1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
3 Copyright (C) 2011-2015 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "prologue-value.h"
27 #include "opcode/rl78.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
50 RL78_REGS_PER_BANK = 8
53 /* Register Numbers. */
57 /* All general purpose registers are 8 bits wide. */
58 RL78_RAW_BANK0_R0_REGNUM = 0,
59 RL78_RAW_BANK0_R1_REGNUM,
60 RL78_RAW_BANK0_R2_REGNUM,
61 RL78_RAW_BANK0_R3_REGNUM,
62 RL78_RAW_BANK0_R4_REGNUM,
63 RL78_RAW_BANK0_R5_REGNUM,
64 RL78_RAW_BANK0_R6_REGNUM,
65 RL78_RAW_BANK0_R7_REGNUM,
67 RL78_RAW_BANK1_R0_REGNUM,
68 RL78_RAW_BANK1_R1_REGNUM,
69 RL78_RAW_BANK1_R2_REGNUM,
70 RL78_RAW_BANK1_R3_REGNUM,
71 RL78_RAW_BANK1_R4_REGNUM,
72 RL78_RAW_BANK1_R5_REGNUM,
73 RL78_RAW_BANK1_R6_REGNUM,
74 RL78_RAW_BANK1_R7_REGNUM,
76 RL78_RAW_BANK2_R0_REGNUM,
77 RL78_RAW_BANK2_R1_REGNUM,
78 RL78_RAW_BANK2_R2_REGNUM,
79 RL78_RAW_BANK2_R3_REGNUM,
80 RL78_RAW_BANK2_R4_REGNUM,
81 RL78_RAW_BANK2_R5_REGNUM,
82 RL78_RAW_BANK2_R6_REGNUM,
83 RL78_RAW_BANK2_R7_REGNUM,
85 RL78_RAW_BANK3_R0_REGNUM,
86 RL78_RAW_BANK3_R1_REGNUM,
87 RL78_RAW_BANK3_R2_REGNUM,
88 RL78_RAW_BANK3_R3_REGNUM,
89 RL78_RAW_BANK3_R4_REGNUM,
90 RL78_RAW_BANK3_R5_REGNUM,
91 RL78_RAW_BANK3_R6_REGNUM,
92 RL78_RAW_BANK3_R7_REGNUM,
94 RL78_PSW_REGNUM, /* 8 bits */
95 RL78_ES_REGNUM, /* 8 bits */
96 RL78_CS_REGNUM, /* 8 bits */
97 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
99 /* Fixed address SFRs (some of those above are SFRs too.) */
100 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
101 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
102 RL78_PMC_REGNUM, /* 8 bits */
103 RL78_MEM_REGNUM, /* 8 bits ?? */
107 /* Pseudo registers. */
108 RL78_PC_REGNUM = RL78_NUM_REGS,
125 RL78_BANK0_R0_REGNUM,
126 RL78_BANK0_R1_REGNUM,
127 RL78_BANK0_R2_REGNUM,
128 RL78_BANK0_R3_REGNUM,
129 RL78_BANK0_R4_REGNUM,
130 RL78_BANK0_R5_REGNUM,
131 RL78_BANK0_R6_REGNUM,
132 RL78_BANK0_R7_REGNUM,
134 RL78_BANK1_R0_REGNUM,
135 RL78_BANK1_R1_REGNUM,
136 RL78_BANK1_R2_REGNUM,
137 RL78_BANK1_R3_REGNUM,
138 RL78_BANK1_R4_REGNUM,
139 RL78_BANK1_R5_REGNUM,
140 RL78_BANK1_R6_REGNUM,
141 RL78_BANK1_R7_REGNUM,
143 RL78_BANK2_R0_REGNUM,
144 RL78_BANK2_R1_REGNUM,
145 RL78_BANK2_R2_REGNUM,
146 RL78_BANK2_R3_REGNUM,
147 RL78_BANK2_R4_REGNUM,
148 RL78_BANK2_R5_REGNUM,
149 RL78_BANK2_R6_REGNUM,
150 RL78_BANK2_R7_REGNUM,
152 RL78_BANK3_R0_REGNUM,
153 RL78_BANK3_R1_REGNUM,
154 RL78_BANK3_R2_REGNUM,
155 RL78_BANK3_R3_REGNUM,
156 RL78_BANK3_R4_REGNUM,
157 RL78_BANK3_R5_REGNUM,
158 RL78_BANK3_R6_REGNUM,
159 RL78_BANK3_R7_REGNUM,
161 RL78_BANK0_RP0_REGNUM,
162 RL78_BANK0_RP1_REGNUM,
163 RL78_BANK0_RP2_REGNUM,
164 RL78_BANK0_RP3_REGNUM,
166 RL78_BANK1_RP0_REGNUM,
167 RL78_BANK1_RP1_REGNUM,
168 RL78_BANK1_RP2_REGNUM,
169 RL78_BANK1_RP3_REGNUM,
171 RL78_BANK2_RP0_REGNUM,
172 RL78_BANK2_RP1_REGNUM,
173 RL78_BANK2_RP2_REGNUM,
174 RL78_BANK2_RP3_REGNUM,
176 RL78_BANK3_RP0_REGNUM,
177 RL78_BANK3_RP1_REGNUM,
178 RL78_BANK3_RP2_REGNUM,
179 RL78_BANK3_RP3_REGNUM,
181 /* These are the same as the above 16 registers, but have
182 a pointer type for use as base registers in expression
183 evaluation. These are not user visible registers. */
184 RL78_BANK0_RP0_PTR_REGNUM,
185 RL78_BANK0_RP1_PTR_REGNUM,
186 RL78_BANK0_RP2_PTR_REGNUM,
187 RL78_BANK0_RP3_PTR_REGNUM,
189 RL78_BANK1_RP0_PTR_REGNUM,
190 RL78_BANK1_RP1_PTR_REGNUM,
191 RL78_BANK1_RP2_PTR_REGNUM,
192 RL78_BANK1_RP3_PTR_REGNUM,
194 RL78_BANK2_RP0_PTR_REGNUM,
195 RL78_BANK2_RP1_PTR_REGNUM,
196 RL78_BANK2_RP2_PTR_REGNUM,
