1 /* Target-dependent code for the RISC-V architecture, for GDB.
3 Copyright (C) 2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "arch-utils.h"
35 #include "riscv-tdep.h"
37 #include "reggroups.h"
38 #include "opcode/riscv.h"
39 #include "elf/riscv.h"
43 #include "frame-unwind.h"
44 #include "frame-base.h"
45 #include "trad-frame.h"
47 #include "floatformat.h"
49 #include "target-descriptions.h"
50 #include "dwarf2-frame.h"
51 #include "user-regs.h"
53 #include "common-defs.h"
54 #include "opcode/riscv-opc.h"
55 #include "cli/cli-decode.h"
56 #include "observable.h"
58 /* The stack must be 16-byte aligned. */
59 #define SP_ALIGNMENT 16
61 /* Forward declarations. */
62 static bool riscv_has_feature (struct gdbarch *gdbarch, char feature);
63 struct riscv_inferior_data;
64 struct riscv_inferior_data * riscv_inferior_data (struct inferior *const inf);
66 /* Define a series of is_XXX_insn functions to check if the value INSN
67 is an instance of instruction XXX. */
68 #define DECLARE_INSN(INSN_NAME, INSN_MATCH, INSN_MASK) \
69 static inline bool is_ ## INSN_NAME ## _insn (long insn) \
71 return (insn & INSN_MASK) == INSN_MATCH; \
73 #include "opcode/riscv-opc.h"
76 /* Per inferior information for RiscV. */
78 struct riscv_inferior_data
80 /* True when MISA_VALUE is valid, otherwise false. */
83 /* If MISA_READ is true then MISA_VALUE holds the value of the MISA
84 register read from the target. */
88 /* Key created when the RiscV per-inferior data is registered. */
90 static const struct inferior_data *riscv_inferior_data_reg;
92 /* Architectural name for core registers. */
94 static const char * const riscv_gdb_reg_names[RISCV_LAST_FP_REGNUM + 1] =
96 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
97 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
98 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
99 "x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
101 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
102 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
103 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
104 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
107 /* Maps "pretty" register names onto their GDB register number. */
109 struct register_alias
111 /* The register alias. Usually more descriptive than the
112 architectural name of the register. */
115 /* The GDB register number. */
119 /* Table of register aliases. */
121 static const struct register_alias riscv_register_aliases[] =
189 #define DECLARE_CSR(name, num) { #name, (num) + 65 },
190 #include "opcode/riscv-opc.h"
194 /* Controls whether we place compressed breakpoints or not. When in auto
195 mode GDB tries to determine if the target supports compressed
196 breakpoints, and uses them if it does. */
198 static enum auto_boolean use_compressed_breakpoints;
200 /* The show callback for 'show riscv use-compressed-breakpoints'. */
203 show_use_compressed_breakpoints (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c,
207 const char *additional_info;
208 struct gdbarch *gdbarch = target_gdbarch ();
210 if (use_compressed_breakpoints == AUTO_BOOLEAN_AUTO)
211 if (riscv_has_feature (gdbarch, 'C'))
212 additional_info = _(" (currently on)");
214 additional_info = _(" (currently off)");
216 additional_info = "";
218 fprintf_filtered (file,
219 _("Debugger's use of compressed breakpoints is set "
220 "to %s%s.\n"), value, additional_info);
223 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
225 static struct cmd_list_element *setriscvcmdlist = NULL;
226 static struct cmd_list_element *showriscvcmdlist = NULL;
228 /* The show callback for the 'show riscv' prefix command. */
231 show_riscv_command (const char *args, int from_tty)
233 help_list (showriscvcmdlist, "show riscv ", all_commands, gdb_stdout);
236 /* The set callback for the 'set riscv' prefix command. */
239 set_riscv_command (const char *args, int from_tty)
242 (_("\"set riscv\" must be followed by an appropriate subcommand.\n"));
243 help_list (setriscvcmdlist, "set riscv ", all_commands, gdb_stdout);
246 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
248 static struct cmd_list_element *setdebugriscvcmdlist = NULL;
249 static struct cmd_list_element *showdebugriscvcmdlist = NULL;
251 /* The show callback for the 'show debug riscv' prefix command. */
254 show_debug_riscv_command (const char *args, int from_tty)
256 help_list (showdebugriscvcmdlist, "show debug riscv ", all_commands, gdb_stdout);
259 /* The set callback for the 'set debug riscv' prefix command. */
262 set_debug_riscv_command (const char *args, int from_tty)
265 (_("\"set debug riscv\" must be followed by an appropriate subcommand.\n"));
266 help_list (setdebugriscvcmdlist, "set debug riscv ", all_commands, gdb_stdout);
269 /* The show callback for all 'show debug riscv VARNAME' variables. */
272 show_riscv_debug_variable (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c,
276 fprintf_filtered (file,
277 _("RiscV debug variable `%s' is set to: %s\n"),
281 /* When this is set to non-zero debugging information about inferior calls
284 static unsigned int riscv_debug_infcall = 0;
286 /* Read the MISA register from the target. The register will only be read
287 once, and the value read will be cached. If the register can't be read
288 from the target then a default value (0) will be returned. If the
289 pointer READ_P is not null, then the bool pointed to is updated to
290 indicate if the value returned was read from the target (true) or is the
294 riscv_read_misa_reg (bool *read_p)
296 struct riscv_inferior_data *inf_data
297 = riscv_inferior_data (current_inferior ());
299 if (!inf_data->misa_read && target_has_registers)
302 struct frame_info *frame = get_current_frame ();
306 value = get_frame_register_unsigned (frame, RISCV_CSR_MISA_REGNUM);
308 CATCH (ex, RETURN_MASK_ERROR)
310 /* Old cores might have MISA located at a different offset. */
311 value = get_frame_register_unsigned (frame,
312 RISCV_CSR_LEGACY_MISA_REGNUM);
316 inf_data->misa_read = true;
317 inf_data->misa_value = value;
320 if (read_p != nullptr)
321 *read_p = inf_data->misa_read;
323 return inf_data->misa_value;
326 /* Return true if FEATURE is available for the architecture GDBARCH. The
327 FEATURE should be one of the single character feature codes described in
328 the RiscV ISA manual, these are between 'A' and 'Z'. */
331 riscv_has_feature (struct gdbarch *gdbarch, char feature)
333 bool have_read_misa = false;
336 gdb_assert (feature >= 'A' && feature <= 'Z');
338 /* It would be nice to always check with the real target where possible,
339 however, for compressed instructions this is a bad idea.
