1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "xcoffsolib.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
37 #include "rs6000-tdep.h"
40 #include "xcoffread.h"
42 #include <sys/ptrace.h>
45 #include <sys/param.h>
49 #include <sys/ioctl.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
60 #include <sys/systemcfg.h>
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
73 /* Return whether the current architecture is 64-bit. */
78 # define ARCH64() (register_size (target_gdbarch, 0) == 8)
81 /* Union of 32-bit and 64-bit versions of ld_info. */
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
98 # define ARCH64_DECL(var)
100 # define ARCH64_DECL(var) int var = ARCH64 ()
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
123 static void vmap_exec (void);
125 static void vmap_ldinfo (LdInfo *);
127 static struct vmap *add_vmap (LdInfo *);
129 static int objfile_symbol_add (void *);
131 static void vmap_symtab (struct vmap *);
133 static void exec_one_dummy_insn (struct regcache *);
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
143 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
156 return regno - tdep->ppc_fp0_regnum + FPR0;
158 else if (regno == gdbarch_pc_regnum (gdbarch))
160 else if (regno == tdep->ppc_ps_regnum)
162 else if (regno == tdep->ppc_cr_regnum)
164 else if (regno == tdep->ppc_lr_regnum)
166 else if (regno == tdep->ppc_ctr_regnum)
168 else if (regno == tdep->ppc_xer_regnum)
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
184 int ret = ptrace (req, id, (int *)addr, data, buf);
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
198 int ret = ptracex (req, id, addr, data, buf);
203 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
204 req, id, addr, data, (unsigned int)buf, ret);
209 /* Fetch register REGNO from the inferior. */
212 fetch_register (struct regcache *regcache, int regno)
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int addr[MAX_REGISTER_SIZE];
218 /* Retrieved values may be -1, so infer errors from errno. */
221 nr = regmap (gdbarch, regno, &isfloat);
223 /* Floating-point registers. */
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
227 /* Bogus register number. */
230 if (regno >= gdbarch_num_regs (gdbarch))
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
237 /* Fixed-point registers. */
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
244 /* PT_READ_GPR requires the buffer parameter to point to long long,
245 even if the register is really only 32 bits. */
247 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
248 if (register_size (gdbarch, regno) == 8)
249 memcpy (addr, &buf, 8);
256 regcache_raw_supply (regcache, regno, (char *) addr);
260 /* FIXME: this happens 3 times at the start of each 64-bit program. */
261 perror ("ptrace read");
267 /* Store register REGNO back into the inferior. */
270 store_register (struct regcache *regcache, int regno)
272 struct gdbarch *gdbarch = get_regcache_arch (regcache);
273 int addr[MAX_REGISTER_SIZE];
276 /* Fetch the register's value from the register cache. */
277 regcache_raw_collect (regcache, regno, addr);
279 /* -1 can be a successful return value, so infer errors from errno. */
282 nr = regmap (gdbarch, regno, &isfloat);
284 /* Floating-point registers. */
286 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
288 /* Bogus register number. */
291 if (regno >= gdbarch_num_regs (gdbarch))
292 fprintf_unfiltered (gdb_stderr,
293 "gdb error: register no %d not implemented.\n",
297 /* Fixed-point registers. */
300 if (regno == gdbarch_sp_regnum (gdbarch))
301 /* Execute one dummy instruction (which is a breakpoint) in inferior
302 process to give kernel a chance to do internal housekeeping.