197 RL78_BANK2_RP3_PTR_REGNUM,
199 RL78_BANK3_RP0_PTR_REGNUM,
200 RL78_BANK3_RP1_PTR_REGNUM,
201 RL78_BANK3_RP2_PTR_REGNUM,
202 RL78_BANK3_RP3_PTR_REGNUM,
205 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
208 #define RL78_SP_ADDR 0xffff8
210 /* Architecture specific data. */
214 /* The ELF header flags specify the multilib used. */
217 struct type *rl78_void,
228 /* This structure holds the results of a prologue analysis. */
232 /* The offset from the frame base to the stack pointer --- always
235 Calling this a "size" is a bit misleading, but given that the
236 stack grows downwards, using offsets for everything keeps one
237 from going completely sign-crazy: you never change anything's
238 sign for an ADD instruction; always change the second operand's
239 sign for a SUB instruction; and everything takes care of
243 /* Non-zero if this function has initialized the frame pointer from
244 the stack pointer, zero otherwise. */
247 /* If has_frame_ptr is non-zero, this is the offset from the frame
248 base to where the frame pointer points. This is always zero or
250 int frame_ptr_offset;
252 /* The address of the first instruction at which the frame has been
253 set up and the arguments are where the debug info says they are
254 --- as best as we can tell. */
255 CORE_ADDR prologue_end;
257 /* reg_offset[R] is the offset from the CFA at which register R is
258 saved, or 1 if register R has not been saved. (Real values are
259 always zero or negative.) */
260 int reg_offset[RL78_NUM_TOTAL_REGS];
263 /* Implement the "register_type" gdbarch method. */
266 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270 if (reg_nr == RL78_PC_REGNUM)
271 return tdep->rl78_code_pointer;
272 else if (reg_nr == RL78_RAW_PC_REGNUM)
273 return tdep->rl78_uint32;
274 else if (reg_nr <= RL78_MEM_REGNUM
275 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
276 || (RL78_BANK0_R0_REGNUM <= reg_nr
277 && reg_nr <= RL78_BANK3_R7_REGNUM))
278 return tdep->rl78_int8;
279 else if (reg_nr == RL78_SP_REGNUM
280 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
281 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
282 return tdep->rl78_data_pointer;
284 return tdep->rl78_int16;
287 /* Implement the "register_name" gdbarch method. */
290 rl78_register_name (struct gdbarch *gdbarch, int regnr)
292 static const char *const reg_names[] =
413 /* The 16 register slots would be named
414 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
415 want these to be user visible registers. */
416 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
419 return reg_names[regnr];
422 /* Implement the "register_name" gdbarch method for the g10 variant. */
425 rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
427 static const char *const reg_names[] =
548 /* The 16 register slots would be named
549 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
550 want these to be user visible registers. */
551 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
554 return reg_names[regnr];
557 /* Implement the "register_reggroup_p" gdbarch method. */
560 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
561 struct reggroup *group)
563 if (group == all_reggroup)
566 /* All other registers are saved and restored. */
567 if (group == save_reggroup || group == restore_reggroup)
569 if ((regnum < RL78_NUM_REGS
570 && regnum != RL78_SPL_REGNUM
571 && regnum != RL78_SPH_REGNUM
572 && regnum != RL78_RAW_PC_REGNUM)
573 || regnum == RL78_SP_REGNUM
574 || regnum == RL78_PC_REGNUM)
