possibly ori 0,0,<some immediate>] */
1419 if ((op & 0xffff0000) == 0x60000000)
1422 op = rs6000_fetch_instruction (gdbarch, pc);
1425 if (op != 0x7c0c0214)
1430 op = rs6000_fetch_instruction (gdbarch, pc);
1431 if (op != 0x7c0c0000)
1436 op = rs6000_fetch_instruction (gdbarch, pc);
1437 if ((op & 0xff9f0001) != 0x41820000)
1440 /* addi 12,12,-<some immediate> */
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 if ((op & 0xffff0000) != 0x398c0000)
1448 op = rs6000_fetch_instruction (gdbarch, pc);
1449 if (op != 0x900c0000)
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if ((op & 0xfc000001) != 0x48000000)
1458 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1460 op = rs6000_fetch_instruction (gdbarch, pc);
1461 if ((op & 0xffff0000) == 0x900c0000)
1464 op = rs6000_fetch_instruction (gdbarch, pc);
1467 /* We found a valid stack-check sequence, return the new PC. */
1471 /* Third sequence: No probe; instead, a comparizon between the stack size
1472 limit (saved in a run-time global variable) and the current stack
1475 addi 0,1,-<some immediate>
1476 lis 12,__gnat_stack_limit@ha
1477 lwz 12,__gnat_stack_limit@l(12)
1480 or, with a small variant in the case of a bigger stack frame:
1481 addis 0,1,<some immediate>
1482 addic 0,0,-<some immediate>
1483 lis 12,__gnat_stack_limit@ha
1484 lwz 12,__gnat_stack_limit@l(12)
1489 /* addi 0,1,-<some immediate> */
1490 if ((op & 0xffff0000) != 0x38010000)
1492 /* small stack frame variant not recognized; try the
1493 big stack frame variant: */
1495 /* addis 0,1,<some immediate> */
1496 if ((op & 0xffff0000) != 0x3c010000)
1499 /* addic 0,0,-<some immediate> */
1501 op = rs6000_fetch_instruction (gdbarch, pc);
1502 if ((op & 0xffff0000) != 0x30000000)
1506 /* lis 12,<some immediate> */
1508 op = rs6000_fetch_instruction (gdbarch, pc);
1509 if ((op & 0xffff0000) != 0x3d800000)
1512 /* lwz 12,<some immediate>(12) */
1514 op = rs6000_fetch_instruction (gdbarch, pc);
1515 if ((op & 0xffff0000) != 0x818c0000)
1520 op = rs6000_fetch_instruction (gdbarch, pc);
1521 if ((op & 0xfffffffe) != 0x7c406008)
1524 /* We found a valid stack-check sequence, return the new PC. */
1528 /* No stack check code in our prologue, return the start_pc. */
1532 /* return pc value after skipping a function prologue and also return
1533 information about a function frame.
1535 in struct rs6000_framedata fdata:
1536 - frameless is TRUE, if function does not have a frame.
1537 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1538 - offset is the initial size of this stack frame --- the amount by
1539 which we decrement the sp to allocate the frame.
1540 - saved_gpr is the number of the first saved gpr.
1541 - saved_fpr is the number of the first saved fpr.
1542 - saved_vr is the number of the first saved vr.
1543 - saved_ev is the number of the first saved ev.
1544 - alloca_reg is the number of the register used for alloca() handling.
1546 - gpr_offset is the offset of the first saved gpr from the previous frame.
1547 - fpr_offset is the offset of the first saved fpr from the previous frame.
1548 - vr_offset is the offset of the first saved vr from the previous frame.
1549 - ev_offset is the offset of the first saved ev from the previous frame.
1550 - lr_offset is the offset of the saved lr
1551 - cr_offset is the offset of the saved cr
1552 - vrsave_offset is the offset of the saved vrsave register. */
1555 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1556 struct rs6000_framedata *fdata)
1558 CORE_ADDR orig_pc = pc;
1559 CORE_ADDR last_prologue_pc = pc;
1560 CORE_ADDR li_found_pc = 0;
1564 long vr_saved_offset = 0;
1570 int vrsave_reg = -1;
1573 int minimal_toc_loaded = 0;
1574 int prev_insn_was_prologue_insn = 1;
1575 int num_skip_non_prologue_insns = 0;
1576 int r0_contains_arg = 0;
1577 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1578 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1581 memset (fdata, 0, sizeof (struct rs6000_framedata));
1582 fdata->saved_gpr = -1;
1583 fdata->saved_fpr = -1;
1584 fdata->saved_vr = -1;
1585 fdata->saved_ev = -1;
1586 fdata->alloca_reg = -1;
1587 fdata->frameless = 1;
1588 fdata->nosavedpc = 1;
1589 fdata->lr_register = -1;
1591 pc = rs6000_skip_stack_check (gdbarch, pc);
1597 /* Sometimes it isn't clear if an instruction is a prologue
1598 instruction or not. When we encounter one of these ambiguous
1599 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1600 Otherwise, we'll assume that it really is a prologue instruction. */
1601 if (prev_insn_was_prologue_insn)
1602 last_prologue_pc = pc;
1604 /* Stop scanning if we've hit the limit. */
1608 prev_insn_was_prologue_insn = 1;
1610 /* Fetch the instruction and convert it to an integer. */
1611 if (target_read_memory (pc, buf, 4))
1613 op = extract_unsigned_integer (buf, 4, byte_order);
1615 if ((op & 0xfc1fffff) == 0x7c0802a6)
1617 /* Since shared library / PIC code, which needs to get its
1618 address at runtime, can appear to save more than one link
1632 remember just the first one, but skip over additional
1635 lr_reg = (op & 0x03e00000) >> 21;
1637 r0_contains_arg = 0;
1640 else if ((op & 0xfc1fffff) == 0x7c000026)
1642 cr_reg = (op & 0x03e00000);
1644 r0_contains_arg = 0;
1648 else if ((op & 0xfc1f0000) == 0xd8010000)
1649 { /* stfd Rx,NUM(r1) */
1650 reg = GET_SRC_REG (op);
1651 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1653 fdata->saved_fpr = reg;
1654 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1659 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1660 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1661 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1662 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1665 reg = GET_SRC_REG (op);
1666 if ((op & 0xfc1f0000) == 0xbc010000)
1667 fdata->gpr_mask |= ~((1U << reg) - 1);
1669 fdata->gpr_mask |= 1U << reg;
1670 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1672 fdata->saved_gpr = reg;
1673 if ((op & 0xfc1f0003) == 0xf8010000)
1675 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1680 else if ((op & 0xffff0000) == 0x3c4c0000
1681 || (op & 0xffff0000) == 0x3c400000
1682 || (op & 0xffff0000) == 0x38420000)
1684 /* . 0: addis 2,12,.TOC.-0b@ha
1685 . addi 2,2,.TOC.-0b@l
1689 used by ELFv2 global entry points to set up r2. */
1692 else if (op == 0x60000000)
1695 /* Allow nops in the prologue, but do not consider them to
1696 be part of the prologue unless followed by other prologue
1698 prev_insn_was_prologue_insn = 0;
1702 else if ((op & 0xffff0000) == 0x3c000000)
1703 { /* addis 0,0,NUM, used for >= 32k frames */
1704 fdata->offset = (op & 0x0000ffff) << 16;
1705 fdata->frameless = 0;
1706 r0_contains_arg = 0;
1710 else if ((op & 0xffff0000) == 0x60000000)
1711 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1712 fdata->offset |= (op & 0x0000ffff);
1713 fdata->frameless = 0;
1714 r0_contains_arg = 0;
1718 else if (lr_reg >= 0 &&
1719 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1720 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1721 /* stw Rx, NUM(r1) */
1722 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1723 /* stwu Rx, NUM(r1) */
1724 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1725 { /* where Rx == lr */
1726 fdata->lr_offset = offset;
1727 fdata->nosavedpc = 0;
1728 /* Invalidate lr_reg, but don't set it to -1.
1729 That would mean that it had never been set. */
1731 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1732 (op & 0xfc000000) == 0x90000000) /* stw */
1734 /* Does not update r1, so add displacement to lr_offset. */
1735 fdata->lr_offset += SIGNED_SHORT (op);
1740 else if (cr_reg >= 0 &&
1741 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1742 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1743 /* stw Rx, NUM(r1) */
1744 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1745 /* stwu Rx, NUM(r1) */
1746 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1747 { /* where Rx == cr */
1748 fdata->cr_offset = offset;
1749 /* Invalidate cr_reg, but don't set it to -1.
1750 That would mean that it had never been set. */
1752 if ((op & 0xfc000003) == 0xf8000000 ||
1753 (op & 0xfc000000) == 0x90000000)
1755 /* Does not update r1, so add displacement to cr_offset. */
1756 fdata->cr_offset += SIGNED_SHORT (op);
1761 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1763 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1764 prediction bits. If the LR has already been saved, we can
1768 else if (op == 0x48000005)
1775 else if (op == 0x48000004)
1780 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1781 in V.4 -mminimal-toc */
1782 (op & 0xffff0000) == 0x3bde0000)
1783 { /* addi 30,30,foo@l */
1787 else if ((op & 0xfc000001) == 0x48000001)
1791 fdata->frameless = 0;
1793 /* If the return address has already been saved, we can skip
1794 calls to blrl (for PIC). */
1795 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1801 /* Don't skip over the subroutine call if it is not within
1802 the first three instructions of the prologue and either
1803 we have no line table information or the line info tells
1804 us that the subroutine call is not part of the line
1805 associated with the prologue. */
1806 if ((pc - orig_pc) > 8)
1808 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1809 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1811 if ((prologue_sal.line == 0)
1812 || (prologue_sal.line != this_sal.line))
1816 op = read_memory_integer (pc + 4, 4, byte_order);
1818 /* At this point, make sure this is not a trampoline
1819 function (a function that simply calls another functions,
1820 and nothing else). If the next is not a nop, this branch
1821 was part of the function prologue. */
1823 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1824 break; /* Don't skip over
1830 /* update stack pointer */
1831 else if ((op & 0xfc1f0000) == 0x94010000)
1832 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1833 fdata->frameless = 0;
1834 fdata->offset = SIGNED_SHORT (op);
1835 offset = fdata->offset;
1838 else if ((op & 0xfc1f016a) == 0x7c01016e)
1839 { /* stwux rX,r1,rY */
1840 /* No way to figure out what r1 is going to be. */
1841 fdata->frameless = 0;
1842 offset = fdata->offset;
1845 else if ((op & 0xfc1f0003) == 0xf8010001)
1846 { /* stdu rX,NUM(r1) */
1847 fdata->frameless = 0;
1848 fdata->offset = SIGNED_SHORT (op & ~3UL);
1849 offset = fdata->offset;
1852 else if ((op & 0xfc1f016a) == 0x7c01016a)
1853 { /* stdux rX,r1,rY */
1854 /* No way to figure out what r1 is going to be. */
1855 fdata->frameless = 0;
1856 offset = fdata->offset;
1859 else if ((op & 0xffff0000) == 0x38210000)
1860 { /* addi r1,r1,SIMM */
1861 fdata->frameless = 0;
1862 fdata->offset += SIGNED_SHORT (op);
1863 offset = fdata->offset;
1866 /* Load up minimal toc pointer. Do not treat an epilogue restore
1867 of r31 as a minimal TOC load. */
1868 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1869 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1871 && !minimal_toc_loaded)
1873 minimal_toc_loaded = 1;
1876 /* move parameters from argument registers to local variable
1879 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1880 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1881 (((op >> 21) & 31) <= 10) &&
1882 ((long) ((op >> 16) & 31)
1883 >= fdata->saved_gpr)) /* Rx: local var reg */
1887 /* store parameters in stack */
1889 /* Move parameters from argument registers to temporary register. */
1890 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1894 /* Set up frame pointer */
1896 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1898 fdata->frameless = 0;
1900 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1903 /* Another way to set up the frame pointer. */
1905 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1906 || op == 0x7c3f0b78)
1908 fdata->frameless = 0;
1910 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1913 /* Another way to set up the frame pointer. */
1915 else if ((op & 0xfc1fffff) == 0x38010000)
1916 { /* addi rX, r1, 0x0 */
1917 fdata->frameless = 0;
1919 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1920 + ((op & ~0x38010000) >> 21));
1923 /* AltiVec related instructions. */
1924 /* Store the vrsave register (spr 256) in another register for
1925 later manipulation, or load a register into the vrsave
1926 register. 2 instructions are used: mfvrsave and
1927 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1928 and mtspr SPR256, Rn. */
1929 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1930 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1931 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1933 vrsave_reg = GET_SRC_REG (op);
1936 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1940 /* Store the register where vrsave was saved to onto the stack:
1941 rS is the register where vrsave was stored in a previous
1943 /* 100100 sssss 00001 dddddddd dddddddd */
1944 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1946 if (vrsave_reg == GET_SRC_REG (op))
1948 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1953 /* Compute the new value of vrsave, by modifying the register
1954 where vrsave was saved to. */
1955 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1956 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1960 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1961 in a pair of insns to save the vector registers on the
1963 /* 001110 00000 00000 iiii iiii iiii iiii */
1964 /* 001110 01110 00000 iiii iiii iiii iiii */
1965 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1966 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1968 if ((op & 0xffff0000) == 0x38000000)
1969 r0_contains_arg = 0;
1971 vr_saved_offset = SIGNED_SHORT (op);
1973 /* This insn by itself is not part of the prologue, unless
1974 if part of the pair of insns mentioned above. So do not
1975 record this insn as part of the prologue yet. */
1976 prev_insn_was_prologue_insn = 0;
1978 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1979 /* 011111 sssss 11111 00000 00111001110 */
1980 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1982 if (pc == (li_found_pc + 4))
1984 vr_reg = GET_SRC_REG (op);
1985 /* If this is the first vector reg to be saved, or if
1986 it has a lower number than others previously seen,
1987 reupdate the frame info. */
1988 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1990 fdata->saved_vr = vr_reg;
1991 fdata->vr_offset = vr_saved_offset + offset;
1993 vr_saved_offset = -1;
1998 /* End AltiVec related instructions. */
2000 /* Start BookE related instructions. */
2001 /* Store gen register S at (r31+uimm).
2002 Any register less than r13 is volatile, so we don't care. */
2003 /* 000100 sssss 11111 iiiii 01100100001 */
2004 else if (arch_info->mach == bfd_mach_ppc_e500
2005 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2007 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2010 ev_reg = GET_SRC_REG (op);
2011 imm = (op >> 11) & 0x1f;
2012 ev_offset = imm * 8;
2013 /* If this is the first vector reg to be saved, or if
2014 it has a lower number than others previously seen,
2015 reupdate the frame info. */
2016 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2018 fdata->saved_ev = ev_reg;
2019 fdata->ev_offset = ev_offset + offset;
2024 /* Store gen register rS at (r1+rB). */
2025 /* 000100 sssss 00001 bbbbb 01100100000 */
2026 else if (arch_info->mach == bfd_mach_ppc_e500
2027 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2029 if (pc == (li_found_pc + 4))
2031 ev_reg = GET_SRC_REG (op);
2032 /* If this is the first vector reg to be saved, or if
2033 it has a lower number than others previously seen,
2034 reupdate the frame info. */
2035 /* We know the contents of rB from the previous instruction. */
2036 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2038 fdata->saved_ev = ev_reg;
2039 fdata->ev_offset = vr_saved_offset + offset;
2041 vr_saved_offset = -1;
2047 /* Store gen register r31 at (rA+uimm). */
2048 /* 000100 11111 aaaaa iiiii 01100100001 */
2049 else if (arch_info->mach == bfd_mach_ppc_e500
2050 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2052 /* Wwe know that the source register is 31 already, but
2053 it can't hurt to compute it. */
2054 ev_reg = GET_SRC_REG (op);
2055 ev_offset = ((op >> 11) & 0x1f) * 8;
2056 /* If this is the first vector reg to be saved, or if
2057 it has a lower number than others previously seen,
2058 reupdate the frame info. */
2059 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2061 fdata->saved_ev = ev_reg;
2062 fdata->ev_offset = ev_offset + offset;
2067 /* Store gen register S at (r31+r0).
2068 Store param on stack when offset from SP bigger than 4 bytes. */
2069 /* 000100 sssss 11111 00000 01100100000 */
2070 else if (arch_info->mach == bfd_mach_ppc_e500
2071 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2073 if (pc == (li_found_pc + 4))
2075 if ((op & 0x03e00000) >= 0x01a00000)
2077 ev_reg = GET_SRC_REG (op);
2078 /* If this is the first vector reg to be saved, or if
2079 it has a lower number than others previously seen,
2080 reupdate the frame info. */
2081 /* We know the contents of r0 from the previous
2083 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2085 fdata->saved_ev = ev_reg;
2086 fdata->ev_offset = vr_saved_offset + offset;
2090 vr_saved_offset = -1;
2095 /* End BookE related instructions. */
2099 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2101 /* Not a recognized prologue instruction.
2102 Handle optimizer code motions into the prologue by continuing
2103 the search if we have no valid frame yet or if the return
2104 address is not yet saved in the frame. Also skip instructions
2105 if some of the GPRs expected to be saved are not yet saved. */
2106 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2107 && (fdata->gpr_mask & all_mask) == all_mask)
2110 if (op == 0x4e800020 /* blr */
2111 || op == 0x4e800420) /* bctr */
2112 /* Do not scan past epilogue in frameless functions or
2115 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2116 /* Never skip branches. */
2119 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2120 /* Do not scan too many insns, scanning insns is expensive with
2124 /* Continue scanning. */
2125 prev_insn_was_prologue_insn = 0;
2131 /* I have problems with skipping over __main() that I need to address
2132 * sometime. Previously, I used to use misc_function_vector which
2133 * didn't work as well as I wanted to be. -MGO */
2135 /* If the first thing after skipping a prolog is a branch to a function,
2136 this might be a call to an initializer in main(), introduced by gcc2.