303 Otherwise the following ptrace(2) calls will mess up user stack
304 since kernel will get confused about the bottom of the stack
306 exec_one_dummy_insn (regcache);
308 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
309 the register's value is passed by value, but for 64-bit inferiors,
310 the address of a buffer containing the value is passed. */
312 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
315 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
316 area, even if the register is really only 32 bits. */
318 if (register_size (gdbarch, regno) == 8)
319 memcpy (&buf, addr, 8);
322 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
328 perror ("ptrace write");
333 /* Read from the inferior all registers if REGNO == -1 and just register
337 rs6000_fetch_inferior_registers (struct target_ops *ops,
338 struct regcache *regcache, int regno)
340 struct gdbarch *gdbarch = get_regcache_arch (regcache);
342 fetch_register (regcache, regno);
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 /* Read 32 general purpose registers. */
349 for (regno = tdep->ppc_gp0_regnum;
350 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
353 fetch_register (regcache, regno);
356 /* Read general purpose floating point registers. */
357 if (tdep->ppc_fp0_regnum >= 0)
358 for (regno = 0; regno < ppc_num_fprs; regno++)
359 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
361 /* Read special registers. */
362 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
363 fetch_register (regcache, tdep->ppc_ps_regnum);
364 fetch_register (regcache, tdep->ppc_cr_regnum);
365 fetch_register (regcache, tdep->ppc_lr_regnum);
366 fetch_register (regcache, tdep->ppc_ctr_regnum);
367 fetch_register (regcache, tdep->ppc_xer_regnum);
368 if (tdep->ppc_fpscr_regnum >= 0)
369 fetch_register (regcache, tdep->ppc_fpscr_regnum);
370 if (tdep->ppc_mq_regnum >= 0)
371 fetch_register (regcache, tdep->ppc_mq_regnum);
375 /* Store our register values back into the inferior.
376 If REGNO is -1, do this for all registers.
377 Otherwise, REGNO specifies which register (so we can save time). */
380 rs6000_store_inferior_registers (struct target_ops *ops,
381 struct regcache *regcache, int regno)
383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
385 store_register (regcache, regno);
389 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
391 /* Write general purpose registers first. */
392 for (regno = tdep->ppc_gp0_regnum;
393 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
396 store_register (regcache, regno);
399 /* Write floating point registers. */
400 if (tdep->ppc_fp0_regnum >= 0)
401 for (regno = 0; regno < ppc_num_fprs; regno++)
402 store_register (regcache, tdep->ppc_fp0_regnum + regno);
404 /* Write special registers. */
405 store_register (regcache, gdbarch_pc_regnum (gdbarch));
406 store_register (regcache, tdep->ppc_ps_regnum);
407 store_register (regcache, tdep->ppc_cr_regnum);
408 store_register (regcache, tdep->ppc_lr_regnum);
409 store_register (regcache, tdep->ppc_ctr_regnum);
410 store_register (regcache, tdep->ppc_xer_regnum);
411 if (tdep->ppc_fpscr_regnum >= 0)
412 store_register (regcache, tdep->ppc_fpscr_regnum);
413 if (tdep->ppc_mq_regnum >= 0)
414 store_register (regcache, tdep->ppc_mq_regnum);
419 /* Attempt a transfer all LEN bytes starting at OFFSET between the
420 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
421 Return the number of bytes actually transferred. */
424 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
425 const char *annex, gdb_byte *readbuf,
426 const gdb_byte *writebuf,
427 ULONGEST offset, LONGEST len)
429 pid_t pid = ptid_get_pid (inferior_ptid);
430 int arch64 = ARCH64 ();
434 case TARGET_OBJECT_MEMORY:
438 PTRACE_TYPE_RET word;
439 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
441 ULONGEST rounded_offset;
444 /* Round the start offset down to the next long word
446 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
448 /* Since ptrace will transfer a single word starting at that
449 rounded_offset the partial_len needs to be adjusted down to
450 that (remember this function only does a single transfer).
