1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
3 Copyright (C) 2011-2019 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "prologue-value.h"
27 #include "opcode/rl78.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
50 RL78_REGS_PER_BANK = 8
53 /* Register Numbers. */
57 /* All general purpose registers are 8 bits wide. */
58 RL78_RAW_BANK0_R0_REGNUM = 0,
59 RL78_RAW_BANK0_R1_REGNUM,
60 RL78_RAW_BANK0_R2_REGNUM,
61 RL78_RAW_BANK0_R3_REGNUM,
62 RL78_RAW_BANK0_R4_REGNUM,
63 RL78_RAW_BANK0_R5_REGNUM,
64 RL78_RAW_BANK0_R6_REGNUM,
65 RL78_RAW_BANK0_R7_REGNUM,
67 RL78_RAW_BANK1_R0_REGNUM,
68 RL78_RAW_BANK1_R1_REGNUM,
69 RL78_RAW_BANK1_R2_REGNUM,
70 RL78_RAW_BANK1_R3_REGNUM,
71 RL78_RAW_BANK1_R4_REGNUM,
72 RL78_RAW_BANK1_R5_REGNUM,
73 RL78_RAW_BANK1_R6_REGNUM,
74 RL78_RAW_BANK1_R7_REGNUM,
76 RL78_RAW_BANK2_R0_REGNUM,
77 RL78_RAW_BANK2_R1_REGNUM,
78 RL78_RAW_BANK2_R2_REGNUM,
79 RL78_RAW_BANK2_R3_REGNUM,
80 RL78_RAW_BANK2_R4_REGNUM,
81 RL78_RAW_BANK2_R5_REGNUM,
82 RL78_RAW_BANK2_R6_REGNUM,
83 RL78_RAW_BANK2_R7_REGNUM,
85 RL78_RAW_BANK3_R0_REGNUM,
86 RL78_RAW_BANK3_R1_REGNUM,
87 RL78_RAW_BANK3_R2_REGNUM,
88 RL78_RAW_BANK3_R3_REGNUM,
89 RL78_RAW_BANK3_R4_REGNUM,
90 RL78_RAW_BANK3_R5_REGNUM,
91 RL78_RAW_BANK3_R6_REGNUM,
92 RL78_RAW_BANK3_R7_REGNUM,
94 RL78_PSW_REGNUM, /* 8 bits */
95 RL78_ES_REGNUM, /* 8 bits */
96 RL78_CS_REGNUM, /* 8 bits */
97 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
99 /* Fixed address SFRs (some of those above are SFRs too.) */
100 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
101 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
102 RL78_PMC_REGNUM, /* 8 bits */
103 RL78_MEM_REGNUM, /* 8 bits ?? */
107 /* Pseudo registers. */
108 RL78_PC_REGNUM = RL78_NUM_REGS,
125 RL78_BANK0_R0_REGNUM,
126 RL78_BANK0_R1_REGNUM,
127 RL78_BANK0_R2_REGNUM,
128 RL78_BANK0_R3_REGNUM,
129 RL78_BANK0_R4_REGNUM,
130 RL78_BANK0_R5_REGNUM,
131 RL78_BANK0_R6_REGNUM,
132 RL78_BANK0_R7_REGNUM,
134 RL78_BANK1_R0_REGNUM,
135 RL78_BANK1_R1_REGNUM,
136 RL78_BANK1_R2_REGNUM,
137 RL78_BANK1_R3_REGNUM,
138 RL78_BANK1_R4_REGNUM,
139 RL78_BANK1_R5_REGNUM,
140 RL78_BANK1_R6_REGNUM,
141 RL78_BANK1_R7_REGNUM,
143 RL78_BANK2_R0_REGNUM,
144 RL78_BANK2_R1_REGNUM,
145 RL78_BANK2_R2_REGNUM,
146 RL78_BANK2_R3_REGNUM,
147 RL78_BANK2_R4_REGNUM,
148 RL78_BANK2_R5_REGNUM,
149 RL78_BANK2_R6_REGNUM,
150 RL78_BANK2_R7_REGNUM,
152 RL78_BANK3_R0_REGNUM,
153 RL78_BANK3_R1_REGNUM,
154 RL78_BANK3_R2_REGNUM,
155 RL78_BANK3_R3_REGNUM,
156 RL78_BANK3_R4_REGNUM,
157 RL78_BANK3_R5_REGNUM,
158 RL78_BANK3_R6_REGNUM,
159 RL78_BANK3_R7_REGNUM,
161 RL78_BANK0_RP0_REGNUM,
162 RL78_BANK0_RP1_REGNUM,
163 RL78_BANK0_RP2_REGNUM,
164 RL78_BANK0_RP3_REGNUM,
166 RL78_BANK1_RP0_REGNUM,
167 RL78_BANK1_RP1_REGNUM,
168 RL78_BANK1_RP2_REGNUM,
169 RL78_BANK1_RP3_REGNUM,
171 RL78_BANK2_RP0_REGNUM,
172 RL78_BANK2_RP1_REGNUM,
173 RL78_BANK2_RP2_REGNUM,
174 RL78_BANK2_RP3_REGNUM,
176 RL78_BANK3_RP0_REGNUM,
177 RL78_BANK3_RP1_REGNUM,
178 RL78_BANK3_RP2_REGNUM,
179 RL78_BANK3_RP3_REGNUM,
181 /* These are the same as the above 16 registers, but have
182 a pointer type for use as base registers in expression
183 evaluation. These are not user visible registers. */
184 RL78_BANK0_RP0_PTR_REGNUM,
185 RL78_BANK0_RP1_PTR_REGNUM,
186 RL78_BANK0_RP2_PTR_REGNUM,
187 RL78_BANK0_RP3_PTR_REGNUM,
189 RL78_BANK1_RP0_PTR_REGNUM,
190 RL78_BANK1_RP1_PTR_REGNUM,
191 RL78_BANK1_RP2_PTR_REGNUM,
192 RL78_BANK1_RP3_PTR_REGNUM,
194 RL78_BANK2_RP0_PTR_REGNUM,
195 RL78_BANK2_RP1_PTR_REGNUM,
196 RL78_BANK2_RP2_PTR_REGNUM,
197 RL78_BANK2_RP3_PTR_REGNUM,
199 RL78_BANK3_RP0_PTR_REGNUM,
200 RL78_BANK3_RP1_PTR_REGNUM,
201 RL78_BANK3_RP2_PTR_REGNUM,
202 RL78_BANK3_RP3_PTR_REGNUM,
