1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "gdb-stabs.h"
29 #include "arch-utils.h"
30 #include "inf-child.h"
31 #include "inf-ptrace.h"
33 #include "rs6000-tdep.h"
34 #include "rs6000-aix-tdep.h"
37 #include "xcoffread.h"
39 #include <sys/ptrace.h>
45 #include <sys/ioctl.h>
53 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
54 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
56 #include <sys/systemcfg.h>
58 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
59 debugging 32-bit and 64-bit processes. Define a typedef and macros for
60 accessing fields in the appropriate structures. */
62 /* In 32-bit compilation mode (which is the only mode from which ptrace()
63 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
65 #if defined (__ld_info32) || defined (__ld_info64)
69 /* Return whether the current architecture is 64-bit. */
74 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
77 static target_xfer_partial_ftype rs6000_xfer_shared_libraries;
79 /* Given REGNO, a gdb register number, return the corresponding
80 number suitable for use as a ptrace() parameter. Return -1 if
81 there's no suitable mapping. Also, set the int pointed to by
82 ISFLOAT to indicate whether REGNO is a floating point register. */
85 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
87 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90 if (tdep->ppc_gp0_regnum <= regno
91 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
93 else if (tdep->ppc_fp0_regnum >= 0
94 && tdep->ppc_fp0_regnum <= regno
95 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
98 return regno - tdep->ppc_fp0_regnum + FPR0;
100 else if (regno == gdbarch_pc_regnum (gdbarch))
102 else if (regno == tdep->ppc_ps_regnum)
104 else if (regno == tdep->ppc_cr_regnum)
106 else if (regno == tdep->ppc_lr_regnum)
108 else if (regno == tdep->ppc_ctr_regnum)
110 else if (regno == tdep->ppc_xer_regnum)
112 else if (tdep->ppc_fpscr_regnum >= 0
113 && regno == tdep->ppc_fpscr_regnum)
115 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
121 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
124 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
127 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
129 int ret = ptrace (req, id, (int *)addr, data, buf);
132 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
133 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
138 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
141 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
144 # ifdef HAVE_PTRACE64
145 int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
147 int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
153 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
154 req, id, hex_string (addr), data, (unsigned int)buf, ret);
159 /* Fetch register REGNO from the inferior. */
162 fetch_register (struct regcache *regcache, int regno)
164 struct gdbarch *gdbarch = regcache->arch ();
165 int addr[PPC_MAX_REGISTER_SIZE];
167 pid_t pid = ptid_get_pid (regcache_get_ptid (regcache));
169 /* Retrieved values may be -1, so infer errors from errno. */
172 nr = regmap (gdbarch, regno, &isfloat);
174 /* Floating-point registers. */
176 rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0);
178 /* Bogus register number. */
181 if (regno >= gdbarch_num_regs (gdbarch))
182 fprintf_unfiltered (gdb_stderr,
183 "gdb error: register no %d not implemented.\n",
188 /* Fixed-point registers. */
192 *addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0);
195 /* PT_READ_GPR requires the buffer parameter to point to long long,
196 even if the register is really only 32 bits. */
198 rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf);
199 if (register_size (gdbarch, regno) == 8)
200 memcpy (addr, &buf, 8);
207 regcache_raw_supply (regcache, regno, (char *) addr);
211 /* FIXME: this happens 3 times at the start of each 64-bit program. */
212 perror (_("ptrace read"));
218 /* Store register REGNO back into the inferior. */
221 store_register (struct regcache *regcache, int regno)
223 struct gdbarch *gdbarch = regcache->arch ();
224 int addr[PPC_MAX_REGISTER_SIZE];
226 pid_t pid = ptid_get_pid (regcache_get_ptid (regcache));
228 /* Fetch the register's value from the register cache. */
229 regcache_raw_collect (regcache, regno, addr);
231 /* -1 can be a successful return value, so infer errors from errno. */
234 nr = regmap (gdbarch, regno, &isfloat);
236 /* Floating-point registers. */
238 rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0);
240 /* Bogus register number. */
243 if (regno >= gdbarch_num_regs (gdbarch))
244 fprintf_unfiltered (gdb_stderr,
245 "gdb error: register no %d not implemented.\n",
249 /* Fixed-point registers. */
252 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
253 the register's value is passed by value, but for 64-bit inferiors,
254 the address of a buffer containing the value is passed. */
256 rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0);
259 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
260 area, even if the register is really only 32 bits. */
262 if (register_size (gdbarch, regno) == 8)
263 memcpy (&buf, addr, 8);
266 rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf);
272 perror (_("ptrace write"));
277 /* Read from the inferior all registers if REGNO == -1 and just register
281 rs6000_fetch_inferior_registers (struct target_ops *ops,
282 struct regcache *regcache, int regno)
284 struct gdbarch *gdbarch = regcache->arch ();
286 fetch_register (regcache, regno);
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
292 /* Read 32 general purpose registers. */
293 for (regno = tdep->ppc_gp0_regnum;
294 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
297 fetch_register (regcache, regno);
300 /* Read general purpose floating point registers. */
301 if (tdep->ppc_fp0_regnum >= 0)
302 for (regno = 0; regno < ppc_num_fprs; regno++)
303 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
305 /* Read special registers. */
306 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
307 fetch_register (regcache, tdep->ppc_ps_regnum);
308 fetch_register (regcache, tdep->ppc_cr_regnum);
309 fetch_register (regcache, tdep->ppc_lr_regnum);
310 fetch_register (regcache, tdep->ppc_ctr_regnum);
311 fetch_register (regcache, tdep->ppc_xer_regnum);
312 if (tdep->ppc_fpscr_regnum >= 0)
313 fetch_register (regcache, tdep->ppc_fpscr_regnum);
314 if (tdep->ppc_mq_regnum >= 0)
315 fetch_register (regcache, tdep->ppc_mq_regnum);
319 /* Store our register values back into the inferior.
