1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
3 Copyright (C) 2011-2012 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "prologue-value.h"
27 #include "opcode/rl78.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
50 RL78_REGS_PER_BANK = 8
53 /* Register Numbers. */
57 /* All general purpose registers are 8 bits wide. */
58 RL78_RAW_BANK0_R0_REGNUM = 0,
59 RL78_RAW_BANK0_R1_REGNUM,
60 RL78_RAW_BANK0_R2_REGNUM,
61 RL78_RAW_BANK0_R3_REGNUM,
62 RL78_RAW_BANK0_R4_REGNUM,
63 RL78_RAW_BANK0_R5_REGNUM,
64 RL78_RAW_BANK0_R6_REGNUM,
65 RL78_RAW_BANK0_R7_REGNUM,
67 RL78_RAW_BANK1_R0_REGNUM,
68 RL78_RAW_BANK1_R1_REGNUM,
69 RL78_RAW_BANK1_R2_REGNUM,
70 RL78_RAW_BANK1_R3_REGNUM,
71 RL78_RAW_BANK1_R4_REGNUM,
72 RL78_RAW_BANK1_R5_REGNUM,
73 RL78_RAW_BANK1_R6_REGNUM,
74 RL78_RAW_BANK1_R7_REGNUM,
76 RL78_RAW_BANK2_R0_REGNUM,
77 RL78_RAW_BANK2_R1_REGNUM,
78 RL78_RAW_BANK2_R2_REGNUM,
79 RL78_RAW_BANK2_R3_REGNUM,
80 RL78_RAW_BANK2_R4_REGNUM,
81 RL78_RAW_BANK2_R5_REGNUM,
82 RL78_RAW_BANK2_R6_REGNUM,
83 RL78_RAW_BANK2_R7_REGNUM,
85 RL78_RAW_BANK3_R0_REGNUM,
86 RL78_RAW_BANK3_R1_REGNUM,
87 RL78_RAW_BANK3_R2_REGNUM,
88 RL78_RAW_BANK3_R3_REGNUM,
89 RL78_RAW_BANK3_R4_REGNUM,
90 RL78_RAW_BANK3_R5_REGNUM,
91 RL78_RAW_BANK3_R6_REGNUM,
92 RL78_RAW_BANK3_R7_REGNUM,
94 RL78_PSW_REGNUM, /* 8 bits */
95 RL78_ES_REGNUM, /* 8 bits */
96 RL78_CS_REGNUM, /* 8 bits */
97 RL78_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
99 /* Fixed address SFRs (some of those above are SFRs too.) */
100 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
101 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
102 RL78_PMC_REGNUM, /* 8 bits */
103 RL78_MEM_REGNUM, /* 8 bits ?? */
107 /* Pseudo registers. */
108 RL78_SP_REGNUM = RL78_NUM_REGS,
124 RL78_BANK0_R0_REGNUM,
125 RL78_BANK0_R1_REGNUM,
126 RL78_BANK0_R2_REGNUM,
127 RL78_BANK0_R3_REGNUM,
128 RL78_BANK0_R4_REGNUM,
129 RL78_BANK0_R5_REGNUM,
130 RL78_BANK0_R6_REGNUM,
131 RL78_BANK0_R7_REGNUM,
133 RL78_BANK1_R0_REGNUM,
134 RL78_BANK1_R1_REGNUM,
135 RL78_BANK1_R2_REGNUM,
136 RL78_BANK1_R3_REGNUM,
137 RL78_BANK1_R4_REGNUM,
138 RL78_BANK1_R5_REGNUM,
139 RL78_BANK1_R6_REGNUM,
140 RL78_BANK1_R7_REGNUM,
142 RL78_BANK2_R0_REGNUM,
143 RL78_BANK2_R1_REGNUM,
144 RL78_BANK2_R2_REGNUM,
145 RL78_BANK2_R3_REGNUM,
146 RL78_BANK2_R4_REGNUM,
147 RL78_BANK2_R5_REGNUM,
148 RL78_BANK2_R6_REGNUM,
149 RL78_BANK2_R7_REGNUM,
151 RL78_BANK3_R0_REGNUM,
152 RL78_BANK3_R1_REGNUM,
153 RL78_BANK3_R2_REGNUM,
154 RL78_BANK3_R3_REGNUM,
155 RL78_BANK3_R4_REGNUM,
156 RL78_BANK3_R5_REGNUM,
157 RL78_BANK3_R6_REGNUM,
158 RL78_BANK3_R7_REGNUM,
160 RL78_BANK0_RP0_REGNUM,
161 RL78_BANK0_RP1_REGNUM,
162 RL78_BANK0_RP2_REGNUM,
163 RL78_BANK0_RP3_REGNUM,
165 RL78_BANK1_RP0_REGNUM,
166 RL78_BANK1_RP1_REGNUM,
167 RL78_BANK1_RP2_REGNUM,
168 RL78_BANK1_RP3_REGNUM,
170 RL78_BANK2_RP0_REGNUM,
171 RL78_BANK2_RP1_REGNUM,
172 RL78_BANK2_RP2_REGNUM,
173 RL78_BANK2_RP3_REGNUM,