205 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
208 #define RL78_SP_ADDR 0xffff8
210 /* Architecture specific data. */
214 /* The ELF header flags specify the multilib used. */
217 struct type *rl78_void,
229 /* This structure holds the results of a prologue analysis. */
233 /* The offset from the frame base to the stack pointer --- always
236 Calling this a "size" is a bit misleading, but given that the
237 stack grows downwards, using offsets for everything keeps one
238 from going completely sign-crazy: you never change anything's
239 sign for an ADD instruction; always change the second operand's
240 sign for a SUB instruction; and everything takes care of
244 /* Non-zero if this function has initialized the frame pointer from
245 the stack pointer, zero otherwise. */
248 /* If has_frame_ptr is non-zero, this is the offset from the frame
249 base to where the frame pointer points. This is always zero or
251 int frame_ptr_offset;
253 /* The address of the first instruction at which the frame has been
254 set up and the arguments are where the debug info says they are
255 --- as best as we can tell. */
256 CORE_ADDR prologue_end;
258 /* reg_offset[R] is the offset from the CFA at which register R is
259 saved, or 1 if register R has not been saved. (Real values are
260 always zero or negative.) */
261 int reg_offset[RL78_NUM_TOTAL_REGS];
264 /* Construct type for PSW register. */
267 rl78_psw_type (struct gdbarch *gdbarch)
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 if (tdep->rl78_psw_type == NULL)
273 tdep->rl78_psw_type = arch_flags_type (gdbarch,
274 "builtin_type_rl78_psw", 8);
275 append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
276 append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
277 append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
278 append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
279 append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
280 append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
281 append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
282 append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
285 return tdep->rl78_psw_type;
288 /* Implement the "register_type" gdbarch method. */
291 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295 if (reg_nr == RL78_PC_REGNUM)
296 return tdep->rl78_code_pointer;
297 else if (reg_nr == RL78_RAW_PC_REGNUM)
298 return tdep->rl78_uint32;
299 else if (reg_nr == RL78_PSW_REGNUM)
300 return rl78_psw_type (gdbarch);
301 else if (reg_nr <= RL78_MEM_REGNUM
302 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
303 || (RL78_BANK0_R0_REGNUM <= reg_nr
304 && reg_nr <= RL78_BANK3_R7_REGNUM))
305 return tdep->rl78_int8;
306 else if (reg_nr == RL78_SP_REGNUM
307 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
308 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
309 return tdep->rl78_data_pointer;
311 return tdep->rl78_int16;
314 /* Implement the "register_name" gdbarch method. */
317 rl78_register_name (struct gdbarch *gdbarch, int regnr)
319 static const char *const reg_names[] =
440 /* The 16 register slots would be named
441 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
442 want these to be user visible registers. */
443 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
446 return reg_names[regnr];
449 /* Implement the "register_name" gdbarch method for the g10 variant. */
452 rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
454 static const char *const reg_names[] =
575 /* The 16 register slots would be named
576 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
577 want these to be user visible registers. */
578 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