320 If REGNO is -1, do this for all registers.
321 Otherwise, REGNO specifies which register (so we can save time). */
324 rs6000_store_inferior_registers (struct target_ops *ops,
325 struct regcache *regcache, int regno)
327 struct gdbarch *gdbarch = regcache->arch ();
329 store_register (regcache, regno);
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 /* Write general purpose registers first. */
336 for (regno = tdep->ppc_gp0_regnum;
337 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
340 store_register (regcache, regno);
343 /* Write floating point registers. */
344 if (tdep->ppc_fp0_regnum >= 0)
345 for (regno = 0; regno < ppc_num_fprs; regno++)
346 store_register (regcache, tdep->ppc_fp0_regnum + regno);
348 /* Write special registers. */
349 store_register (regcache, gdbarch_pc_regnum (gdbarch));
350 store_register (regcache, tdep->ppc_ps_regnum);
351 store_register (regcache, tdep->ppc_cr_regnum);
352 store_register (regcache, tdep->ppc_lr_regnum);
353 store_register (regcache, tdep->ppc_ctr_regnum);
354 store_register (regcache, tdep->ppc_xer_regnum);
355 if (tdep->ppc_fpscr_regnum >= 0)
356 store_register (regcache, tdep->ppc_fpscr_regnum);
357 if (tdep->ppc_mq_regnum >= 0)
358 store_register (regcache, tdep->ppc_mq_regnum);
362 /* Implement the to_xfer_partial target_ops method. */
364 static enum target_xfer_status
365 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
366 const char *annex, gdb_byte *readbuf,
367 const gdb_byte *writebuf,
368 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
370 pid_t pid = ptid_get_pid (inferior_ptid);
371 int arch64 = ARCH64 ();
375 case TARGET_OBJECT_LIBRARIES_AIX:
376 return rs6000_xfer_shared_libraries (ops, object, annex,
378 offset, len, xfered_len);
379 case TARGET_OBJECT_MEMORY:
383 PTRACE_TYPE_RET word;
384 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
386 ULONGEST rounded_offset;
389 /* Round the start offset down to the next long word
391 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
393 /* Since ptrace will transfer a single word starting at that
394 rounded_offset the partial_len needs to be adjusted down to
395 that (remember this function only does a single transfer).