580 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
581 || regnum == RL78_ES_REGNUM
582 || regnum == RL78_CS_REGNUM
583 || regnum == RL78_SPL_REGNUM
584 || regnum == RL78_SPH_REGNUM
585 || regnum == RL78_PMC_REGNUM
586 || regnum == RL78_MEM_REGNUM
587 || regnum == RL78_RAW_PC_REGNUM
588 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
589 return group == system_reggroup;
591 return group == general_reggroup;
594 /* Strip bits to form an instruction address. (When fetching a
595 32-bit address from the stack, the high eight bits are garbage.
596 This function strips off those unused bits.) */
599 rl78_make_instruction_address (CORE_ADDR addr)
601 return addr & 0xffffff;
604 /* Set / clear bits necessary to make a data address. */
607 rl78_make_data_address (CORE_ADDR addr)
609 return (addr & 0xffff) | 0xf0000;
612 /* Implement the "pseudo_register_read" gdbarch method. */
614 static enum register_status
615 rl78_pseudo_register_read (struct gdbarch *gdbarch,
616 struct regcache *regcache,
617 int reg, gdb_byte *buffer)
619 enum register_status status;
621 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
623 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
624 + (reg - RL78_BANK0_R0_REGNUM);
626 status = regcache_raw_read (regcache, raw_regnum, buffer);
628 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
630 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
631 + RL78_RAW_BANK0_R0_REGNUM;
633 status = regcache_raw_read (regcache, raw_regnum, buffer);
634 if (status == REG_VALID)
635 status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1);
637 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
639 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
640 + RL78_RAW_BANK0_R0_REGNUM;
642 status = regcache_raw_read (regcache, raw_regnum, buffer);
643 if (status == REG_VALID)
644 status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1);
646 else if (reg == RL78_SP_REGNUM)
648 status = regcache_raw_read (regcache, RL78_SPL_REGNUM, buffer);
649 if (status == REG_VALID)
650 status = regcache_raw_read (regcache, RL78_SPH_REGNUM, buffer + 1);
652 else if (reg == RL78_PC_REGNUM)
656 status = regcache_raw_read (regcache, RL78_RAW_PC_REGNUM, rawbuf);
657 memcpy (buffer, rawbuf, 3);
659 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
663 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
664 if (status == REG_VALID)
666 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
667 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
668 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
669 + (reg - RL78_X_REGNUM);
670 status = regcache_raw_read (regcache, raw_regnum, buffer);
673 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
677 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
678 if (status == REG_VALID)
680 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
681 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
682 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
683 + 2 * (reg - RL78_AX_REGNUM);
684 status = regcache_raw_read (regcache, raw_regnum, buffer);
685 if (status == REG_VALID)
686 status = regcache_raw_read (regcache, raw_regnum + 1,
691 gdb_assert_not_reached ("invalid pseudo register number");
695 /* Implement the "pseudo_register_write" gdbarch method. */
698 rl78_pseudo_register_write (struct gdbarch *gdbarch,
699 struct regcache *regcache,
700 int reg, const gdb_byte *buffer)
702 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
704 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