581 return reg_names[regnr];
584 /* Implement the "register_reggroup_p" gdbarch method. */
587 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
588 struct reggroup *group)
590 if (group == all_reggroup)
593 /* All other registers are saved and restored. */
594 if (group == save_reggroup || group == restore_reggroup)
596 if ((regnum < RL78_NUM_REGS
597 && regnum != RL78_SPL_REGNUM
598 && regnum != RL78_SPH_REGNUM
599 && regnum != RL78_RAW_PC_REGNUM)
600 || regnum == RL78_SP_REGNUM
601 || regnum == RL78_PC_REGNUM)
607 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
608 || regnum == RL78_ES_REGNUM
609 || regnum == RL78_CS_REGNUM
610 || regnum == RL78_SPL_REGNUM
611 || regnum == RL78_SPH_REGNUM
612 || regnum == RL78_PMC_REGNUM
613 || regnum == RL78_MEM_REGNUM
614 || regnum == RL78_RAW_PC_REGNUM
615 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
616 return group == system_reggroup;
618 return group == general_reggroup;
621 /* Strip bits to form an instruction address. (When fetching a
622 32-bit address from the stack, the high eight bits are garbage.
623 This function strips off those unused bits.) */
626 rl78_make_instruction_address (CORE_ADDR addr)
628 return addr & 0xffffff;
631 /* Set / clear bits necessary to make a data address. */
634 rl78_make_data_address (CORE_ADDR addr)
636 return (addr & 0xffff) | 0xf0000;
639 /* Implement the "pseudo_register_read" gdbarch method. */
641 static enum register_status
642 rl78_pseudo_register_read (struct gdbarch *gdbarch,
643 readable_regcache *regcache,
644 int reg, gdb_byte *buffer)
646 enum register_status status;
648 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
650 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
651 + (reg - RL78_BANK0_R0_REGNUM);
653 status = regcache->raw_read (raw_regnum, buffer);
655 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
657 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
658 + RL78_RAW_BANK0_R0_REGNUM;
660 status = regcache->raw_read (raw_regnum, buffer);
661 if (status == REG_VALID)
662 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
664 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
666 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
667 + RL78_RAW_BANK0_R0_REGNUM;
669 status = regcache->raw_read (raw_regnum, buffer);
670 if (status == REG_VALID)
671 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
673 else if (reg == RL78_SP_REGNUM)
675 status = regcache->raw_read (RL78_SPL_REGNUM, buffer);
676 if (status == REG_VALID)
677 status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1);
679 else if (reg == RL78_PC_REGNUM)
683 status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf);
684 memcpy (buffer, rawbuf, 3);
686 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
690 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
691 if (status == REG_VALID)
693 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
694 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
695 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
696 + (reg - RL78_X_REGNUM);
697 status = regcache->raw_read (raw_regnum, buffer);
700 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
704 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
705 if (status == REG_VALID)
707 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
708 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
709 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
710 + 2 * (reg - RL78_AX_REGNUM);
711 status = regcache->raw_read (raw_regnum, buffer);
712 if (status == REG_VALID)
713 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
717 gdb_assert_not_reached ("invalid pseudo register number");