341 The call to `set_gdbarch_decr_pc_after_break' is made just once per
342 GDBARCH and we decide at that point if we should decrement by 2 or 4
343 bytes based on whether the BFD has compressed instruction support or
346 If the BFD was not compiled with compressed instruction support, but we
347 are running on a target with compressed instructions then we might
348 place a 4-byte breakpoint, then decrement the $pc by 2 bytes leading to
351 It's safer if we just make decisions about compressed instruction
352 support based on the BFD. */
354 misa = riscv_read_misa_reg (&have_read_misa);
355 if (!have_read_misa || misa == 0)
356 misa = gdbarch_tdep (gdbarch)->core_features;
358 return (misa & (1 << (feature - 'A'))) != 0;
361 /* Return the width in bytes of the general purpose registers for GDBARCH.
362 Possible return values are 4, 8, or 16 for RiscV variants RV32, RV64, or
366 riscv_isa_xlen (struct gdbarch *gdbarch)
368 switch (gdbarch_tdep (gdbarch)->abi.fields.base_len)
371 warning (_("unknown xlen size, assuming 4 bytes"));
382 /* Return the width in bytes of the floating point registers for GDBARCH.
383 If this architecture has no floating point registers, then return 0.
384 Possible values are 4, 8, or 16 for depending on which of single, double
385 or quad floating point support is available. */
388 riscv_isa_flen (struct gdbarch *gdbarch)
390 if (riscv_has_feature (gdbarch, 'Q'))
392 else if (riscv_has_feature (gdbarch, 'D'))
394 else if (riscv_has_feature (gdbarch, 'F'))
400 /* Return true if the target for GDBARCH has floating point hardware. */
403 riscv_has_fp_regs (struct gdbarch *gdbarch)
405 return (riscv_isa_flen (gdbarch) > 0);
408 /* Return true if GDBARCH is using any of the floating point hardware ABIs. */
411 riscv_has_fp_abi (struct gdbarch *gdbarch)
413 return (gdbarch_tdep (gdbarch)->abi.fields.float_abi != 0);
416 /* Return true if REGNO is a floating pointer register. */
419 riscv_is_fp_regno_p (int regno)
421 return (regno >= RISCV_FIRST_FP_REGNUM
422 && regno <= RISCV_LAST_FP_REGNUM);
425 /* Implement the breakpoint_kind_from_pc gdbarch method. */
428 riscv_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
430 if (use_compressed_breakpoints == AUTO_BOOLEAN_AUTO)
432 if (riscv_has_feature (gdbarch, 'C'))
437 else if (use_compressed_breakpoints == AUTO_BOOLEAN_TRUE)
443 /* Implement the sw_breakpoint_from_kind gdbarch method. */
445 static const gdb_byte *
446 riscv_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
448 static const gdb_byte ebreak[] = { 0x73, 0x00, 0x10, 0x00, };
449 static const gdb_byte c_ebreak[] = { 0x02, 0x90 };
459 gdb_assert_not_reached (_("unhandled breakpoint kind"));
463 /* Callback function for user_reg_add. */
465 static struct value *
466 value_of_riscv_user_reg (struct frame_info *frame, const void *baton)
468 const int *reg_p = (const int *) baton;
469 return value_of_register (*reg_p, frame);
472 /* Implement the register_name gdbarch method. */
475 riscv_register_name (struct gdbarch *gdbarch, int regnum)
477 /* Prefer to use the alias. */
478 if (regnum >= RISCV_ZERO_REGNUM && regnum <= RISCV_LAST_REGNUM)
482 for (i = 0; i < ARRAY_SIZE (riscv_register_aliases); ++i)
483 if (regnum == riscv_register_aliases[i].regnum)
484 return riscv_register_aliases[i].name;
487 if (regnum >= RISCV_ZERO_REGNUM && regnum <= RISCV_LAST_FP_REGNUM)
488 return riscv_gdb_reg_names[regnum];
490 if (regnum >= RISCV_FIRST_CSR_REGNUM && regnum <= RISCV_LAST_CSR_REGNUM)
494 xsnprintf (buf, sizeof (buf), "csr%d",
495 regnum - RISCV_FIRST_CSR_REGNUM);
499 if (regnum == RISCV_PRIV_REGNUM)
505 /* Implement the register_type gdbarch method. */
508 riscv_register_type (struct gdbarch *gdbarch, int regnum)
512 if (regnum < RISCV_FIRST_FP_REGNUM)
514 if (regnum == gdbarch_pc_regnum (gdbarch)
515 || regnum == RISCV_RA_REGNUM)
516 return builtin_type (gdbarch)->builtin_func_ptr;
518 if (regnum == RISCV_FP_REGNUM
519 || regnum == RISCV_SP_REGNUM
520 || regnum == RISCV_GP_REGNUM
521 || regnum == RISCV_TP_REGNUM)
522 return builtin_type (gdbarch)->builtin_data_ptr;
524 /* Remaining GPRs vary in size based on the current ISA. */
525 regsize = riscv_isa_xlen (gdbarch);
529 return builtin_type (gdbarch)->builtin_uint32;
531 return builtin_type (gdbarch)->builtin_uint64;
533 return builtin_type (gdbarch)->builtin_uint128;
535 internal_error (__FILE__, __LINE__,
536 _("unknown isa regsize %i"), regsize);
539 else if (regnum <= RISCV_LAST_FP_REGNUM)
541 regsize = riscv_isa_xlen (gdbarch);
545 return builtin_type (gdbarch)->builtin_float;
547 return builtin_type (gdbarch)->builtin_double;