2137 We'd like to skip over it as well. Fortunately, xlc does some extra
2138 work before calling a function right after a prologue, thus we can
2139 single out such gcc2 behaviour. */
2142 if ((op & 0xfc000001) == 0x48000001)
2143 { /* bl foo, an initializer function? */
2144 op = read_memory_integer (pc + 4, 4, byte_order);
2146 if (op == 0x4def7b82)
2147 { /* cror 0xf, 0xf, 0xf (nop) */
2149 /* Check and see if we are in main. If so, skip over this
2150 initializer function as well. */
2152 tmp = find_pc_misc_function (pc);
2154 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2160 if (pc == lim_pc && lr_reg >= 0)
2161 fdata->lr_register = lr_reg;
2163 fdata->offset = -fdata->offset;
2164 return last_prologue_pc;
2168 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2170 struct rs6000_framedata frame;
2171 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2173 /* See if we can determine the end of the prologue via the symbol table.
2174 If so, then return either PC, or the PC after the prologue, whichever
2176 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2178 CORE_ADDR post_prologue_pc
2179 = skip_prologue_using_sal (gdbarch, func_addr);
2180 if (post_prologue_pc != 0)
2181 return std::max (pc, post_prologue_pc);
2184 /* Can't determine prologue from the symbol table, need to examine
2187 /* Find an upper limit on the function prologue using the debug
2188 information. If the debug information could not be used to provide
2189 that bound, then use an arbitrary large number as the upper bound. */
2190 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2192 limit_pc = pc + 100; /* Magic. */
2194 /* Do not allow limit_pc to be past the function end, if we know
2195 where that end is... */
2196 if (func_end_addr && limit_pc > func_end_addr)
2197 limit_pc = func_end_addr;
2199 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2203 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2204 in the prologue of main().
2206 The function below examines the code pointed at by PC and checks to
2207 see if it corresponds to a call to __eabi. If so, it returns the
2208 address of the instruction following that call. Otherwise, it simply
2212 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2218 if (target_read_memory (pc, buf, 4))
2220 op = extract_unsigned_integer (buf, 4, byte_order);
2222 if ((op & BL_MASK) == BL_INSTRUCTION)
2224 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2225 CORE_ADDR call_dest = pc + 4 + displ;
2226 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2228 /* We check for ___eabi (three leading underscores) in addition
2229 to __eabi in case the GCC option "-fleading-underscore" was
2230 used to compile the program. */
2231 if (s.minsym != NULL
2232 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2233 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2234 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2240 /* All the ABI's require 16 byte alignment. */
2242 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2244 return (addr & -16);
2247 /* Return whether handle_inferior_event() should proceed through code
2248 starting at PC in function NAME when stepping.
2250 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2251 handle memory references that are too distant to fit in instructions
2252 generated by the compiler. For example, if 'foo' in the following
2257 is greater than 32767, the linker might replace the lwz with a branch to
2258 somewhere in @FIX1 that does the load in 2 instructions and then branches
2259 back to where execution should continue.
2261 GDB should silently step over @FIX code, just like AIX dbx does.
2262 Unfortunately, the linker uses the "b" instruction for the
2263 branches, meaning that the link register doesn't get set.
2264 Therefore, GDB's usual step_over_function () mechanism won't work.
2266 Instead, use the gdbarch_skip_trampoline_code and
2267 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2271 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2272 CORE_ADDR pc, const char *name)
2274 return name && startswith (name, "@FIX");
2277 /* Skip code that the user doesn't want to see when stepping:
2279 1. Indirect function calls use a piece of trampoline code to do context
2280 switching, i.e. to set the new TOC table. Skip such code if we are on
2281 its first instruction (as when we have single-stepped to here).
2283 2. Skip shared library trampoline code (which is different from
2284 indirect function call trampolines).
2286 3. Skip bigtoc fixup code.
2288 Result is desired PC to step until, or NULL if we are not in
2289 code that should be skipped. */
2292 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2294 struct gdbarch *gdbarch = get_frame_arch (frame);
2295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2297 unsigned int ii, op;
2299 CORE_ADDR solib_target_pc;
2300 struct bound_minimal_symbol msymbol;
2302 static unsigned trampoline_code[] =
2304 0x800b0000, /* l r0,0x0(r11) */
2305 0x90410014, /* st r2,0x14(r1) */
2306 0x7c0903a6, /* mtctr r0 */
2307 0x804b0004, /* l r2,0x4(r11) */
2308 0x816b0008, /* l r11,0x8(r11) */
2309 0x4e800420, /* bctr */
2310 0x4e800020, /* br */
2314 /* Check for bigtoc fixup code. */
2315 msymbol = lookup_minimal_symbol_by_pc (pc);
2317 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2318 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2320 /* Double-check that the third instruction from PC is relative "b". */
2321 op = read_memory_integer (pc + 8, 4, byte_order);
2322 if ((op & 0xfc000003) == 0x48000000)
2324 /* Extract bits 6-29 as a signed 24-bit relative word address and
2325 add it to the containing PC. */
2326 rel = ((int)(op << 6) >> 6);
2327 return pc + 8 + rel;
2331 /* If pc is in a shared library trampoline, return its target. */
2332 solib_target_pc = find_solib_trampoline_target (frame, pc);
2333 if (solib_target_pc)
2334 return solib_target_pc;
2336 for (ii = 0; trampoline_code[ii]; ++ii)
2338 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2339 if (op != trampoline_code[ii])
2342 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2344 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2348 /* ISA-specific vector types. */
2350 static struct type *
2351 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2355 if (!tdep->ppc_builtin_type_vec64)
2357 const struct builtin_type *bt = builtin_type (gdbarch);
2359 /* The type we're building is this: */
2361 union __gdb_builtin_type_vec64
2365 int32_t v2_int32[2];
2366 int16_t v4_int16[4];
2373 t = arch_composite_type (gdbarch,
2374 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2375 append_composite_type_field (t, "uint64", bt->builtin_int64);
2376 append_composite_type_field (t, "v2_float",
2377 init_vector_type (bt->builtin_float, 2));
2378 append_composite_type_field (t, "v2_int32",
2379 init_vector_type (bt->builtin_int32, 2));
2380 append_composite_type_field (t, "v4_int16",
2381 init_vector_type (bt->builtin_int16, 4));
2382 append_composite_type_field (t, "v8_int8",
2383 init_vector_type (bt->builtin_int8, 8));
2385 TYPE_VECTOR (t) = 1;
2386 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2387 tdep->ppc_builtin_type_vec64 = t;
2390 return tdep->ppc_builtin_type_vec64;
2393 /* Vector 128 type. */
2395 static struct type *
2396 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2400 if (!tdep->ppc_builtin_type_vec128)
2402 const struct builtin_type *bt = builtin_type (gdbarch);
2404 /* The type we're building is this
2406 type = union __ppc_builtin_type_vec128 {
2408 double v2_double[2];
2410 int32_t v4_int32[4];
2411 int16_t v8_int16[8];
2412 int8_t v16_int8[16];
2418 t = arch_composite_type (gdbarch,
2419 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2420 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2421 append_composite_type_field (t, "v2_double",
2422 init_vector_type (bt->builtin_double, 2));
2423 append_composite_type_field (t, "v4_float",
2424 init_vector_type (bt->builtin_float, 4));
2425 append_composite_type_field (t, "v4_int32",
2426 init_vector_type (bt->builtin_int32, 4));
2427 append_composite_type_field (t, "v8_int16",
2428 init_vector_type (bt->builtin_int16, 8));
2429 append_composite_type_field (t, "v16_int8",
2430 init_vector_type (bt->builtin_int8, 16));
2432 TYPE_VECTOR (t) = 1;
2433 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2434 tdep->ppc_builtin_type_vec128 = t;
2437 return tdep->ppc_builtin_type_vec128;
2440 /* Return the name of register number REGNO, or the empty string if it
2441 is an anonymous register. */
2444 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2448 /* The upper half "registers" have names in the XML description,
2449 but we present only the low GPRs and the full 64-bit registers
2451 if (tdep->ppc_ev0_upper_regnum >= 0
2452 && tdep->ppc_ev0_upper_regnum <= regno
2453 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2456 /* Hide the upper halves of the vs0~vs31 registers. */
2457 if (tdep->ppc_vsr0_regnum >= 0
2458 && tdep->ppc_vsr0_upper_regnum <= regno
2459 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2462 /* Check if the SPE pseudo registers are available. */
2463 if (IS_SPE_PSEUDOREG (tdep, regno))
2465 static const char *const spe_regnames[] = {
2466 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2467 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2468 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2469 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2471 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2474 /* Check if the decimal128 pseudo-registers are available. */
2475 if (IS_DFP_PSEUDOREG (tdep, regno))
2477 static const char *const dfp128_regnames[] = {
2478 "dl0", "dl1", "dl2", "dl3",
2479 "dl4", "dl5", "dl6", "dl7",
2480 "dl8", "dl9", "dl10", "dl11",
2481 "dl12", "dl13", "dl14", "dl15"
2483 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2486 /* Check if this is a VSX pseudo-register. */
2487 if (IS_VSX_PSEUDOREG (tdep, regno))
2489 static const char *const vsx_regnames[] = {
2490 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2491 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2492 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2493 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2494 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2495 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2496 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2497 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2498 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2500 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2503 /* Check if the this is a Extended FP pseudo-register. */
2504 if (IS_EFP_PSEUDOREG (tdep, regno))
2506 static const char *const efpr_regnames[] = {
2507 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2508 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2509 "f46", "f47", "f48", "f49", "f50", "f51",
2510 "f52", "f53", "f54", "f55", "f56", "f57",
2511 "f58", "f59", "f60", "f61", "f62", "f63"
2513 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2516 return tdesc_register_name (gdbarch, regno);
2519 /* Return the GDB type object for the "standard" data type of data in
2522 static struct type *
2523 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2525 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2527 /* These are the only pseudo-registers we support. */
2528 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2529 || IS_DFP_PSEUDOREG (tdep, regnum)
2530 || IS_VSX_PSEUDOREG (tdep, regnum)
2531 || IS_EFP_PSEUDOREG (tdep, regnum));
2533 /* These are the e500 pseudo-registers. */
2534 if (IS_SPE_PSEUDOREG (tdep, regnum))
2535 return rs6000_builtin_type_vec64 (gdbarch);
2536 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2537 /* PPC decimal128 pseudo-registers. */
2538 return builtin_type (gdbarch)->builtin_declong;
2539 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2540 /* POWER7 VSX pseudo-registers. */
2541 return rs6000_builtin_type_vec128 (gdbarch);
2543 /* POWER7 Extended FP pseudo-registers. */
2544 return builtin_type (gdbarch)->builtin_double;
2547 /* Is REGNUM a member of REGGROUP? */
2549 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2550 struct reggroup *group)
2552 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2554 /* These are the only pseudo-registers we support. */
2555 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2556 || IS_DFP_PSEUDOREG (tdep, regnum)
2557 || IS_VSX_PSEUDOREG (tdep, regnum)
2558 || IS_EFP_PSEUDOREG (tdep, regnum));
2560 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2561 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2562 return group == all_reggroup || group == vector_reggroup;
2564 /* PPC decimal128 or Extended FP pseudo-registers. */
2565 return group == all_reggroup || group == float_reggroup;
2568 /* The register format for RS/6000 floating point registers is always
2569 double, we need a conversion if the memory format is float. */
2572 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2575 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 return (tdep->ppc_fp0_regnum >= 0
2578 && regnum >= tdep->ppc_fp0_regnum
2579 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2580 && TYPE_CODE (type) == TYPE_CODE_FLT
2581 && TYPE_LENGTH (type)
2582 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2586 rs6000_register_to_value (struct frame_info *frame,
2590 int *optimizedp, int *unavailablep)
2592 struct gdbarch *gdbarch = get_frame_arch (frame);
2593 gdb_byte from[MAX_REGISTER_SIZE];
2595 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2597 if (!get_frame_register_bytes (frame, regnum, 0,
2598 register_size (gdbarch, regnum),
2599 from, optimizedp, unavailablep))
2602 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2604 *optimizedp = *unavailablep = 0;
2609 rs6000_value_to_register (struct frame_info *frame,
2612 const gdb_byte *from)
2614 struct gdbarch *gdbarch = get_frame_arch (frame);
2615 gdb_byte to[MAX_REGISTER_SIZE];
2617 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2619 convert_typed_floating (from, type,
2620 to, builtin_type (gdbarch)->builtin_double);
2621 put_frame_register (frame, regnum, to);
2624 /* The type of a function that moves the value of REG between CACHE
2625 or BUF --- in either direction. */
2626 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2629 /* Move SPE vector register values between a 64-bit buffer and the two
2630 32-bit raw register halves in a regcache. This function handles
2631 both splitting a 64-bit value into two 32-bit halves, and joining
2632 two halves into a whole 64-bit value, depending on the function
2633 passed as the MOVE argument.
2635 EV_REG must be the number of an SPE evN vector register --- a
2636 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2639 Call MOVE once for each 32-bit half of that register, passing
2640 REGCACHE, the number of the raw register corresponding to that
2641 half, and the address of the appropriate half of BUFFER.
2643 For example, passing 'regcache_raw_read' as the MOVE function will
2644 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2645 'regcache_raw_supply' will supply the contents of BUFFER to the
2646 appropriate pair of raw registers in REGCACHE.
2648 You may need to cast away some 'const' qualifiers when passing
2649 MOVE, since this function can't tell at compile-time which of
2650 REGCACHE or BUFFER is acting as the source of the data. If C had
2651 co-variant type qualifiers, ... */
2653 static enum register_status
2654 e500_move_ev_register (move_ev_register_func move,
2655 struct regcache *regcache, int ev_reg, void *buffer)
2657 struct gdbarch *arch = get_regcache_arch (regcache);
2658 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2660 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2661 enum register_status status;
2663 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2665 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2667 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2669 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2671 if (status == REG_VALID)
2672 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2677 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2678 if (status == REG_VALID)
2679 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2686 static enum register_status
2687 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2689 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
2692 static enum register_status
2693 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2695 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2700 static enum register_status
2701 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2702 int reg_nr, gdb_byte *buffer)
2704 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2708 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2709 int reg_nr, const gdb_byte *buffer)
2711 e500_move_ev_register (do_regcache_raw_write, regcache,
2712 reg_nr, (void *) buffer);
2715 /* Read method for DFP pseudo-registers. */
2716 static enum register_status
2717 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2718 int reg_nr, gdb_byte *buffer)
2720 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2721 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2722 enum register_status status;
2724 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2726 /* Read two FP registers to form a whole dl register. */
2727 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2728 2 * reg_index, buffer);
2729 if (status == REG_VALID)
2730 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2731 2 * reg_index + 1, buffer + 8);
2735 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2736 2 * reg_index + 1, buffer);
2737 if (status == REG_VALID)
2738 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2739 2 * reg_index, buffer + 8);
2745 /* Write method for DFP pseudo-registers. */
2747 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2748 int reg_nr, const gdb_byte *buffer)
2750 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2751 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2753 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2755 /* Write each half of the dl register into a separate
2757 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2758 2 * reg_index, buffer);
2759 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2760 2 * reg_index + 1, buffer + 8);
2764 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2765 2 * reg_index + 1, buffer);
2766 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2767 2 * reg_index, buffer + 8);
2771 /* Read method for POWER7 VSX pseudo-registers. */
2772 static enum register_status
2773 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2774 int reg_nr, gdb_byte *buffer)
2776 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2777 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2778 enum register_status status;
2780 /* Read the portion that overlaps the VMX registers. */
2782 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2783 reg_index - 32, buffer);
2785 /* Read the portion that overlaps the FPR registers. */
2786 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2788 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2790 if (status == REG_VALID)
2791 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2792 reg_index, buffer + 8);
2796 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2797 reg_index, buffer + 8);
2798 if (status == REG_VALID)
2799 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2806 /* Write method for POWER7 VSX pseudo-registers. */
2808 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2809 int reg_nr, const gdb_byte *buffer)
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2814 /* Write the portion that overlaps the VMX registers. */
2816 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2817 reg_index - 32, buffer);
2819 /* Write the portion that overlaps the FPR registers. */
2820 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2822 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2824 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2825 reg_index, buffer + 8);
2829 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2830 reg_index, buffer + 8);
2831 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2836 /* Read method for POWER7 Extended FP pseudo-registers. */
2837 static enum register_status
2838 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2839 int reg_nr, gdb_byte *buffer)
2841 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2842 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2843 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2845 /* Read the portion that overlaps the VMX register. */
2846 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2847 offset, register_size (gdbarch, reg_nr),
2851 /* Write method for POWER7 Extended FP pseudo-registers. */
2853 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2854 int reg_nr, const gdb_byte *buffer)
2856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2857 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2858 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2860 /* Write the portion that overlaps the VMX register. */
2861 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2862 offset, register_size (gdbarch, reg_nr),
2866 static enum register_status
2867 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2868 struct regcache *regcache,
2869 int reg_nr, gdb_byte *buffer)
2871 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2874 gdb_assert (regcache_arch == gdbarch);
2876 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2877 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2878 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2879 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2880 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2881 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2882 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2883 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2885 internal_error (__FILE__, __LINE__,
2886 _("rs6000_pseudo_register_read: "
2887 "called on unexpected register '%s' (%d)"),
2888 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2892 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2893 struct regcache *regcache,
2894 int reg_nr, const gdb_byte *buffer)
2896 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2899 gdb_assert (regcache_arch == gdbarch);
2901 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2902 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2903 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2904 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2905 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2906 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2907 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2908 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2910 internal_error (__FILE__, __LINE__,
2911 _("rs6000_pseudo_register_write: "
2912 "called on unexpected register '%s' (%d)"),
2913 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2917 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2918 struct agent_expr *ax, int reg_nr)
2920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2921 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2923 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2924 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2925 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2927 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2929 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2930 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2931 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2933 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2935 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2938 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2942 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2943 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2946 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2948 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2949 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2952 internal_error (__FILE__, __LINE__,
2953 _("rs6000_pseudo_register_collect: "
2954 "called on unexpected register '%s' (%d)"),
2955 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2961 rs6000_gen_return_address (struct gdbarch *gdbarch,
2962 struct agent_expr *ax, struct axs_value *value,
2965 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2966 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2967 value->kind = axs_lvalue_register;
2968 value->u.reg = tdep->ppc_lr_regnum;
2972 /* Convert a DBX STABS register number to a GDB register number. */
2974 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2978 if (0 <= num && num <= 31)
2979 return tdep->ppc_gp0_regnum + num;
2980 else if (32 <= num && num <= 63)
2981 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2982 specifies registers the architecture doesn't have? Our
2983 callers don't check the value we return. */
2984 return tdep->ppc_fp0_regnum + (num - 32);
2985 else if (77 <= num && num <= 108)
2986 return tdep->ppc_vr0_regnum + (num - 77);
2987 else if (1200 <= num && num < 1200 + 32)
2988 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2993 return tdep->ppc_mq_regnum;
2995 return tdep->ppc_lr_regnum;
2997 return tdep->ppc_ctr_regnum;
2999 return tdep->ppc_xer_regnum;
3001 return tdep->ppc_vrsave_regnum;
3003 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3005 return tdep->ppc_acc_regnum;
3007 return tdep->ppc_spefscr_regnum;
3014 /* Convert a Dwarf 2 register number to a GDB register number. */
3016 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3020 if (0 <= num && num <= 31)
3021 return tdep->ppc_gp0_regnum + num;
3022 else if (32 <= num && num <= 63)
3023 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3024 specifies registers the architecture doesn't have? Our
3025 callers don't check the value we return. */
3026 return tdep->ppc_fp0_regnum + (num - 32);
3027 else if (1124 <= num && num < 1124 + 32)
3028 return tdep->ppc_vr0_regnum + (num - 1124);
3029 else if (1200 <= num && num < 1200 + 32)
3030 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3035 return tdep->ppc_cr_regnum;
3037 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3039 return tdep->ppc_acc_regnum;
3041 return tdep->ppc_mq_regnum;
3043 return tdep->ppc_xer_regnum;
3045 return tdep->ppc_lr_regnum;
3047 return tdep->ppc_ctr_regnum;
3049 return tdep->ppc_vrsave_regnum;
3051 return tdep->ppc_spefscr_regnum;
3057 /* Translate a .eh_frame register to DWARF register, or adjust a
3058 .debug_frame register. */
3061 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3063 /* GCC releases before 3.4 use GCC internal register numbering in
3064 .debug_frame (and .debug_info, et cetera). The numbering is
3065 different from the standard SysV numbering for everything except
3066 for GPRs and FPRs. We can not detect this problem in most cases
3067 - to get accurate debug info for variables living in lr, ctr, v0,
3068 et cetera, use a newer version of GCC. But we must detect
3069 one important case - lr is in column 65 in .debug_frame output,
3072 GCC 3.4, and the "hammer" branch, have a related problem. They
3073 record lr register saves in .debug_frame as 108, but still record
3074 the return column as 65. We fix that up too.