721 /* Implement the "pseudo_register_write" gdbarch method. */
724 rl78_pseudo_register_write (struct gdbarch *gdbarch,
725 struct regcache *regcache,
726 int reg, const gdb_byte *buffer)
728 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
730 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
731 + (reg - RL78_BANK0_R0_REGNUM);
733 regcache->raw_write (raw_regnum, buffer);
735 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
737 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
738 + RL78_RAW_BANK0_R0_REGNUM;
740 regcache->raw_write (raw_regnum, buffer);
741 regcache->raw_write (raw_regnum + 1, buffer + 1);
743 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
745 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
746 + RL78_RAW_BANK0_R0_REGNUM;
748 regcache->raw_write (raw_regnum, buffer);
749 regcache->raw_write (raw_regnum + 1, buffer + 1);
751 else if (reg == RL78_SP_REGNUM)
753 regcache->raw_write (RL78_SPL_REGNUM, buffer);
754 regcache->raw_write (RL78_SPH_REGNUM, buffer + 1);
756 else if (reg == RL78_PC_REGNUM)
760 memcpy (rawbuf, buffer, 3);
762 regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf);
764 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
770 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
771 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
772 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
773 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
774 + (reg - RL78_X_REGNUM);
775 regcache->raw_write (raw_regnum, buffer);
777 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
780 int bank, raw_regnum;
782 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
783 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
784 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
785 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
786 + 2 * (reg - RL78_AX_REGNUM);
787 regcache->raw_write (raw_regnum, buffer);
788 regcache->raw_write (raw_regnum + 1, buffer + 1);
791 gdb_assert_not_reached ("invalid pseudo register number");
794 /* The documented BRK instruction is actually a two byte sequence,
795 {0x61, 0xcc}, but instructions may be as short as one byte.
796 Correspondence with Renesas revealed that the one byte sequence
797 0xff is used when a one byte breakpoint instruction is required. */
798 constexpr gdb_byte rl78_break_insn[] = { 0xff };
800 typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
802 /* Define a "handle" struct for fetching the next opcode. */
804 struct rl78_get_opcode_byte_handle
810 opc_reg_to_gdb_regnum (int opcreg)
815 return RL78_X_REGNUM;
817 return RL78_A_REGNUM;
819 return RL78_C_REGNUM;
821 return RL78_B_REGNUM;
823 return RL78_E_REGNUM;
825 return RL78_D_REGNUM;
827 return RL78_L_REGNUM;
829 return RL78_H_REGNUM;
831 return RL78_AX_REGNUM;
833 return RL78_BC_REGNUM;
835 return RL78_DE_REGNUM;
837 return RL78_HL_REGNUM;
839 return RL78_SP_REGNUM;
841 return RL78_PSW_REGNUM;
843 return RL78_CS_REGNUM;
845 return RL78_ES_REGNUM;
847 return RL78_PMC_REGNUM;
849 return RL78_MEM_REGNUM;
851 internal_error (__FILE__, __LINE__,
852 _("Undefined mapping for opc reg %d"),
860 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
861 the memory address of the next byte to fetch. If successful,
862 the address in the handle is updated and the byte fetched is
863 returned as the value of the function. If not successful, -1
867 rl78_get_opcode_byte (void *handle)
869 struct rl78_get_opcode_byte_handle *opcdata
870 = (struct rl78_get_opcode_byte_handle *) handle;
874 status = target_read_memory (opcdata->pc, &byte, 1);
884 /* Function for finding saved registers in a 'struct pv_area'; this
885 function is passed to pv_area::scan.
