1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
3 Copyright (C) 2011-2014 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "prologue-value.h"
27 #include "opcode/rl78.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
50 RL78_REGS_PER_BANK = 8
53 /* Register Numbers. */
57 /* All general purpose registers are 8 bits wide. */
58 RL78_RAW_BANK0_R0_REGNUM = 0,
59 RL78_RAW_BANK0_R1_REGNUM,
60 RL78_RAW_BANK0_R2_REGNUM,
61 RL78_RAW_BANK0_R3_REGNUM,
62 RL78_RAW_BANK0_R4_REGNUM,
63 RL78_RAW_BANK0_R5_REGNUM,
64 RL78_RAW_BANK0_R6_REGNUM,
65 RL78_RAW_BANK0_R7_REGNUM,
67 RL78_RAW_BANK1_R0_REGNUM,
68 RL78_RAW_BANK1_R1_REGNUM,
69 RL78_RAW_BANK1_R2_REGNUM,
70 RL78_RAW_BANK1_R3_REGNUM,
71 RL78_RAW_BANK1_R4_REGNUM,
72 RL78_RAW_BANK1_R5_REGNUM,
73 RL78_RAW_BANK1_R6_REGNUM,
74 RL78_RAW_BANK1_R7_REGNUM,
76 RL78_RAW_BANK2_R0_REGNUM,
77 RL78_RAW_BANK2_R1_REGNUM,
78 RL78_RAW_BANK2_R2_REGNUM,
79 RL78_RAW_BANK2_R3_REGNUM,
80 RL78_RAW_BANK2_R4_REGNUM,
81 RL78_RAW_BANK2_R5_REGNUM,
82 RL78_RAW_BANK2_R6_REGNUM,
83 RL78_RAW_BANK2_R7_REGNUM,
85 RL78_RAW_BANK3_R0_REGNUM,
86 RL78_RAW_BANK3_R1_REGNUM,
87 RL78_RAW_BANK3_R2_REGNUM,
88 RL78_RAW_BANK3_R3_REGNUM,
89 RL78_RAW_BANK3_R4_REGNUM,
90 RL78_RAW_BANK3_R5_REGNUM,
91 RL78_RAW_BANK3_R6_REGNUM,
92 RL78_RAW_BANK3_R7_REGNUM,
94 RL78_PSW_REGNUM, /* 8 bits */
95 RL78_ES_REGNUM, /* 8 bits */
96 RL78_CS_REGNUM, /* 8 bits */
97 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
99 /* Fixed address SFRs (some of those above are SFRs too.) */
100 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
101 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
102 RL78_PMC_REGNUM, /* 8 bits */
103 RL78_MEM_REGNUM, /* 8 bits ?? */
107 /* Pseudo registers. */
108 RL78_PC_REGNUM = RL78_NUM_REGS,
125 RL78_BANK0_R0_REGNUM,
126 RL78_BANK0_R1_REGNUM,
127 RL78_BANK0_R2_REGNUM,
128 RL78_BANK0_R3_REGNUM,
129 RL78_BANK0_R4_REGNUM,
130 RL78_BANK0_R5_REGNUM,
131 RL78_BANK0_R6_REGNUM,
132 RL78_BANK0_R7_REGNUM,
134 RL78_BANK1_R0_REGNUM,
135 RL78_BANK1_R1_REGNUM,
136 RL78_BANK1_R2_REGNUM,
137 RL78_BANK1_R3_REGNUM,
138 RL78_BANK1_R4_REGNUM,
139 RL78_BANK1_R5_REGNUM,
140 RL78_BANK1_R6_REGNUM,
141 RL78_BANK1_R7_REGNUM,
143 RL78_BANK2_R0_REGNUM,
144 RL78_BANK2_R1_REGNUM,
145 RL78_BANK2_R2_REGNUM,
146 RL78_BANK2_R3_REGNUM,
147 RL78_BANK2_R4_REGNUM,
148 RL78_BANK2_R5_REGNUM,
149 RL78_BANK2_R6_REGNUM,
150 RL78_BANK2_R7_REGNUM,
152 RL78_BANK3_R0_REGNUM,
153 RL78_BANK3_R1_REGNUM,
154 RL78_BANK3_R2_REGNUM,
155 RL78_BANK3_R3_REGNUM,
156 RL78_BANK3_R4_REGNUM,
157 RL78_BANK3_R5_REGNUM,
158 RL78_BANK3_R6_REGNUM,
159 RL78_BANK3_R7_REGNUM,
161 RL78_BANK0_RP0_REGNUM,
162 RL78_BANK0_RP1_REGNUM,
163 RL78_BANK0_RP2_REGNUM,
164 RL78_BANK0_RP3_REGNUM,
166 RL78_BANK1_RP0_REGNUM,
167 RL78_BANK1_RP1_REGNUM,
168 RL78_BANK1_RP2_REGNUM,
169 RL78_BANK1_RP3_REGNUM,
171 RL78_BANK2_RP0_REGNUM,
172 RL78_BANK2_RP1_REGNUM,
173 RL78_BANK2_RP2_REGNUM,
174 RL78_BANK2_RP3_REGNUM,
176 RL78_BANK3_RP0_REGNUM,
177 RL78_BANK3_RP1_REGNUM,
178 RL78_BANK3_RP2_REGNUM,
179 RL78_BANK3_RP3_REGNUM,
182 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