705 + (reg - RL78_BANK0_R0_REGNUM);
707 regcache_raw_write (regcache, raw_regnum, buffer);
709 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
711 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
712 + RL78_RAW_BANK0_R0_REGNUM;
714 regcache_raw_write (regcache, raw_regnum, buffer);
715 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
717 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
719 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
720 + RL78_RAW_BANK0_R0_REGNUM;
722 regcache_raw_write (regcache, raw_regnum, buffer);
723 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
725 else if (reg == RL78_SP_REGNUM)
727 regcache_raw_write (regcache, RL78_SPL_REGNUM, buffer);
728 regcache_raw_write (regcache, RL78_SPH_REGNUM, buffer + 1);
730 else if (reg == RL78_PC_REGNUM)
734 memcpy (rawbuf, buffer, 3);
736 regcache_raw_write (regcache, RL78_RAW_PC_REGNUM, rawbuf);
738 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
744 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
745 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
746 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
747 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
748 + (reg - RL78_X_REGNUM);
749 regcache_raw_write (regcache, raw_regnum, buffer);
751 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
754 int bank, raw_regnum;
756 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
757 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
758 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
759 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
760 + 2 * (reg - RL78_AX_REGNUM);
761 regcache_raw_write (regcache, raw_regnum, buffer);
762 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
765 gdb_assert_not_reached ("invalid pseudo register number");
768 /* Implement the "breakpoint_from_pc" gdbarch method. */
770 static const gdb_byte *
771 rl78_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
774 /* The documented BRK instruction is actually a two byte sequence,
775 {0x61, 0xcc}, but instructions may be as short as one byte.
776 Correspondence with Renesas revealed that the one byte sequence
777 0xff is used when a one byte breakpoint instruction is required. */
778 static gdb_byte breakpoint[] = { 0xff };
780 *lenptr = sizeof breakpoint;
784 /* Define a "handle" struct for fetching the next opcode. */
786 struct rl78_get_opcode_byte_handle
792 opc_reg_to_gdb_regnum (int opcreg)
797 return RL78_X_REGNUM;
799 return RL78_A_REGNUM;
801 return RL78_C_REGNUM;
803 return RL78_B_REGNUM;
805 return RL78_E_REGNUM;
807 return RL78_D_REGNUM;
809 return RL78_L_REGNUM;
811 return RL78_H_REGNUM;
813 return RL78_AX_REGNUM;
815 return RL78_BC_REGNUM;
817 return RL78_DE_REGNUM;
819 return RL78_HL_REGNUM;
821 return RL78_SP_REGNUM;
823 return RL78_PSW_REGNUM;
825 return RL78_CS_REGNUM;
827 return RL78_ES_REGNUM;
829 return RL78_PMC_REGNUM;
831 return RL78_MEM_REGNUM;
833 internal_error (__FILE__, __LINE__,
834 _("Undefined mapping for opc reg %d"),
842 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
843 the memory address of the next byte to fetch. If successful,
844 the address in the handle is updated and the byte fetched is
845 returned as the value of the function. If not successful, -1
849 rl78_get_opcode_byte (void *handle)
851 struct rl78_get_opcode_byte_handle *opcdata = handle;
855 status = target_read_memory (opcdata->pc, &byte, 1);
865 /* Function for finding saved registers in a 'struct pv_area'; this
866 function is passed to pv_area_scan.