887 If VALUE is a saved register, ADDR says it was saved at a constant
888 offset from the frame base, and SIZE indicates that the whole
889 register was saved, record its offset. */
892 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
895 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
897 if (value.kind == pvk_register
899 && pv_is_register (addr, RL78_SP_REGNUM)
900 && size == register_size (target_gdbarch (), value.reg))
901 result->reg_offset[value.reg] = addr.k;
904 /* Analyze a prologue starting at START_PC, going no further than
905 LIMIT_PC. Fill in RESULT as appropriate. */
908 rl78_analyze_prologue (CORE_ADDR start_pc,
909 CORE_ADDR limit_pc, struct rl78_prologue *result)
911 CORE_ADDR pc, next_pc;
913 pv_t reg[RL78_NUM_TOTAL_REGS];
914 CORE_ADDR after_last_frame_setup_insn = start_pc;
917 memset (result, 0, sizeof (*result));
919 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
921 reg[rn] = pv_register (rn, 0);
922 result->reg_offset[rn] = 1;
925 pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
927 /* The call instruction has saved the return address on the stack. */
928 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
929 stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
932 while (pc < limit_pc)
935 struct rl78_get_opcode_byte_handle opcode_handle;
936 RL78_Opcode_Decoded opc;
938 opcode_handle.pc = pc;
939 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
940 &opcode_handle, RL78_ISA_DEFAULT);
941 next_pc = pc + bytes_read;
943 if (opc.id == RLO_sel)
945 bank = opc.op[1].addend;
947 else if (opc.id == RLO_mov
948 && opc.op[0].type == RL78_Operand_PreDec
949 && opc.op[0].reg == RL78_Reg_SP
950 && opc.op[1].type == RL78_Operand_Register)
952 int rsrc = (bank * RL78_REGS_PER_BANK)
953 + 2 * (opc.op[1].reg - RL78_Reg_AX);
955 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
956 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
957 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
958 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
959 after_last_frame_setup_insn = next_pc;
961 else if (opc.id == RLO_sub
962 && opc.op[0].type == RL78_Operand_Register
963 && opc.op[0].reg == RL78_Reg_SP
964 && opc.op[1].type == RL78_Operand_Immediate)
966 int addend = opc.op[1].addend;
968 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
970 after_last_frame_setup_insn = next_pc;
972 else if (opc.id == RLO_mov
973 && opc.size == RL78_Word
974 && opc.op[0].type == RL78_Operand_Register
975 && opc.op[1].type == RL78_Operand_Indirect
976 && opc.op[1].addend == RL78_SP_ADDR)
978 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
979 = reg[RL78_SP_REGNUM];
981 else if (opc.id == RLO_sub
982 && opc.size == RL78_Word
983 && opc.op[0].type == RL78_Operand_Register
984 && opc.op[1].type == RL78_Operand_Immediate)
986 int addend = opc.op[1].addend;
987 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
989 reg[regnum] = pv_add_constant (reg[regnum], -addend);
991 else if (opc.id == RLO_mov
992 && opc.size == RL78_Word
993 && opc.op[0].type == RL78_Operand_Indirect
994 && opc.op[0].addend == RL78_SP_ADDR
995 && opc.op[1].type == RL78_Operand_Register)
998 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
999 after_last_frame_setup_insn = next_pc;
1003 /* Terminate the prologue scan. */
1010 /* Is the frame size (offset, really) a known constant? */
1011 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
1012 result->frame_size = reg[RL78_SP_REGNUM].k;
1014 /* Record where all the registers were saved. */
1015 stack.scan (check_for_saved, (void *) result);
1017 result->prologue_end = after_last_frame_setup_insn;
1020 /* Implement the "addr_bits_remove" gdbarch method. */
1023 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1025 return addr & 0xffffff;
1028 /* Implement the "address_to_pointer" gdbarch method. */
1031 rl78_address_to_pointer (struct gdbarch *gdbarch,
1032 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1036 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
1040 /* Implement the "pointer_to_address" gdbarch method. */
1043 rl78_pointer_to_address (struct gdbarch *gdbarch,
1044 struct type *type, const gdb_byte *buf)
1046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1048 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
1050 /* Is it a code address? */
1051 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
1052 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
1053 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
1054 || TYPE_LENGTH (type) == 4)
1055 return rl78_make_instruction_address (addr);
1057 return rl78_make_data_address (addr);
1060 /* Implement the "skip_prologue" gdbarch method. */
1063 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1066 CORE_ADDR func_addr, func_end;
1067 struct rl78_prologue p;
1069 /* Try to find the extent of the function that contains PC. */
1070 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1073 rl78_analyze_prologue (pc, func_end, &p);
1074 return p.prologue_end;
1077 /* Implement the "unwind_pc" gdbarch method. */
1080 rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1082 return rl78_addr_bits_remove
1083 (arch, frame_unwind_register_unsigned (next_frame,
1087 /* Implement the "unwind_sp" gdbarch method. */
1090 rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1092 return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM);