3076 We can do this because 65 is assigned to fpsr, and GCC never
3077 generates debug info referring to it. To add support for
3078 handwritten debug info that restores fpsr, we would need to add a
3079 producer version check to this. */
3088 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3089 internal register numbering; translate that to the standard DWARF2
3090 register numbering. */
3091 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3093 else if (68 <= num && num <= 75) /* cr0-cr8 */
3094 return num - 68 + 86;
3095 else if (77 <= num && num <= 108) /* vr0-vr31 */
3096 return num - 77 + 1124;
3108 case 109: /* vrsave */
3110 case 110: /* vscr */
3112 case 111: /* spe_acc */
3114 case 112: /* spefscr */
3122 /* Handling the various POWER/PowerPC variants. */
3124 /* Information about a particular processor variant. */
3128 /* Name of this variant. */
3131 /* English description of the variant. */
3134 /* bfd_arch_info.arch corresponding to variant. */
3135 enum bfd_architecture arch;
3137 /* bfd_arch_info.mach corresponding to variant. */
3140 /* Target description for this variant. */
3141 struct target_desc **tdesc;
3144 static struct variant variants[] =
3146 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3147 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3148 {"power", "POWER user-level", bfd_arch_rs6000,
3149 bfd_mach_rs6k, &tdesc_rs6000},
3150 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3151 bfd_mach_ppc_403, &tdesc_powerpc_403},
3152 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3153 bfd_mach_ppc_405, &tdesc_powerpc_405},
3154 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3155 bfd_mach_ppc_601, &tdesc_powerpc_601},
3156 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3157 bfd_mach_ppc_602, &tdesc_powerpc_602},
3158 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3159 bfd_mach_ppc_603, &tdesc_powerpc_603},
3160 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3161 604, &tdesc_powerpc_604},
3162 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3163 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3164 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3165 bfd_mach_ppc_505, &tdesc_powerpc_505},
3166 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3167 bfd_mach_ppc_860, &tdesc_powerpc_860},
3168 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3169 bfd_mach_ppc_750, &tdesc_powerpc_750},
3170 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3171 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3172 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3173 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3176 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3177 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3178 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3179 bfd_mach_ppc_620, &tdesc_powerpc_64},
3180 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3181 bfd_mach_ppc_630, &tdesc_powerpc_64},
3182 {"a35", "PowerPC A35", bfd_arch_powerpc,
3183 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3184 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3185 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3186 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3187 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3189 /* FIXME: I haven't checked the register sets of the following. */
3190 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3191 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3192 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3193 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3194 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3195 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3197 {0, 0, (enum bfd_architecture) 0, 0, 0}
3200 /* Return the variant corresponding to architecture ARCH and machine number
3201 MACH. If no such variant exists, return null. */
3203 static const struct variant *
3204 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3206 const struct variant *v;
3208 for (v = variants; v->name; v++)
3209 if (arch == v->arch && mach == v->mach)
3216 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3218 if (info->endian == BFD_ENDIAN_BIG)
3219 return print_insn_big_powerpc (memaddr, info);
3221 return print_insn_little_powerpc (memaddr, info);
3225 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3227 return frame_unwind_register_unsigned (next_frame,
3228 gdbarch_pc_regnum (gdbarch));
3231 static struct frame_id
3232 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3234 return frame_id_build (get_frame_register_unsigned
3235 (this_frame, gdbarch_sp_regnum (gdbarch)),
3236 get_frame_pc (this_frame));
3239 struct rs6000_frame_cache
3242 CORE_ADDR initial_sp;
3243 struct trad_frame_saved_reg *saved_regs;
3245 /* Set BASE_P to true if this frame cache is properly initialized.
3246 Otherwise set to false because some registers or memory cannot
3249 /* Cache PC for building unavailable frame. */
3253 static struct rs6000_frame_cache *
3254 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3256 struct rs6000_frame_cache *cache;
3257 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3259 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3260 struct rs6000_framedata fdata;
3261 int wordsize = tdep->wordsize;
3262 CORE_ADDR func = 0, pc = 0;
3264 if ((*this_cache) != NULL)
3265 return (struct rs6000_frame_cache *) (*this_cache);
3266 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3267 (*this_cache) = cache;
3269 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3273 func = get_frame_func (this_frame);
3275 pc = get_frame_pc (this_frame);
3276 skip_prologue (gdbarch, func, pc, &fdata);
3278 /* Figure out the parent's stack pointer. */
3280 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3281 address of the current frame. Things might be easier if the
3282 ->frame pointed to the outer-most address of the frame. In
3283 the mean time, the address of the prev frame is used as the
3284 base address of this frame. */
3285 cache->base = get_frame_register_unsigned
3286 (this_frame, gdbarch_sp_regnum (gdbarch));
3288 CATCH (ex, RETURN_MASK_ERROR)
3290 if (ex.error != NOT_AVAILABLE_ERROR)
3291 throw_exception (ex);
3292 return (struct rs6000_frame_cache *) (*this_cache);
3296 /* If the function appears to be frameless, check a couple of likely
3297 indicators that we have simply failed to find the frame setup.
3298 Two common cases of this are missing symbols (i.e.
3299 get_frame_func returns the wrong address or 0), and assembly
3300 stubs which have a fast exit path but set up a frame on the slow
3303 If the LR appears to return to this function, then presume that
3304 we have an ABI compliant frame that we failed to find. */
3305 if (fdata.frameless && fdata.lr_offset == 0)
3310 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3311 if (func == 0 && saved_lr == pc)
3315 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3316 if (func == saved_func)
3322 fdata.frameless = 0;
3323 fdata.lr_offset = tdep->lr_frame_offset;
3327 if (!fdata.frameless)
3329 /* Frameless really means stackless. */
3332 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3333 byte_order, &backchain))
3334 cache->base = (CORE_ADDR) backchain;
3337 trad_frame_set_value (cache->saved_regs,
3338 gdbarch_sp_regnum (gdbarch), cache->base);
3340 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3341 All fpr's from saved_fpr to fp31 are saved. */
3343 if (fdata.saved_fpr >= 0)
3346 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3348 /* If skip_prologue says floating-point registers were saved,
3349 but the current architecture has no floating-point registers,
3350 then that's strange. But we have no indices to even record
3351 the addresses under, so we just ignore it. */
3352 if (ppc_floating_point_unit_p (gdbarch))
3353 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3355 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3360 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3361 All gpr's from saved_gpr to gpr31 are saved (except during the
3364 if (fdata.saved_gpr >= 0)
3367 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3368 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3370 if (fdata.gpr_mask & (1U << i))
3371 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3372 gpr_addr += wordsize;
3376 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3377 All vr's from saved_vr to vr31 are saved. */
3378 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3380 if (fdata.saved_vr >= 0)
3383 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3384 for (i = fdata.saved_vr; i < 32; i++)
3386 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3387 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3392 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3393 All vr's from saved_ev to ev31 are saved. ????? */
3394 if (tdep->ppc_ev0_regnum != -1)
3396 if (fdata.saved_ev >= 0)
3399 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3400 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3402 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3404 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3405 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3406 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3411 /* If != 0, fdata.cr_offset is the offset from the frame that
3413 if (fdata.cr_offset != 0)
3414 cache->saved_regs[tdep->ppc_cr_regnum].addr
3415 = cache->base + fdata.cr_offset;
3417 /* If != 0, fdata.lr_offset is the offset from the frame that
3419 if (fdata.lr_offset != 0)
3420 cache->saved_regs[tdep->ppc_lr_regnum].addr
3421 = cache->base + fdata.lr_offset;
3422 else if (fdata.lr_register != -1)
3423 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3424 /* The PC is found in the link register. */
3425 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3426 cache->saved_regs[tdep->ppc_lr_regnum];
3428 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3429 holds the VRSAVE. */
3430 if (fdata.vrsave_offset != 0)
3431 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3432 = cache->base + fdata.vrsave_offset;
3434 if (fdata.alloca_reg < 0)
3435 /* If no alloca register used, then fi->frame is the value of the
3436 %sp for this frame, and it is good enough. */
3438 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3441 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3448 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3449 struct frame_id *this_id)
3451 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3456 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3460 /* This marks the outermost frame. */
3461 if (info->base == 0)
3464 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3467 static struct value *
3468 rs6000_frame_prev_register (struct frame_info *this_frame,
3469 void **this_cache, int regnum)
3471 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3473 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3476 static const struct frame_unwind rs6000_frame_unwind =
3479 default_frame_unwind_stop_reason,
3480 rs6000_frame_this_id,
3481 rs6000_frame_prev_register,
3483 default_frame_sniffer
3486 /* Allocate and initialize a frame cache for an epilogue frame.
3487 SP is restored and prev-PC is stored in LR. */
3489 static struct rs6000_frame_cache *
3490 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3492 struct rs6000_frame_cache *cache;
3493 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3497 return (struct rs6000_frame_cache *) *this_cache;
3499 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3500 (*this_cache) = cache;
3501 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3505 /* At this point the stack looks as if we just entered the
3506 function, and the return address is stored in LR. */
3509 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3510 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3513 cache->initial_sp = sp;
3515 trad_frame_set_value (cache->saved_regs,
3516 gdbarch_pc_regnum (gdbarch), lr);
3518 CATCH (ex, RETURN_MASK_ERROR)
3520 if (ex.error != NOT_AVAILABLE_ERROR)
3521 throw_exception (ex);
3528 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3529 Return the frame ID of an epilogue frame. */
3532 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3533 void **this_cache, struct frame_id *this_id)
3536 struct rs6000_frame_cache *info =
3537 rs6000_epilogue_frame_cache (this_frame, this_cache);
3539 pc = get_frame_func (this_frame);
3540 if (info->base == 0)
3541 (*this_id) = frame_id_build_unavailable_stack (pc);
3543 (*this_id) = frame_id_build (info->base, pc);
3546 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3547 Return the register value of REGNUM in previous frame. */
3549 static struct value *
3550 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3551 void **this_cache, int regnum)
3553 struct rs6000_frame_cache *info =
3554 rs6000_epilogue_frame_cache (this_frame, this_cache);
3555 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3558 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3559 Check whether this an epilogue frame. */
3562 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3563 struct frame_info *this_frame,
3564 void **this_prologue_cache)
3566 if (frame_relative_level (this_frame) == 0)
3567 return rs6000_in_function_epilogue_frame_p (this_frame,
3568 get_frame_arch (this_frame),
3569 get_frame_pc (this_frame));
3574 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3575 a function without debug information. */
3577 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3580 default_frame_unwind_stop_reason,
3581 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3583 rs6000_epilogue_frame_sniffer
3588 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3590 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3592 return info->initial_sp;
3595 static const struct frame_base rs6000_frame_base = {
3596 &rs6000_frame_unwind,
3597 rs6000_frame_base_address,
3598 rs6000_frame_base_address,
3599 rs6000_frame_base_address
3602 static const struct frame_base *
3603 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3605 return &rs6000_frame_base;
3608 /* DWARF-2 frame support. Used to handle the detection of
3609 clobbered registers during function calls. */
3612 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3613 struct dwarf2_frame_state_reg *reg,
3614 struct frame_info *this_frame)
3616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3618 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3619 non-volatile registers. We will use the same code for both. */
3621 /* Call-saved GP registers. */
3622 if ((regnum >= tdep->ppc_gp0_regnum + 14
3623 && regnum <= tdep->ppc_gp0_regnum + 31)
3624 || (regnum == tdep->ppc_gp0_regnum + 1))
3625 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3627 /* Call-clobbered GP registers. */
3628 if ((regnum >= tdep->ppc_gp0_regnum + 3
3629 && regnum <= tdep->ppc_gp0_regnum + 12)
3630 || (regnum == tdep->ppc_gp0_regnum))
3631 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3633 /* Deal with FP registers, if supported. */
3634 if (tdep->ppc_fp0_regnum >= 0)
3636 /* Call-saved FP registers. */
3637 if ((regnum >= tdep->ppc_fp0_regnum + 14
3638 && regnum <= tdep->ppc_fp0_regnum + 31))
3639 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3641 /* Call-clobbered FP registers. */
3642 if ((regnum >= tdep->ppc_fp0_regnum
3643 && regnum <= tdep->ppc_fp0_regnum + 13))
3644 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3647 /* Deal with ALTIVEC registers, if supported. */
3648 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3650 /* Call-saved Altivec registers. */
3651 if ((regnum >= tdep->ppc_vr0_regnum + 20
3652 && regnum <= tdep->ppc_vr0_regnum + 31)
3653 || regnum == tdep->ppc_vrsave_regnum)
3654 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3656 /* Call-clobbered Altivec registers. */
3657 if ((regnum >= tdep->ppc_vr0_regnum
3658 && regnum <= tdep->ppc_vr0_regnum + 19))
3659 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3662 /* Handle PC register and Stack Pointer correctly. */
3663 if (regnum == gdbarch_pc_regnum (gdbarch))
3664 reg->how = DWARF2_FRAME_REG_RA;
3665 else if (regnum == gdbarch_sp_regnum (gdbarch))
3666 reg->how = DWARF2_FRAME_REG_CFA;
3670 /* Return true if a .gnu_attributes section exists in BFD and it
3671 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3672 section exists in BFD and it indicates that SPE extensions are in
3673 use. Check the .gnu.attributes section first, as the binary might be
3674 compiled for SPE, but not actually using SPE instructions. */
3677 bfd_uses_spe_extensions (bfd *abfd)
3680 gdb_byte *contents = NULL;
3690 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3691 could be using the SPE vector abi without actually using any spe
3692 bits whatsoever. But it's close enough for now. */
3693 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3694 Tag_GNU_Power_ABI_Vector);
3695 if (vector_abi == 3)
3699 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3703 size = bfd_get_section_size (sect);
3704 contents = (gdb_byte *) xmalloc (size);
3705 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3711 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3717 char name[name_len rounded up to 4-byte alignment];
3718 char data[data_len];
3721 Technically, there's only supposed to be one such structure in a
3722 given apuinfo section, but the linker is not always vigilant about
3723 merging apuinfo sections from input files. Just go ahead and parse
3724 them all, exiting early when we discover the binary uses SPE
3727 It's not specified in what endianness the information in this
3728 section is stored. Assume that it's the endianness of the BFD. */
3732 unsigned int name_len;
3733 unsigned int data_len;
3736 /* If we can't read the first three fields, we're done. */
3740 name_len = bfd_get_32 (abfd, ptr);
3741 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3742 data_len = bfd_get_32 (abfd, ptr + 4);
3743 type = bfd_get_32 (abfd, ptr + 8);
3746 /* The name must be "APUinfo\0". */
3748 && strcmp ((const char *) ptr, "APUinfo") != 0)
3752 /* The type must be 2. */
3756 /* The data is stored as a series of uint32. The upper half of
3757 each uint32 indicates the particular APU used and the lower
3758 half indicates the revision of that APU. We just care about
3761 /* Not 4-byte quantities. */
3767 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3768 unsigned int apu = apuinfo >> 16;
3772 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3774 if (apu == 0x100 || apu == 0x101)
3789 /* These are macros for parsing instruction fields (I.1.6.28) */
3791 #define PPC_FIELD(value, from, len) \
3792 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3793 #define PPC_SEXT(v, bs) \
3794 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3795 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3796 - ((CORE_ADDR) 1 << ((bs) - 1)))
3797 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3798 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3799 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3800 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3801 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3802 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3803 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3804 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3805 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3806 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3807 | (PPC_FIELD (insn, 16, 5) << 5))
3808 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3809 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3810 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3811 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3812 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3813 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3814 #define PPC_OE(insn) PPC_BIT (insn, 21)
3815 #define PPC_RC(insn) PPC_BIT (insn, 31)
3816 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3817 #define PPC_LK(insn) PPC_BIT (insn, 31)
3818 #define PPC_TX(insn) PPC_BIT (insn, 31)
3819 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3821 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3822 #define PPC_XER_NB(xer) (xer & 0x7f)
3824 /* Record Vector-Scalar Registers.