451 Should the required length be even less, adjust it down
453 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
454 if (partial_len > len)
459 /* If OFFSET:PARTIAL_LEN is smaller than
460 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
461 be needed. Read in the entire word. */
462 if (rounded_offset < offset
463 || (offset + partial_len
464 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
466 /* Need part of initial word -- fetch it. */
468 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
469 rounded_offset, 0, NULL);
471 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
472 (int *)(uintptr_t)rounded_offset,
476 /* Copy data to be written over corresponding part of
478 memcpy (buffer.byte + (offset - rounded_offset),
479 writebuf, partial_len);
483 rs6000_ptrace64 (PT_WRITE_D, pid,
484 rounded_offset, buffer.word, NULL);
486 rs6000_ptrace32 (PT_WRITE_D, pid,
487 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
496 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
497 rounded_offset, 0, NULL);
499 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
500 (int *)(uintptr_t)rounded_offset,
505 /* Copy appropriate bytes out of the buffer. */
506 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
518 /* Wait for the child specified by PTID to do something. Return the
519 process ID of the child, or MINUS_ONE_PTID in case of error; store
520 the status in *OURSTATUS. */
523 rs6000_wait (struct target_ops *ops,
524 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
527 int status, save_errno;
535 pid = waitpid (ptid_get_pid (ptid), &status, 0);
538 while (pid == -1 && errno == EINTR);
540 clear_sigint_trap ();
544 fprintf_unfiltered (gdb_stderr,
545 _("Child process unexpectedly missing: %s.\n"),
546 safe_strerror (save_errno));
548 /* Claim it exited with unknown signal. */
549 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
550 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
551 return inferior_ptid;
554 /* Ignore terminated detached child processes. */
555 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
560 /* AIX has a couple of strange returns from wait(). */
562 /* stop after load" status. */
564 ourstatus->kind = TARGET_WAITKIND_LOADED;
565 /* signal 0. I have no idea why wait(2) returns with this status word. */
566 else if (status == 0x7f)
567 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
568 /* A normal waitstatus. Let the usual macros deal with it. */
570 store_waitstatus (ourstatus, status);
572 return pid_to_ptid (pid);
575 /* Execute one dummy breakpoint instruction. This way we give the kernel
576 a chance to do some housekeeping and update inferior's internal data,
580 exec_one_dummy_insn (struct regcache *regcache)
582 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
584 struct gdbarch *gdbarch = get_regcache_arch (regcache);
585 int ret, status, pid;
589 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
590 assume that this address will never be executed again by the real
593 bp = deprecated_insert_raw_breakpoint (gdbarch, DUMMY_INSN_ADDR);
595 /* You might think this could be done with a single ptrace call, and
596 you'd be correct for just about every platform I've ever worked
597 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
598 the inferior never hits the breakpoint (it's also worth noting
599 powerpc-ibm-aix4.1.3 works correctly). */
600 prev_pc = regcache_read_pc (regcache);
601 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
603 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
605 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
608 perror ("pt_continue");
612 pid = wait (&status);
614 while (pid != PIDGET (inferior_ptid));
616 regcache_write_pc (regcache, prev_pc);
617 deprecated_remove_raw_breakpoint (gdbarch, bp);
621 /* Copy information about text and data sections from LDI to VP for a 64-bit
622 process if ARCH64 and for a 32-bit process otherwise. */
625 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
629 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
630 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
631 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
632 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
636 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
637 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
638 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
639 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
642 /* The run time loader maps the file header in addition to the text
643 section and returns a pointer to the header in ldinfo_textorg.
644 Adjust the text start address to point to the real start address
645 of the text section. */
646 vp->tstart += vp->toffs;
649 /* handle symbol translation on vmapping */
652 vmap_symtab (struct vmap *vp)
654 struct objfile *objfile;
655 struct section_offsets *new_offsets;
658 objfile = vp->objfile;
661 /* OK, it's not an objfile we opened ourselves.