396 Should the required length be even less, adjust it down
398 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
399 if (partial_len > len)
404 /* If OFFSET:PARTIAL_LEN is smaller than
405 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
406 be needed. Read in the entire word. */
407 if (rounded_offset < offset
408 || (offset + partial_len
409 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
411 /* Need part of initial word -- fetch it. */
413 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
414 rounded_offset, 0, NULL);
416 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
422 /* Copy data to be written over corresponding part of
424 memcpy (buffer.byte + (offset - rounded_offset),
425 writebuf, partial_len);
429 rs6000_ptrace64 (PT_WRITE_D, pid,
430 rounded_offset, buffer.word, NULL);
432 rs6000_ptrace32 (PT_WRITE_D, pid,
433 (int *) (uintptr_t) rounded_offset,
436 return TARGET_XFER_EOF;
443 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
444 rounded_offset, 0, NULL);
446 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
447 (int *)(uintptr_t)rounded_offset,
450 return TARGET_XFER_EOF;
452 /* Copy appropriate bytes out of the buffer. */
453 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
457 *xfered_len = (ULONGEST) partial_len;
458 return TARGET_XFER_OK;
462 return TARGET_XFER_E_IO;
466 /* Wait for the child specified by PTID to do something. Return the
467 process ID of the child, or MINUS_ONE_PTID in case of error; store
468 the status in *OURSTATUS. */
471 rs6000_wait (struct target_ops *ops,
472 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
475 int status, save_errno;
483 pid = waitpid (ptid_get_pid (ptid), &status, 0);
486 while (pid == -1 && errno == EINTR);
488 clear_sigint_trap ();
492 fprintf_unfiltered (gdb_stderr,
493 _("Child process unexpectedly missing: %s.\n"),
494 safe_strerror (save_errno));
496 /* Claim it exited with unknown signal. */
497 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
498 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
499 return inferior_ptid;
502 /* Ignore terminated detached child processes. */
503 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
508 /* AIX has a couple of strange returns from wait(). */
510 /* stop after load" status. */
512 ourstatus->kind = TARGET_WAITKIND_LOADED;
513 /* signal 0. I have no idea why wait(2) returns with this status word. */
514 else if (status == 0x7f)
515 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
516 /* A normal waitstatus. Let the usual macros deal with it. */
518 store_waitstatus (ourstatus, status);
520 return pid_to_ptid (pid);
524 /* Set the current architecture from the host running GDB. Called when
525 starting a child process. */
527 static void (*super_create_inferior) (struct target_ops *,
528 const char *exec_file,
529 const std::string &allargs,
530 char **env, int from_tty);
532 rs6000_create_inferior (struct target_ops * ops, const char *exec_file,
533 const std::string &allargs, char **env, int from_tty)
535 enum bfd_architecture arch;
538 struct gdbarch_info info;
540 super_create_inferior (ops, exec_file, allargs, env, from_tty);
544 arch = bfd_arch_rs6000;
545 mach = bfd_mach_rs6k;
549 arch = bfd_arch_powerpc;
553 /* FIXME: schauer/2002-02-25:
554 We don't know if we are executing a 32 or 64 bit executable,
555 and have no way to pass the proper word size to rs6000_gdbarch_init.
556 So we have to avoid switching to a new architecture, if the architecture
558 Blindly calling rs6000_gdbarch_init used to work in older versions of
559 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
560 determine the wordsize. */
563 const struct bfd_arch_info *exec_bfd_arch_info;
565 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
566 if (arch == exec_bfd_arch_info->arch)
570 bfd_default_set_arch_mach (&abfd, arch, mach);
572 gdbarch_info_init (&info);
573 info.bfd_arch_info = bfd_get_arch_info (&abfd);
574 info.abfd = exec_bfd;
576 if (!gdbarch_update_p (info))
577 internal_error (__FILE__, __LINE__,
578 _("rs6000_create_inferior: failed "
579 "to select architecture"));
583 /* Shared Object support. */
585 /* Return the LdInfo data for the given process. Raises an error
586 if the data could not be obtained.
588 The returned value must be deallocated after use. */
591 rs6000_ptrace_ldinfo (ptid_t ptid)
593 const int pid = ptid_get_pid (ptid);
595 void *ldi = xmalloc (ldi_size);
601 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size,
604 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL);
607 break; /* Success, we got the entire ld_info data. */
610 perror_with_name (_("ptrace ldinfo"));
612 /* ldi is not big enough. Double it and try again. */
614 ldi = xrealloc (ldi, ldi_size);
617 return (gdb_byte *) ldi;
620 /* Implement the to_xfer_partial target_ops method for
621 TARGET_OBJECT_LIBRARIES_AIX objects. */
623 static enum target_xfer_status
624 rs6000_xfer_shared_libraries
625 (struct target_ops *ops, enum target_object object,
626 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
627 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
631 struct cleanup *cleanup;
633 /* This function assumes that it is being run with a live process.
634 Core files are handled via gdbarch. */
635 gdb_assert (target_has_execution);
638 return TARGET_XFER_E_IO;
640 ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
641 gdb_assert (ldi_buf != NULL);
642 cleanup = make_cleanup (xfree, ldi_buf);
643 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf,
644 readbuf, offset, len, 1);
647 do_cleanups (cleanup);
650 return TARGET_XFER_EOF;
653 *xfered_len = result;
654 return TARGET_XFER_OK;
659 _initialize_rs6000_nat (void)
661 struct target_ops *t;
663 t = inf_ptrace_target ();
664 t->to_fetch_registers = rs6000_fetch_inferior_registers;
665 t->to_store_registers = rs6000_store_inferior_registers;
666 t->to_xfer_partial = rs6000_xfer_partial;
668 super_create_inferior = t->to_create_inferior;
669 t->to_create_inferior = rs6000_create_inferior;
671 t->to_wait = rs6000_wait;