3825 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3826 Otherwise, it's just a VR register. Record them accordingly. */
3829 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3831 if (vsr < 0 || vsr >= 64)
3836 if (tdep->ppc_vr0_regnum >= 0)
3837 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3841 if (tdep->ppc_fp0_regnum >= 0)
3842 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3843 if (tdep->ppc_vsr0_upper_regnum >= 0)
3844 record_full_arch_list_add_reg (regcache,
3845 tdep->ppc_vsr0_upper_regnum + vsr);
3851 /* Parse and record instructions primary opcode-4 at ADDR.
3852 Return 0 if successful. */
3855 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3856 CORE_ADDR addr, uint32_t insn)
3858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3859 int ext = PPC_FIELD (insn, 21, 11);
3860 int vra = PPC_FIELD (insn, 11, 5);
3864 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3865 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3866 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3867 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3868 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3870 case 42: /* Vector Select */
3871 case 43: /* Vector Permute */
3872 case 59: /* Vector Permute Right-indexed */
3873 case 44: /* Vector Shift Left Double by Octet Immediate */
3874 case 45: /* Vector Permute and Exclusive-OR */
3875 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3876 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3877 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3878 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3879 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3880 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3881 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3882 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3883 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3884 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3885 case 46: /* Vector Multiply-Add Single-Precision */
3886 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3887 record_full_arch_list_add_reg (regcache,
3888 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3891 case 48: /* Multiply-Add High Doubleword */
3892 case 49: /* Multiply-Add High Doubleword Unsigned */
3893 case 51: /* Multiply-Add Low Doubleword */
3894 record_full_arch_list_add_reg (regcache,
3895 tdep->ppc_gp0_regnum + PPC_RT (insn));
3899 switch ((ext & 0x1ff))
3902 if (vra != 0 /* Decimal Convert To Signed Quadword */
3903 && vra != 2 /* Decimal Convert From Signed Quadword */
3904 && vra != 4 /* Decimal Convert To Zoned */
3905 && vra != 5 /* Decimal Convert To National */
3906 && vra != 6 /* Decimal Convert From Zoned */
3907 && vra != 7 /* Decimal Convert From National */
3908 && vra != 31) /* Decimal Set Sign */
3910 /* 5.16 Decimal Integer Arithmetic Instructions */
3911 case 1: /* Decimal Add Modulo */
3912 case 65: /* Decimal Subtract Modulo */
3914 case 193: /* Decimal Shift */
3915 case 129: /* Decimal Unsigned Shift */
3916 case 449: /* Decimal Shift and Round */
3918 case 257: /* Decimal Truncate */
3919 case 321: /* Decimal Unsigned Truncate */
3921 /* Bit-21 should be set. */
3922 if (!PPC_BIT (insn, 21))
3925 record_full_arch_list_add_reg (regcache,
3926 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3927 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3931 /* Bit-21 is used for RC */
3932 switch (ext & 0x3ff)
3934 case 6: /* Vector Compare Equal To Unsigned Byte */
3935 case 70: /* Vector Compare Equal To Unsigned Halfword */
3936 case 134: /* Vector Compare Equal To Unsigned Word */
3937 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3938 case 774: /* Vector Compare Greater Than Signed Byte */
3939 case 838: /* Vector Compare Greater Than Signed Halfword */
3940 case 902: /* Vector Compare Greater Than Signed Word */
3941 case 967: /* Vector Compare Greater Than Signed Doubleword */
3942 case 518: /* Vector Compare Greater Than Unsigned Byte */
3943 case 646: /* Vector Compare Greater Than Unsigned Word */
3944 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3945 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3946 case 966: /* Vector Compare Bounds Single-Precision */
3947 case 198: /* Vector Compare Equal To Single-Precision */
3948 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3949 case 710: /* Vector Compare Greater Than Single-Precision */
3950 case 7: /* Vector Compare Not Equal Byte */
3951 case 71: /* Vector Compare Not Equal Halfword */
3952 case 135: /* Vector Compare Not Equal Word */
3953 case 263: /* Vector Compare Not Equal or Zero Byte */
3954 case 327: /* Vector Compare Not Equal or Zero Halfword */
3955 case 391: /* Vector Compare Not Equal or Zero Word */
3957 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3958 record_full_arch_list_add_reg (regcache,
3959 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3967 case 0: /* Vector Count Leading Zero Least-Significant Bits
3969 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3971 record_full_arch_list_add_reg (regcache,
3972 tdep->ppc_gp0_regnum + PPC_RT (insn));
3975 case 6: /* Vector Negate Word */
3976 case 7: /* Vector Negate Doubleword */
3977 case 8: /* Vector Parity Byte Word */
3978 case 9: /* Vector Parity Byte Doubleword */
3979 case 10: /* Vector Parity Byte Quadword */
3980 case 16: /* Vector Extend Sign Byte To Word */
3981 case 17: /* Vector Extend Sign Halfword To Word */
3982 case 24: /* Vector Extend Sign Byte To Doubleword */
3983 case 25: /* Vector Extend Sign Halfword To Doubleword */
3984 case 26: /* Vector Extend Sign Word To Doubleword */
3985 case 28: /* Vector Count Trailing Zeros Byte */
3986 case 29: /* Vector Count Trailing Zeros Halfword */
3987 case 30: /* Vector Count Trailing Zeros Word */
3988 case 31: /* Vector Count Trailing Zeros Doubleword */
3989 record_full_arch_list_add_reg (regcache,
3990 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3997 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3998 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3999 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4000 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4001 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4002 case 462: /* Vector Pack Signed Word Signed Saturate */
4003 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4004 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4005 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4006 case 512: /* Vector Add Unsigned Byte Saturate */
4007 case 576: /* Vector Add Unsigned Halfword Saturate */
4008 case 640: /* Vector Add Unsigned Word Saturate */
4009 case 768: /* Vector Add Signed Byte Saturate */
4010 case 832: /* Vector Add Signed Halfword Saturate */
4011 case 896: /* Vector Add Signed Word Saturate */
4012 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4013 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4014 case 1664: /* Vector Subtract Unsigned Word Saturate */
4015 case 1792: /* Vector Subtract Signed Byte Saturate */
4016 case 1856: /* Vector Subtract Signed Halfword Saturate */
4017 case 1920: /* Vector Subtract Signed Word Saturate */
4019 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4020 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4021 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4022 case 1672: /* Vector Sum across Half Signed Word Saturate */
4023 case 1928: /* Vector Sum across Signed Word Saturate */
4024 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4025 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4026 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4028 case 12: /* Vector Merge High Byte */
4029 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4030 case 76: /* Vector Merge High Halfword */
4031 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4032 case 140: /* Vector Merge High Word */
4033 case 268: /* Vector Merge Low Byte */
4034 case 332: /* Vector Merge Low Halfword */
4035 case 396: /* Vector Merge Low Word */
4036 case 526: /* Vector Unpack High Signed Byte */
4037 case 590: /* Vector Unpack High Signed Halfword */
4038 case 654: /* Vector Unpack Low Signed Byte */
4039 case 718: /* Vector Unpack Low Signed Halfword */
4040 case 782: /* Vector Pack Pixel */
4041 case 846: /* Vector Unpack High Pixel */
4042 case 974: /* Vector Unpack Low Pixel */
4043 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4044 case 1614: /* Vector Unpack High Signed Word */
4045 case 1676: /* Vector Merge Odd Word */
4046 case 1742: /* Vector Unpack Low Signed Word */
4047 case 1932: /* Vector Merge Even Word */
4048 case 524: /* Vector Splat Byte */
4049 case 588: /* Vector Splat Halfword */
4050 case 652: /* Vector Splat Word */
4051 case 780: /* Vector Splat Immediate Signed Byte */
4052 case 844: /* Vector Splat Immediate Signed Halfword */
4053 case 908: /* Vector Splat Immediate Signed Word */
4054 case 452: /* Vector Shift Left */
4055 case 708: /* Vector Shift Right */
4056 case 1036: /* Vector Shift Left by Octet */
4057 case 1100: /* Vector Shift Right by Octet */
4058 case 0: /* Vector Add Unsigned Byte Modulo */
4059 case 64: /* Vector Add Unsigned Halfword Modulo */
4060 case 128: /* Vector Add Unsigned Word Modulo */
4061 case 192: /* Vector Add Unsigned Doubleword Modulo */
4062 case 256: /* Vector Add Unsigned Quadword Modulo */
4063 case 320: /* Vector Add & write Carry Unsigned Quadword */
4064 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4065 case 8: /* Vector Multiply Odd Unsigned Byte */
4066 case 72: /* Vector Multiply Odd Unsigned Halfword */
4067 case 136: /* Vector Multiply Odd Unsigned Word */
4068 case 264: /* Vector Multiply Odd Signed Byte */
4069 case 328: /* Vector Multiply Odd Signed Halfword */
4070 case 392: /* Vector Multiply Odd Signed Word */
4071 case 520: /* Vector Multiply Even Unsigned Byte */
4072 case 584: /* Vector Multiply Even Unsigned Halfword */
4073 case 648: /* Vector Multiply Even Unsigned Word */
4074 case 776: /* Vector Multiply Even Signed Byte */
4075 case 840: /* Vector Multiply Even Signed Halfword */
4076 case 904: /* Vector Multiply Even Signed Word */
4077 case 137: /* Vector Multiply Unsigned Word Modulo */
4078 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4079 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4080 case 1152: /* Vector Subtract Unsigned Word Modulo */
4081 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4082 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4083 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4084 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4085 case 1282: /* Vector Average Signed Byte */
4086 case 1346: /* Vector Average Signed Halfword */
4087 case 1410: /* Vector Average Signed Word */
4088 case 1026: /* Vector Average Unsigned Byte */
4089 case 1090: /* Vector Average Unsigned Halfword */
4090 case 1154: /* Vector Average Unsigned Word */
4091 case 258: /* Vector Maximum Signed Byte */
4092 case 322: /* Vector Maximum Signed Halfword */
4093 case 386: /* Vector Maximum Signed Word */
4094 case 450: /* Vector Maximum Signed Doubleword */
4095 case 2: /* Vector Maximum Unsigned Byte */
4096 case 66: /* Vector Maximum Unsigned Halfword */
4097 case 130: /* Vector Maximum Unsigned Word */
4098 case 194: /* Vector Maximum Unsigned Doubleword */
4099 case 770: /* Vector Minimum Signed Byte */
4100 case 834: /* Vector Minimum Signed Halfword */
4101 case 898: /* Vector Minimum Signed Word */
4102 case 962: /* Vector Minimum Signed Doubleword */
4103 case 514: /* Vector Minimum Unsigned Byte */
4104 case 578: /* Vector Minimum Unsigned Halfword */
4105 case 642: /* Vector Minimum Unsigned Word */
4106 case 706: /* Vector Minimum Unsigned Doubleword */
4107 case 1028: /* Vector Logical AND */
4108 case 1668: /* Vector Logical Equivalent */
4109 case 1092: /* Vector Logical AND with Complement */
4110 case 1412: /* Vector Logical NAND */
4111 case 1348: /* Vector Logical OR with Complement */
4112 case 1156: /* Vector Logical OR */
4113 case 1284: /* Vector Logical NOR */
4114 case 1220: /* Vector Logical XOR */
4115 case 4: /* Vector Rotate Left Byte */
4116 case 132: /* Vector Rotate Left Word VX-form */
4117 case 68: /* Vector Rotate Left Halfword */
4118 case 196: /* Vector Rotate Left Doubleword */
4119 case 260: /* Vector Shift Left Byte */
4120 case 388: /* Vector Shift Left Word */
4121 case 324: /* Vector Shift Left Halfword */
4122 case 1476: /* Vector Shift Left Doubleword */
4123 case 516: /* Vector Shift Right Byte */
4124 case 644: /* Vector Shift Right Word */
4125 case 580: /* Vector Shift Right Halfword */
4126 case 1732: /* Vector Shift Right Doubleword */
4127 case 772: /* Vector Shift Right Algebraic Byte */
4128 case 900: /* Vector Shift Right Algebraic Word */
4129 case 836: /* Vector Shift Right Algebraic Halfword */
4130 case 964: /* Vector Shift Right Algebraic Doubleword */
4131 case 10: /* Vector Add Single-Precision */
4132 case 74: /* Vector Subtract Single-Precision */
4133 case 1034: /* Vector Maximum Single-Precision */
4134 case 1098: /* Vector Minimum Single-Precision */
4135 case 842: /* Vector Convert From Signed Fixed-Point Word */
4136 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4137 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4138 case 522: /* Vector Round to Single-Precision Integer Nearest */
4139 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4140 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4141 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4142 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4143 case 266: /* Vector Reciprocal Estimate Single-Precision */
4144 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4145 case 1288: /* Vector AES Cipher */
4146 case 1289: /* Vector AES Cipher Last */
4147 case 1352: /* Vector AES Inverse Cipher */
4148 case 1353: /* Vector AES Inverse Cipher Last */
4149 case 1480: /* Vector AES SubBytes */
4150 case 1730: /* Vector SHA-512 Sigma Doubleword */
4151 case 1666: /* Vector SHA-256 Sigma Word */
4152 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4153 case 1160: /* Vector Polynomial Multiply-Sum Word */
4154 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4155 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4156 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4157 case 1794: /* Vector Count Leading Zeros Byte */
4158 case 1858: /* Vector Count Leading Zeros Halfword */
4159 case 1922: /* Vector Count Leading Zeros Word */
4160 case 1986: /* Vector Count Leading Zeros Doubleword */
4161 case 1795: /* Vector Population Count Byte */
4162 case 1859: /* Vector Population Count Halfword */
4163 case 1923: /* Vector Population Count Word */
4164 case 1987: /* Vector Population Count Doubleword */
4165 case 1356: /* Vector Bit Permute Quadword */
4166 case 1484: /* Vector Bit Permute Doubleword */
4167 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4168 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4170 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4171 case 65: /* Vector Multiply-by-10 Extended & write Carry
4172 Unsigned Quadword */
4173 case 1027: /* Vector Absolute Difference Unsigned Byte */
4174 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4175 case 1155: /* Vector Absolute Difference Unsigned Word */
4176 case 1796: /* Vector Shift Right Variable */
4177 case 1860: /* Vector Shift Left Variable */
4178 case 133: /* Vector Rotate Left Word then Mask Insert */
4179 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4180 case 389: /* Vector Rotate Left Word then AND with Mask */
4181 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4182 case 525: /* Vector Extract Unsigned Byte */
4183 case 589: /* Vector Extract Unsigned Halfword */
4184 case 653: /* Vector Extract Unsigned Word */
4185 case 717: /* Vector Extract Doubleword */
4186 case 781: /* Vector Insert Byte */
4187 case 845: /* Vector Insert Halfword */
4188 case 909: /* Vector Insert Word */
4189 case 973: /* Vector Insert Doubleword */
4190 record_full_arch_list_add_reg (regcache,
4191 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4194 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4195 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4196 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4197 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4198 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4199 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4200 record_full_arch_list_add_reg (regcache,
4201 tdep->ppc_gp0_regnum + PPC_RT (insn));
4204 case 1604: /* Move To Vector Status and Control Register */
4205 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4207 case 1540: /* Move From Vector Status and Control Register */
4208 record_full_arch_list_add_reg (regcache,
4209 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4211 case 833: /* Decimal Copy Sign */
4212 record_full_arch_list_add_reg (regcache,
4213 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4214 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4218 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4219 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4223 /* Parse and record instructions of primary opcode-19 at ADDR.