1095 /* Given a frame described by THIS_FRAME, decode the prologue of its
1096 associated function if there is not cache entry as specified by
1097 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1098 return that struct as the value of this function. */
1100 static struct rl78_prologue *
1101 rl78_analyze_frame_prologue (struct frame_info *this_frame,
1102 void **this_prologue_cache)
1104 if (!*this_prologue_cache)
1106 CORE_ADDR func_start, stop_addr;
1108 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1110 func_start = get_frame_func (this_frame);
1111 stop_addr = get_frame_pc (this_frame);
1113 /* If we couldn't find any function containing the PC, then
1114 just initialize the prologue cache, but don't do anything. */
1116 stop_addr = func_start;
1118 rl78_analyze_prologue (func_start, stop_addr,
1119 (struct rl78_prologue *) *this_prologue_cache);
1122 return (struct rl78_prologue *) *this_prologue_cache;
1125 /* Given a frame and a prologue cache, return this frame's base. */
1128 rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1130 struct rl78_prologue *p
1131 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1132 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1134 return rl78_make_data_address (sp - p->frame_size);
1137 /* Implement the "frame_this_id" method for unwinding frames. */
1140 rl78_this_id (struct frame_info *this_frame,
1141 void **this_prologue_cache, struct frame_id *this_id)
1143 *this_id = frame_id_build (rl78_frame_base (this_frame,
1144 this_prologue_cache),
1145 get_frame_func (this_frame));
1148 /* Implement the "frame_prev_register" method for unwinding frames. */
1150 static struct value *
1151 rl78_prev_register (struct frame_info *this_frame,
1152 void **this_prologue_cache, int regnum)
1154 struct rl78_prologue *p
1155 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1156 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1158 if (regnum == RL78_SP_REGNUM)
1159 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1161 else if (regnum == RL78_SPL_REGNUM)
1162 return frame_unwind_got_constant (this_frame, regnum,
1163 (frame_base & 0xff));
1165 else if (regnum == RL78_SPH_REGNUM)
1166 return frame_unwind_got_constant (this_frame, regnum,
1167 ((frame_base >> 8) & 0xff));
1169 /* If prologue analysis says we saved this register somewhere,
1170 return a description of the stack slot holding it. */
1171 else if (p->reg_offset[regnum] != 1)
1174 frame_unwind_got_memory (this_frame, regnum,
1175 frame_base + p->reg_offset[regnum]);
1177 if (regnum == RL78_PC_REGNUM)
1179 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1181 return frame_unwind_got_constant (this_frame, regnum, pc);
1186 /* Otherwise, presume we haven't changed the value of this
1187 register, and get it from the next frame. */
1189 return frame_unwind_got_register (this_frame, regnum, regnum);
1192 static const struct frame_unwind rl78_unwind =
1195 default_frame_unwind_stop_reason,
1199 default_frame_sniffer
1202 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1205 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1207 if (0 <= reg && reg <= 31)
1210 /* Map even registers to their 16-bit counterparts which have a
1211 pointer type. This is usually what is required from the DWARF
1213 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
1218 return RL78_SP_REGNUM;
1222 return RL78_PSW_REGNUM;
1224 return RL78_ES_REGNUM;
1226 return RL78_CS_REGNUM;
1228 return RL78_PC_REGNUM;
1233 /* Implement the `register_sim_regno' gdbarch method. */
1236 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1238 gdb_assert (regnum < RL78_NUM_REGS);
1240 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1241 just want to override the default here which disallows register
1242 numbers which have no names. */
1246 /* Implement the "return_value" gdbarch method. */
1248 static enum return_value_convention
1249 rl78_return_value (struct gdbarch *gdbarch,
1250 struct value *function,
1251 struct type *valtype,
1252 struct regcache *regcache,
1253 gdb_byte *readbuf, const gdb_byte *writebuf)
1255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1256 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1257 int is_g10 = gdbarch_tdep (gdbarch)->elf_flags & E_FLAG_RL78_G10;
1259 if (valtype_len > 8)
1260 return RETURN_VALUE_STRUCT_CONVENTION;
1265 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1266 CORE_ADDR g10_raddr = 0xffec8;
1269 while (valtype_len > 0)
1272 u = read_memory_integer (g10_raddr, 1,
1273 gdbarch_byte_order (gdbarch));
1275 regcache_cooked_read_unsigned (regcache, argreg, &u);
1276 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1287 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1288 CORE_ADDR g10_raddr = 0xffec8;
1291 while (valtype_len > 0)
1293 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1295 gdb_byte b = u & 0xff;
1296 write_memory (g10_raddr, &b, 1);
1299 regcache_cooked_write_unsigned (regcache, argreg, u);
1307 return RETURN_VALUE_REGISTER_CONVENTION;
1311 /* Implement the "frame_align" gdbarch method. */
1314 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1316 return rl78_make_data_address (align_down (sp, 2));
1320 /* Implement the "dummy_id" gdbarch method. */
1322 static struct frame_id
1323 rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1326 frame_id_build (rl78_make_data_address
1327 (get_frame_register_unsigned
1328 (this_frame, RL78_SP_REGNUM)),