549 return builtin_type (gdbarch)->builtin_long_double;
551 internal_error (__FILE__, __LINE__,
552 _("unknown isa regsize %i"), regsize);
555 else if (regnum == RISCV_PRIV_REGNUM)
556 return builtin_type (gdbarch)->builtin_int8;
559 if (regnum == RISCV_CSR_FFLAGS_REGNUM
560 || regnum == RISCV_CSR_FRM_REGNUM
561 || regnum == RISCV_CSR_FCSR_REGNUM)
562 return builtin_type (gdbarch)->builtin_int32;
564 regsize = riscv_isa_xlen (gdbarch);
568 return builtin_type (gdbarch)->builtin_int32;
570 return builtin_type (gdbarch)->builtin_int64;
572 return builtin_type (gdbarch)->builtin_int128;
574 internal_error (__FILE__, __LINE__,
575 _("unknown isa regsize %i"), regsize);
580 /* Helper for riscv_print_registers_info, prints info for a single register
584 riscv_print_one_register_info (struct gdbarch *gdbarch,
585 struct ui_file *file,
586 struct frame_info *frame,
589 const char *name = gdbarch_register_name (gdbarch, regnum);
590 struct value *val = value_of_register (regnum, frame);
591 struct type *regtype = value_type (val);
592 int print_raw_format;
593 enum tab_stops { value_column_1 = 15 };
595 fputs_filtered (name, file);
596 print_spaces_filtered (value_column_1 - strlen (name), file);
598 print_raw_format = (value_entirely_available (val)
599 && !value_optimized_out (val));
601 if (TYPE_CODE (regtype) == TYPE_CODE_FLT)
603 struct value_print_options opts;
604 const gdb_byte *valaddr = value_contents_for_printing (val);
605 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (regtype));
607 get_user_print_options (&opts);
611 value_embedded_offset (val), 0,
612 file, 0, val, &opts, current_language);
614 if (print_raw_format)
616 fprintf_filtered (file, "\t(raw ");
617 print_hex_chars (file, valaddr, TYPE_LENGTH (regtype), byte_order,
619 fprintf_filtered (file, ")");
624 struct value_print_options opts;
626 /* Print the register in hex. */
627 get_formatted_print_options (&opts, 'x');
630 value_embedded_offset (val), 0,
631 file, 0, val, &opts, current_language);
633 if (print_raw_format)
635 if (regnum == RISCV_CSR_MSTATUS_REGNUM)
638 int size = register_size (gdbarch, regnum);
641 d = value_as_long (val);
643 fprintf_filtered (file,
644 "\tSD:%X VM:%02X MXR:%X PUM:%X MPRV:%X XS:%X "
645 "FS:%X MPP:%x HPP:%X SPP:%X MPIE:%X HPIE:%X "
646 "SPIE:%X UPIE:%X MIE:%X HIE:%X SIE:%X UIE:%X",
647 (int) ((d >> (xlen - 1)) & 0x1),
648 (int) ((d >> 24) & 0x1f),
649 (int) ((d >> 19) & 0x1),
650 (int) ((d >> 18) & 0x1),
651 (int) ((d >> 17) & 0x1),
652 (int) ((d >> 15) & 0x3),
653 (int) ((d >> 13) & 0x3),
654 (int) ((d >> 11) & 0x3),
655 (int) ((d >> 9) & 0x3),
656 (int) ((d >> 8) & 0x1),
657 (int) ((d >> 7) & 0x1),
658 (int) ((d >> 6) & 0x1),
659 (int) ((d >> 5) & 0x1),
660 (int) ((d >> 4) & 0x1),
661 (int) ((d >> 3) & 0x1),
662 (int) ((d >> 2) & 0x1),
663 (int) ((d >> 1) & 0x1),
664 (int) ((d >> 0) & 0x1));
666 else if (regnum == RISCV_CSR_MISA_REGNUM)
672 d = value_as_long (val);
676 for (; base > 0; base--)
678 fprintf_filtered (file, "\tRV%d", xlen);
680 for (i = 0; i < 26; i++)
683 fprintf_filtered (file, "%c", 'A' + i);
686 else if (regnum == RISCV_CSR_FCSR_REGNUM
687 || regnum == RISCV_CSR_FFLAGS_REGNUM
688 || regnum == RISCV_CSR_FRM_REGNUM)
692 d = value_as_long (val);
694 fprintf_filtered (file, "\t");
695 if (regnum != RISCV_CSR_FRM_REGNUM)
696 fprintf_filtered (file,
697 "RD:%01X NV:%d DZ:%d OF:%d UF:%d NX:%d",
698 (int) ((d >> 5) & 0x7),
699 (int) ((d >> 4) & 0x1),
700 (int) ((d >> 3) & 0x1),
701 (int) ((d >> 2) & 0x1),
702 (int) ((d >> 1) & 0x1),
703 (int) ((d >> 0) & 0x1));
705 if (regnum != RISCV_CSR_FFLAGS_REGNUM)
707 static const char * const sfrm[] =
709 "RNE (round to nearest; ties to even)",
710 "RTZ (Round towards zero)",
711 "RDN (Round down towards -INF)",
712 "RUP (Round up towards +INF)",
713 "RMM (Round to nearest; ties to max magnitude)",
716 "dynamic rounding mode",
718 int frm = ((regnum == RISCV_CSR_FCSR_REGNUM)
719 ? (d >> 5) : d) & 0x3;
721 fprintf_filtered (file, "%sFRM:%i [%s]",
722 (regnum == RISCV_CSR_FCSR_REGNUM
727 else if (regnum == RISCV_PRIV_REGNUM)
732 d = value_as_long (val);
737 static const char * const sprv[] =
744 fprintf_filtered (file, "\tprv:%d [%s]",
748 fprintf_filtered (file, "\tprv:%d [INVALID]", priv);
752 /* If not a vector register, print it also according to its
754 if (TYPE_VECTOR (regtype) == 0)
756 get_user_print_options (&opts);
758 fprintf_filtered (file, "\t");
760 value_embedded_offset (val), 0,
761 file, 0, val, &opts, current_language);
766 fprintf_filtered (file, "\n");
769 /* Implement the register_reggroup_p gdbarch method. Is REGNUM a member