4224 Return 0 if successful. */
4227 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4228 CORE_ADDR addr, uint32_t insn)
4230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4231 int ext = PPC_EXTOP (insn);
4233 switch (ext & 0x01f)
4235 case 2: /* Add PC Immediate Shifted */
4236 record_full_arch_list_add_reg (regcache,
4237 tdep->ppc_gp0_regnum + PPC_RT (insn));
4243 case 0: /* Move Condition Register Field */
4244 case 33: /* Condition Register NOR */
4245 case 129: /* Condition Register AND with Complement */
4246 case 193: /* Condition Register XOR */
4247 case 225: /* Condition Register NAND */
4248 case 257: /* Condition Register AND */
4249 case 289: /* Condition Register Equivalent */
4250 case 417: /* Condition Register OR with Complement */
4251 case 449: /* Condition Register OR */
4252 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4255 case 16: /* Branch Conditional */
4256 case 560: /* Branch Conditional to Branch Target Address Register */
4257 if ((PPC_BO (insn) & 0x4) == 0)
4258 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4260 case 528: /* Branch Conditional to Count Register */
4262 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4265 case 150: /* Instruction Synchronize */
4270 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4271 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4275 /* Parse and record instructions of primary opcode-31 at ADDR.
4276 Return 0 if successful. */
4279 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4280 CORE_ADDR addr, uint32_t insn)
4282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4283 int ext = PPC_EXTOP (insn);
4285 CORE_ADDR at_dcsz, ea = 0;
4286 ULONGEST rb, ra, xer;
4289 /* These instructions have OE bit. */
4290 switch (ext & 0x1ff)
4292 /* These write RT and XER. Update CR if RC is set. */
4293 case 8: /* Subtract from carrying */
4294 case 10: /* Add carrying */
4295 case 136: /* Subtract from extended */
4296 case 138: /* Add extended */
4297 case 200: /* Subtract from zero extended */
4298 case 202: /* Add to zero extended */
4299 case 232: /* Subtract from minus one extended */
4300 case 234: /* Add to minus one extended */
4301 /* CA is always altered, but SO/OV are only altered when OE=1.
4302 In any case, XER is always altered. */
4303 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4305 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4306 record_full_arch_list_add_reg (regcache,
4307 tdep->ppc_gp0_regnum + PPC_RT (insn));
4310 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4311 case 40: /* Subtract from */
4312 case 104: /* Negate */
4313 case 233: /* Multiply low doubleword */
4314 case 235: /* Multiply low word */
4316 case 393: /* Divide Doubleword Extended Unsigned */
4317 case 395: /* Divide Word Extended Unsigned */
4318 case 425: /* Divide Doubleword Extended */
4319 case 427: /* Divide Word Extended */
4320 case 457: /* Divide Doubleword Unsigned */
4321 case 459: /* Divide Word Unsigned */
4322 case 489: /* Divide Doubleword */
4323 case 491: /* Divide Word */
4325 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4327 case 9: /* Multiply High Doubleword Unsigned */
4328 case 11: /* Multiply High Word Unsigned */
4329 case 73: /* Multiply High Doubleword */
4330 case 75: /* Multiply High Word */
4332 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4333 record_full_arch_list_add_reg (regcache,
4334 tdep->ppc_gp0_regnum + PPC_RT (insn));
4338 if ((ext & 0x1f) == 15)
4340 /* Integer Select. bit[16:20] is used for BC. */
4341 record_full_arch_list_add_reg (regcache,
4342 tdep->ppc_gp0_regnum + PPC_RT (insn));
4346 if ((ext & 0xff) == 170)
4348 /* Add Extended using alternate carry bits */
4349 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4350 record_full_arch_list_add_reg (regcache,
4351 tdep->ppc_gp0_regnum + PPC_RT (insn));
4357 case 78: /* Determine Leftmost Zero Byte */
4359 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4360 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4361 record_full_arch_list_add_reg (regcache,
4362 tdep->ppc_gp0_regnum + PPC_RT (insn));
4365 /* These only write RT. */
4366 case 19: /* Move from condition register */
4367 /* Move From One Condition Register Field */
4368 case 74: /* Add and Generate Sixes */
4369 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4370 case 302: /* Move From Branch History Rolling Buffer */
4371 case 339: /* Move From Special Purpose Register */
4372 case 371: /* Move From Time Base [Phased-Out] */
4373 case 309: /* Load Doubleword Monitored Indexed */
4374 case 128: /* Set Boolean */
4375 case 755: /* Deliver A Random Number */
4376 record_full_arch_list_add_reg (regcache,
4377 tdep->ppc_gp0_regnum + PPC_RT (insn));
4380 /* These only write to RA. */
4381 case 51: /* Move From VSR Doubleword */
4382 case 115: /* Move From VSR Word and Zero */
4383 case 122: /* Population count bytes */
4384 case 378: /* Population count words */
4385 case 506: /* Population count doublewords */
4386 case 154: /* Parity Word */
4387 case 186: /* Parity Doubleword */
4388 case 252: /* Bit Permute Doubleword */
4389 case 282: /* Convert Declets To Binary Coded Decimal */
4390 case 314: /* Convert Binary Coded Decimal To Declets */
4391 case 508: /* Compare bytes */
4392 case 307: /* Move From VSR Lower Doubleword */
4393 record_full_arch_list_add_reg (regcache,
4394 tdep->ppc_gp0_regnum + PPC_RA (insn));
4397 /* These write CR and optional RA. */
4398 case 792: /* Shift Right Algebraic Word */
4399 case 794: /* Shift Right Algebraic Doubleword */
4400 case 824: /* Shift Right Algebraic Word Immediate */
4401 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4402 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4403 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4404 record_full_arch_list_add_reg (regcache,
4405 tdep->ppc_gp0_regnum + PPC_RA (insn));
4407 case 0: /* Compare */
4408 case 32: /* Compare logical */
4409 case 144: /* Move To Condition Register Fields */
4410 /* Move To One Condition Register Field */
4411 case 192: /* Compare Ranged Byte */
4412 case 224: /* Compare Equal Byte */
4413 case 576: /* Move XER to CR Extended */
4414 case 902: /* Paste (should always fail due to single-stepping and
4415 the memory location might not be accessible, so
4417 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4420 /* These write to RT. Update RA if 'update indexed.' */
4421 case 53: /* Load Doubleword with Update Indexed */
4422 case 119: /* Load Byte and Zero with Update Indexed */
4423 case 311: /* Load Halfword and Zero with Update Indexed */
4424 case 55: /* Load Word and Zero with Update Indexed */
4425 case 375: /* Load Halfword Algebraic with Update Indexed */
4426 case 373: /* Load Word Algebraic with Update Indexed */
4427 record_full_arch_list_add_reg (regcache,
4428 tdep->ppc_gp0_regnum + PPC_RA (insn));
4430 case 21: /* Load Doubleword Indexed */
4431 case 52: /* Load Byte And Reserve Indexed */
4432 case 116: /* Load Halfword And Reserve Indexed */
4433 case 20: /* Load Word And Reserve Indexed */
4434 case 84: /* Load Doubleword And Reserve Indexed */
4435 case 87: /* Load Byte and Zero Indexed */
4436 case 279: /* Load Halfword and Zero Indexed */
4437 case 23: /* Load Word and Zero Indexed */
4438 case 343: /* Load Halfword Algebraic Indexed */
4439 case 341: /* Load Word Algebraic Indexed */
4440 case 790: /* Load Halfword Byte-Reverse Indexed */
4441 case 534: /* Load Word Byte-Reverse Indexed */
4442 case 532: /* Load Doubleword Byte-Reverse Indexed */
4443 case 582: /* Load Word Atomic */
4444 case 614: /* Load Doubleword Atomic */
4445 case 265: /* Modulo Unsigned Doubleword */
4446 case 777: /* Modulo Signed Doubleword */
4447 case 267: /* Modulo Unsigned Word */
4448 case 779: /* Modulo Signed Word */
4449 record_full_arch_list_add_reg (regcache,
4450 tdep->ppc_gp0_regnum + PPC_RT (insn));
4453 case 597: /* Load String Word Immediate */
4454 case 533: /* Load String Word Indexed */
4463 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4464 nr = PPC_XER_NB (xer);
4469 /* If n=0, the contents of register RT are undefined. */
4473 for (i = 0; i < nr; i++)
4474 record_full_arch_list_add_reg (regcache,
4475 tdep->ppc_gp0_regnum
4476 + ((PPC_RT (insn) + i) & 0x1f));
4479 case 276: /* Load Quadword And Reserve Indexed */
4480 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4481 record_full_arch_list_add_reg (regcache, tmp);
4482 record_full_arch_list_add_reg (regcache, tmp + 1);
4485 /* These write VRT. */
4486 case 6: /* Load Vector for Shift Left Indexed */
4487 case 38: /* Load Vector for Shift Right Indexed */
4488 case 7: /* Load Vector Element Byte Indexed */
4489 case 39: /* Load Vector Element Halfword Indexed */
4490 case 71: /* Load Vector Element Word Indexed */
4491 case 103: /* Load Vector Indexed */
4492 case 359: /* Load Vector Indexed LRU */
4493 record_full_arch_list_add_reg (regcache,
4494 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4497 /* These write FRT. Update RA if 'update indexed.' */
4498 case 567: /* Load Floating-Point Single with Update Indexed */
4499 case 631: /* Load Floating-Point Double with Update Indexed */
4500 record_full_arch_list_add_reg (regcache,
4501 tdep->ppc_gp0_regnum + PPC_RA (insn));
4503 case 535: /* Load Floating-Point Single Indexed */
4504 case 599: /* Load Floating-Point Double Indexed */
4505 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4506 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4507 record_full_arch_list_add_reg (regcache,
4508 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4511 case 791: /* Load Floating-Point Double Pair Indexed */
4512 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4513 record_full_arch_list_add_reg (regcache, tmp);
4514 record_full_arch_list_add_reg (regcache, tmp + 1);
4517 case 179: /* Move To VSR Doubleword */
4518 case 211: /* Move To VSR Word Algebraic */
4519 case 243: /* Move To VSR Word and Zero */
4520 case 588: /* Load VSX Scalar Doubleword Indexed */
4521 case 524: /* Load VSX Scalar Single-Precision Indexed */
4522 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4523 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4524 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4525 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4526 case 780: /* Load VSX Vector Word*4 Indexed */
4527 case 268: /* Load VSX Vector Indexed */
4528 case 364: /* Load VSX Vector Word & Splat Indexed */
4529 case 812: /* Load VSX Vector Halfword*8 Indexed */
4530 case 876: /* Load VSX Vector Byte*16 Indexed */
4531 case 269: /* Load VSX Vector with Length */
4532 case 301: /* Load VSX Vector Left-justified with Length */
4533 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4534 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4535 case 403: /* Move To VSR Word & Splat */
4536 case 435: /* Move To VSR Double Doubleword */
4537 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4540 /* These write RA. Update CR if RC is set. */
4541 case 24: /* Shift Left Word */
4542 case 26: /* Count Leading Zeros Word */
4543 case 27: /* Shift Left Doubleword */
4545 case 58: /* Count Leading Zeros Doubleword */
4546 case 60: /* AND with Complement */
4548 case 284: /* Equivalent */
4550 case 476: /* NAND */
4551 case 412: /* OR with Complement */
4553 case 536: /* Shift Right Word */
4554 case 539: /* Shift Right Doubleword */
4555 case 922: /* Extend Sign Halfword */
4556 case 954: /* Extend Sign Byte */
4557 case 986: /* Extend Sign Word */
4558 case 538: /* Count Trailing Zeros Word */
4559 case 570: /* Count Trailing Zeros Doubleword */
4560 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4561 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4563 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4564 record_full_arch_list_add_reg (regcache,
4565 tdep->ppc_gp0_regnum + PPC_RA (insn));
4569 case 181: /* Store Doubleword with Update Indexed */
4570 case 183: /* Store Word with Update Indexed */
4571 case 247: /* Store Byte with Update Indexed */
4572 case 439: /* Store Half Word with Update Indexed */
4573 case 695: /* Store Floating-Point Single with Update Indexed */
4574 case 759: /* Store Floating-Point Double with Update Indexed */
4575 record_full_arch_list_add_reg (regcache,
4576 tdep->ppc_gp0_regnum + PPC_RA (insn));
4578 case 135: /* Store Vector Element Byte Indexed */
4579 case 167: /* Store Vector Element Halfword Indexed */
4580 case 199: /* Store Vector Element Word Indexed */
4581 case 231: /* Store Vector Indexed */
4582 case 487: /* Store Vector Indexed LRU */
4583 case 716: /* Store VSX Scalar Doubleword Indexed */
4584 case 140: /* Store VSX Scalar as Integer Word Indexed */
4585 case 652: /* Store VSX Scalar Single-Precision Indexed */
4586 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4587 case 908: /* Store VSX Vector Word*4 Indexed */
4588 case 149: /* Store Doubleword Indexed */
4589 case 151: /* Store Word Indexed */
4590 case 215: /* Store Byte Indexed */
4591 case 407: /* Store Half Word Indexed */
4592 case 694: /* Store Byte Conditional Indexed */
4593 case 726: /* Store Halfword Conditional Indexed */
4594 case 150: /* Store Word Conditional Indexed */
4595 case 214: /* Store Doubleword Conditional Indexed */
4596 case 182: /* Store Quadword Conditional Indexed */
4597 case 662: /* Store Word Byte-Reverse Indexed */
4598 case 918: /* Store Halfword Byte-Reverse Indexed */
4599 case 660: /* Store Doubleword Byte-Reverse Indexed */
4600 case 663: /* Store Floating-Point Single Indexed */
4601 case 727: /* Store Floating-Point Double Indexed */
4602 case 919: /* Store Floating-Point Double Pair Indexed */
4603 case 983: /* Store Floating-Point as Integer Word Indexed */
4604 case 396: /* Store VSX Vector Indexed */
4605 case 940: /* Store VSX Vector Halfword*8 Indexed */
4606 case 1004: /* Store VSX Vector Byte*16 Indexed */
4607 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4608 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4609 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4610 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4613 if (PPC_RA (insn) != 0)
4614 regcache_raw_read_unsigned (regcache,
4615 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4616 regcache_raw_read_unsigned (regcache,
4617 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4622 case 183: /* Store Word with Update Indexed */
4623 case 199: /* Store Vector Element Word Indexed */
4624 case 140: /* Store VSX Scalar as Integer Word Indexed */
4625 case 652: /* Store VSX Scalar Single-Precision Indexed */
4626 case 151: /* Store Word Indexed */
4627 case 150: /* Store Word Conditional Indexed */
4628 case 662: /* Store Word Byte-Reverse Indexed */
4629 case 663: /* Store Floating-Point Single Indexed */
4630 case 695: /* Store Floating-Point Single with Update Indexed */
4631 case 983: /* Store Floating-Point as Integer Word Indexed */
4634 case 247: /* Store Byte with Update Indexed */
4635 case 135: /* Store Vector Element Byte Indexed */
4636 case 215: /* Store Byte Indexed */
4637 case 694: /* Store Byte Conditional Indexed */
4638 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4641 case 439: /* Store Halfword with Update Indexed */
4642 case 167: /* Store Vector Element Halfword Indexed */
4643 case 407: /* Store Halfword Indexed */
4644 case 726: /* Store Halfword Conditional Indexed */
4645 case 918: /* Store Halfword Byte-Reverse Indexed */
4646 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4649 case 181: /* Store Doubleword with Update Indexed */
4650 case 716: /* Store VSX Scalar Doubleword Indexed */
4651 case 149: /* Store Doubleword Indexed */
4652 case 214: /* Store Doubleword Conditional Indexed */
4653 case 660: /* Store Doubleword Byte-Reverse Indexed */
4654 case 727: /* Store Floating-Point Double Indexed */
4655 case 759: /* Store Floating-Point Double with Update Indexed */
4658 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4659 case 908: /* Store VSX Vector Word*4 Indexed */
4660 case 182: /* Store Quadword Conditional Indexed */
4661 case 231: /* Store Vector Indexed */
4662 case 487: /* Store Vector Indexed LRU */
4663 case 919: /* Store Floating-Point Double Pair Indexed */
4664 case 396: /* Store VSX Vector Indexed */
4665 case 940: /* Store VSX Vector Halfword*8 Indexed */
4666 case 1004: /* Store VSX Vector Byte*16 Indexed */
4673 /* Align address for Store Vector instructions. */
4676 case 167: /* Store Vector Element Halfword Indexed */
4677 addr = addr & ~0x1ULL;
4680 case 199: /* Store Vector Element Word Indexed */
4681 addr = addr & ~0x3ULL;
4684 case 231: /* Store Vector Indexed */
4685 case 487: /* Store Vector Indexed LRU */
4686 addr = addr & ~0xfULL;
4690 record_full_arch_list_add_mem (addr, size);
4693 case 397: /* Store VSX Vector with Length */
4694 case 429: /* Store VSX Vector Left-justified with Length */
4696 if (PPC_RA (insn) != 0)
4697 regcache_raw_read_unsigned (regcache,
4698 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4700 regcache_raw_read_unsigned (regcache,
4701 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4702 /* Store up to 16 bytes. */
4703 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4705 record_full_arch_list_add_mem (ea, nb);
4708 case 710: /* Store Word Atomic */
4709 case 742: /* Store Doubleword Atomic */
4711 if (PPC_RA (insn) != 0)
4712 regcache_raw_read_unsigned (regcache,
4713 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4717 case 710: /* Store Word Atomic */
4720 case 742: /* Store Doubleword Atomic */
4726 record_full_arch_list_add_mem (ea, size);
4729 case 725: /* Store String Word Immediate */
4731 if (PPC_RA (insn) != 0)
4732 regcache_raw_read_unsigned (regcache,
4733 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4740 record_full_arch_list_add_mem (ea, nb);
4744 case 661: /* Store String Word Indexed */
4746 if (PPC_RA (insn) != 0)
4747 regcache_raw_read_unsigned (regcache,
4748 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4751 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4752 nb = PPC_XER_NB (xer);
4756 regcache_raw_read_unsigned (regcache,
4757 tdep->ppc_gp0_regnum + PPC_RB (insn),
4760 record_full_arch_list_add_mem (ea, nb);
4765 case 467: /* Move To Special Purpose Register */
4766 switch (PPC_SPR (insn))
4769 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4772 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4775 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4777 case 256: /* VRSAVE */
4778 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4784 case 147: /* Move To Split Little Endian */
4785 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4788 case 512: /* Move to Condition Register from XER */
4789 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4790 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4793 case 4: /* Trap Word */
4794 case 68: /* Trap Doubleword */
4795 case 430: /* Clear BHRB */
4796 case 598: /* Synchronize */
4797 case 62: /* Wait for Interrupt */
4799 case 22: /* Instruction Cache Block Touch */
4800 case 854: /* Enforce In-order Execution of I/O */
4801 case 246: /* Data Cache Block Touch for Store */
4802 case 54: /* Data Cache Block Store */
4803 case 86: /* Data Cache Block Flush */
4804 case 278: /* Data Cache Block Touch */
4805 case 758: /* Data Cache Block Allocate */
4806 case 982: /* Instruction Cache Block Invalidate */
4807 case 774: /* Copy */
4808 case 838: /* CP_Abort */
4811 case 654: /* Transaction Begin */
4812 case 686: /* Transaction End */
4813 case 750: /* Transaction Suspend or Resume */
4814 case 782: /* Transaction Abort Word Conditional */
4815 case 814: /* Transaction Abort Doubleword Conditional */
4816 case 846: /* Transaction Abort Word Conditional Immediate */
4817 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4818 case 910: /* Transaction Abort */
4819 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4821 case 718: /* Transaction Check */
4822 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4825 case 1014: /* Data Cache Block set to Zero */
4826 if (target_auxv_search (¤t_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4828 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4831 if (PPC_RA (insn) != 0)
4832 regcache_raw_read_unsigned (regcache,
4833 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4834 regcache_raw_read_unsigned (regcache,
4835 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4836 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4837 record_full_arch_list_add_mem (ea, at_dcsz);
4842 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4843 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4847 /* Parse and record instructions of primary opcode-59 at ADDR.