868 If VALUE is a saved register, ADDR says it was saved at a constant
869 offset from the frame base, and SIZE indicates that the whole
870 register was saved, record its offset. */
873 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
876 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
878 if (value.kind == pvk_register
880 && pv_is_register (addr, RL78_SP_REGNUM)
881 && size == register_size (target_gdbarch (), value.reg))
882 result->reg_offset[value.reg] = addr.k;
885 /* Analyze a prologue starting at START_PC, going no further than
886 LIMIT_PC. Fill in RESULT as appropriate. */
889 rl78_analyze_prologue (CORE_ADDR start_pc,
890 CORE_ADDR limit_pc, struct rl78_prologue *result)
892 CORE_ADDR pc, next_pc;
894 pv_t reg[RL78_NUM_TOTAL_REGS];
895 struct pv_area *stack;
896 struct cleanup *back_to;
897 CORE_ADDR after_last_frame_setup_insn = start_pc;
900 memset (result, 0, sizeof (*result));
902 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
904 reg[rn] = pv_register (rn, 0);
905 result->reg_offset[rn] = 1;
908 stack = make_pv_area (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
909 back_to = make_cleanup_free_pv_area (stack);
911 /* The call instruction has saved the return address on the stack. */
912 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
913 pv_area_store (stack, reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
916 while (pc < limit_pc)
919 struct rl78_get_opcode_byte_handle opcode_handle;
920 RL78_Opcode_Decoded opc;
922 opcode_handle.pc = pc;
923 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
924 &opcode_handle, RL78_ISA_DEFAULT);
925 next_pc = pc + bytes_read;
927 if (opc.id == RLO_sel)
929 bank = opc.op[1].addend;
931 else if (opc.id == RLO_mov
932 && opc.op[0].type == RL78_Operand_PreDec
933 && opc.op[0].reg == RL78_Reg_SP
934 && opc.op[1].type == RL78_Operand_Register)
936 int rsrc = (bank * RL78_REGS_PER_BANK)
937 + 2 * (opc.op[1].reg - RL78_Reg_AX);
939 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
940 pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc]);
941 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
942 pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
943 after_last_frame_setup_insn = next_pc;
945 else if (opc.id == RLO_sub
946 && opc.op[0].type == RL78_Operand_Register
947 && opc.op[0].reg == RL78_Reg_SP
948 && opc.op[1].type == RL78_Operand_Immediate)
950 int addend = opc.op[1].addend;
952 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
954 after_last_frame_setup_insn = next_pc;
956 else if (opc.id == RLO_mov
957 && opc.size == RL78_Word
958 && opc.op[0].type == RL78_Operand_Register
959 && opc.op[1].type == RL78_Operand_Indirect
960 && opc.op[1].addend == RL78_SP_ADDR)
962 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
963 = reg[RL78_SP_REGNUM];
965 else if (opc.id == RLO_sub
966 && opc.size == RL78_Word
967 && opc.op[0].type == RL78_Operand_Register
968 && opc.op[1].type == RL78_Operand_Immediate)
970 int addend = opc.op[1].addend;
971 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
973 reg[regnum] = pv_add_constant (reg[regnum], -addend);
975 else if (opc.id == RLO_mov
976 && opc.size == RL78_Word
977 && opc.op[0].type == RL78_Operand_Indirect
978 && opc.op[0].addend == RL78_SP_ADDR
979 && opc.op[1].type == RL78_Operand_Register)
982 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
983 after_last_frame_setup_insn = next_pc;
987 /* Terminate the prologue scan. */
994 /* Is the frame size (offset, really) a known constant? */
995 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
996 result->frame_size = reg[RL78_SP_REGNUM].k;
998 /* Record where all the registers were saved. */
999 pv_area_scan (stack, check_for_saved, (void *) result);
1001 result->prologue_end = after_last_frame_setup_insn;
1003 do_cleanups (back_to);
1006 /* Implement the "addr_bits_remove" gdbarch method. */
1009 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1011 return addr & 0xffffff;
1014 /* Implement the "address_to_pointer" gdbarch method. */
1017 rl78_address_to_pointer (struct gdbarch *gdbarch,
1018 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1022 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