175 RL78_BANK3_RP0_REGNUM,
176 RL78_BANK3_RP1_REGNUM,
177 RL78_BANK3_RP2_REGNUM,
178 RL78_BANK3_RP3_REGNUM,
181 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
184 /* Architecture specific data. */
188 /* The ELF header flags specify the multilib used. */
191 struct type *rl78_void,
202 /* This structure holds the results of a prologue analysis. */
206 /* The offset from the frame base to the stack pointer --- always
209 Calling this a "size" is a bit misleading, but given that the
210 stack grows downwards, using offsets for everything keeps one
211 from going completely sign-crazy: you never change anything's
212 sign for an ADD instruction; always change the second operand's
213 sign for a SUB instruction; and everything takes care of
217 /* Non-zero if this function has initialized the frame pointer from
218 the stack pointer, zero otherwise. */
221 /* If has_frame_ptr is non-zero, this is the offset from the frame
222 base to where the frame pointer points. This is always zero or
224 int frame_ptr_offset;
226 /* The address of the first instruction at which the frame has been
227 set up and the arguments are where the debug info says they are
228 --- as best as we can tell. */
229 CORE_ADDR prologue_end;
231 /* reg_offset[R] is the offset from the CFA at which register R is
232 saved, or 1 if register R has not been saved. (Real values are
233 always zero or negative.) */
234 int reg_offset[RL78_NUM_TOTAL_REGS];
237 /* Implement the "register_type" gdbarch method. */
240 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 if (reg_nr == RL78_PC_REGNUM)
245 return tdep->rl78_code_pointer;
246 else if (reg_nr <= RL78_MEM_REGNUM
247 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
248 || (RL78_BANK0_R0_REGNUM <= reg_nr
249 && reg_nr <= RL78_BANK3_R7_REGNUM))
250 return tdep->rl78_int8;
252 return tdep->rl78_data_pointer;
255 /* Implement the "register_name" gdbarch method. */
258 rl78_register_name (struct gdbarch *gdbarch, int regnr)
260 static const char *const reg_names[] =
381 return reg_names[regnr];
384 /* Implement the "register_reggroup_p" gdbarch method. */
387 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
388 struct reggroup *group)
390 if (group == all_reggroup)
393 /* All other registers are saved and restored. */
394 if (group == save_reggroup || group == restore_reggroup)
396 if (regnum < RL78_NUM_REGS)
402 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
403 || regnum == RL78_ES_REGNUM
404 || regnum == RL78_CS_REGNUM
405 || regnum == RL78_SPL_REGNUM
406 || regnum == RL78_SPH_REGNUM
407 || regnum == RL78_PMC_REGNUM
408 || regnum == RL78_MEM_REGNUM
409 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
410 return group == system_reggroup;
412 return group == general_reggroup;
415 /* Strip bits to form an instruction address. (When fetching a
416 32-bit address from the stack, the high eight bits are garbage.