773 riscv_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
774 struct reggroup *reggroup)
780 /* Used by 'info registers' and 'info registers <groupname>'. */
782 if (gdbarch_register_name (gdbarch, regnum) == NULL
783 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
786 if (reggroup == all_reggroup)
788 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum == RISCV_PRIV_REGNUM)
790 /* Only include CSRs that have aliases. */
791 for (i = 0; i < ARRAY_SIZE (riscv_register_aliases); ++i)
793 if (regnum == riscv_register_aliases[i].regnum)
798 else if (reggroup == float_reggroup)
799 return (riscv_is_fp_regno_p (regnum)
800 || regnum == RISCV_CSR_FCSR_REGNUM
801 || regnum == RISCV_CSR_FFLAGS_REGNUM
802 || regnum == RISCV_CSR_FRM_REGNUM);
803 else if (reggroup == general_reggroup)
804 return regnum < RISCV_FIRST_FP_REGNUM;
805 else if (reggroup == restore_reggroup || reggroup == save_reggroup)
807 if (riscv_has_fp_regs (gdbarch))
808 return regnum <= RISCV_LAST_FP_REGNUM;
810 return regnum < RISCV_FIRST_FP_REGNUM;
812 else if (reggroup == system_reggroup)
814 if (regnum == RISCV_PRIV_REGNUM)
816 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum > RISCV_LAST_CSR_REGNUM)
818 /* Only include CSRs that have aliases. */
819 for (i = 0; i < ARRAY_SIZE (riscv_register_aliases); ++i)
821 if (regnum == riscv_register_aliases[i].regnum)
826 else if (reggroup == vector_reggroup)
832 /* Implement the print_registers_info gdbarch method. This is used by
833 'info registers' and 'info all-registers'. */
836 riscv_print_registers_info (struct gdbarch *gdbarch,
837 struct ui_file *file,
838 struct frame_info *frame,
839 int regnum, int print_all)
843 /* Print one specified register. */
844 gdb_assert (regnum <= RISCV_LAST_REGNUM);
845 if (gdbarch_register_name (gdbarch, regnum) == NULL
846 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
847 error (_("Not a valid register for the current processor type"));
848 riscv_print_one_register_info (gdbarch, file, frame, regnum);
852 struct reggroup *reggroup;
855 reggroup = all_reggroup;
857 reggroup = general_reggroup;
859 for (regnum = 0; regnum <= RISCV_LAST_REGNUM; ++regnum)
861 /* Zero never changes, so might as well hide by default. */
862 if (regnum == RISCV_ZERO_REGNUM && !print_all)
865 /* Registers with no name are not valid on this ISA. */
866 if (gdbarch_register_name (gdbarch, regnum) == NULL
867 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
870 /* Is the register in the group we're interested in? */
871 if (!riscv_register_reggroup_p (gdbarch, regnum, reggroup))
874 riscv_print_one_register_info (gdbarch, file, frame, regnum);
879 /* Class that handles one decoded RiscV instruction. */
885 /* Enum of all the opcodes that GDB cares about during the prologue scan. */
888 /* Unknown value is used at initialisation time. */
891 /* These instructions are all the ones we are interested in during the
902 /* Other instructions are not interesting during the prologue scan, and
917 void decode (struct gdbarch *gdbarch, CORE_ADDR pc);
919 /* Get the length of the instruction in bytes. */
923 /* Get the opcode for this instruction. */
924 enum opcode opcode () const
927 /* Get destination register field for this instruction. This is only
928 valid if the OPCODE implies there is such a field for this
933 /* Get the RS1 register field for this instruction. This is only valid
934 if the OPCODE implies there is such a field for this instruction. */
938 /* Get the RS2 register field for this instruction. This is only valid
939 if the OPCODE implies there is such a field for this instruction. */
943 /* Get the immediate for this instruction in signed form. This is only
944 valid if the OPCODE implies there is such a field for this
946 int imm_signed () const
951 /* Extract 5 bit register field at OFFSET from instruction OPCODE. */
952 int decode_register_index (unsigned long opcode, int offset)
954 return (opcode >> offset) & 0x1F;
957 /* Helper for DECODE, decode 32-bit R-type instruction. */
958 void decode_r_type_insn (enum opcode opcode, ULONGEST ival)
961 m_rd = decode_register_index (ival, OP_SH_RD);
962 m_rs1 = decode_register_index (ival, OP_SH_RS1);
963 m_rs2 = decode_register_index (ival, OP_SH_RS2);
966 /* Helper for DECODE, decode 16-bit compressed R-type instruction. */
967 void decode_cr_type_insn (enum opcode opcode, ULONGEST ival)
970 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
971 m_rs2 = decode_register_index (ival, OP_SH_CRS2);
974 /* Helper for DECODE, decode 32-bit I-type instruction. */
975 void decode_i_type_insn (enum opcode opcode, ULONGEST ival)