1026 /* Implement the "pointer_to_address" gdbarch method. */
1029 rl78_pointer_to_address (struct gdbarch *gdbarch,
1030 struct type *type, const gdb_byte *buf)
1032 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1034 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
1036 /* Is it a code address? */
1037 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
1038 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
1039 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
1040 || TYPE_LENGTH (type) == 4)
1041 return rl78_make_instruction_address (addr);
1043 return rl78_make_data_address (addr);
1046 /* Implement the "skip_prologue" gdbarch method. */
1049 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1052 CORE_ADDR func_addr, func_end;
1053 struct rl78_prologue p;
1055 /* Try to find the extent of the function that contains PC. */
1056 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1059 rl78_analyze_prologue (pc, func_end, &p);
1060 return p.prologue_end;
1063 /* Implement the "unwind_pc" gdbarch method. */
1066 rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1068 return rl78_addr_bits_remove
1069 (arch, frame_unwind_register_unsigned (next_frame,
1073 /* Implement the "unwind_sp" gdbarch method. */
1076 rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1078 return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM);
1081 /* Given a frame described by THIS_FRAME, decode the prologue of its
1082 associated function if there is not cache entry as specified by
1083 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1084 return that struct as the value of this function. */
1086 static struct rl78_prologue *
1087 rl78_analyze_frame_prologue (struct frame_info *this_frame,
1088 void **this_prologue_cache)
1090 if (!*this_prologue_cache)
1092 CORE_ADDR func_start, stop_addr;
1094 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1096 func_start = get_frame_func (this_frame);
1097 stop_addr = get_frame_pc (this_frame);
1099 /* If we couldn't find any function containing the PC, then
1100 just initialize the prologue cache, but don't do anything. */
1102 stop_addr = func_start;
1104 rl78_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
1107 return *this_prologue_cache;
1110 /* Given a frame and a prologue cache, return this frame's base. */
1113 rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1115 struct rl78_prologue *p
1116 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1117 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1119 return rl78_make_data_address (sp - p->frame_size);
1122 /* Implement the "frame_this_id" method for unwinding frames. */
1125 rl78_this_id (struct frame_info *this_frame,
1126 void **this_prologue_cache, struct frame_id *this_id)
1128 *this_id = frame_id_build (rl78_frame_base (this_frame,
1129 this_prologue_cache),
1130 get_frame_func (this_frame));
1133 /* Implement the "frame_prev_register" method for unwinding frames. */
1135 static struct value *
1136 rl78_prev_register (struct frame_info *this_frame,
1137 void **this_prologue_cache, int regnum)
1139 struct rl78_prologue *p
1140 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1141 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1143 if (regnum == RL78_SP_REGNUM)
1144 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1146 else if (regnum == RL78_SPL_REGNUM)
1147 return frame_unwind_got_constant (this_frame, regnum,
1148 (frame_base & 0xff));
1150 else if (regnum == RL78_SPH_REGNUM)
1151 return frame_unwind_got_constant (this_frame, regnum,
1152 ((frame_base >> 8) & 0xff));
1154 /* If prologue analysis says we saved this register somewhere,
1155 return a description of the stack slot holding it. */
1156 else if (p->reg_offset[regnum] != 1)
1159 frame_unwind_got_memory (this_frame, regnum,
1160 frame_base + p->reg_offset[regnum]);
1162 if (regnum == RL78_PC_REGNUM)
1164 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1166 return frame_unwind_got_constant (this_frame, regnum, pc);
1171 /* Otherwise, presume we haven't changed the value of this
1172 register, and get it from the next frame. */
1174 return frame_unwind_got_register (this_frame, regnum, regnum);