417 This function strips off those unused bits.) */
420 rl78_make_instruction_address (CORE_ADDR addr)
422 return addr & 0xffffff;
425 /* Set / clear bits necessary to make a data address. */
428 rl78_make_data_address (CORE_ADDR addr)
430 return (addr & 0xffff) | 0xf0000;
433 /* Implement the "pseudo_register_read" gdbarch method. */
435 static enum register_status
436 rl78_pseudo_register_read (struct gdbarch *gdbarch,
437 struct regcache *regcache,
438 int reg, gdb_byte *buffer)
440 enum register_status status;
442 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
444 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
445 + (reg - RL78_BANK0_R0_REGNUM);
447 status = regcache_raw_read (regcache, raw_regnum, buffer);
449 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
451 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
452 + RL78_RAW_BANK0_R0_REGNUM;
454 status = regcache_raw_read (regcache, raw_regnum, buffer);
455 if (status == REG_VALID)
456 status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1);
458 else if (reg == RL78_SP_REGNUM)
460 status = regcache_raw_read (regcache, RL78_SPL_REGNUM, buffer);
461 if (status == REG_VALID)
462 status = regcache_raw_read (regcache, RL78_SPH_REGNUM, buffer + 1);
464 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
468 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
469 if (status == REG_VALID)
471 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
472 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
473 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
474 + (reg - RL78_X_REGNUM);
475 status = regcache_raw_read (regcache, raw_regnum, buffer);
478 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
482 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
483 if (status == REG_VALID)
485 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
486 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
487 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
488 + 2 * (reg - RL78_AX_REGNUM);
489 status = regcache_raw_read (regcache, raw_regnum, buffer);
490 if (status == REG_VALID)
491 status = regcache_raw_read (regcache, raw_regnum + 1,
496 gdb_assert_not_reached ("invalid pseudo register number");
500 /* Implement the "pseudo_register_write" gdbarch method. */
503 rl78_pseudo_register_write (struct gdbarch *gdbarch,
504 struct regcache *regcache,
505 int reg, const gdb_byte *buffer)
507 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
509 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
510 + (reg - RL78_BANK0_R0_REGNUM);
512 regcache_raw_write (regcache, raw_regnum, buffer);
514 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
516 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
517 + RL78_RAW_BANK0_R0_REGNUM;
519 regcache_raw_write (regcache, raw_regnum, buffer);
520 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
522 else if (reg == RL78_SP_REGNUM)
524 regcache_raw_write (regcache, RL78_SPL_REGNUM, buffer);
525 regcache_raw_write (regcache, RL78_SPH_REGNUM, buffer + 1);
527 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
533 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
534 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
535 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
536 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
537 + (reg - RL78_X_REGNUM);
538 regcache_raw_write (regcache, raw_regnum, buffer);
540 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
543 int bank, raw_regnum;
545 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
546 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
547 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
548 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
549 + 2 * (reg - RL78_AX_REGNUM);
550 regcache_raw_write (regcache, raw_regnum, buffer);
551 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
554 gdb_assert_not_reached ("invalid pseudo register number");
557 /* Implement the "breakpoint_from_pc" gdbarch method. */
559 static const gdb_byte *
560 rl78_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
563 /* The documented BRK instruction is actually a two byte sequence,
564 {0x61, 0xcc}, but instructions may be as short as one byte.
565 Correspondence with Renesas revealed that the one byte sequence
566 0xff is used when a one byte breakpoint instruction is required. */
567 static gdb_byte breakpoint[] = { 0xff };
569 *lenptr = sizeof breakpoint;
573 /* Define a "handle" struct for fetching the next opcode. */
575 struct rl78_get_opcode_byte_handle
580 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
581 the memory address of the next byte to fetch. If successful,
582 the address in the handle is updated and the byte fetched is
583 returned as the value of the function. If not successful, -1
587 rl78_get_opcode_byte (void *handle)
589 struct rl78_get_opcode_byte_handle *opcdata = handle;
593 status = target_read_memory (opcdata->pc, &byte, 1);
603 /* Function for finding saved registers in a 'struct pv_area'; this
604 function is passed to pv_area_scan.
