1 /* Native support code for PPC AIX, for GDB the GNU debugger.
3 Copyright (C) 2006-2018 Free Software Foundation, Inc.
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "breakpoint.h"
33 #include "rs6000-tdep.h"
35 #include "rs6000-aix-tdep.h"
36 #include "xcoffread.h"
38 #include "solib-aix.h"
39 #include "target-float.h"
40 #include "xml-utils.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
44 /* If the kernel has to deliver a signal, it pushes a sigcontext
45 structure on the stack and then calls the signal handler, passing
46 the address of the sigcontext in an argument register. Usually
47 the signal handler doesn't save this register, so we have to
48 access the sigcontext structure via an offset from the signal handler
50 The following constants were determined by experimentation on AIX 3.2.
52 sigcontext structure have the mstsave saved under the
53 sc_jmpbuf.jmp_context. STKMIN(minimum stack size) is 56 for 32-bit
54 processes, and iar offset under sc_jmpbuf.jmp_context is 40.
55 ie offsetof(struct sigcontext, sc_jmpbuf.jmp_context.iar).
56 so PC offset in this case is STKMIN+iar offset, which is 96. */
58 #define SIG_FRAME_PC_OFFSET 96
59 #define SIG_FRAME_LR_OFFSET 108
60 /* STKMIN+grp1 offset, which is 56+228=284 */
61 #define SIG_FRAME_FP_OFFSET 284
64 STKMIN64 is 112 and iar offset is 312. So 112+312=424 */
65 #define SIG_FRAME_LR_OFFSET64 424
66 /* STKMIN64+grp1 offset. 112+56=168 */
67 #define SIG_FRAME_FP_OFFSET64 168
69 static struct trad_frame_cache *
70 aix_sighandle_frame_cache (struct frame_info *this_frame,
74 CORE_ADDR base, base_orig, func;
75 struct gdbarch *gdbarch = get_frame_arch (this_frame);
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
78 struct trad_frame_cache *this_trad_cache;
80 if ((*this_cache) != NULL)
81 return (struct trad_frame_cache *) (*this_cache);
83 this_trad_cache = trad_frame_cache_zalloc (this_frame);
84 (*this_cache) = this_trad_cache;
86 base = get_frame_register_unsigned (this_frame,
87 gdbarch_sp_regnum (gdbarch));
90 if (tdep->wordsize == 4)
92 func = read_memory_unsigned_integer (base_orig +
93 SIG_FRAME_PC_OFFSET + 8,
94 tdep->wordsize, byte_order);
95 safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET + 8,
96 tdep->wordsize, byte_order, &backchain);
97 base = (CORE_ADDR)backchain;
101 func = read_memory_unsigned_integer (base_orig +
102 SIG_FRAME_LR_OFFSET64,
103 tdep->wordsize, byte_order);
104 safe_read_memory_integer (base_orig + SIG_FRAME_FP_OFFSET64,
105 tdep->wordsize, byte_order, &backchain);
106 base = (CORE_ADDR)backchain;
109 trad_frame_set_reg_value (this_trad_cache, gdbarch_pc_regnum (gdbarch), func);
110 trad_frame_set_reg_value (this_trad_cache, gdbarch_sp_regnum (gdbarch), base);
112 if (tdep->wordsize == 4)
113 trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum,
114 base_orig + 0x38 + 52 + 8);
116 trad_frame_set_reg_addr (this_trad_cache, tdep->ppc_lr_regnum,
117 base_orig + 0x70 + 320);
119 trad_frame_set_id (this_trad_cache, frame_id_build (base, func));
120 trad_frame_set_this_base (this_trad_cache, base);
122 return this_trad_cache;
126 aix_sighandle_frame_this_id (struct frame_info *this_frame,
127 void **this_prologue_cache,
128 struct frame_id *this_id)
130 struct trad_frame_cache *this_trad_cache
131 = aix_sighandle_frame_cache (this_frame, this_prologue_cache);
132 trad_frame_get_id (this_trad_cache, this_id);
135 static struct value *
136 aix_sighandle_frame_prev_register (struct frame_info *this_frame,
137 void **this_prologue_cache, int regnum)
139 struct trad_frame_cache *this_trad_cache
140 = aix_sighandle_frame_cache (this_frame, this_prologue_cache);
141 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
145 aix_sighandle_frame_sniffer (const struct frame_unwind *self,
146 struct frame_info *this_frame,
147 void **this_prologue_cache)
149 CORE_ADDR pc = get_frame_pc (this_frame);
150 if (pc && pc < AIX_TEXT_SEGMENT_BASE)
156 /* AIX signal handler frame unwinder */
158 static const struct frame_unwind aix_sighandle_frame_unwind = {
160 default_frame_unwind_stop_reason,
161 aix_sighandle_frame_this_id,
162 aix_sighandle_frame_prev_register,