4848 Return 0 if successful. */
4851 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4852 CORE_ADDR addr, uint32_t insn)
4854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4855 int ext = PPC_EXTOP (insn);
4859 case 18: /* Floating Divide */
4860 case 20: /* Floating Subtract */
4861 case 21: /* Floating Add */
4862 case 22: /* Floating Square Root */
4863 case 24: /* Floating Reciprocal Estimate */
4864 case 25: /* Floating Multiply */
4865 case 26: /* Floating Reciprocal Square Root Estimate */
4866 case 28: /* Floating Multiply-Subtract */
4867 case 29: /* Floating Multiply-Add */
4868 case 30: /* Floating Negative Multiply-Subtract */
4869 case 31: /* Floating Negative Multiply-Add */
4870 record_full_arch_list_add_reg (regcache,
4871 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4873 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4874 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4881 case 2: /* DFP Add */
4882 case 3: /* DFP Quantize */
4883 case 34: /* DFP Multiply */
4884 case 35: /* DFP Reround */
4885 case 67: /* DFP Quantize Immediate */
4886 case 99: /* DFP Round To FP Integer With Inexact */
4887 case 227: /* DFP Round To FP Integer Without Inexact */
4888 case 258: /* DFP Convert To DFP Long! */
4889 case 290: /* DFP Convert To Fixed */
4890 case 514: /* DFP Subtract */
4891 case 546: /* DFP Divide */
4892 case 770: /* DFP Round To DFP Short! */
4893 case 802: /* DFP Convert From Fixed */
4894 case 834: /* DFP Encode BCD To DPD */
4896 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4897 record_full_arch_list_add_reg (regcache,
4898 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4899 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4902 case 130: /* DFP Compare Ordered */
4903 case 162: /* DFP Test Exponent */
4904 case 194: /* DFP Test Data Class */
4905 case 226: /* DFP Test Data Group */
4906 case 642: /* DFP Compare Unordered */
4907 case 674: /* DFP Test Significance */
4908 case 675: /* DFP Test Significance Immediate */
4909 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4910 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4913 case 66: /* DFP Shift Significand Left Immediate */
4914 case 98: /* DFP Shift Significand Right Immediate */
4915 case 322: /* DFP Decode DPD To BCD */
4916 case 354: /* DFP Extract Biased Exponent */
4917 case 866: /* DFP Insert Biased Exponent */
4918 record_full_arch_list_add_reg (regcache,
4919 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4921 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4924 case 846: /* Floating Convert From Integer Doubleword Single */
4925 case 974: /* Floating Convert From Integer Doubleword Unsigned
4927 record_full_arch_list_add_reg (regcache,
4928 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4930 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4931 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4936 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4937 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4941 /* Parse and record instructions of primary opcode-60 at ADDR.
4942 Return 0 if successful. */
4945 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4946 CORE_ADDR addr, uint32_t insn)
4948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4949 int ext = PPC_EXTOP (insn);
4953 case 0: /* VSX Scalar Add Single-Precision */
4954 case 32: /* VSX Scalar Add Double-Precision */
4955 case 24: /* VSX Scalar Divide Single-Precision */
4956 case 56: /* VSX Scalar Divide Double-Precision */
4957 case 176: /* VSX Scalar Copy Sign Double-Precision */
4958 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4959 case 41: /* ditto */
4960 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4962 case 160: /* VSX Scalar Maximum Double-Precision */
4963 case 168: /* VSX Scalar Minimum Double-Precision */
4964 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4965 case 57: /* ditto */
4966 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4967 case 25: /* ditto */
4968 case 48: /* VSX Scalar Multiply Double-Precision */
4969 case 16: /* VSX Scalar Multiply Single-Precision */
4970 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4971 case 169: /* ditto */
4972 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4973 case 137: /* ditto */
4974 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4975 case 185: /* ditto */
4976 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4977 case 153: /* ditto */
4978 case 40: /* VSX Scalar Subtract Double-Precision */
4979 case 8: /* VSX Scalar Subtract Single-Precision */
4980 case 96: /* VSX Vector Add Double-Precision */
4981 case 64: /* VSX Vector Add Single-Precision */
4982 case 120: /* VSX Vector Divide Double-Precision */
4983 case 88: /* VSX Vector Divide Single-Precision */
4984 case 97: /* VSX Vector Multiply-Add Double-Precision */
4985 case 105: /* ditto */
4986 case 65: /* VSX Vector Multiply-Add Single-Precision */
4987 case 73: /* ditto */
4988 case 224: /* VSX Vector Maximum Double-Precision */
4989 case 192: /* VSX Vector Maximum Single-Precision */
4990 case 232: /* VSX Vector Minimum Double-Precision */
4991 case 200: /* VSX Vector Minimum Single-Precision */
4992 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4993 case 121: /* ditto */
4994 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4995 case 89: /* ditto */
4996 case 112: /* VSX Vector Multiply Double-Precision */
4997 case 80: /* VSX Vector Multiply Single-Precision */
4998 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4999 case 233: /* ditto */
5000 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5001 case 201: /* ditto */
5002 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5003 case 249: /* ditto */
5004 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5005 case 217: /* ditto */
5006 case 104: /* VSX Vector Subtract Double-Precision */
5007 case 72: /* VSX Vector Subtract Single-Precision */
5008 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5009 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5010 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5011 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5012 case 3: /* VSX Scalar Compare Equal Double-Precision */
5013 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5014 case 19: /* VSX Scalar Compare Greater Than or Equal
5016 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5018 case 240: /* VSX Vector Copy Sign Double-Precision */
5019 case 208: /* VSX Vector Copy Sign Single-Precision */
5020 case 130: /* VSX Logical AND */
5021 case 138: /* VSX Logical AND with Complement */
5022 case 186: /* VSX Logical Equivalence */
5023 case 178: /* VSX Logical NAND */
5024 case 170: /* VSX Logical OR with Complement */
5025 case 162: /* VSX Logical NOR */
5026 case 146: /* VSX Logical OR */
5027 case 154: /* VSX Logical XOR */
5028 case 18: /* VSX Merge High Word */
5029 case 50: /* VSX Merge Low Word */
5030 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5031 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5032 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5033 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5034 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5035 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5036 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5037 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5038 case 216: /* VSX Vector Insert Exponent Single-Precision */
5039 case 248: /* VSX Vector Insert Exponent Double-Precision */
5040 case 26: /* VSX Vector Permute */
5041 case 58: /* VSX Vector Permute Right-indexed */
5042 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5043 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5044 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5045 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5046 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5049 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5050 case 125: /* VSX Vector Test for software Divide Double-Precision */
5051 case 93: /* VSX Vector Test for software Divide Single-Precision */
5052 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5055 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5056 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5057 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5058 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5059 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5063 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5065 case 99: /* VSX Vector Compare Equal To Double-Precision */
5066 case 67: /* VSX Vector Compare Equal To Single-Precision */
5067 case 115: /* VSX Vector Compare Greater Than or
5068 Equal To Double-Precision */
5069 case 83: /* VSX Vector Compare Greater Than or
5070 Equal To Single-Precision */
5071 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5072 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5074 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5075 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5076 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5082 case 265: /* VSX Scalar round Double-Precision to
5083 Single-Precision and Convert to
5084 Single-Precision format */
5085 case 344: /* VSX Scalar truncate Double-Precision to
5086 Integer and Convert to Signed Integer
5087 Doubleword format with Saturate */
5088 case 88: /* VSX Scalar truncate Double-Precision to
5089 Integer and Convert to Signed Integer Word
5090 Format with Saturate */
5091 case 328: /* VSX Scalar truncate Double-Precision integer
5092 and Convert to Unsigned Integer Doubleword
5093 Format with Saturate */
5094 case 72: /* VSX Scalar truncate Double-Precision to
5095 Integer and Convert to Unsigned Integer Word
5096 Format with Saturate */
5097 case 329: /* VSX Scalar Convert Single-Precision to
5098 Double-Precision format */
5099 case 376: /* VSX Scalar Convert Signed Integer
5100 Doubleword to floating-point format and
5101 Round to Double-Precision format */
5102 case 312: /* VSX Scalar Convert Signed Integer
5103 Doubleword to floating-point format and
5104 round to Single-Precision */
5105 case 360: /* VSX Scalar Convert Unsigned Integer
5106 Doubleword to floating-point format and
5107 Round to Double-Precision format */
5108 case 296: /* VSX Scalar Convert Unsigned Integer
5109 Doubleword to floating-point format and
5110 Round to Single-Precision */
5111 case 73: /* VSX Scalar Round to Double-Precision Integer
5112 Using Round to Nearest Away */
5113 case 107: /* VSX Scalar Round to Double-Precision Integer
5114 Exact using Current rounding mode */
5115 case 121: /* VSX Scalar Round to Double-Precision Integer
5116 Using Round toward -Infinity */
5117 case 105: /* VSX Scalar Round to Double-Precision Integer
5118 Using Round toward +Infinity */
5119 case 89: /* VSX Scalar Round to Double-Precision Integer
5120 Using Round toward Zero */
5121 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5122 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5123 case 281: /* VSX Scalar Round to Single-Precision */
5124 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5126 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5128 case 75: /* VSX Scalar Square Root Double-Precision */
5129 case 11: /* VSX Scalar Square Root Single-Precision */
5130 case 393: /* VSX Vector round Double-Precision to
5131 Single-Precision and Convert to
5132 Single-Precision format */
5133 case 472: /* VSX Vector truncate Double-Precision to
5134 Integer and Convert to Signed Integer
5135 Doubleword format with Saturate */
5136 case 216: /* VSX Vector truncate Double-Precision to
5137 Integer and Convert to Signed Integer Word
5138 Format with Saturate */
5139 case 456: /* VSX Vector truncate Double-Precision to
5140 Integer and Convert to Unsigned Integer
5141 Doubleword format with Saturate */
5142 case 200: /* VSX Vector truncate Double-Precision to
5143 Integer and Convert to Unsigned Integer Word
5144 Format with Saturate */
5145 case 457: /* VSX Vector Convert Single-Precision to
5146 Double-Precision format */
5147 case 408: /* VSX Vector truncate Single-Precision to
5148 Integer and Convert to Signed Integer
5149 Doubleword format with Saturate */
5150 case 152: /* VSX Vector truncate Single-Precision to
5151 Integer and Convert to Signed Integer Word
5152 Format with Saturate */
5153 case 392: /* VSX Vector truncate Single-Precision to
5154 Integer and Convert to Unsigned Integer
5155 Doubleword format with Saturate */
5156 case 136: /* VSX Vector truncate Single-Precision to
5157 Integer and Convert to Unsigned Integer Word
5158 Format with Saturate */
5159 case 504: /* VSX Vector Convert and round Signed Integer
5160 Doubleword to Double-Precision format */
5161 case 440: /* VSX Vector Convert and round Signed Integer
5162 Doubleword to Single-Precision format */
5163 case 248: /* VSX Vector Convert Signed Integer Word to
5164 Double-Precision format */
5165 case 184: /* VSX Vector Convert and round Signed Integer
5166 Word to Single-Precision format */
5167 case 488: /* VSX Vector Convert and round Unsigned
5168 Integer Doubleword to Double-Precision format */
5169 case 424: /* VSX Vector Convert and round Unsigned
5170 Integer Doubleword to Single-Precision format */
5171 case 232: /* VSX Vector Convert and round Unsigned
5172 Integer Word to Double-Precision format */
5173 case 168: /* VSX Vector Convert and round Unsigned
5174 Integer Word to Single-Precision format */
5175 case 201: /* VSX Vector Round to Double-Precision
5176 Integer using round to Nearest Away */
5177 case 235: /* VSX Vector Round to Double-Precision
5178 Integer Exact using Current rounding mode */
5179 case 249: /* VSX Vector Round to Double-Precision
5180 Integer using round toward -Infinity */
5181 case 233: /* VSX Vector Round to Double-Precision
5182 Integer using round toward +Infinity */
5183 case 217: /* VSX Vector Round to Double-Precision
5184 Integer using round toward Zero */
5185 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5186 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5187 case 137: /* VSX Vector Round to Single-Precision Integer
5188 Using Round to Nearest Away */
5189 case 171: /* VSX Vector Round to Single-Precision Integer
5190 Exact Using Current rounding mode */
5191 case 185: /* VSX Vector Round to Single-Precision Integer
5192 Using Round toward -Infinity */
5193 case 169: /* VSX Vector Round to Single-Precision Integer
5194 Using Round toward +Infinity */
5195 case 153: /* VSX Vector Round to Single-Precision Integer
5196 Using round toward Zero */
5197 case 202: /* VSX Vector Reciprocal Square Root Estimate
5199 case 138: /* VSX Vector Reciprocal Square Root Estimate
5201 case 203: /* VSX Vector Square Root Double-Precision */
5202 case 139: /* VSX Vector Square Root Single-Precision */
5203 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5205 case 345: /* VSX Scalar Absolute Value Double-Precision */
5206 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5207 Vector Single-Precision format Non-signalling */
5208 case 331: /* VSX Scalar Convert Single-Precision to
5209 Double-Precision format Non-signalling */
5210 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5211 case 377: /* VSX Scalar Negate Double-Precision */
5212 case 473: /* VSX Vector Absolute Value Double-Precision */
5213 case 409: /* VSX Vector Absolute Value Single-Precision */
5214 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5215 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5216 case 505: /* VSX Vector Negate Double-Precision */
5217 case 441: /* VSX Vector Negate Single-Precision */
5218 case 164: /* VSX Splat Word */
5219 case 165: /* VSX Vector Extract Unsigned Word */
5220 case 181: /* VSX Vector Insert Word */
5221 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5224 case 298: /* VSX Scalar Test Data Class Single-Precision */
5225 case 362: /* VSX Scalar Test Data Class Double-Precision */
5226 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5228 case 106: /* VSX Scalar Test for software Square Root
5230 case 234: /* VSX Vector Test for software Square Root
5232 case 170: /* VSX Vector Test for software Square Root
5234 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5238 switch (PPC_FIELD (insn, 11, 5))
5240 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5241 case 1: /* VSX Scalar Extract Significand Double-Precision */
5242 record_full_arch_list_add_reg (regcache,
5243 tdep->ppc_gp0_regnum + PPC_RT (insn));
5245 case 16: /* VSX Scalar Convert Half-Precision format to
5246 Double-Precision format */
5247 case 17: /* VSX Scalar round & Convert Double-Precision format
5248 to Half-Precision format */
5249 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5250 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5256 switch (PPC_FIELD (insn, 11, 5))
5258 case 24: /* VSX Vector Convert Half-Precision format to
5259 Single-Precision format */
5260 case 25: /* VSX Vector round and Convert Single-Precision format
5261 to Half-Precision format */
5262 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5264 case 0: /* VSX Vector Extract Exponent Double-Precision */
5265 case 1: /* VSX Vector Extract Significand Double-Precision */
5266 case 7: /* VSX Vector Byte-Reverse Halfword */
5267 case 8: /* VSX Vector Extract Exponent Single-Precision */
5268 case 9: /* VSX Vector Extract Significand Single-Precision */
5269 case 15: /* VSX Vector Byte-Reverse Word */
5270 case 23: /* VSX Vector Byte-Reverse Doubleword */
5271 case 31: /* VSX Vector Byte-Reverse Quadword */
5272 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5280 case 360: /* VSX Vector Splat Immediate Byte */
5281 if (PPC_FIELD (insn, 11, 2) == 0)
5283 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5287 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5288 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5292 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5294 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5298 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5299 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5303 /* Parse and record instructions of primary opcode-61 at ADDR.