606 If VALUE is a saved register, ADDR says it was saved at a constant
607 offset from the frame base, and SIZE indicates that the whole
608 register was saved, record its offset. */
611 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
614 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
616 if (value.kind == pvk_register
618 && pv_is_register (addr, RL78_SP_REGNUM)
619 && size == register_size (target_gdbarch, value.reg))
620 result->reg_offset[value.reg] = addr.k;
623 /* Analyze a prologue starting at START_PC, going no further than
624 LIMIT_PC. Fill in RESULT as appropriate. */
627 rl78_analyze_prologue (CORE_ADDR start_pc,
628 CORE_ADDR limit_pc, struct rl78_prologue *result)
630 CORE_ADDR pc, next_pc;
632 pv_t reg[RL78_NUM_TOTAL_REGS];
633 struct pv_area *stack;
634 struct cleanup *back_to;
635 CORE_ADDR after_last_frame_setup_insn = start_pc;
638 memset (result, 0, sizeof (*result));
640 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
642 reg[rn] = pv_register (rn, 0);
643 result->reg_offset[rn] = 1;
646 stack = make_pv_area (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch));
647 back_to = make_cleanup_free_pv_area (stack);
649 /* The call instruction has saved the return address on the stack. */
650 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
651 pv_area_store (stack, reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
654 while (pc < limit_pc)
657 struct rl78_get_opcode_byte_handle opcode_handle;
658 RL78_Opcode_Decoded opc;
660 opcode_handle.pc = pc;
661 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
663 next_pc = pc + bytes_read;
665 if (opc.id == RLO_sel)
667 bank = opc.op[1].addend;
669 else if (opc.id == RLO_mov
670 && opc.op[0].type == RL78_Operand_PreDec
671 && opc.op[0].reg == RL78_Reg_SP
672 && opc.op[1].type == RL78_Operand_Register)
674 int rsrc = (bank * RL78_REGS_PER_BANK)
675 + 2 * (opc.op[1].reg - RL78_Reg_AX);
677 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
678 pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc]);
679 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
680 pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
681 after_last_frame_setup_insn = next_pc;
683 else if (opc.id == RLO_sub
684 && opc.op[0].type == RL78_Operand_Register
685 && opc.op[0].reg == RL78_Reg_SP
686 && opc.op[1].type == RL78_Operand_Immediate)
688 int addend = opc.op[1].addend;
690 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
692 after_last_frame_setup_insn = next_pc;
696 /* Terminate the prologue scan. */
703 /* Is the frame size (offset, really) a known constant? */
704 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
705 result->frame_size = reg[RL78_SP_REGNUM].k;
707 /* Record where all the registers were saved. */
708 pv_area_scan (stack, check_for_saved, (void *) result);
710 result->prologue_end = after_last_frame_setup_insn;
712 do_cleanups (back_to);
715 /* Implement the "addr_bits_remove" gdbarch method. */
718 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
720 return addr & 0xffffff;
723 /* Implement the "address_to_pointer" gdbarch method. */
726 rl78_address_to_pointer (struct gdbarch *gdbarch,
727 struct type *type, gdb_byte *buf, CORE_ADDR addr)
729 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
731 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
735 /* Implement the "pointer_to_address" gdbarch method. */
738 rl78_pointer_to_address (struct gdbarch *gdbarch,
739 struct type *type, const gdb_byte *buf)
741 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
743 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
745 /* Is it a code address? */
746 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
747 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
748 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
749 || TYPE_LENGTH (type) == 4)
750 return rl78_make_instruction_address (addr);
752 return rl78_make_data_address (addr);
755 /* Implement the "skip_prologue" gdbarch method. */
758 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
761 CORE_ADDR func_addr, func_end;
762 struct rl78_prologue p;
764 /* Try to find the extent of the function that contains PC. */
765 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
768 rl78_analyze_prologue (pc, func_end, &p);
769 return p.prologue_end;
772 /* Implement the "unwind_pc" gdbarch method. */
775 rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
777 return rl78_addr_bits_remove
778 (arch, frame_unwind_register_unsigned (next_frame,
782 /* Implement the "unwind_sp" gdbarch method. */
785 rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
787 return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM);
790 /* Given a frame described by THIS_FRAME, decode the prologue of its
791 associated function if there is not cache entry as specified by
792 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
793 return that struct as the value of this function. */
795 static struct rl78_prologue *
796 rl78_analyze_frame_prologue (struct frame_info *this_frame,