978 m_rd = decode_register_index (ival, OP_SH_RD);
979 m_rs1 = decode_register_index (ival, OP_SH_RS1);
980 m_imm.s = EXTRACT_ITYPE_IMM (ival);
983 /* Helper for DECODE, decode 16-bit compressed I-type instruction. */
984 void decode_ci_type_insn (enum opcode opcode, ULONGEST ival)
987 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
988 m_imm.s = EXTRACT_RVC_IMM (ival);
991 /* Helper for DECODE, decode 32-bit S-type instruction. */
992 void decode_s_type_insn (enum opcode opcode, ULONGEST ival)
995 m_rs1 = decode_register_index (ival, OP_SH_RS1);
996 m_rs2 = decode_register_index (ival, OP_SH_RS2);
997 m_imm.s = EXTRACT_STYPE_IMM (ival);
1000 /* Helper for DECODE, decode 32-bit U-type instruction. */
1001 void decode_u_type_insn (enum opcode opcode, ULONGEST ival)
1004 m_rd = decode_register_index (ival, OP_SH_RD);
1005 m_imm.s = EXTRACT_UTYPE_IMM (ival);
1008 /* Fetch instruction from target memory at ADDR, return the content of
1009 the instruction, and update LEN with the instruction length. */
1010 static ULONGEST fetch_instruction (struct gdbarch *gdbarch,
1011 CORE_ADDR addr, int *len);
1013 /* The length of the instruction in bytes. Should be 2 or 4. */
1016 /* The instruction opcode. */
1017 enum opcode m_opcode;
1019 /* The three possible registers an instruction might reference. Not
1020 every instruction fills in all of these registers. Which fields are
1021 valid depends on the opcode. The naming of these fields matches the
1022 naming in the riscv isa manual. */
1027 /* Possible instruction immediate. This is only valid if the instruction
1028 format contains an immediate, not all instruction, whether this is
1029 valid depends on the opcode. Despite only having one format for now
1030 the immediate is packed into a union, later instructions might require
1031 an unsigned formatted immediate, having the union in place now will
1032 reduce the need for code churn later. */
1033 union riscv_insn_immediate
1035 riscv_insn_immediate ()
1045 /* Fetch instruction from target memory at ADDR, return the content of the
1046 instruction, and update LEN with the instruction length. */
1049 riscv_insn::fetch_instruction (struct gdbarch *gdbarch,
1050 CORE_ADDR addr, int *len)
1052 enum bfd_endian byte_order = gdbarch_byte_order_for_code (gdbarch);
1054 int instlen, status;
1056 /* All insns are at least 16 bits. */
1057 status = target_read_memory (addr, buf, 2);
1059 memory_error (TARGET_XFER_E_IO, addr);
1061 /* If we need more, grab it now. */
1062 instlen = riscv_insn_length (buf[0]);
1063 gdb_assert (instlen <= sizeof (buf));
1068 status = target_read_memory (addr + 2, buf + 2, instlen - 2);
1070 memory_error (TARGET_XFER_E_IO, addr + 2);
1073 return extract_unsigned_integer (buf, instlen, byte_order);
1076 /* Fetch from target memory an instruction at PC and decode it. */
1079 riscv_insn::decode (struct gdbarch *gdbarch, CORE_ADDR pc)
1083 /* Fetch the instruction, and the instructions length. */
1084 ival = fetch_instruction (gdbarch, pc, &m_length);
1088 if (is_add_insn (ival))
1089 decode_r_type_insn (ADD, ival);
1090 else if (is_addw_insn (ival))
1091 decode_r_type_insn (ADDW, ival);
1092 else if (is_addi_insn (ival))
1093 decode_i_type_insn (ADDI, ival);
1094 else if (is_addiw_insn (ival))
1095 decode_i_type_insn (ADDIW, ival);
1096 else if (is_auipc_insn (ival))
1097 decode_u_type_insn (AUIPC, ival);
1098 else if (is_lui_insn (ival))
1099 decode_u_type_insn (LUI, ival);
1100 else if (is_sd_insn (ival))
1101 decode_s_type_insn (SD, ival);
1102 else if (is_sw_insn (ival))
1103 decode_s_type_insn (SW, ival);
1105 /* None of the other fields are valid in this case. */
1108 else if (m_length == 2)
1110 if (is_c_add_insn (ival))
1111 decode_cr_type_insn (ADD, ival);
1112 else if (is_c_addw_insn (ival))
1113 decode_cr_type_insn (ADDW, ival);
1114 else if (is_c_addi_insn (ival))
1115 decode_ci_type_insn (ADDI, ival);
1116 else if (is_c_addiw_insn (ival))
1117 decode_ci_type_insn (ADDIW, ival);
1118 else if (is_c_addi16sp_insn (ival))
1121 m_rd = m_rs1 = decode_register_index (ival, OP_SH_RD);
1122 m_imm.s = EXTRACT_RVC_ADDI16SP_IMM (ival);
1124 else if (is_lui_insn (ival))
1126 else if (is_c_sd_insn (ival))
1128 else if (is_sw_insn (ival))
1131 /* None of the other fields of INSN are valid in this case. */
1135 internal_error (__FILE__, __LINE__,
1136 _("unable to decode %d byte instructions in "
1137 "prologue at %s"), m_length,
1138 core_addr_to_string (pc));
1141 /* The prologue scanner. This is currently only used for skipping the
1142 prologue of a function when the DWARF information is not sufficient.