164 aix_sighandle_frame_sniffer
167 /* Core file support. */
169 static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
171 /* General-purpose registers. */
183 /* Floating-point registers. */
185 56, /* fpscr_offset */
189 static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
191 /* General-purpose registers. */
199 280, /* ctr_offset */
200 292, /* xer_offset */
203 /* Floating-point registers. */
205 296, /* fpscr_offset */
210 /* Supply register REGNUM in the general-purpose register set REGSET
211 from the buffer specified by GREGS and LEN to register cache
212 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
215 rs6000_aix_supply_regset (const struct regset *regset,
216 struct regcache *regcache, int regnum,
217 const void *gregs, size_t len)
219 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
220 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
223 /* Collect register REGNUM in the general-purpose register set
224 REGSET, from register cache REGCACHE into the buffer specified by
225 GREGS and LEN. If REGNUM is -1, do this for all registers in
229 rs6000_aix_collect_regset (const struct regset *regset,
230 const struct regcache *regcache, int regnum,
231 void *gregs, size_t len)
233 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
234 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
237 /* AIX register set. */
239 static const struct regset rs6000_aix32_regset =
241 &rs6000_aix32_reg_offsets,
242 rs6000_aix_supply_regset,
243 rs6000_aix_collect_regset,
246 static const struct regset rs6000_aix64_regset =
248 &rs6000_aix64_reg_offsets,
249 rs6000_aix_supply_regset,
250 rs6000_aix_collect_regset,
253 /* Iterate over core file register note sections. */
256 rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch,
257 iterate_over_regset_sections_cb *cb,
259 const struct regcache *regcache)
261 if (gdbarch_tdep (gdbarch)->wordsize == 4)
262 cb (".reg", 592, 592, &rs6000_aix32_regset, NULL, cb_data);
264 cb (".reg", 576, 576, &rs6000_aix64_regset, NULL, cb_data);
268 /* Pass the arguments in either registers, or in the stack. In RS/6000,
269 the first eight words of the argument list (that might be less than
270 eight parameters if some parameters occupy more than one word) are
271 passed in r3..r10 registers. Float and double parameters are
272 passed in fpr's, in addition to that. Rest of the parameters if any
273 are passed in user stack. There might be cases in which half of the
274 parameter is copied into registers, the other half is pushed into
277 Stack must be aligned on 64-bit boundaries when synthesizing
280 If the function is returning a structure, then the return address is passed
281 in r3, then the first 7 words of the parameters can be passed in registers,
285 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
286 struct regcache *regcache, CORE_ADDR bp_addr,
287 int nargs, struct value **args, CORE_ADDR sp,
288 int struct_return, CORE_ADDR struct_addr)
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
294 int argno; /* current argument number */
295 int argbytes; /* current argument byte */
296 gdb_byte tmp_buffer[50];
297 int f_argno = 0; /* current floating point argno */
298 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
299 CORE_ADDR func_addr = find_function_addr (function, NULL);
301 struct value *arg = 0;
306 /* The calling convention this function implements assumes the
307 processor has floating-point registers. We shouldn't be using it
308 on PPC variants that lack them. */
309 gdb_assert (ppc_floating_point_unit_p (gdbarch));
311 /* The first eight words of ther arguments are passed in registers.
312 Copy them appropriately. */
315 /* If the function is returning a `struct', then the first word
316 (which will be passed in r3) is used for struct return address.
317 In that case we should advance one word and start from r4
318 register to copy parameters. */
321 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
326 /* effectively indirect call... gcc does...
328 return_val example( float, int);
331 float in fp0, int in r3
332 offset of stack on overflow 8/16
333 for varargs, must go by type.