797 void **this_prologue_cache)
799 if (!*this_prologue_cache)
801 CORE_ADDR func_start, stop_addr;
803 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
805 func_start = get_frame_func (this_frame);
806 stop_addr = get_frame_pc (this_frame);
808 /* If we couldn't find any function containing the PC, then
809 just initialize the prologue cache, but don't do anything. */
811 stop_addr = func_start;
813 rl78_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
816 return *this_prologue_cache;
819 /* Given a frame and a prologue cache, return this frame's base. */
822 rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
824 struct rl78_prologue *p
825 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
826 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
828 return rl78_make_data_address (sp - p->frame_size);
831 /* Implement the "frame_this_id" method for unwinding frames. */
834 rl78_this_id (struct frame_info *this_frame,
835 void **this_prologue_cache, struct frame_id *this_id)
837 *this_id = frame_id_build (rl78_frame_base (this_frame,
838 this_prologue_cache),
839 get_frame_func (this_frame));
842 /* Implement the "frame_prev_register" method for unwinding frames. */
844 static struct value *
845 rl78_prev_register (struct frame_info *this_frame,
846 void **this_prologue_cache, int regnum)
848 struct rl78_prologue *p
849 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
850 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
852 if (regnum == RL78_SP_REGNUM)
853 return frame_unwind_got_constant (this_frame, regnum, frame_base);
855 else if (regnum == RL78_SPL_REGNUM)
856 return frame_unwind_got_constant (this_frame, regnum,
857 (frame_base & 0xff));
859 else if (regnum == RL78_SPH_REGNUM)
860 return frame_unwind_got_constant (this_frame, regnum,
861 ((frame_base >> 8) & 0xff));
863 /* If prologue analysis says we saved this register somewhere,
864 return a description of the stack slot holding it. */
865 else if (p->reg_offset[regnum] != 1)
868 frame_unwind_got_memory (this_frame, regnum,
869 frame_base + p->reg_offset[regnum]);
871 if (regnum == RL78_PC_REGNUM)
873 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
875 return frame_unwind_got_constant (this_frame, regnum, pc);
880 /* Otherwise, presume we haven't changed the value of this
881 register, and get it from the next frame. */
883 return frame_unwind_got_register (this_frame, regnum, regnum);
886 static const struct frame_unwind rl78_unwind =
889 default_frame_unwind_stop_reason,
893 default_frame_sniffer
896 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
899 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
901 if (0 <= reg && reg <= 31)
904 /* Map even registers to their 16-bit counterparts. This
905 is usually what is required from the DWARF info. */
906 return (reg >> 1) + RL78_BANK0_RP0_REGNUM;
911 return RL78_SP_REGNUM;
913 return RL78_PC_REGNUM;
915 internal_error (__FILE__, __LINE__,
916 _("Undefined dwarf2 register mapping of reg %d"),
920 /* Implement the `register_sim_regno' gdbarch method. */
923 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
925 gdb_assert (regnum < RL78_NUM_REGS);
927 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
928 just want to override the default here which disallows register
929 numbers which have no names. */
933 /* Implement the "return_value" gdbarch method. */
935 static enum return_value_convention
936 rl78_return_value (struct gdbarch *gdbarch,
937 struct type *func_type,
938 struct type *valtype,
939 struct regcache *regcache,
940 gdb_byte *readbuf, const gdb_byte *writebuf)
942 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
943 ULONGEST valtype_len = TYPE_LENGTH (valtype);
946 return RETURN_VALUE_STRUCT_CONVENTION;
951 int argreg = RL78_RAW_BANK1_R0_REGNUM;
954 while (valtype_len > 0)
956 regcache_cooked_read_unsigned (regcache, argreg, &u);
957 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
967 int argreg = RL78_RAW_BANK1_R0_REGNUM;
970 while (valtype_len > 0)
972 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
973 regcache_cooked_write_unsigned (regcache, argreg, u);
980 return RETURN_VALUE_REGISTER_CONVENTION;
984 /* Implement the "frame_align" gdbarch method. */
987 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
989 return rl78_make_data_address (align_down (sp, 2));
993 /* Implement the "dummy_id" gdbarch method. */
995 static struct frame_id
996 rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
999 frame_id_build (rl78_make_data_address
1000 (get_frame_register_unsigned
1001 (this_frame, RL78_SP_REGNUM)),
1002 get_frame_pc (this_frame));
1006 /* Implement the "push_dummy_call" gdbarch method. */
1009 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1010 struct regcache *regcache, CORE_ADDR bp_addr,
1011 int nargs, struct value **args, CORE_ADDR sp,
1012 int struct_return, CORE_ADDR struct_addr)
1014 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1018 /* Push arguments in reverse order. */
1019 for (i = nargs - 1; i >= 0; i--)
1021 struct type *value_type = value_enclosing_type (args[i]);