185 /* Architecture specific data. */
189 /* The ELF header flags specify the multilib used. */
192 struct type *rl78_void,
203 /* This structure holds the results of a prologue analysis. */
207 /* The offset from the frame base to the stack pointer --- always
210 Calling this a "size" is a bit misleading, but given that the
211 stack grows downwards, using offsets for everything keeps one
212 from going completely sign-crazy: you never change anything's
213 sign for an ADD instruction; always change the second operand's
214 sign for a SUB instruction; and everything takes care of
218 /* Non-zero if this function has initialized the frame pointer from
219 the stack pointer, zero otherwise. */
222 /* If has_frame_ptr is non-zero, this is the offset from the frame
223 base to where the frame pointer points. This is always zero or
225 int frame_ptr_offset;
227 /* The address of the first instruction at which the frame has been
228 set up and the arguments are where the debug info says they are
229 --- as best as we can tell. */
230 CORE_ADDR prologue_end;
232 /* reg_offset[R] is the offset from the CFA at which register R is
233 saved, or 1 if register R has not been saved. (Real values are
234 always zero or negative.) */
235 int reg_offset[RL78_NUM_TOTAL_REGS];
238 /* Implement the "register_type" gdbarch method. */
241 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 if (reg_nr == RL78_PC_REGNUM)
246 return tdep->rl78_code_pointer;
247 else if (reg_nr == RL78_RAW_PC_REGNUM)
248 return tdep->rl78_uint32;
249 else if (reg_nr <= RL78_MEM_REGNUM
250 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
251 || (RL78_BANK0_R0_REGNUM <= reg_nr
252 && reg_nr <= RL78_BANK3_R7_REGNUM))
253 return tdep->rl78_int8;
255 return tdep->rl78_data_pointer;
258 /* Implement the "register_name" gdbarch method. */
261 rl78_register_name (struct gdbarch *gdbarch, int regnr)
263 static const char *const reg_names[] =
385 return reg_names[regnr];
388 /* Implement the "register_reggroup_p" gdbarch method. */
391 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
392 struct reggroup *group)
394 if (group == all_reggroup)
397 /* All other registers are saved and restored. */
398 if (group == save_reggroup || group == restore_reggroup)
400 if ((regnum < RL78_NUM_REGS
401 && regnum != RL78_SPL_REGNUM
402 && regnum != RL78_SPH_REGNUM
403 && regnum != RL78_RAW_PC_REGNUM)
404 || regnum == RL78_SP_REGNUM
405 || regnum == RL78_PC_REGNUM)
411 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
412 || regnum == RL78_ES_REGNUM
413 || regnum == RL78_CS_REGNUM
414 || regnum == RL78_SPL_REGNUM
415 || regnum == RL78_SPH_REGNUM
416 || regnum == RL78_PMC_REGNUM
417 || regnum == RL78_MEM_REGNUM
418 || regnum == RL78_RAW_PC_REGNUM
419 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
420 return group == system_reggroup;
422 return group == general_reggroup;
425 /* Strip bits to form an instruction address. (When fetching a
426 32-bit address from the stack, the high eight bits are garbage.