335 float in r3&r4, int in r5
336 offset of stack on overflow different
338 return in r3 or f0. If no float, must study how gcc emulates floats;
339 pay attention to arg promotion.
340 User may have to cast\args to handle promotion correctly
341 since gdb won't know if prototype supplied or not. */
343 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
345 int reg_size = register_size (gdbarch, ii + 3);
348 type = check_typedef (value_type (arg));
349 len = TYPE_LENGTH (type);
351 if (TYPE_CODE (type) == TYPE_CODE_FLT)
353 /* Floating point arguments are passed in fpr's, as well as gpr's.
354 There are 13 fpr's reserved for passing parameters. At this point
355 there is no way we would run out of them.
357 Always store the floating point value using the register's
358 floating-point format. */
359 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
360 gdb_byte reg_val[PPC_MAX_REGISTER_SIZE];
361 struct type *reg_type = register_type (gdbarch, fp_regnum);
363 gdb_assert (len <= 8);
365 target_float_convert (value_contents (arg), type, reg_val, reg_type);
366 regcache->cooked_write (fp_regnum, reg_val);
373 /* Argument takes more than one register. */
374 while (argbytes < len)
376 gdb_byte word[PPC_MAX_REGISTER_SIZE];
377 memset (word, 0, reg_size);
379 ((char *) value_contents (arg)) + argbytes,
380 (len - argbytes) > reg_size
381 ? reg_size : len - argbytes);
382 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 + ii, word);
383 ++ii, argbytes += reg_size;
386 goto ran_out_of_registers_for_arguments;
393 /* Argument can fit in one register. No problem. */
394 gdb_byte word[PPC_MAX_REGISTER_SIZE];
396 memset (word, 0, reg_size);
397 memcpy (word, value_contents (arg), len);
398 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 +ii, word);
403 ran_out_of_registers_for_arguments:
405 regcache_cooked_read_unsigned (regcache,
406 gdbarch_sp_regnum (gdbarch),
409 /* Location for 8 parameters are always reserved. */
412 /* Another six words for back chain, TOC register, link register, etc. */
415 /* Stack pointer must be quadword aligned. */
418 /* If there are more arguments, allocate space for them in
419 the stack, then push them starting from the ninth one. */
421 if ((argno < nargs) || argbytes)
427 space += ((len - argbytes + 3) & -4);
433 for (; jj < nargs; ++jj)
435 struct value *val = args[jj];
436 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
439 /* Add location required for the rest of the parameters. */
440 space = (space + 15) & -16;
443 /* This is another instance we need to be concerned about
444 securing our stack space. If we write anything underneath %sp
445 (r1), we might conflict with the kernel who thinks he is free
446 to use this area. So, update %sp first before doing anything
449 regcache_raw_write_signed (regcache,
450 gdbarch_sp_regnum (gdbarch), sp);
452 /* If the last argument copied into the registers didn't fit there
453 completely, push the rest of it into stack. */
457 write_memory (sp + 24 + (ii * 4),
458 value_contents (arg) + argbytes,
461 ii += ((len - argbytes + 3) & -4) / 4;
464 /* Push the rest of the arguments into stack. */
465 for (; argno < nargs; ++argno)
469 type = check_typedef (value_type (arg));
470 len = TYPE_LENGTH (type);
473 /* Float types should be passed in fpr's, as well as in the
475 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
478 gdb_assert (len <= 8);
480 regcache->cooked_write (tdep->ppc_fp0_regnum + 1 + f_argno,
481 value_contents (arg));
485 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
486 ii += ((len + 3) & -4) / 4;
490 /* Set the stack pointer. According to the ABI, the SP is meant to
491 be set _before_ the corresponding stack space is used. On AIX,
492 this even applies when the target has been completely stopped!