1022 int len = TYPE_LENGTH (value_type);
1023 int container_len = (len + 1) & ~1;
1026 sp -= container_len;
1027 write_memory (rl78_make_data_address (sp),
1028 value_contents_all (args[i]), len);
1031 /* Store struct value address. */
1034 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1036 write_memory (rl78_make_data_address (sp), buf, 2);
1039 /* Store return address. */
1041 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1042 write_memory (rl78_make_data_address (sp), buf, 4);
1044 /* Finally, update the stack pointer... */
1045 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1047 /* DWARF2/GCC uses the stack address *before* the function call as a
1049 return rl78_make_data_address (sp + 4);
1052 /* Allocate and initialize a gdbarch object. */
1054 static struct gdbarch *
1055 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1057 struct gdbarch *gdbarch;
1058 struct gdbarch_tdep *tdep;
1061 /* Extract the elf_flags if available. */
1062 if (info.abfd != NULL
1063 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1064 elf_flags = elf_elfheader (info.abfd)->e_flags;
1069 /* Try to find the architecture in the list of already defined
1071 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1073 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1075 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1078 return arches->gdbarch;
1081 /* None found, create a new architecture from the information
1083 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1084 gdbarch = gdbarch_alloc (&info, tdep);
1085 tdep->elf_flags = elf_flags;
1087 /* Initialize types. */
1088 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1089 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1090 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1091 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1092 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1093 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1094 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1096 tdep->rl78_data_pointer
1097 = arch_type (gdbarch, TYPE_CODE_PTR, 16 / TARGET_CHAR_BIT,
1098 xstrdup ("rl78_data_addr_t"));
1099 TYPE_TARGET_TYPE (tdep->rl78_data_pointer) = tdep->rl78_void;
1100 TYPE_UNSIGNED (tdep->rl78_data_pointer) = 1;
1102 tdep->rl78_code_pointer
1103 = arch_type (gdbarch, TYPE_CODE_PTR, 32 / TARGET_CHAR_BIT,
1104 xstrdup ("rl78_code_addr_t"));
1105 TYPE_TARGET_TYPE (tdep->rl78_code_pointer) = tdep->rl78_void;
1106 TYPE_UNSIGNED (tdep->rl78_code_pointer) = 1;
1109 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1110 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1111 set_gdbarch_register_name (gdbarch, rl78_register_name);
1112 set_gdbarch_register_type (gdbarch, rl78_register_type);
1113 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1114 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1115 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1116 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1117 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1118 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1119 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1122 set_gdbarch_char_signed (gdbarch, 0);
1123 set_gdbarch_short_bit (gdbarch, 16);
1124 set_gdbarch_int_bit (gdbarch, 16);
1125 set_gdbarch_long_bit (gdbarch, 32);
1126 set_gdbarch_long_long_bit (gdbarch, 64);
1127 set_gdbarch_ptr_bit (gdbarch, 16);
1128 set_gdbarch_addr_bit (gdbarch, 32);
1129 set_gdbarch_float_bit (gdbarch, 32);
1130 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1131 set_gdbarch_double_bit (gdbarch, 32);
1132 set_gdbarch_long_double_bit (gdbarch, 64);
1133 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1134 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1135 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1136 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1137 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1140 set_gdbarch_breakpoint_from_pc (gdbarch, rl78_breakpoint_from_pc);
1141 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1144 set_gdbarch_print_insn (gdbarch, print_insn_rl78);
1146 /* Frames, prologues, etc. */
1147 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1148 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1149 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1150 set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp);
1151 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1152 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1154 /* Dummy frames, return values. */
1155 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1156 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1157 set_gdbarch_return_value (gdbarch, rl78_return_value);
1159 /* Virtual tables. */
1160 set_gdbarch_vbit_in_delta (gdbarch, 1);
1165 /* -Wmissing-prototypes */
1166 extern initialize_file_ftype _initialize_rl78_tdep;
1168 /* Register the above initialization routine. */
1171 _initialize_rl78_tdep (void)
1173 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);