5304 Return 0 if successful. */
5307 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5308 CORE_ADDR addr, uint32_t insn)
5310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5316 case 0: /* Store Floating-Point Double Pair */
5317 case 2: /* Store VSX Scalar Doubleword */
5318 case 3: /* Store VSX Scalar Single */
5319 if (PPC_RA (insn) != 0)
5320 regcache_raw_read_unsigned (regcache,
5321 tdep->ppc_gp0_regnum + PPC_RA (insn),
5323 ea += PPC_DS (insn) << 2;
5326 case 0: /* Store Floating-Point Double Pair */
5329 case 2: /* Store VSX Scalar Doubleword */
5332 case 3: /* Store VSX Scalar Single */
5338 record_full_arch_list_add_mem (ea, size);
5344 case 1: /* Load VSX Vector */
5345 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5347 case 5: /* Store VSX Vector */
5348 if (PPC_RA (insn) != 0)
5349 regcache_raw_read_unsigned (regcache,
5350 tdep->ppc_gp0_regnum + PPC_RA (insn),
5352 ea += PPC_DQ (insn) << 4;
5353 record_full_arch_list_add_mem (ea, 16);
5357 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5358 "at %s.\n", insn, paddress (gdbarch, addr));
5362 /* Parse and record instructions of primary opcode-63 at ADDR.
5363 Return 0 if successful. */
5366 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5367 CORE_ADDR addr, uint32_t insn)
5369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5370 int ext = PPC_EXTOP (insn);
5375 case 18: /* Floating Divide */
5376 case 20: /* Floating Subtract */
5377 case 21: /* Floating Add */
5378 case 22: /* Floating Square Root */
5379 case 24: /* Floating Reciprocal Estimate */
5380 case 25: /* Floating Multiply */
5381 case 26: /* Floating Reciprocal Square Root Estimate */
5382 case 28: /* Floating Multiply-Subtract */
5383 case 29: /* Floating Multiply-Add */
5384 case 30: /* Floating Negative Multiply-Subtract */
5385 case 31: /* Floating Negative Multiply-Add */
5386 record_full_arch_list_add_reg (regcache,
5387 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5389 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5390 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5393 case 23: /* Floating Select */
5394 record_full_arch_list_add_reg (regcache,
5395 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5397 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5403 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5404 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5406 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5407 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5413 case 2: /* DFP Add Quad */
5414 case 3: /* DFP Quantize Quad */
5415 case 34: /* DFP Multiply Quad */
5416 case 35: /* DFP Reround Quad */
5417 case 67: /* DFP Quantize Immediate Quad */
5418 case 99: /* DFP Round To FP Integer With Inexact Quad */
5419 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5420 case 258: /* DFP Convert To DFP Extended Quad */
5421 case 514: /* DFP Subtract Quad */
5422 case 546: /* DFP Divide Quad */
5423 case 770: /* DFP Round To DFP Long Quad */
5424 case 802: /* DFP Convert From Fixed Quad */
5425 case 834: /* DFP Encode BCD To DPD Quad */
5427 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5428 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5429 record_full_arch_list_add_reg (regcache, tmp);
5430 record_full_arch_list_add_reg (regcache, tmp + 1);
5431 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5434 case 130: /* DFP Compare Ordered Quad */
5435 case 162: /* DFP Test Exponent Quad */
5436 case 194: /* DFP Test Data Class Quad */
5437 case 226: /* DFP Test Data Group Quad */
5438 case 642: /* DFP Compare Unordered Quad */
5439 case 674: /* DFP Test Significance Quad */
5440 case 675: /* DFP Test Significance Immediate Quad */
5441 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5442 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5445 case 66: /* DFP Shift Significand Left Immediate Quad */
5446 case 98: /* DFP Shift Significand Right Immediate Quad */
5447 case 322: /* DFP Decode DPD To BCD Quad */
5448 case 866: /* DFP Insert Biased Exponent Quad */
5449 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5450 record_full_arch_list_add_reg (regcache, tmp);
5451 record_full_arch_list_add_reg (regcache, tmp + 1);
5453 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5456 case 290: /* DFP Convert To Fixed Quad */
5457 record_full_arch_list_add_reg (regcache,
5458 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5460 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5461 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5464 case 354: /* DFP Extract Biased Exponent Quad */
5465 record_full_arch_list_add_reg (regcache,
5466 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5468 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5471 case 12: /* Floating Round to Single-Precision */
5472 case 14: /* Floating Convert To Integer Word */
5473 case 15: /* Floating Convert To Integer Word
5474 with round toward Zero */
5475 case 142: /* Floating Convert To Integer Word Unsigned */
5476 case 143: /* Floating Convert To Integer Word Unsigned
5477 with round toward Zero */
5478 case 392: /* Floating Round to Integer Nearest */
5479 case 424: /* Floating Round to Integer Toward Zero */
5480 case 456: /* Floating Round to Integer Plus */
5481 case 488: /* Floating Round to Integer Minus */
5482 case 814: /* Floating Convert To Integer Doubleword */
5483 case 815: /* Floating Convert To Integer Doubleword
5484 with round toward Zero */
5485 case 846: /* Floating Convert From Integer Doubleword */
5486 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5487 case 943: /* Floating Convert To Integer Doubleword Unsigned
5488 with round toward Zero */
5489 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5490 record_full_arch_list_add_reg (regcache,
5491 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5493 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5494 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5498 switch (PPC_FIELD (insn, 11, 5))
5500 case 1: /* Move From FPSCR & Clear Enables */
5501 case 20: /* Move From FPSCR Control & set DRN */
5502 case 21: /* Move From FPSCR Control & set DRN Immediate */
5503 case 22: /* Move From FPSCR Control & set RN */
5504 case 23: /* Move From FPSCR Control & set RN Immediate */
5505 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5506 case 0: /* Move From FPSCR */
5507 case 24: /* Move From FPSCR Lightweight */
5508 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5509 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5510 record_full_arch_list_add_reg (regcache,
5511 tdep->ppc_fp0_regnum
5517 case 8: /* Floating Copy Sign */
5518 case 40: /* Floating Negate */
5519 case 72: /* Floating Move Register */
5520 case 136: /* Floating Negative Absolute Value */
5521 case 264: /* Floating Absolute Value */
5522 record_full_arch_list_add_reg (regcache,
5523 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5525 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5528 case 838: /* Floating Merge Odd Word */
5529 case 966: /* Floating Merge Even Word */
5530 record_full_arch_list_add_reg (regcache,
5531 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5534 case 38: /* Move To FPSCR Bit 1 */
5535 case 70: /* Move To FPSCR Bit 0 */
5536 case 134: /* Move To FPSCR Field Immediate */
5537 case 711: /* Move To FPSCR Fields */
5539 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5540 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5543 case 0: /* Floating Compare Unordered */
5544 case 32: /* Floating Compare Ordered */
5545 case 64: /* Move to Condition Register from FPSCR */
5546 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5547 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5548 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5549 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5550 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5552 case 128: /* Floating Test for software Divide */
5553 case 160: /* Floating Test for software Square Root */
5554 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5557 case 4: /* VSX Scalar Add Quad-Precision */
5558 case 36: /* VSX Scalar Multiply Quad-Precision */
5559 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5560 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5561 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5562 case 484: /* VSX Scalar Negative Multiply-Subtract
5564 case 516: /* VSX Scalar Subtract Quad-Precision */
5565 case 548: /* VSX Scalar Divide Quad-Precision */
5566 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5568 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5569 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5570 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5574 switch (PPC_FIELD (insn, 11, 5))
5576 case 27: /* VSX Scalar Square Root Quad-Precision */
5577 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5579 case 0: /* VSX Scalar Absolute Quad-Precision */
5580 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5581 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5582 case 16: /* VSX Scalar Negate Quad-Precision */
5583 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5584 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5590 switch (PPC_FIELD (insn, 11, 5))
5592 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5593 to Unsigned Word format */
5594 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5595 Quad-Precision format */
5596 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5597 to Signed Word format */
5598 case 10: /* VSX Scalar Convert Signed Doubleword format to
5599 Quad-Precision format */
5600 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5601 to Unsigned Doubleword format */
5602 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5603 Double-Precision format */
5604 case 22: /* VSX Scalar Convert Double-Precision format to
5605 Quad-Precision format */
5606 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5607 to Signed Doubleword format */
5608 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5609 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5614 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5615 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5619 /* Parse the current instruction and record the values of the registers and
5620 memory that will be changed in current instruction to "record_arch_list".
5621 Return -1 if something wrong. */
5624 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5632 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5633 op6 = PPC_OP6 (insn);
5637 case 2: /* Trap Doubleword Immediate */
5638 case 3: /* Trap Word Immediate */
5643 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5647 case 17: /* System call */
5648 if (PPC_LEV (insn) != 0)
5651 if (tdep->ppc_syscall_record != NULL)
5653 if (tdep->ppc_syscall_record (regcache) != 0)
5658 printf_unfiltered (_("no syscall record support\n"));
5663 case 7: /* Multiply Low Immediate */
5664 record_full_arch_list_add_reg (regcache,
5665 tdep->ppc_gp0_regnum + PPC_RT (insn));
5668 case 8: /* Subtract From Immediate Carrying */
5669 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5670 record_full_arch_list_add_reg (regcache,
5671 tdep->ppc_gp0_regnum + PPC_RT (insn));
5674 case 10: /* Compare Logical Immediate */
5675 case 11: /* Compare Immediate */
5676 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5679 case 13: /* Add Immediate Carrying and Record */
5680 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5682 case 12: /* Add Immediate Carrying */
5683 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5685 case 14: /* Add Immediate */
5686 case 15: /* Add Immediate Shifted */
5687 record_full_arch_list_add_reg (regcache,
5688 tdep->ppc_gp0_regnum + PPC_RT (insn));
5691 case 16: /* Branch Conditional */
5692 if ((PPC_BO (insn) & 0x4) == 0)
5693 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5695 case 18: /* Branch */
5697 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5701 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5705 case 20: /* Rotate Left Word Immediate then Mask Insert */
5706 case 21: /* Rotate Left Word Immediate then AND with Mask */
5707 case 23: /* Rotate Left Word then AND with Mask */
5708 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5709 /* Rotate Left Doubleword Immediate then Clear Right */
5710 /* Rotate Left Doubleword Immediate then Clear */
5711 /* Rotate Left Doubleword then Clear Left */
5712 /* Rotate Left Doubleword then Clear Right */
5713 /* Rotate Left Doubleword Immediate then Mask Insert */
5715 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5716 record_full_arch_list_add_reg (regcache,
5717 tdep->ppc_gp0_regnum + PPC_RA (insn));
5720 case 28: /* AND Immediate */
5721 case 29: /* AND Immediate Shifted */
5722 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5724 case 24: /* OR Immediate */
5725 case 25: /* OR Immediate Shifted */
5726 case 26: /* XOR Immediate */
5727 case 27: /* XOR Immediate Shifted */
5728 record_full_arch_list_add_reg (regcache,
5729 tdep->ppc_gp0_regnum + PPC_RA (insn));
5733 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5737 case 33: /* Load Word and Zero with Update */
5738 case 35: /* Load Byte and Zero with Update */
5739 case 41: /* Load Halfword and Zero with Update */
5740 case 43: /* Load Halfword Algebraic with Update */
5741 record_full_arch_list_add_reg (regcache,
5742 tdep->ppc_gp0_regnum + PPC_RA (insn));
5744 case 32: /* Load Word and Zero */
5745 case 34: /* Load Byte and Zero */
5746 case 40: /* Load Halfword and Zero */
5747 case 42: /* Load Halfword Algebraic */
5748 record_full_arch_list_add_reg (regcache,
5749 tdep->ppc_gp0_regnum + PPC_RT (insn));
5752 case 46: /* Load Multiple Word */
5753 for (i = PPC_RT (insn); i < 32; i++)
5754 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5757 case 56: /* Load Quadword */
5758 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5759 record_full_arch_list_add_reg (regcache, tmp);
5760 record_full_arch_list_add_reg (regcache, tmp + 1);
5763 case 49: /* Load Floating-Point Single with Update */
5764 case 51: /* Load Floating-Point Double with Update */
5765 record_full_arch_list_add_reg (regcache,
5766 tdep->ppc_gp0_regnum + PPC_RA (insn));
5768 case 48: /* Load Floating-Point Single */
5769 case 50: /* Load Floating-Point Double */
5770 record_full_arch_list_add_reg (regcache,
5771 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5774 case 47: /* Store Multiple Word */
5778 if (PPC_RA (insn) != 0)
5779 regcache_raw_read_unsigned (regcache,
5780 tdep->ppc_gp0_regnum + PPC_RA (insn),
5783 addr += PPC_D (insn);
5784 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5788 case 37: /* Store Word with Update */
5789 case 39: /* Store Byte with Update */
5790 case 45: /* Store Halfword with Update */
5791 case 53: /* Store Floating-Point Single with Update */
5792 case 55: /* Store Floating-Point Double with Update */
5793 record_full_arch_list_add_reg (regcache,
5794 tdep->ppc_gp0_regnum + PPC_RA (insn));
5796 case 36: /* Store Word */
5797 case 38: /* Store Byte */
5798 case 44: /* Store Halfword */
5799 case 52: /* Store Floating-Point Single */
5800 case 54: /* Store Floating-Point Double */
5805 if (PPC_RA (insn) != 0)
5806 regcache_raw_read_unsigned (regcache,
5807 tdep->ppc_gp0_regnum + PPC_RA (insn),
5809 addr += PPC_D (insn);
5811 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5813 else if (op6 == 54 || op6 == 55)
5815 else if (op6 == 44 || op6 == 45)
5817 else if (op6 == 38 || op6 == 39)
5822 record_full_arch_list_add_mem (addr, size);
5829 case 0: /* Load Floating-Point Double Pair */
5830 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5831 record_full_arch_list_add_reg (regcache, tmp);
5832 record_full_arch_list_add_reg (regcache, tmp + 1);
5834 case 2: /* Load VSX Scalar Doubleword */
5835 case 3: /* Load VSX Scalar Single */
5836 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5843 case 58: /* Load Doubleword */
5844 /* Load Doubleword with Update */
5845 /* Load Word Algebraic */
5846 if (PPC_FIELD (insn, 30, 2) > 2)
5849 record_full_arch_list_add_reg (regcache,
5850 tdep->ppc_gp0_regnum + PPC_RT (insn));
5851 if (PPC_BIT (insn, 31))
5852 record_full_arch_list_add_reg (regcache,
5853 tdep->ppc_gp0_regnum + PPC_RA (insn));
5857 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5862 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5867 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5871 case 62: /* Store Doubleword */
5872 /* Store Doubleword with Update */
5873 /* Store Quadword with Update */
5877 int sub2 = PPC_FIELD (insn, 30, 2);
5882 if (PPC_RA (insn) != 0)
5883 regcache_raw_read_unsigned (regcache,
5884 tdep->ppc_gp0_regnum + PPC_RA (insn),
5887 size = (sub2 == 2) ? 16 : 8;
5889 addr += PPC_DS (insn) << 2;
5890 record_full_arch_list_add_mem (addr, size);
5892 if (op6 == 62 && sub2 == 1)
5893 record_full_arch_list_add_reg (regcache,
5894 tdep->ppc_gp0_regnum +
5901 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5907 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5908 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5912 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5914 if (record_full_arch_list_add_end ())
5919 /* Initialize the current architecture based on INFO. If possible, re-use an
5920 architecture from ARCHES, which is a list of architectures already created
5921 during this debugging session.