493 Not doing this can lead to conflicts with the kernel which thinks
494 that it still has control over this not-yet-allocated stack
496 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
498 /* Set back chain properly. */
499 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
500 write_memory (sp, tmp_buffer, wordsize);
502 /* Point the inferior function call's return address at the dummy's
504 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
506 /* Set the TOC register value. */
507 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum,
508 solib_aix_get_toc_value (func_addr));
510 target_store_registers (regcache, -1);
514 static enum return_value_convention
515 rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
516 struct type *valtype, struct regcache *regcache,
517 gdb_byte *readbuf, const gdb_byte *writebuf)
519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
522 /* The calling convention this function implements assumes the
523 processor has floating-point registers. We shouldn't be using it
524 on PowerPC variants that lack them. */
525 gdb_assert (ppc_floating_point_unit_p (gdbarch));
527 /* AltiVec extension: Functions that declare a vector data type as a
528 return value place that return value in VR2. */
529 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
530 && TYPE_LENGTH (valtype) == 16)
533 regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
535 regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
537 return RETURN_VALUE_REGISTER_CONVENTION;
540 /* If the called subprogram returns an aggregate, there exists an
541 implicit first argument, whose value is the address of a caller-
542 allocated buffer into which the callee is assumed to store its
543 return value. All explicit parameters are appropriately
545 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
546 || TYPE_CODE (valtype) == TYPE_CODE_UNION
547 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
548 return RETURN_VALUE_STRUCT_CONVENTION;
550 /* Scalar floating-point values are returned in FPR1 for float or
551 double, and in FPR1:FPR2 for quadword precision. Fortran
552 complex*8 and complex*16 are returned in FPR1:FPR2, and
553 complex*32 is returned in FPR1:FPR4. */
554 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
555 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
557 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
560 /* FIXME: kettenis/2007-01-01: Add support for quadword
561 precision and complex. */
565 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
566 target_float_convert (regval, regtype, readbuf, valtype);
570 target_float_convert (writebuf, valtype, regval, regtype);
571 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
574 return RETURN_VALUE_REGISTER_CONVENTION;
577 /* Values of the types int, long, short, pointer, and char (length
578 is less than or equal to four bytes), as well as bit values of
579 lengths less than or equal to 32 bits, must be returned right
580 justified in GPR3 with signed values sign extended and unsigned
581 values zero extended, as necessary. */
582 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
588 /* For reading we don't have to worry about sign extension. */
589 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
591 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
596 /* For writing, use unpack_long since that should handle any
597 required sign extension. */
598 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
599 unpack_long (valtype, writebuf));
602 return RETURN_VALUE_REGISTER_CONVENTION;
605 /* Eight-byte non-floating-point scalar values must be returned in
608 if (TYPE_LENGTH (valtype) == 8)
610 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
611 gdb_assert (tdep->wordsize == 4);
617 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, regval);
618 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, regval + 4);
619 memcpy (readbuf, regval, 8);
623 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
624 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
627 return RETURN_VALUE_REGISTER_CONVENTION;
630 return RETURN_VALUE_STRUCT_CONVENTION;
633 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
635 Usually a function pointer's representation is simply the address
636 of the function. On the RS/6000 however, a function pointer is
637 represented by a pointer to an OPD entry. This OPD entry contains
638 three words, the first word is the address of the function, the
639 second word is the TOC pointer (r2), and the third word is the
640 static chain value. Throughout GDB it is currently assumed that a
641 function pointer contains the address of the function, which is not
642 easy to fix. In addition, the conversion of a function address to
643 a function pointer would require allocation of an OPD entry in the
644 inferior's memory space, with all its drawbacks. To be able to
645 call C++ virtual methods in the inferior (which are called via
646 function pointers), find_function_addr uses this function to get the
647 function address from a function pointer. */
649 /* Return real function address if ADDR (a function pointer) is in the data
650 space and is therefore a special function pointer. */
653 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
655 struct target_ops *targ)
657 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
658 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
659 struct obj_section *s;
661 s = find_pc_section (addr);
663 /* Normally, functions live inside a section that is executable.