427 This function strips off those unused bits.) */
430 rl78_make_instruction_address (CORE_ADDR addr)
432 return addr & 0xffffff;
435 /* Set / clear bits necessary to make a data address. */
438 rl78_make_data_address (CORE_ADDR addr)
440 return (addr & 0xffff) | 0xf0000;
443 /* Implement the "pseudo_register_read" gdbarch method. */
445 static enum register_status
446 rl78_pseudo_register_read (struct gdbarch *gdbarch,
447 struct regcache *regcache,
448 int reg, gdb_byte *buffer)
450 enum register_status status;
452 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
454 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
455 + (reg - RL78_BANK0_R0_REGNUM);
457 status = regcache_raw_read (regcache, raw_regnum, buffer);
459 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
461 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
462 + RL78_RAW_BANK0_R0_REGNUM;
464 status = regcache_raw_read (regcache, raw_regnum, buffer);
465 if (status == REG_VALID)
466 status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1);
468 else if (reg == RL78_SP_REGNUM)
470 status = regcache_raw_read (regcache, RL78_SPL_REGNUM, buffer);
471 if (status == REG_VALID)
472 status = regcache_raw_read (regcache, RL78_SPH_REGNUM, buffer + 1);
474 else if (reg == RL78_PC_REGNUM)
478 status = regcache_raw_read (regcache, RL78_RAW_PC_REGNUM, rawbuf);
479 memcpy (buffer, rawbuf, 3);
481 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
485 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
486 if (status == REG_VALID)
488 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
489 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
490 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
491 + (reg - RL78_X_REGNUM);
492 status = regcache_raw_read (regcache, raw_regnum, buffer);
495 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
499 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
500 if (status == REG_VALID)
502 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
503 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
504 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
505 + 2 * (reg - RL78_AX_REGNUM);
506 status = regcache_raw_read (regcache, raw_regnum, buffer);
507 if (status == REG_VALID)
508 status = regcache_raw_read (regcache, raw_regnum + 1,
513 gdb_assert_not_reached ("invalid pseudo register number");
517 /* Implement the "pseudo_register_write" gdbarch method. */
520 rl78_pseudo_register_write (struct gdbarch *gdbarch,
521 struct regcache *regcache,
522 int reg, const gdb_byte *buffer)
524 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
526 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
527 + (reg - RL78_BANK0_R0_REGNUM);
529 regcache_raw_write (regcache, raw_regnum, buffer);
531 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
533 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
534 + RL78_RAW_BANK0_R0_REGNUM;
536 regcache_raw_write (regcache, raw_regnum, buffer);
537 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
539 else if (reg == RL78_SP_REGNUM)
541 regcache_raw_write (regcache, RL78_SPL_REGNUM, buffer);
542 regcache_raw_write (regcache, RL78_SPH_REGNUM, buffer + 1);
544 else if (reg == RL78_PC_REGNUM)
548 memcpy (rawbuf, buffer, 3);
550 regcache_raw_write (regcache, RL78_RAW_PC_REGNUM, rawbuf);
552 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
558 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
559 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
560 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
561 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
562 + (reg - RL78_X_REGNUM);
563 regcache_raw_write (regcache, raw_regnum, buffer);
565 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
568 int bank, raw_regnum;
570 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
571 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
572 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
573 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
574 + 2 * (reg - RL78_AX_REGNUM);
575 regcache_raw_write (regcache, raw_regnum, buffer);
576 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
579 gdb_assert_not_reached ("invalid pseudo register number");
582 /* Implement the "breakpoint_from_pc" gdbarch method. */
584 static const gdb_byte *
585 rl78_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
588 /* The documented BRK instruction is actually a two byte sequence,
589 {0x61, 0xcc}, but instructions may be as short as one byte.
590 Correspondence with Renesas revealed that the one byte sequence
591 0xff is used when a one byte breakpoint instruction is required. */
592 static gdb_byte breakpoint[] = { 0xff };
594 *lenptr = sizeof breakpoint;
598 /* Define a "handle" struct for fetching the next opcode. */
600 struct rl78_get_opcode_byte_handle
605 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
606 the memory address of the next byte to fetch. If successful,
607 the address in the handle is updated and the byte fetched is
608 returned as the value of the function. If not successful, -1
612 rl78_get_opcode_byte (void *handle)
614 struct rl78_get_opcode_byte_handle *opcdata = handle;
618 status = target_read_memory (opcdata->pc, &byte, 1);
628 /* Function for finding saved registers in a 'struct pv_area'; this
629 function is passed to pv_area_scan.