5923 Called e.g. at program startup, when reading a core file, and when reading
5926 static struct gdbarch *
5927 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5929 struct gdbarch *gdbarch;
5930 struct gdbarch_tdep *tdep;
5931 int wordsize, from_xcoff_exec, from_elf_exec;
5932 enum bfd_architecture arch;
5935 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5937 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5938 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5939 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5941 int tdesc_wordsize = -1;
5942 const struct target_desc *tdesc = info.target_desc;
5943 struct tdesc_arch_data *tdesc_data = NULL;
5944 int num_pseudoregs = 0;
5947 /* INFO may refer to a binary that is not of the PowerPC architecture,
5948 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5949 In this case, we must not attempt to infer properties of the (PowerPC
5950 side) of the target system from properties of that executable. Trust
5951 the target description instead. */
5953 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5954 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5957 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5958 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5960 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5961 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5963 /* Check word size. If INFO is from a binary file, infer it from
5964 that, else choose a likely default. */
5965 if (from_xcoff_exec)
5967 if (bfd_xcoff_is_xcoff64 (info.abfd))
5972 else if (from_elf_exec)
5974 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5979 else if (tdesc_has_registers (tdesc))
5983 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5984 wordsize = (info.bfd_arch_info->bits_per_word
5985 / info.bfd_arch_info->bits_per_byte);
5990 /* Get the architecture and machine from the BFD. */
5991 arch = info.bfd_arch_info->arch;
5992 mach = info.bfd_arch_info->mach;
5994 /* For e500 executables, the apuinfo section is of help here. Such
5995 section contains the identifier and revision number of each
5996 Application-specific Processing Unit that is present on the
5997 chip. The content of the section is determined by the assembler
5998 which looks at each instruction and determines which unit (and
5999 which version of it) can execute it. Grovel through the section
6000 looking for relevant e500 APUs. */
6002 if (bfd_uses_spe_extensions (info.abfd))
6004 arch = info.bfd_arch_info->arch;
6005 mach = bfd_mach_ppc_e500;
6006 bfd_default_set_arch_mach (&abfd, arch, mach);
6007 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6010 /* Find a default target description which describes our register
6011 layout, if we do not already have one. */
6012 if (! tdesc_has_registers (tdesc))
6014 const struct variant *v;
6016 /* Choose variant. */
6017 v = find_variant_by_arch (arch, mach);
6024 gdb_assert (tdesc_has_registers (tdesc));
6026 /* Check any target description for validity. */
6027 if (tdesc_has_registers (tdesc))
6029 static const char *const gprs[] = {
6030 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6031 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6032 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6033 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6035 const struct tdesc_feature *feature;
6037 static const char *const msr_names[] = { "msr", "ps" };
6038 static const char *const cr_names[] = { "cr", "cnd" };
6039 static const char *const ctr_names[] = { "ctr", "cnt" };
6041 feature = tdesc_find_feature (tdesc,
6042 "org.gnu.gdb.power.core");
6043 if (feature == NULL)
6046 tdesc_data = tdesc_data_alloc ();
6049 for (i = 0; i < ppc_num_gprs; i++)
6050 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6051 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6053 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6055 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6058 /* Allow alternate names for these registers, to accomodate GDB's
6060 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6061 PPC_MSR_REGNUM, msr_names);
6062 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6063 PPC_CR_REGNUM, cr_names);
6064 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6065 PPC_CTR_REGNUM, ctr_names);
6069 tdesc_data_cleanup (tdesc_data);
6073 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6076 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
6078 wordsize = tdesc_wordsize;
6080 feature = tdesc_find_feature (tdesc,
6081 "org.gnu.gdb.power.fpu");
6082 if (feature != NULL)
6084 static const char *const fprs[] = {
6085 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6086 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6087 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6088 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6091 for (i = 0; i < ppc_num_fprs; i++)
6092 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6093 PPC_F0_REGNUM + i, fprs[i]);
6094 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6095 PPC_FPSCR_REGNUM, "fpscr");
6099 tdesc_data_cleanup (tdesc_data);
6107 /* The DFP pseudo-registers will be available when there are floating
6109 have_dfp = have_fpu;
6111 feature = tdesc_find_feature (tdesc,
6112 "org.gnu.gdb.power.altivec");
6113 if (feature != NULL)
6115 static const char *const vector_regs[] = {
6116 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6117 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6118 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6119 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6123 for (i = 0; i < ppc_num_gprs; i++)
6124 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6127 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6128 PPC_VSCR_REGNUM, "vscr");
6129 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6130 PPC_VRSAVE_REGNUM, "vrsave");
6132 if (have_spe || !valid_p)
6134 tdesc_data_cleanup (tdesc_data);
6142 /* Check for POWER7 VSX registers support. */
6143 feature = tdesc_find_feature (tdesc,
6144 "org.gnu.gdb.power.vsx");
6146 if (feature != NULL)
6148 static const char *const vsx_regs[] = {
6149 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6150 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6151 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6152 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6153 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6159 for (i = 0; i < ppc_num_vshrs; i++)
6160 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6161 PPC_VSR0_UPPER_REGNUM + i,
6165 tdesc_data_cleanup (tdesc_data);
6174 /* On machines supporting the SPE APU, the general-purpose registers
6175 are 64 bits long. There are SIMD vector instructions to treat them
6176 as pairs of floats, but the rest of the instruction set treats them
6177 as 32-bit registers, and only operates on their lower halves.
6179 In the GDB regcache, we treat their high and low halves as separate
6180 registers. The low halves we present as the general-purpose
6181 registers, and then we have pseudo-registers that stitch together
6182 the upper and lower halves and present them as pseudo-registers.
6184 Thus, the target description is expected to supply the upper
6185 halves separately. */
6187 feature = tdesc_find_feature (tdesc,
6188 "org.gnu.gdb.power.spe");
6189 if (feature != NULL)
6191 static const char *const upper_spe[] = {
6192 "ev0h", "ev1h", "ev2h", "ev3h",
6193 "ev4h", "ev5h", "ev6h", "ev7h",
6194 "ev8h", "ev9h", "ev10h", "ev11h",
6195 "ev12h", "ev13h", "ev14h", "ev15h",
6196 "ev16h", "ev17h", "ev18h", "ev19h",
6197 "ev20h", "ev21h", "ev22h", "ev23h",
6198 "ev24h", "ev25h", "ev26h", "ev27h",
6199 "ev28h", "ev29h", "ev30h", "ev31h"
6203 for (i = 0; i < ppc_num_gprs; i++)
6204 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6205 PPC_SPE_UPPER_GP0_REGNUM + i,
6207 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6208 PPC_SPE_ACC_REGNUM, "acc");
6209 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6210 PPC_SPE_FSCR_REGNUM, "spefscr");
6212 if (have_mq || have_fpu || !valid_p)
6214 tdesc_data_cleanup (tdesc_data);
6223 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6224 complain for a 32-bit binary on a 64-bit target; we do not yet
6225 support that. For instance, the 32-bit ABI routines expect
6228 As long as there isn't an explicit target description, we'll
6229 choose one based on the BFD architecture and get a word size
6230 matching the binary (probably powerpc:common or
6231 powerpc:common64). So there is only trouble if a 64-bit target
6232 supplies a 64-bit description while debugging a 32-bit
6234 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6236 tdesc_data_cleanup (tdesc_data);
6243 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6246 elf_abi = POWERPC_ELF_V1;
6249 elf_abi = POWERPC_ELF_V2;
6256 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6258 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6259 Tag_GNU_Power_ABI_FP))
6262 soft_float_flag = AUTO_BOOLEAN_FALSE;
6265 soft_float_flag = AUTO_BOOLEAN_TRUE;
6272 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6274 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6275 Tag_GNU_Power_ABI_Vector))
6278 vector_abi = POWERPC_VEC_GENERIC;
6281 vector_abi = POWERPC_VEC_ALTIVEC;
6284 vector_abi = POWERPC_VEC_SPE;
6292 /* At this point, the only supported ELF-based 64-bit little-endian
6293 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6294 default. All other supported ELF-based operating systems use the
6295 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6296 e.g. because we run a legacy binary, or have attached to a process
6297 and have not found any associated binary file, set the default
6298 according to this heuristic. */
6299 if (elf_abi == POWERPC_ELF_AUTO)
6301 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6302 elf_abi = POWERPC_ELF_V2;
6304 elf_abi = POWERPC_ELF_V1;
6307 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6309 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6312 soft_float = !have_fpu;
6314 /* If we have a hard float binary or setting but no floating point
6315 registers, downgrade to soft float anyway. We're still somewhat
6316 useful in this scenario. */
6317 if (!soft_float && !have_fpu)
6320 /* Similarly for vector registers. */
6321 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6322 vector_abi = POWERPC_VEC_GENERIC;
6324 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6325 vector_abi = POWERPC_VEC_GENERIC;
6327 if (vector_abi == POWERPC_VEC_AUTO)
6330 vector_abi = POWERPC_VEC_ALTIVEC;
6332 vector_abi = POWERPC_VEC_SPE;
6334 vector_abi = POWERPC_VEC_GENERIC;
6337 /* Do not limit the vector ABI based on available hardware, since we
6338 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6340 /* Find a candidate among extant architectures. */
6341 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6343 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6345 /* Word size in the various PowerPC bfd_arch_info structs isn't
6346 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6347 separate word size check. */
6348 tdep = gdbarch_tdep (arches->gdbarch);
6349 if (tdep && tdep->elf_abi != elf_abi)
6351 if (tdep && tdep->soft_float != soft_float)
6353 if (tdep && tdep->vector_abi != vector_abi)
6355 if (tdep && tdep->wordsize == wordsize)
6357 if (tdesc_data != NULL)
6358 tdesc_data_cleanup (tdesc_data);
6359 return arches->gdbarch;
6363 /* None found, create a new architecture from INFO, whose bfd_arch_info
6364 validity depends on the source:
6365 - executable useless
6366 - rs6000_host_arch() good
6368 - "set arch" trust blindly
6369 - GDB startup useless but harmless */
6371 tdep = XCNEW (struct gdbarch_tdep);
6372 tdep->wordsize = wordsize;
6373 tdep->elf_abi = elf_abi;
6374 tdep->soft_float = soft_float;
6375 tdep->vector_abi = vector_abi;
6377 gdbarch = gdbarch_alloc (&info, tdep);
6379 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6380 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6381 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6382 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6383 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6384 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6385 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6386 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6388 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6389 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6390 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6391 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6392 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6393 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6394 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6395 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6397 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6398 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6399 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6400 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6402 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6403 GDB traditionally called it "ps", though, so let GDB add an
6405 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6408 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6410 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6412 /* Set lr_frame_offset. */
6414 tdep->lr_frame_offset = 16;
6416 tdep->lr_frame_offset = 4;
6418 if (have_spe || have_dfp || have_vsx)
6420 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6421 set_gdbarch_pseudo_register_write (gdbarch,
6422 rs6000_pseudo_register_write);
6423 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6424 rs6000_ax_pseudo_register_collect);
6427 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6429 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6431 /* Select instruction printer. */
6432 if (arch == bfd_arch_rs6000)
6433 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
6435 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
6437 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6440 num_pseudoregs += 32;
6442 num_pseudoregs += 16;
6444 /* Include both VSX and Extended FP registers. */
6445 num_pseudoregs += 96;
6447 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6449 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6450 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6451 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6452 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6453 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6454 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6455 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6456 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6457 set_gdbarch_char_signed (gdbarch, 0);
6459 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6462 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6464 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6465 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6466 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6468 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6469 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6472 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6473 else if (wordsize == 8)
6474 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6476 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6477 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6478 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6480 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6482 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6483 rs6000_breakpoint::kind_from_pc);
6484 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6485 rs6000_breakpoint::bp_from_kind);
6487 /* The value of symbols of type N_SO and N_FUN maybe null when
6489 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6491 /* Handles single stepping of atomic sequences. */
6492 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6494 /* Not sure on this. FIXMEmgo */
6495 set_gdbarch_frame_args_skip (gdbarch, 8);
6497 /* Helpers for function argument information. */
6498 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6501 set_gdbarch_in_solib_return_trampoline
6502 (gdbarch, rs6000_in_solib_return_trampoline);
6503 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6505 /* Hook in the DWARF CFI frame unwinder. */
6506 dwarf2_append_unwinders (gdbarch);
6507 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6509 /* Frame handling. */
6510 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6512 /* Setup displaced stepping. */
6513 set_gdbarch_displaced_step_copy_insn (gdbarch,
6514 ppc_displaced_step_copy_insn);
6515 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6516 ppc_displaced_step_hw_singlestep);
6517 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6518 set_gdbarch_displaced_step_free_closure (gdbarch,
6519 simple_displaced_step_free_closure);
6520 set_gdbarch_displaced_step_location (gdbarch,
6521 displaced_step_at_entry_point);
6523 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6525 /* Hook in ABI-specific overrides, if they have been registered. */
6526 info.target_desc = tdesc;
6527 info.tdep_info = tdesc_data;
6528 gdbarch_init_osabi (info, gdbarch);
6532 case GDB_OSABI_LINUX:
6533 case GDB_OSABI_NETBSD_AOUT:
6534 case GDB_OSABI_NETBSD_ELF:
6535 case GDB_OSABI_UNKNOWN:
6536 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6537 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6538 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6539 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6540 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6543 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6545 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6546 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6547 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6548 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6549 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6552 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6553 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6554 rs6000_pseudo_register_reggroup_p);
6555 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6557 /* Override the normal target description method to make the SPE upper
6558 halves anonymous. */
6559 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6561 /* Choose register numbers for all supported pseudo-registers. */
6562 tdep->ppc_ev0_regnum = -1;
6563 tdep->ppc_dl0_regnum = -1;
6564 tdep->ppc_vsr0_regnum = -1;
6565 tdep->ppc_efpr0_regnum = -1;
6567 cur_reg = gdbarch_num_regs (gdbarch);
6571 tdep->ppc_ev0_regnum = cur_reg;
6576 tdep->ppc_dl0_regnum = cur_reg;
6581 tdep->ppc_vsr0_regnum = cur_reg;
6583 tdep->ppc_efpr0_regnum = cur_reg;
6587 gdb_assert (gdbarch_num_regs (gdbarch)
6588 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6590 /* Register the ravenscar_arch_ops. */
6591 if (mach == bfd_mach_ppc_e500)
6592 register_e500_ravenscar_ops (gdbarch);
6594 register_ppc_ravenscar_ops (gdbarch);
6600 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6607 /* FIXME: Dump gdbarch_tdep. */
6610 /* PowerPC-specific commands. */
6613 set_powerpc_command (char *args, int from_tty)
6615 printf_unfiltered (_("\
6616 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6617 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6621 show_powerpc_command (char *args, int from_tty)
6623 cmd_show_list (showpowerpccmdlist, from_tty, "");
6627 powerpc_set_soft_float (char *args, int from_tty,
6628 struct cmd_list_element *c)
6630 struct gdbarch_info info;
6632 /* Update the architecture. */
6633 gdbarch_info_init (&info);
6634 if (!gdbarch_update_p (info))
6635 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6639 powerpc_set_vector_abi (char *args, int from_tty,
6640 struct cmd_list_element *c)
6642 struct gdbarch_info info;
6645 for (vector_abi = POWERPC_VEC_AUTO;
6646 vector_abi != POWERPC_VEC_LAST;
6648 if (strcmp (powerpc_vector_abi_string,
6649 powerpc_vector_strings[vector_abi]) == 0)
6651 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6655 if (vector_abi == POWERPC_VEC_LAST)
6656 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6657 powerpc_vector_abi_string);
6659 /* Update the architecture. */
6660 gdbarch_info_init (&info);
6661 if (!gdbarch_update_p (info))
6662 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6665 /* Show the current setting of the exact watchpoints flag. */
6668 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6669 struct cmd_list_element *c,
6672 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6675 /* Read a PPC instruction from memory. */
6678 read_insn (struct frame_info *frame, CORE_ADDR pc)
6680 struct gdbarch *gdbarch = get_frame_arch (frame);
6681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6683 return read_memory_unsigned_integer (pc, 4, byte_order);
6686 /* Return non-zero if the instructions at PC match the series
6687 described in PATTERN, or zero otherwise. PATTERN is an array of
6688 'struct ppc_insn_pattern' objects, terminated by an entry whose
6691 When the match is successful, fill INSN[i] with what PATTERN[i]
6692 matched. If PATTERN[i] is optional, and the instruction wasn't
6693 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6694 INSN should have as many elements as PATTERN. Note that, if
6695 PATTERN contains optional instructions which aren't present in
6696 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6697 i'th instruction in memory. */
6700 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6701 struct ppc_insn_pattern *pattern,
6702 unsigned int *insns)
6707 for (i = 0, insn = 0; pattern[i].mask; i++)
6710 insn = read_insn (frame, pc);
6712 if ((insn & pattern[i].mask) == pattern[i].data)
6718 else if (!pattern[i].optional)
6725 /* Return the 'd' field of the d-form instruction INSN, properly
6729 ppc_insn_d_field (unsigned int insn)
6731 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6734 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6735 zero bits concatenated at the right, and properly
6739 ppc_insn_ds_field (unsigned int insn)
6741 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6744 /* Initialization code. */
6746 /* -Wmissing-prototypes */
6747 extern initialize_file_ftype _initialize_rs6000_tdep;
6750 _initialize_rs6000_tdep (void)
6752 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6753 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6755 /* Initialize the standard target descriptions. */
6756 initialize_tdesc_powerpc_32 ();
6757 initialize_tdesc_powerpc_altivec32 ();
6758 initialize_tdesc_powerpc_vsx32 ();
6759 initialize_tdesc_powerpc_403 ();
6760 initialize_tdesc_powerpc_403gc ();
6761 initialize_tdesc_powerpc_405 ();
6762 initialize_tdesc_powerpc_505 ();
6763 initialize_tdesc_powerpc_601 ();
6764 initialize_tdesc_powerpc_602 ();
6765 initialize_tdesc_powerpc_603 ();
6766 initialize_tdesc_powerpc_604 ();
6767 initialize_tdesc_powerpc_64 ();
6768 initialize_tdesc_powerpc_altivec64 ();
6769 initialize_tdesc_powerpc_vsx64 ();
6770 initialize_tdesc_powerpc_7400 ();
6771 initialize_tdesc_powerpc_750 ();
6772 initialize_tdesc_powerpc_860 ();
6773 initialize_tdesc_powerpc_e500 ();
6774 initialize_tdesc_rs6000 ();
6776 /* Add root prefix command for all "set powerpc"/"show powerpc"
6778 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6779 _("Various PowerPC-specific commands."),
6780 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6782 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6783 _("Various PowerPC-specific commands."),
6784 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6786 /* Add a command to allow the user to force the ABI. */
6787 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6788 &powerpc_soft_float_global,
6789 _("Set whether to use a soft-float ABI."),
6790 _("Show whether to use a soft-float ABI."),
6792 powerpc_set_soft_float, NULL,
6793 &setpowerpccmdlist, &showpowerpccmdlist);
6795 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6796 &powerpc_vector_abi_string,
6797 _("Set the vector ABI."),
6798 _("Show the vector ABI."),
6799 NULL, powerpc_set_vector_abi, NULL,
6800 &setpowerpccmdlist, &showpowerpccmdlist);
6802 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6803 &target_exact_watchpoints,
6805 Set whether to use just one debug register for watchpoints on scalars."),
6807 Show whether to use just one debug register for watchpoints on scalars."),
6809 If true, GDB will use only one debug register when watching a variable of\n\
6810 scalar type, thus assuming that the variable is accessed through the address\n\
6811 of its first byte."),
6812 NULL, show_powerpc_exact_watchpoints,
6813 &setpowerpccmdlist, &showpowerpccmdlist);