1177 static const struct frame_unwind rl78_unwind =
1180 default_frame_unwind_stop_reason,
1184 default_frame_sniffer
1187 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1190 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1192 if (0 <= reg && reg <= 31)
1195 /* Map even registers to their 16-bit counterparts which have a
1196 pointer type. This is usually what is required from the DWARF
1198 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
1203 return RL78_SP_REGNUM;
1207 return RL78_PSW_REGNUM;
1209 return RL78_ES_REGNUM;
1211 return RL78_CS_REGNUM;
1213 return RL78_PC_REGNUM;
1215 internal_error (__FILE__, __LINE__,
1216 _("Undefined dwarf2 register mapping of reg %d"),
1220 /* Implement the `register_sim_regno' gdbarch method. */
1223 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1225 gdb_assert (regnum < RL78_NUM_REGS);
1227 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1228 just want to override the default here which disallows register
1229 numbers which have no names. */
1233 /* Implement the "return_value" gdbarch method. */
1235 static enum return_value_convention
1236 rl78_return_value (struct gdbarch *gdbarch,
1237 struct value *function,
1238 struct type *valtype,
1239 struct regcache *regcache,
1240 gdb_byte *readbuf, const gdb_byte *writebuf)
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1244 int is_g10 = gdbarch_tdep (gdbarch)->elf_flags & E_FLAG_RL78_G10;
1246 if (valtype_len > 8)
1247 return RETURN_VALUE_STRUCT_CONVENTION;
1252 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1253 CORE_ADDR g10_raddr = 0xffec8;
1256 while (valtype_len > 0)
1259 u = read_memory_integer (g10_raddr, 1,
1260 gdbarch_byte_order (gdbarch));
1262 regcache_cooked_read_unsigned (regcache, argreg, &u);
1263 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1274 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1275 CORE_ADDR g10_raddr = 0xffec8;
1278 while (valtype_len > 0)
1280 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1282 gdb_byte b = u & 0xff;
1283 write_memory (g10_raddr, &b, 1);
1286 regcache_cooked_write_unsigned (regcache, argreg, u);
1294 return RETURN_VALUE_REGISTER_CONVENTION;
1298 /* Implement the "frame_align" gdbarch method. */
1301 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1303 return rl78_make_data_address (align_down (sp, 2));
1307 /* Implement the "dummy_id" gdbarch method. */
1309 static struct frame_id
1310 rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1313 frame_id_build (rl78_make_data_address
1314 (get_frame_register_unsigned
1315 (this_frame, RL78_SP_REGNUM)),
1316 get_frame_pc (this_frame));
1320 /* Implement the "push_dummy_call" gdbarch method. */
1323 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1324 struct regcache *regcache, CORE_ADDR bp_addr,
1325 int nargs, struct value **args, CORE_ADDR sp,
1326 int struct_return, CORE_ADDR struct_addr)
1328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1332 /* Push arguments in reverse order. */
1333 for (i = nargs - 1; i >= 0; i--)
1335 struct type *value_type = value_enclosing_type (args[i]);
1336 int len = TYPE_LENGTH (value_type);
1337 int container_len = (len + 1) & ~1;
1339 sp -= container_len;
1340 write_memory (rl78_make_data_address (sp),
1341 value_contents_all (args[i]), len);
1344 /* Store struct value address. */
1347 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1349 write_memory (rl78_make_data_address (sp), buf, 2);
1352 /* Store return address. */
1354 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1355 write_memory (rl78_make_data_address (sp), buf, 4);
1357 /* Finally, update the stack pointer... */
1358 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1360 /* DWARF2/GCC uses the stack address *before* the function call as a
1362 return rl78_make_data_address (sp + 4);
1365 /* Allocate and initialize a gdbarch object. */
1367 static struct gdbarch *
1368 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1370 struct gdbarch *gdbarch;
1371 struct gdbarch_tdep *tdep;
1374 /* Extract the elf_flags if available. */
1375 if (info.abfd != NULL