662 Currently, that can only happen with the exec file, so
663 relocate the symbols for the symfile. */
664 if (symfile_objfile == NULL)
666 objfile = symfile_objfile;
668 else if (!vp->loaded)
669 /* If symbols are not yet loaded, offsets are not yet valid. */
673 (struct section_offsets *)
674 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
676 for (i = 0; i < objfile->num_sections; ++i)
677 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
679 /* The symbols in the object file are linked to the VMA of the section,
680 relocate them VMA relative. */
681 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
682 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
683 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
685 objfile_relocate (objfile, new_offsets);
688 /* Add symbols for an objfile. */
691 objfile_symbol_add (void *arg)
693 struct objfile *obj = (struct objfile *) arg;
695 syms_from_objfile (obj, NULL, 0, 0, 0);
696 new_symfile_objfile (obj, 0);
700 /* Add symbols for a vmap. Return zero upon error. */
703 vmap_add_symbols (struct vmap *vp)
705 if (catch_errors (objfile_symbol_add, vp->objfile,
706 "Error while reading shared library symbols:\n",
709 /* Note this is only done if symbol reading was successful. */
717 /* Add a new vmap entry based on ldinfo() information.
719 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
720 core file), the caller should set it to -1, and we will open the file.
722 Return the vmap new entry. */
725 add_vmap (LdInfo *ldi)
728 char *mem, *objname, *filename;
732 ARCH64_DECL (arch64);
734 /* This ldi structure was allocated using alloca() in
735 xcoff_relocate_symtab(). Now we need to have persistent object
736 and member names, so we should save them. */
738 filename = LDI_FILENAME (ldi, arch64);
739 mem = filename + strlen (filename) + 1;
741 objname = xstrdup (filename);
743 fd = LDI_FD (ldi, arch64);
745 /* Note that this opens it once for every member; a possible
746 enhancement would be to only open it once for every object. */
747 abfd = bfd_openr (objname, gnutarget);
749 abfd = bfd_fdopenr (objname, gnutarget, fd);
752 warning (_("Could not open `%s' as an executable file: %s"),
753 objname, bfd_errmsg (bfd_get_error ()));
757 /* make sure we have an object file */
759 if (bfd_check_format (abfd, bfd_object))
760 vp = map_vmap (abfd, 0);
762 else if (bfd_check_format (abfd, bfd_archive))
765 /* FIXME??? am I tossing BFDs? bfd? */
766 while ((last = bfd_openr_next_archived_file (abfd, last)))
767 if (strcmp (mem, last->filename) == 0)
772 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
777 if (!bfd_check_format (last, bfd_object))
779 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
780 objname, mem, bfd_errmsg (bfd_get_error ()));
786 vp = map_vmap (last, abfd);
790 warning (_("\"%s\": not in executable format: %s."),
791 objname, bfd_errmsg (bfd_get_error ()));
795 obj = allocate_objfile (vp->bfd, 0);
798 /* Always add symbols for the main objfile. */
799 if (vp == vmap || auto_solib_add)
800 vmap_add_symbols (vp);
804 /* update VMAP info with ldinfo() information
805 Input is ptr to ldinfo() results. */
808 vmap_ldinfo (LdInfo *ldi)
812 int got_one, retried;
813 int got_exec_file = 0;
815 int arch64 = ARCH64 ();
817 /* For each *ldi, see if we have a corresponding *vp.
818 If so, update the mapping, and symbol table.
819 If not, add an entry and symbol table. */
823 char *name = LDI_FILENAME (ldi, arch64);
824 char *memb = name + strlen (name) + 1;
825 int fd = LDI_FD (ldi, arch64);
829 if (fstat (fd, &ii) < 0)
831 /* The kernel sets ld_info to -1, if the process is still using the
832 object, and the object is removed. Keep the symbol info for the
833 removed object and issue a warning. */
834 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
839 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
841 struct objfile *objfile;
843 /* First try to find a `vp', which is the same as in ldinfo.
844 If not the same, just continue and grep the next `vp'. If same,
845 relocate its tstart, tend, dstart, dend values. If no such `vp'
846 found, get out of this for loop, add this ldi entry as a new vmap
847 (add_vmap) and come back, find its `vp' and so on... */
849 /* The filenames are not always sufficient to match on. */
851 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
852 || (memb[0] && strcmp (memb, vp->member) != 0))
855 /* See if we are referring to the same file.