664 So, if ADDR points to a non-executable section, then treat it
665 as a function descriptor and return the target address iff
666 the target address itself points to a section that is executable. */
667 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
670 struct obj_section *pc_section;
674 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
676 CATCH (e, RETURN_MASK_ERROR)
678 /* An error occured during reading. Probably a memory error
679 due to the section not being loaded yet. This address
680 cannot be a function descriptor. */
685 pc_section = find_pc_section (pc);
687 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
695 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
698 branch_dest (struct regcache *regcache, int opcode, int instr,
699 CORE_ADDR pc, CORE_ADDR safety)
701 struct gdbarch *gdbarch = regcache->arch ();
702 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
709 absolute = (int) ((instr >> 1) & 1);
714 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
718 dest = pc + immediate;
722 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
726 dest = pc + immediate;
730 ext_op = (instr >> 1) & 0x3ff;
732 if (ext_op == 16) /* br conditional register */
734 dest = regcache_raw_get_unsigned (regcache, tdep->ppc_lr_regnum) & ~3;
736 /* If we are about to return from a signal handler, dest is
737 something like 0x3c90. The current frame is a signal handler
738 caller frame, upon completion of the sigreturn system call
739 execution will return to the saved PC in the frame. */
740 if (dest < AIX_TEXT_SEGMENT_BASE)
742 struct frame_info *frame = get_current_frame ();
744 dest = read_memory_unsigned_integer
745 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
746 tdep->wordsize, byte_order);
750 else if (ext_op == 528) /* br cond to count reg */
752 dest = regcache_raw_get_unsigned (regcache,
753 tdep->ppc_ctr_regnum) & ~3;
755 /* If we are about to execute a system call, dest is something
756 like 0x22fc or 0x3b00. Upon completion the system call
757 will return to the address in the link register. */
758 if (dest < AIX_TEXT_SEGMENT_BASE)
759 dest = regcache_raw_get_unsigned (regcache,
760 tdep->ppc_lr_regnum) & ~3;
769 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
772 /* AIX does not support PT_STEP. Simulate it. */
774 static std::vector<CORE_ADDR>
775 rs6000_software_single_step (struct regcache *regcache)
777 struct gdbarch *gdbarch = regcache->arch ();
778 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
784 loc = regcache_read_pc (regcache);
786 insn = read_memory_integer (loc, 4, byte_order);
788 std::vector<CORE_ADDR> next_pcs = ppc_deal_with_atomic_sequence (regcache);
789 if (!next_pcs.empty ())
792 breaks[0] = loc + PPC_INSN_SIZE;
794 breaks[1] = branch_dest (regcache, opcode, insn, loc, breaks[0]);
796 /* Don't put two breakpoints on the same address. */
797 if (breaks[1] == breaks[0])
800 for (ii = 0; ii < 2; ++ii)
802 /* ignore invalid breakpoint. */
803 if (breaks[ii] == -1)
806 next_pcs.push_back (breaks[ii]);
809 errno = 0; /* FIXME, don't ignore errors! */
810 /* What errors? {read,write}_memory call error(). */
814 /* Implement the "auto_wide_charset" gdbarch method for this platform. */
817 rs6000_aix_auto_wide_charset (void)
822 /* Implement an osabi sniffer for RS6000/AIX.
824 This function assumes that ABFD's flavour is XCOFF. In other words,
825 it should be registered as a sniffer for bfd_target_xcoff_flavour
826 objfiles only. A failed assertion will be raised if this condition
829 static enum gdb_osabi
830 rs6000_aix_osabi_sniffer (bfd *abfd)
832 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
834 /* The only noticeable difference between Lynx178 XCOFF files and
835 AIX XCOFF files comes from the fact that there are no shared
836 libraries on Lynx178. On AIX, we are betting that an executable
837 linked with no shared library will never exist. */
838 if (xcoff_get_n_import_files (abfd) <= 0)
839 return GDB_OSABI_UNKNOWN;
841 return GDB_OSABI_AIX;
844 /* A structure encoding the offset and size of a field within
853 /* A structure describing the layout of all the fields of interest
854 in AIX's struct ld_info. Each field in this struct corresponds
855 to the field of the same name in struct ld_info. */
859 struct field_info ldinfo_next;
860 struct field_info ldinfo_fd;
861 struct field_info ldinfo_textorg;
862 struct field_info ldinfo_textsize;
863 struct field_info ldinfo_dataorg;
864 struct field_info ldinfo_datasize;
865 struct field_info ldinfo_filename;
868 /* The following data has been generated by compiling and running