631 If VALUE is a saved register, ADDR says it was saved at a constant
632 offset from the frame base, and SIZE indicates that the whole
633 register was saved, record its offset. */
636 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
639 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
641 if (value.kind == pvk_register
643 && pv_is_register (addr, RL78_SP_REGNUM)
644 && size == register_size (target_gdbarch (), value.reg))
645 result->reg_offset[value.reg] = addr.k;
648 /* Analyze a prologue starting at START_PC, going no further than
649 LIMIT_PC. Fill in RESULT as appropriate. */
652 rl78_analyze_prologue (CORE_ADDR start_pc,
653 CORE_ADDR limit_pc, struct rl78_prologue *result)
655 CORE_ADDR pc, next_pc;
657 pv_t reg[RL78_NUM_TOTAL_REGS];
658 struct pv_area *stack;
659 struct cleanup *back_to;
660 CORE_ADDR after_last_frame_setup_insn = start_pc;
663 memset (result, 0, sizeof (*result));
665 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
667 reg[rn] = pv_register (rn, 0);
668 result->reg_offset[rn] = 1;
671 stack = make_pv_area (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
672 back_to = make_cleanup_free_pv_area (stack);
674 /* The call instruction has saved the return address on the stack. */
675 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
676 pv_area_store (stack, reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
679 while (pc < limit_pc)
682 struct rl78_get_opcode_byte_handle opcode_handle;
683 RL78_Opcode_Decoded opc;
685 opcode_handle.pc = pc;
686 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
688 next_pc = pc + bytes_read;
690 if (opc.id == RLO_sel)
692 bank = opc.op[1].addend;
694 else if (opc.id == RLO_mov
695 && opc.op[0].type == RL78_Operand_PreDec
696 && opc.op[0].reg == RL78_Reg_SP
697 && opc.op[1].type == RL78_Operand_Register)
699 int rsrc = (bank * RL78_REGS_PER_BANK)
700 + 2 * (opc.op[1].reg - RL78_Reg_AX);
702 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
703 pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc]);
704 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
705 pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
706 after_last_frame_setup_insn = next_pc;
708 else if (opc.id == RLO_sub
709 && opc.op[0].type == RL78_Operand_Register
710 && opc.op[0].reg == RL78_Reg_SP
711 && opc.op[1].type == RL78_Operand_Immediate)
713 int addend = opc.op[1].addend;
715 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
717 after_last_frame_setup_insn = next_pc;
721 /* Terminate the prologue scan. */
728 /* Is the frame size (offset, really) a known constant? */
729 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
730 result->frame_size = reg[RL78_SP_REGNUM].k;
732 /* Record where all the registers were saved. */
733 pv_area_scan (stack, check_for_saved, (void *) result);
735 result->prologue_end = after_last_frame_setup_insn;
737 do_cleanups (back_to);
740 /* Implement the "addr_bits_remove" gdbarch method. */
743 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
745 return addr & 0xffffff;
748 /* Implement the "address_to_pointer" gdbarch method. */
751 rl78_address_to_pointer (struct gdbarch *gdbarch,
752 struct type *type, gdb_byte *buf, CORE_ADDR addr)
754 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
756 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
760 /* Implement the "pointer_to_address" gdbarch method. */
763 rl78_pointer_to_address (struct gdbarch *gdbarch,
764 struct type *type, const gdb_byte *buf)
766 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
768 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
770 /* Is it a code address? */
771 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
772 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
773 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
774 || TYPE_LENGTH (type) == 4)
775 return rl78_make_instruction_address (addr);
777 return rl78_make_data_address (addr);
780 /* Implement the "skip_prologue" gdbarch method. */
783 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
786 CORE_ADDR func_addr, func_end;
787 struct rl78_prologue p;
789 /* Try to find the extent of the function that contains PC. */
790 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
793 rl78_analyze_prologue (pc, func_end, &p);
794 return p.prologue_end;
797 /* Implement the "unwind_pc" gdbarch method. */
800 rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
802 return rl78_addr_bits_remove
803 (arch, frame_unwind_register_unsigned (next_frame,
807 /* Implement the "unwind_sp" gdbarch method. */
810 rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
812 return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM);
815 /* Given a frame described by THIS_FRAME, decode the prologue of its
816 associated function if there is not cache entry as specified by
817 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
818 return that struct as the value of this function. */
820 static struct rl78_prologue *
821 rl78_analyze_frame_prologue (struct frame_info *this_frame,
822 void **this_prologue_cache)
824 if (!*this_prologue_cache)
826 CORE_ADDR func_start, stop_addr;