1376 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1377 elf_flags = elf_elfheader (info.abfd)->e_flags;
1382 /* Try to find the architecture in the list of already defined
1384 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1386 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1388 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1391 return arches->gdbarch;
1394 /* None found, create a new architecture from the information
1396 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1397 gdbarch = gdbarch_alloc (&info, tdep);
1398 tdep->elf_flags = elf_flags;
1400 /* Initialize types. */
1401 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1402 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1403 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1404 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1405 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1406 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1407 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1409 tdep->rl78_data_pointer
1410 = arch_type (gdbarch, TYPE_CODE_PTR, 16 / TARGET_CHAR_BIT,
1411 xstrdup ("rl78_data_addr_t"));
1412 TYPE_TARGET_TYPE (tdep->rl78_data_pointer) = tdep->rl78_void;
1413 TYPE_UNSIGNED (tdep->rl78_data_pointer) = 1;
1415 tdep->rl78_code_pointer
1416 = arch_type (gdbarch, TYPE_CODE_PTR, 32 / TARGET_CHAR_BIT,
1417 xstrdup ("rl78_code_addr_t"));
1418 TYPE_TARGET_TYPE (tdep->rl78_code_pointer) = tdep->rl78_void;
1419 TYPE_UNSIGNED (tdep->rl78_code_pointer) = 1;
1422 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1423 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1424 if (tdep->elf_flags & E_FLAG_RL78_G10)
1425 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1427 set_gdbarch_register_name (gdbarch, rl78_register_name);
1428 set_gdbarch_register_type (gdbarch, rl78_register_type);
1429 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1430 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1431 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1432 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1433 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1434 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1435 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1438 set_gdbarch_char_signed (gdbarch, 0);
1439 set_gdbarch_short_bit (gdbarch, 16);
1440 set_gdbarch_int_bit (gdbarch, 16);
1441 set_gdbarch_long_bit (gdbarch, 32);
1442 set_gdbarch_long_long_bit (gdbarch, 64);
1443 set_gdbarch_ptr_bit (gdbarch, 16);
1444 set_gdbarch_addr_bit (gdbarch, 32);
1445 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1446 set_gdbarch_float_bit (gdbarch, 32);
1447 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1448 set_gdbarch_double_bit (gdbarch, 32);
1449 set_gdbarch_long_double_bit (gdbarch, 64);
1450 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1451 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1452 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1453 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1454 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1457 set_gdbarch_breakpoint_from_pc (gdbarch, rl78_breakpoint_from_pc);
1458 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1461 set_gdbarch_print_insn (gdbarch, print_insn_rl78);
1463 /* Frames, prologues, etc. */
1464 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1465 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1466 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1467 set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp);
1468 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1470 dwarf2_append_unwinders (gdbarch);
1471 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1473 /* Dummy frames, return values. */
1474 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1475 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1476 set_gdbarch_return_value (gdbarch, rl78_return_value);
1478 /* Virtual tables. */
1479 set_gdbarch_vbit_in_delta (gdbarch, 1);
1484 /* -Wmissing-prototypes */
1485 extern initialize_file_ftype _initialize_rl78_tdep;
1487 /* Register the above initialization routine. */
1490 _initialize_rl78_tdep (void)
1492 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);