1143 However, it is written with filling of the frame cache in mind, which
1144 is why different groups of stack setup instructions are split apart
1145 during the core of the inner loop. In the future, the intention is to
1146 extend this function to fully support building up a frame cache that
1147 can unwind register values when there is no DWARF information. */
1150 riscv_scan_prologue (struct gdbarch *gdbarch,
1151 CORE_ADDR start_pc, CORE_ADDR limit_pc)
1153 CORE_ADDR cur_pc, next_pc;
1154 long frame_offset = 0;
1155 CORE_ADDR end_prologue_addr = 0;
1157 if (limit_pc > start_pc + 200)
1158 limit_pc = start_pc + 200;
1160 for (next_pc = cur_pc = start_pc; cur_pc < limit_pc; cur_pc = next_pc)
1162 struct riscv_insn insn;
1164 /* Decode the current instruction, and decide where the next
1165 instruction lives based on the size of this instruction. */
1166 insn.decode (gdbarch, cur_pc);
1167 gdb_assert (insn.length () > 0);
1168 next_pc = cur_pc + insn.length ();
1170 /* Look for common stack adjustment insns. */
1171 if ((insn.opcode () == riscv_insn::ADDI
1172 || insn.opcode () == riscv_insn::ADDIW)
1173 && insn.rd () == RISCV_SP_REGNUM
1174 && insn.rs1 () == RISCV_SP_REGNUM)
1176 /* Handle: addi sp, sp, -i
1177 or: addiw sp, sp, -i */
1178 if (insn.imm_signed () < 0)
1179 frame_offset += insn.imm_signed ();
1183 else if ((insn.opcode () == riscv_insn::SW
1184 || insn.opcode () == riscv_insn::SD)
1185 && (insn.rs1 () == RISCV_SP_REGNUM
1186 || insn.rs1 () == RISCV_FP_REGNUM))
1188 /* Handle: sw reg, offset(sp)
1189 or: sd reg, offset(sp)
1190 or: sw reg, offset(s0)
1191 or: sd reg, offset(s0) */
1192 /* Instruction storing a register onto the stack. */
1194 else if (insn.opcode () == riscv_insn::ADDI
1195 && insn.rd () == RISCV_FP_REGNUM
1196 && insn.rs1 () == RISCV_SP_REGNUM)
1198 /* Handle: addi s0, sp, size */
1199 /* Instructions setting up the frame pointer. */
1201 else if ((insn.opcode () == riscv_insn::ADD
1202 || insn.opcode () == riscv_insn::ADDW)
1203 && insn.rd () == RISCV_FP_REGNUM
1204 && insn.rs1 () == RISCV_SP_REGNUM
1205 && insn.rs2 () == RISCV_ZERO_REGNUM)
1207 /* Handle: add s0, sp, 0
1208 or: addw s0, sp, 0 */
1209 /* Instructions setting up the frame pointer. */
1211 else if ((insn.rd () == RISCV_GP_REGNUM
1212 && (insn.opcode () == riscv_insn::AUIPC
1213 || insn.opcode () == riscv_insn::LUI
1214 || (insn.opcode () == riscv_insn::ADDI
1215 && insn.rs1 () == RISCV_GP_REGNUM)
1216 || (insn.opcode () == riscv_insn::ADD
1217 && (insn.rs1 () == RISCV_GP_REGNUM
1218 || insn.rs2 () == RISCV_GP_REGNUM))))
1219 || (insn.opcode () == riscv_insn::ADDI
1220 && insn.rd () == RISCV_ZERO_REGNUM
1221 && insn.rs1 () == RISCV_ZERO_REGNUM
1222 && insn.imm_signed () == 0))
1224 /* Handle: auipc gp, n
1229 or: add x0, x0, 0 (NOP) */
1230 /* These instructions are part of the prologue, but we don't need
1231 to do anything special to handle them. */
1235 if (end_prologue_addr == 0)
1236 end_prologue_addr = cur_pc;
1240 if (end_prologue_addr == 0)
1241 end_prologue_addr = cur_pc;
1243 return end_prologue_addr;
1246 /* Implement the riscv_skip_prologue gdbarch method. */
1249 riscv_skip_prologue (struct gdbarch *gdbarch,
1253 CORE_ADDR func_addr;
1255 /* See if we can determine the end of the prologue via the symbol
1256 table. If so, then return either PC, or the PC after the
1257 prologue, whichever is greater. */
1258 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1260 CORE_ADDR post_prologue_pc
1261 = skip_prologue_using_sal (gdbarch, func_addr);
1263 if (post_prologue_pc != 0)
1264 return std::max (pc, post_prologue_pc);
1267 /* Can't determine prologue from the symbol table, need to examine
1270 /* Find an upper limit on the function prologue using the debug
1271 information. If the debug information could not be used to provide
1272 that bound, then use an arbitrary large number as the upper bound. */
1273 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1275 limit_pc = pc + 100; /* MAGIC! */
1277 return riscv_scan_prologue (gdbarch, pc, limit_pc);
1280 /* Implement the gdbarch push dummy code callback. */
1283 riscv_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
1284 CORE_ADDR funaddr, struct value **args, int nargs,
1285 struct type *value_type, CORE_ADDR *real_pc,
1286 CORE_ADDR *bp_addr, struct regcache *regcache)
1288 /* Allocate space for a breakpoint, and keep the stack correctly
1296 /* Compute the alignment of the type T. Used while setting up the
1297 arguments for a dummy call. */
1300 riscv_type_alignment (struct type *t)
1302 t = check_typedef (t);
1303 switch (TYPE_CODE (t))
1306 error (_("Could not compute alignment of type"));
1308 case TYPE_CODE_RVALUE_REF:
1310 case TYPE_CODE_ENUM:
1314 case TYPE_CODE_CHAR:
1315 case TYPE_CODE_BOOL:
1316 return TYPE_LENGTH (t);
1318 case TYPE_CODE_ARRAY:
1319 case TYPE_CODE_COMPLEX:
1320 return riscv_type_alignment (TYPE_TARGET_TYPE (t));
1322 case TYPE_CODE_STRUCT:
1323 case TYPE_CODE_UNION:
1328 for (i = 0; i < TYPE_NFIELDS (t); ++i)
1330 if (TYPE_FIELD_LOC_KIND (t, i) == FIELD_LOC_KIND_BITPOS)
1332 int a = riscv_type_alignment (TYPE_FIELD_TYPE (t, i));
1342 /* Holds information about a single argument either being passed to an
1343 inferior function, or returned from an inferior function. This includes
1344 information about the size, type, etc of the argument, and also
1345 information about how the argument will be passed (or returned). */
1347 struct riscv_arg_info
1349 /* Contents of the argument. */
1350 const gdb_byte *contents;
1352 /* Length of argument. */
1355 /* Alignment required for an argument of this type. */
1358 /* The type for this argument. */
1361 /* Each argument can have either 1 or 2 locations assigned to it. Each
1362 location describes where part of the argument will be placed. The
1363 second location is valid based on the LOC_TYPE and C_LENGTH fields
1364 of the first location (which is always valid). */
1367 /* What type of location this is. */
1370 /* Argument passed in a register. */