828 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
830 func_start = get_frame_func (this_frame);
831 stop_addr = get_frame_pc (this_frame);
833 /* If we couldn't find any function containing the PC, then
834 just initialize the prologue cache, but don't do anything. */
836 stop_addr = func_start;
838 rl78_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
841 return *this_prologue_cache;
844 /* Given a frame and a prologue cache, return this frame's base. */
847 rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
849 struct rl78_prologue *p
850 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
851 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
853 return rl78_make_data_address (sp - p->frame_size);
856 /* Implement the "frame_this_id" method for unwinding frames. */
859 rl78_this_id (struct frame_info *this_frame,
860 void **this_prologue_cache, struct frame_id *this_id)
862 *this_id = frame_id_build (rl78_frame_base (this_frame,
863 this_prologue_cache),
864 get_frame_func (this_frame));
867 /* Implement the "frame_prev_register" method for unwinding frames. */
869 static struct value *
870 rl78_prev_register (struct frame_info *this_frame,
871 void **this_prologue_cache, int regnum)
873 struct rl78_prologue *p
874 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
875 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
877 if (regnum == RL78_SP_REGNUM)
878 return frame_unwind_got_constant (this_frame, regnum, frame_base);
880 else if (regnum == RL78_SPL_REGNUM)
881 return frame_unwind_got_constant (this_frame, regnum,
882 (frame_base & 0xff));
884 else if (regnum == RL78_SPH_REGNUM)
885 return frame_unwind_got_constant (this_frame, regnum,
886 ((frame_base >> 8) & 0xff));
888 /* If prologue analysis says we saved this register somewhere,
889 return a description of the stack slot holding it. */
890 else if (p->reg_offset[regnum] != 1)
893 frame_unwind_got_memory (this_frame, regnum,
894 frame_base + p->reg_offset[regnum]);
896 if (regnum == RL78_PC_REGNUM)
898 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
900 return frame_unwind_got_constant (this_frame, regnum, pc);
905 /* Otherwise, presume we haven't changed the value of this
906 register, and get it from the next frame. */
908 return frame_unwind_got_register (this_frame, regnum, regnum);
911 static const struct frame_unwind rl78_unwind =
914 default_frame_unwind_stop_reason,
918 default_frame_sniffer
921 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
924 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
926 if (0 <= reg && reg <= 31)
929 /* Map even registers to their 16-bit counterparts. This
930 is usually what is required from the DWARF info. */
931 return (reg >> 1) + RL78_BANK0_RP0_REGNUM;
936 return RL78_SP_REGNUM;
940 return RL78_PSW_REGNUM;
942 return RL78_ES_REGNUM;
944 return RL78_CS_REGNUM;
946 return RL78_PC_REGNUM;
948 internal_error (__FILE__, __LINE__,
949 _("Undefined dwarf2 register mapping of reg %d"),
953 /* Implement the `register_sim_regno' gdbarch method. */
956 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
958 gdb_assert (regnum < RL78_NUM_REGS);
960 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
961 just want to override the default here which disallows register
962 numbers which have no names. */
966 /* Implement the "return_value" gdbarch method. */
968 static enum return_value_convention
969 rl78_return_value (struct gdbarch *gdbarch,
970 struct value *function,
971 struct type *valtype,
972 struct regcache *regcache,
973 gdb_byte *readbuf, const gdb_byte *writebuf)
975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
976 ULONGEST valtype_len = TYPE_LENGTH (valtype);
979 return RETURN_VALUE_STRUCT_CONVENTION;
984 int argreg = RL78_RAW_BANK1_R0_REGNUM;
987 while (valtype_len > 0)
989 regcache_cooked_read_unsigned (regcache, argreg, &u);
990 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1000 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1003 while (valtype_len > 0)
1005 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1006 regcache_cooked_write_unsigned (regcache, argreg, u);
1013 return RETURN_VALUE_REGISTER_CONVENTION;
1017 /* Implement the "frame_align" gdbarch method. */
1020 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1022 return rl78_make_data_address (align_down (sp, 2));
1026 /* Implement the "dummy_id" gdbarch method. */
1028 static struct frame_id
1029 rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1032 frame_id_build (rl78_make_data_address
1033 (get_frame_register_unsigned
1034 (this_frame, RL78_SP_REGNUM)),
1035 get_frame_pc (this_frame));
1039 /* Implement the "push_dummy_call" gdbarch method. */
1042 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1043 struct regcache *regcache, CORE_ADDR bp_addr,
1044 int nargs, struct value **args, CORE_ADDR sp,
1045 int struct_return, CORE_ADDR struct_addr)
1047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1051 /* Push arguments in reverse order. */
1052 for (i = nargs - 1; i >= 0; i--)
1054 struct type *value_type = value_enclosing_type (args[i]);