869 the following program on AIX 5.3. */
874 #define __LDINFO_PTRACE32__
875 #define __LDINFO_PTRACE64__
878 #define pinfo(type,member) \
880 struct type ldi = {0}; \
882 printf (" {%d, %d},\t/* %s */\n", \
883 offsetof (struct type, member), \
884 sizeof (ldi.member), \
892 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n");
893 pinfo (__ld_info32, ldinfo_next);
894 pinfo (__ld_info32, ldinfo_fd);
895 pinfo (__ld_info32, ldinfo_textorg);
896 pinfo (__ld_info32, ldinfo_textsize);
897 pinfo (__ld_info32, ldinfo_dataorg);
898 pinfo (__ld_info32, ldinfo_datasize);
899 pinfo (__ld_info32, ldinfo_filename);
904 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n");
905 pinfo (__ld_info64, ldinfo_next);
906 pinfo (__ld_info64, ldinfo_fd);
907 pinfo (__ld_info64, ldinfo_textorg);
908 pinfo (__ld_info64, ldinfo_textsize);
909 pinfo (__ld_info64, ldinfo_dataorg);
910 pinfo (__ld_info64, ldinfo_datasize);
911 pinfo (__ld_info64, ldinfo_filename);
918 /* Layout of the 32bit version of struct ld_info. */
920 static const struct ld_info_desc ld_info32_desc =
922 {0, 4}, /* ldinfo_next */
923 {4, 4}, /* ldinfo_fd */
924 {8, 4}, /* ldinfo_textorg */
925 {12, 4}, /* ldinfo_textsize */
926 {16, 4}, /* ldinfo_dataorg */
927 {20, 4}, /* ldinfo_datasize */
928 {24, 2}, /* ldinfo_filename */
931 /* Layout of the 64bit version of struct ld_info. */
933 static const struct ld_info_desc ld_info64_desc =
935 {0, 4}, /* ldinfo_next */
936 {8, 4}, /* ldinfo_fd */
937 {16, 8}, /* ldinfo_textorg */
938 {24, 8}, /* ldinfo_textsize */
939 {32, 8}, /* ldinfo_dataorg */
940 {40, 8}, /* ldinfo_datasize */
941 {48, 2}, /* ldinfo_filename */
944 /* A structured representation of one entry read from the ld_info
945 binary data provided by the AIX loader. */
959 /* Return a struct ld_info object corresponding to the entry at
962 Note that the filename and member_name strings still point
963 to the data in LDI_BUF. So LDI_BUF must not be deallocated
964 while the struct ld_info object returned is in use. */
966 static struct ld_info
967 rs6000_aix_extract_ld_info (struct gdbarch *gdbarch,
968 const gdb_byte *ldi_buf)
970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
971 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
972 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
973 const struct ld_info_desc desc
974 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc;
977 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset,
978 desc.ldinfo_next.size,
980 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset,
983 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset,
986 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset,
987 desc.ldinfo_textsize.size,
989 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset,
992 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset,
993 desc.ldinfo_datasize.size,
995 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset;
996 info.member_name = info.filename + strlen (info.filename) + 1;
1001 /* Append to OBJSTACK an XML string description of the shared library
1002 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX
1006 rs6000_aix_shared_library_to_xml (struct ld_info *ldi,
1007 struct obstack *obstack)
1009 obstack_grow_str (obstack, "<library name=\"");
1010 std::string p = xml_escape_text (ldi->filename);
1011 obstack_grow_str (obstack, p.c_str ());
1012 obstack_grow_str (obstack, "\"");
1014 if (ldi->member_name[0] != '\0')
1016 obstack_grow_str (obstack, " member=\"");
1017 p = xml_escape_text (ldi->member_name);
1018 obstack_grow_str (obstack, p.c_str ());
1019 obstack_grow_str (obstack, "\"");
1022 obstack_grow_str (obstack, " text_addr=\"");
1023 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg));
1024 obstack_grow_str (obstack, "\"");
1026 obstack_grow_str (obstack, " text_size=\"");
1027 obstack_grow_str (obstack, pulongest (ldi->textsize));
1028 obstack_grow_str (obstack, "\"");
1030 obstack_grow_str (obstack, " data_addr=\"");
1031 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg));
1032 obstack_grow_str (obstack, "\"");
1034 obstack_grow_str (obstack, " data_size=\"");
1035 obstack_grow_str (obstack, pulongest (ldi->datasize));
1036 obstack_grow_str (obstack, "\"");
1038 obstack_grow_str (obstack, "></library>");
1041 /* Convert the ld_info binary data provided by the AIX loader into
1042 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX
1045 LDI_BUF is a buffer containing the ld_info data.
1046 READBUF, OFFSET and LEN follow the same semantics as target_ops'
1047 to_xfer_partial target_ops method.