856 We have to check objfile->obfd, symfile.c:reread_symbols might
857 have updated the obfd after a change. */
858 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
860 || objfile->obfd == NULL
861 || bfd_stat (objfile->obfd, &vi) < 0)
863 warning (_("Unable to stat %s, keeping its symbols"), name);
867 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
875 /* Found a corresponding VMAP. Remap! */
877 vmap_secs (vp, ldi, arch64);
879 /* The objfile is only NULL for the exec file. */
880 if (vp->objfile == NULL)
883 /* relocate symbol table(s). */
886 /* Announce new object files. Doing this after symbol relocation
887 makes aix-thread.c's job easier. */
889 observer_notify_new_objfile (vp->objfile);
891 /* There may be more, so we don't break out of the loop. */
894 /* if there was no matching *vp, we must perforce create the sucker(s) */
895 if (!got_one && !retried)
902 while ((next = LDI_NEXT (ldi, arch64))
903 && (ldi = (void *) (next + (char *) ldi)));
905 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
906 is unlikely that the symbol file is relocated to the proper
907 address. And we might have attached to a process which is
908 running a different copy of the same executable. */
909 if (symfile_objfile != NULL && !got_exec_file)
911 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
912 If in fact that file has symbols which the mapped files listed by\n\
913 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
914 \"add-symbol-file\" commands (note that you must take care of relocating\n\
915 symbols to the proper address)."),
916 symfile_objfile->name);
917 free_objfile (symfile_objfile);
918 symfile_objfile = NULL;
920 breakpoint_re_set ();
923 /* As well as symbol tables, exec_sections need relocation. After
924 the inferior process' termination, there will be a relocated symbol
925 table exist with no corresponding inferior process. At that time, we
926 need to use `exec' bfd, rather than the inferior process's memory space
929 `exec_sections' need to be relocated only once, as long as the exec
930 file remains unchanged.
939 if (execbfd == exec_bfd)
944 if (!vmap || !exec_ops.to_sections)
945 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
947 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
949 if (strcmp (".text", exec_ops.to_sections[i].the_bfd_section->name) == 0)
951 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
952 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
954 else if (strcmp (".data",
955 exec_ops.to_sections[i].the_bfd_section->name) == 0)
957 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
958 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
960 else if (strcmp (".bss",
961 exec_ops.to_sections[i].the_bfd_section->name) == 0)
963 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
964 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
969 /* Set the current architecture from the host running GDB. Called when
970 starting a child process. */
972 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
973 char *allargs, char **env, int from_tty);
975 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
976 char *allargs, char **env, int from_tty)
978 enum bfd_architecture arch;
981 struct gdbarch_info info;
983 super_create_inferior (ops, exec_file, allargs, env, from_tty);
987 arch = bfd_arch_rs6000;
988 mach = bfd_mach_rs6k;
992 arch = bfd_arch_powerpc;
996 /* FIXME: schauer/2002-02-25:
997 We don't know if we are executing a 32 or 64 bit executable,
998 and have no way to pass the proper word size to rs6000_gdbarch_init.
999 So we have to avoid switching to a new architecture, if the architecture
1001 Blindly calling rs6000_gdbarch_init used to work in older versions of
1002 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1003 determine the wordsize. */
1006 const struct bfd_arch_info *exec_bfd_arch_info;
1008 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1009 if (arch == exec_bfd_arch_info->arch)
1013 bfd_default_set_arch_mach (&abfd, arch, mach);
1015 gdbarch_info_init (&info);
1016 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1017 info.abfd = exec_bfd;
1019 if (!gdbarch_update_p (info))
1020 internal_error (__FILE__, __LINE__,
1021 _("rs6000_create_inferior: failed to select architecture"));
1025 /* xcoff_relocate_symtab - hook for symbol table relocation.