1055 int len = TYPE_LENGTH (value_type);
1056 int container_len = (len + 1) & ~1;
1058 sp -= container_len;
1059 write_memory (rl78_make_data_address (sp),
1060 value_contents_all (args[i]), len);
1063 /* Store struct value address. */
1066 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1068 write_memory (rl78_make_data_address (sp), buf, 2);
1071 /* Store return address. */
1073 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1074 write_memory (rl78_make_data_address (sp), buf, 4);
1076 /* Finally, update the stack pointer... */
1077 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1079 /* DWARF2/GCC uses the stack address *before* the function call as a
1081 return rl78_make_data_address (sp + 4);
1084 /* Allocate and initialize a gdbarch object. */
1086 static struct gdbarch *
1087 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1089 struct gdbarch *gdbarch;
1090 struct gdbarch_tdep *tdep;
1093 /* Extract the elf_flags if available. */
1094 if (info.abfd != NULL
1095 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1096 elf_flags = elf_elfheader (info.abfd)->e_flags;
1101 /* Try to find the architecture in the list of already defined
1103 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1105 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1107 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1110 return arches->gdbarch;
1113 /* None found, create a new architecture from the information
1115 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1116 gdbarch = gdbarch_alloc (&info, tdep);
1117 tdep->elf_flags = elf_flags;
1119 /* Initialize types. */
1120 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1121 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1122 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1123 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1124 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1125 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1126 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1128 tdep->rl78_data_pointer
1129 = arch_type (gdbarch, TYPE_CODE_PTR, 16 / TARGET_CHAR_BIT,
1130 xstrdup ("rl78_data_addr_t"));
1131 TYPE_TARGET_TYPE (tdep->rl78_data_pointer) = tdep->rl78_void;
1132 TYPE_UNSIGNED (tdep->rl78_data_pointer) = 1;
1134 tdep->rl78_code_pointer
1135 = arch_type (gdbarch, TYPE_CODE_PTR, 32 / TARGET_CHAR_BIT,
1136 xstrdup ("rl78_code_addr_t"));
1137 TYPE_TARGET_TYPE (tdep->rl78_code_pointer) = tdep->rl78_void;
1138 TYPE_UNSIGNED (tdep->rl78_code_pointer) = 1;
1141 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1142 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1143 set_gdbarch_register_name (gdbarch, rl78_register_name);
1144 set_gdbarch_register_type (gdbarch, rl78_register_type);
1145 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1146 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1147 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1148 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1149 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1150 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1151 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1154 set_gdbarch_char_signed (gdbarch, 0);
1155 set_gdbarch_short_bit (gdbarch, 16);
1156 set_gdbarch_int_bit (gdbarch, 16);
1157 set_gdbarch_long_bit (gdbarch, 32);
1158 set_gdbarch_long_long_bit (gdbarch, 64);
1159 set_gdbarch_ptr_bit (gdbarch, 16);
1160 set_gdbarch_addr_bit (gdbarch, 32);
1161 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1162 set_gdbarch_float_bit (gdbarch, 32);
1163 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1164 set_gdbarch_double_bit (gdbarch, 32);
1165 set_gdbarch_long_double_bit (gdbarch, 64);
1166 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1167 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1168 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1169 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1170 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1173 set_gdbarch_breakpoint_from_pc (gdbarch, rl78_breakpoint_from_pc);
1174 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1177 set_gdbarch_print_insn (gdbarch, print_insn_rl78);
1179 /* Frames, prologues, etc. */
1180 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1181 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1182 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1183 set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp);
1184 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1186 dwarf2_append_unwinders (gdbarch);
1187 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1189 /* Dummy frames, return values. */
1190 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1191 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1192 set_gdbarch_return_value (gdbarch, rl78_return_value);
1194 /* Virtual tables. */
1195 set_gdbarch_vbit_in_delta (gdbarch, 1);
1200 /* -Wmissing-prototypes */
1201 extern initialize_file_ftype _initialize_rl78_tdep;
1203 /* Register the above initialization routine. */
1206 _initialize_rl78_tdep (void)
1208 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);