1373 /* Argument passed as an on stack argument. */
1376 /* Argument passed by reference. The second location is always
1377 valid for a BY_REF argument, and describes where the address
1378 of the BY_REF argument should be placed. */
1382 /* Information that depends on the location type. */
1385 /* Which register number to use. */
1388 /* The offset into the stack region. */
1392 /* The length of contents covered by this location. If this is less
1393 than the total length of the argument, then the second location
1394 will be valid, and will describe where the rest of the argument
1398 /* The offset within CONTENTS for this part of the argument. Will
1399 always be 0 for the first part. For the second part of the
1400 argument, this might be the C_LENGTH value of the first part,
1401 however, if we are passing a structure in two registers, and there's
1402 is padding between the first and second field, then this offset
1403 might be greater than the length of the first argument part. When
1404 the second argument location is not holding part of the argument
1405 value, but is instead holding the address of a reference argument,
1406 then this offset will be set to 0. */
1411 /* Information about a set of registers being used for passing arguments as
1412 part of a function call. The register set must be numerically
1413 sequential from NEXT_REGNUM to LAST_REGNUM. The register set can be
1414 disabled from use by setting NEXT_REGNUM greater than LAST_REGNUM. */
1416 struct riscv_arg_reg
1418 riscv_arg_reg (int first, int last)
1419 : next_regnum (first),
1425 /* The GDB register number to use in this set. */
1428 /* The last GDB register number to use in this set. */
1432 /* Arguments can be passed as on stack arguments, or by reference. The
1433 on stack arguments must be in a continuous region starting from $sp,
1434 while the by reference arguments can be anywhere, but we'll put them
1435 on the stack after (at higher address) the on stack arguments.
1437 This might not be the right approach to take. The ABI is clear that
1438 an argument passed by reference can be modified by the callee, which
1439 us placing the argument (temporarily) onto the stack will not achieve
1440 (changes will be lost). There's also the possibility that very large
1441 arguments could overflow the stack.
1443 This struct is used to track offset into these two areas for where
1444 arguments are to be placed. */
1445 struct riscv_memory_offsets
1447 riscv_memory_offsets ()
1454 /* Offset into on stack argument area. */
1457 /* Offset into the pass by reference area. */
1461 /* Holds information about where arguments to a call will be placed. This
1462 is updated as arguments are added onto the call, and can be used to
1463 figure out where the next argument should be placed. */
1465 struct riscv_call_info
1467 riscv_call_info (struct gdbarch *gdbarch)
1468 : int_regs (RISCV_A0_REGNUM, RISCV_A0_REGNUM + 7),
1469 float_regs (RISCV_FA0_REGNUM, RISCV_FA0_REGNUM + 7)
1471 xlen = riscv_isa_xlen (gdbarch);
1472 flen = riscv_isa_flen (gdbarch);
1474 /* Disable use of floating point registers if needed. */
1475 if (!riscv_has_fp_abi (gdbarch))
1476 float_regs.next_regnum = float_regs.last_regnum + 1;
1479 /* Track the memory areas used for holding in-memory arguments to a
1481 struct riscv_memory_offsets memory;
1483 /* Holds information about the next integer register to use for passing
1485 struct riscv_arg_reg int_regs;
1487 /* Holds information about the next floating point register to use for
1488 passing an argument. */
1489 struct riscv_arg_reg float_regs;
1491 /* The XLEN and FLEN are copied in to this structure for convenience, and
1492 are just the results of calling RISCV_ISA_XLEN and RISCV_ISA_FLEN. */
1497 /* Return the number of registers available for use as parameters in the
1498 register set REG. Returned value can be 0 or more. */
1501 riscv_arg_regs_available (struct riscv_arg_reg *reg)
1503 if (reg->next_regnum > reg->last_regnum)
1506 return (reg->last_regnum - reg->next_regnum + 1);
1509 /* If there is at least one register available in the register set REG then
1510 the next register from REG is assigned to LOC and the length field of
1511 LOC is updated to LENGTH. The register set REG is updated to indicate
1512 that the assigned register is no longer available and the function
1515 If there are no registers available in REG then the function returns
1516 false, and LOC and REG are unchanged. */
1519 riscv_assign_reg_location (struct riscv_arg_info::location *loc,
1520 struct riscv_arg_reg *reg,
1521 int length, int offset)
1523 if (reg->next_regnum <= reg->last_regnum)
1525 loc->loc_type = riscv_arg_info::location::in_reg;
1526 loc->loc_data.regno = reg->next_regnum;
1528 loc->c_length = length;
1529 loc->c_offset = offset;
1536 /* Assign LOC a location as the next stack parameter, and update MEMORY to
1537 record that an area of stack has been used to hold the parameter
1540 The length field of LOC is updated to LENGTH, the length of the
1541 parameter being stored, and ALIGN is the alignment required by the
1542 parameter, which will affect how memory is allocated out of MEMORY. */
1545 riscv_assign_stack_location (struct riscv_arg_info::location *loc,
1546 struct riscv_memory_offsets *memory,
1547 int length, int align)
1549 loc->loc_type = riscv_arg_info::location::on_stack;
1551 = align_up (memory->arg_offset, align);
1552 loc->loc_data.offset = memory->arg_offset;
1553 memory->arg_offset += length;
1554 loc->c_length = length;
1556 /* Offset is always 0, either we're the first location part, in which
1557 case we're reading content from the start of the argument, or we're
1558 passing the address of a reference argument, so 0. */
1562 /* Update AINFO, which describes an argument that should be passed or
1563 returned using the integer ABI. The argloc fields within AINFO are
1564 updated to describe the location in which the argument will be passed to
1565 a function, or returned from a function.