1329 get_frame_pc (this_frame));
1333 /* Implement the "push_dummy_call" gdbarch method. */
1336 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1337 struct regcache *regcache, CORE_ADDR bp_addr,
1338 int nargs, struct value **args, CORE_ADDR sp,
1339 function_call_return_method return_method,
1340 CORE_ADDR struct_addr)
1342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346 /* Push arguments in reverse order. */
1347 for (i = nargs - 1; i >= 0; i--)
1349 struct type *value_type = value_enclosing_type (args[i]);
1350 int len = TYPE_LENGTH (value_type);
1351 int container_len = (len + 1) & ~1;
1353 sp -= container_len;
1354 write_memory (rl78_make_data_address (sp),
1355 value_contents_all (args[i]), len);
1358 /* Store struct value address. */
1359 if (return_method == return_method_struct)
1361 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1363 write_memory (rl78_make_data_address (sp), buf, 2);
1366 /* Store return address. */
1368 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1369 write_memory (rl78_make_data_address (sp), buf, 4);
1371 /* Finally, update the stack pointer... */
1372 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1374 /* DWARF2/GCC uses the stack address *before* the function call as a
1376 return rl78_make_data_address (sp + 4);
1379 /* Allocate and initialize a gdbarch object. */
1381 static struct gdbarch *
1382 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1384 struct gdbarch *gdbarch;
1385 struct gdbarch_tdep *tdep;
1388 /* Extract the elf_flags if available. */
1389 if (info.abfd != NULL
1390 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1391 elf_flags = elf_elfheader (info.abfd)->e_flags;
1396 /* Try to find the architecture in the list of already defined
1398 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1400 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1402 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1405 return arches->gdbarch;
1408 /* None found, create a new architecture from the information
1410 tdep = XCNEW (struct gdbarch_tdep);
1411 gdbarch = gdbarch_alloc (&info, tdep);
1412 tdep->elf_flags = elf_flags;
1414 /* Initialize types. */
1415 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1417 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1418 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1419 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1420 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1421 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1422 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1424 tdep->rl78_data_pointer
1425 = arch_pointer_type (gdbarch, 16, "rl78_data_addr_t", tdep->rl78_void);
1426 tdep->rl78_code_pointer
1427 = arch_pointer_type (gdbarch, 32, "rl78_code_addr_t", tdep->rl78_void);
1430 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1431 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1432 if (tdep->elf_flags & E_FLAG_RL78_G10)
1433 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1435 set_gdbarch_register_name (gdbarch, rl78_register_name);
1436 set_gdbarch_register_type (gdbarch, rl78_register_type);
1437 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1438 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1439 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1440 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1441 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1442 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1443 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1446 set_gdbarch_char_signed (gdbarch, 0);
1447 set_gdbarch_short_bit (gdbarch, 16);
1448 set_gdbarch_int_bit (gdbarch, 16);
1449 set_gdbarch_long_bit (gdbarch, 32);
1450 set_gdbarch_long_long_bit (gdbarch, 64);
1451 set_gdbarch_ptr_bit (gdbarch, 16);
1452 set_gdbarch_addr_bit (gdbarch, 32);
1453 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1454 set_gdbarch_float_bit (gdbarch, 32);
1455 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1456 set_gdbarch_double_bit (gdbarch, 32);
1457 set_gdbarch_long_double_bit (gdbarch, 64);
1458 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1459 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1460 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1461 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1462 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1465 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
1466 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
1467 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1469 /* Frames, prologues, etc. */
1470 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1471 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1472 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1473 set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp);
1474 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1476 dwarf2_append_unwinders (gdbarch);
1477 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1479 /* Dummy frames, return values. */
1480 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1481 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1482 set_gdbarch_return_value (gdbarch, rl78_return_value);
1484 /* Virtual tables. */
1485 set_gdbarch_vbit_in_delta (gdbarch, 1);
1490 /* Register the above initialization routine. */
1493 _initialize_rl78_tdep (void)
1495 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);