1027 This is only applicable to live processes, and is a no-op when
1028 debugging a core file. */
1031 xcoff_relocate_symtab (unsigned int pid)
1033 int load_segs = 64; /* number of load segments */
1036 int arch64 = ARCH64 ();
1037 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1040 /* Nothing to do if we are debugging a core file. */
1041 if (!target_has_execution)
1046 size = load_segs * ldisize;
1047 ldi = (void *) xrealloc (ldi, size);
1050 /* According to my humble theory, AIX has some timing problems and
1051 when the user stack grows, kernel doesn't update stack info in time
1052 and ptrace calls step on user stack. That is why we sleep here a
1053 little, and give kernel to update its internals. */
1058 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1060 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1064 if (errno == ENOMEM)
1067 perror_with_name (_("ptrace ldinfo"));
1072 vmap_exec (); /* relocate the exec and core sections as well. */
1079 /* Core file stuff. */
1081 /* Relocate symtabs and read in shared library info, based on symbols
1082 from the core file. */
1085 xcoff_relocate_core (struct target_ops *target)
1087 struct bfd_section *ldinfo_sec;
1091 int arch64 = ARCH64 ();
1093 /* Size of a struct ld_info except for the variable-length filename. */
1094 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1096 /* Allocated size of buffer. */
1097 int buffer_size = nonfilesz;
1098 char *buffer = xmalloc (buffer_size);
1099 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1101 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1102 if (ldinfo_sec == NULL)
1105 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1106 bfd_errmsg (bfd_get_error ()));
1113 int names_found = 0;
1115 /* Read in everything but the name. */
1116 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1117 offset, nonfilesz) == 0)
1124 if (i == buffer_size)
1127 buffer = xrealloc (buffer, buffer_size);
1129 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1130 offset + i, 1) == 0)
1132 if (buffer[i++] == '\0')
1135 while (names_found < 2);
1137 ldi = (LdInfo *) buffer;
1139 /* Can't use a file descriptor from the core file; need to open it. */
1141 ldi->l64.ldinfo_fd = -1;
1143 ldi->l32.ldinfo_fd = -1;
1145 /* The first ldinfo is for the exec file, allocated elsewhere. */
1146 if (offset == 0 && vmap != NULL)
1149 vp = add_vmap (ldi);
1151 /* Process next shared library upon error. */
1152 offset += LDI_NEXT (ldi, arch64);
1156 vmap_secs (vp, ldi, arch64);
1158 /* Unless this is the exec file,
1159 add our sections to the section table for the core target. */
1162 struct target_section *stp;
1164 stp = deprecated_core_resize_section_table (2);
1167 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1168 stp->addr = vp->tstart;
1169 stp->endaddr = vp->tend;
1173 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1174 stp->addr = vp->dstart;
1175 stp->endaddr = vp->dend;
1180 if (vp != vmap && vp->objfile)
1181 observer_notify_new_objfile (vp->objfile);
1183 while (LDI_NEXT (ldi, arch64) != 0);
1185 breakpoint_re_set ();
1189 /* Under AIX, we have to pass the correct TOC pointer to a function
1190 when calling functions in the inferior.
1191 We try to find the relative toc offset of the objfile containing PC
1192 and add the current load address of the data segment from the vmap. */
1195 find_toc_address (CORE_ADDR pc)
1199 for (vp = vmap; vp; vp = vp->nxt)
1201 if (pc >= vp->tstart && pc < vp->tend)
1203 /* vp->objfile is only NULL for the exec file. */
1204 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1209 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1214 _initialize_rs6000_nat (void)
1216 struct target_ops *t;
1218 t = inf_ptrace_target ();
1219 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1220 t->to_store_registers = rs6000_store_inferior_registers;
1221 t->to_xfer_partial = rs6000_xfer_partial;
1223 super_create_inferior = t->to_create_inferior;
1224 t->to_create_inferior = rs6000_create_inferior;
1226 t->to_wait = rs6000_wait;
1230 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1231 when calling functions in the inferior. */
1232 rs6000_find_toc_address_hook = find_toc_address;