1049 If CLOSE_LDINFO_FD is nonzero, then this routine also closes
1050 the ldinfo_fd file descriptor. This is useful when the ldinfo
1051 data is obtained via ptrace, as ptrace opens a file descriptor
1052 for each and every entry; but we cannot use this descriptor
1053 as the consumer of the XML library list might live in a different
1057 rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf,
1058 gdb_byte *readbuf, ULONGEST offset, ULONGEST len,
1059 int close_ldinfo_fd)
1061 struct obstack obstack;
1065 obstack_init (&obstack);
1066 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n");
1070 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf);
1072 rs6000_aix_shared_library_to_xml (&ldi, &obstack);
1073 if (close_ldinfo_fd)
1078 ldi_buf = ldi_buf + ldi.next;
1081 obstack_grow_str0 (&obstack, "</library-list-aix>\n");
1083 buf = (const char *) obstack_finish (&obstack);
1084 len_avail = strlen (buf);
1085 if (offset >= len_avail)
1089 if (len > len_avail - offset)
1090 len = len_avail - offset;
1091 memcpy (readbuf, buf + offset, len);
1094 obstack_free (&obstack, NULL);
1098 /* Implement the core_xfer_shared_libraries_aix gdbarch method. */
1101 rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch,
1106 struct bfd_section *ldinfo_sec;
1109 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1110 if (ldinfo_sec == NULL)
1111 error (_("cannot find .ldinfo section from core file: %s"),
1112 bfd_errmsg (bfd_get_error ()));
1113 ldinfo_size = bfd_get_section_size (ldinfo_sec);
1115 gdb::byte_vector ldinfo_buf (ldinfo_size);
1117 if (! bfd_get_section_contents (core_bfd, ldinfo_sec,
1118 ldinfo_buf.data (), 0, ldinfo_size))
1119 error (_("unable to read .ldinfo section from core file: %s"),
1120 bfd_errmsg (bfd_get_error ()));
1122 return rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf.data (), readbuf,
1127 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
1129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1131 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
1132 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
1134 /* Displaced stepping is currently not supported in combination with
1135 software single-stepping. */
1136 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
1137 set_gdbarch_displaced_step_fixup (gdbarch, NULL);
1138 set_gdbarch_displaced_step_location (gdbarch, NULL);
1140 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
1141 set_gdbarch_return_value (gdbarch, rs6000_return_value);
1142 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1144 /* Handle RS/6000 function pointers (which are really function
1146 set_gdbarch_convert_from_func_ptr_addr
1147 (gdbarch, rs6000_convert_from_func_ptr_addr);
1149 /* Core file support. */
1150 set_gdbarch_iterate_over_regset_sections
1151 (gdbarch, rs6000_aix_iterate_over_regset_sections);
1152 set_gdbarch_core_xfer_shared_libraries_aix
1153 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix);
1155 if (tdep->wordsize == 8)
1156 tdep->lr_frame_offset = 16;
1158 tdep->lr_frame_offset = 8;
1160 if (tdep->wordsize == 4)
1161 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
1162 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
1163 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
1165 set_gdbarch_frame_red_zone_size (gdbarch, 224);
1167 set_gdbarch_frame_red_zone_size (gdbarch, 0);
1169 if (tdep->wordsize == 8)
1170 set_gdbarch_wchar_bit (gdbarch, 32);
1172 set_gdbarch_wchar_bit (gdbarch, 16);
1173 set_gdbarch_wchar_signed (gdbarch, 0);
1174 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset);
1176 set_solib_ops (gdbarch, &solib_aix_so_ops);
1177 frame_unwind_append_unwinder (gdbarch, &aix_sighandle_frame_unwind);
1181 _initialize_rs6000_aix_tdep (void)
1183 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
1184 bfd_target_xcoff_flavour,
1185 rs6000_aix_osabi_sniffer);
1186 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
1187 bfd_target_xcoff_flavour,
1188 rs6000_aix_osabi_sniffer);
1190 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
1191 rs6000_aix_init_osabi);
1192 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
1193 rs6000_aix_init_osabi);