1567 The CINFO structure contains the ongoing call information, the holds
1568 information such as which argument registers are remaining to be
1569 assigned to parameter, and how much memory has been used by parameters
1572 By examining the state of CINFO a suitable location can be selected,
1573 and assigned to AINFO. */
1576 riscv_call_arg_scalar_int (struct riscv_arg_info *ainfo,
1577 struct riscv_call_info *cinfo)
1579 if (ainfo->length > (2 * cinfo->xlen))
1581 /* Argument is going to be passed by reference. */
1582 ainfo->argloc[0].loc_type
1583 = riscv_arg_info::location::by_ref;
1584 cinfo->memory.ref_offset
1585 = align_up (cinfo->memory.ref_offset, ainfo->align);
1586 ainfo->argloc[0].loc_data.offset = cinfo->memory.ref_offset;
1587 cinfo->memory.ref_offset += ainfo->length;
1588 ainfo->argloc[0].c_length = ainfo->length;
1590 /* The second location for this argument is given over to holding the
1591 address of the by-reference data. Pass 0 for the offset as this
1592 is not part of the actual argument value. */
1593 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1596 riscv_assign_stack_location (&ainfo->argloc[1],
1597 &cinfo->memory, cinfo->xlen,
1602 int len = (ainfo->length > cinfo->xlen) ? cinfo->xlen : ainfo->length;
1604 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1605 &cinfo->int_regs, len, 0))
1606 riscv_assign_stack_location (&ainfo->argloc[0],
1607 &cinfo->memory, len, ainfo->align);
1609 if (len < ainfo->length)
1611 len = ainfo->length - len;
1612 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1613 &cinfo->int_regs, len,
1615 riscv_assign_stack_location (&ainfo->argloc[1],
1616 &cinfo->memory, len, cinfo->xlen);
1621 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
1622 is being passed with the floating point ABI. */
1625 riscv_call_arg_scalar_float (struct riscv_arg_info *ainfo,
1626 struct riscv_call_info *cinfo)
1628 if (ainfo->length > cinfo->flen)
1629 return riscv_call_arg_scalar_int (ainfo, cinfo);
1632 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1635 return riscv_call_arg_scalar_int (ainfo, cinfo);
1639 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
1640 is a complex floating point argument, and is therefore handled
1641 differently to other argument types. */
1644 riscv_call_arg_complex_float (struct riscv_arg_info *ainfo,
1645 struct riscv_call_info *cinfo)
1647 if (ainfo->length <= (2 * cinfo->flen)
1648 && riscv_arg_regs_available (&cinfo->float_regs) >= 2)
1651 int len = ainfo->length / 2;
1653 result = riscv_assign_reg_location (&ainfo->argloc[0],
1654 &cinfo->float_regs, len, len);
1655 gdb_assert (result);
1657 result = riscv_assign_reg_location (&ainfo->argloc[1],
1658 &cinfo->float_regs, len, len);
1659 gdb_assert (result);
1662 return riscv_call_arg_scalar_int (ainfo, cinfo);
1665 /* A structure used for holding information about a structure type within
1666 the inferior program. The RiscV ABI has special rules for handling some
1667 structures with a single field or with two fields. The counting of
1668 fields here is done after flattening out all nested structures. */
1670 class riscv_struct_info
1673 riscv_struct_info ()
1674 : m_number_of_fields (0),
1675 m_types { nullptr, nullptr }
1680 /* Analyse TYPE descending into nested structures, count the number of
1681 scalar fields and record the types of the first two fields found. */
1682 void analyse (struct type *type);
1684 /* The number of scalar fields found in the analysed type. This is
1685 currently only accurate if the value returned is 0, 1, or 2 as the
1686 analysis stops counting when the number of fields is 3. This is
1687 because the RiscV ABI only has special cases for 1 or 2 fields,
1688 anything else we just don't care about. */
1689 int number_of_fields () const
1690 { return m_number_of_fields; }
1692 /* Return the type for scalar field INDEX within the analysed type. Will
1693 return nullptr if there is no field at that index. Only INDEX values
1694 0 and 1 can be requested as the RiscV ABI only has special cases for
1695 structures with 1 or 2 fields. */
1696 struct type *field_type (int index) const
1698 gdb_assert (index < (sizeof (m_types) / sizeof (m_types[0])));
1699 return m_types[index];
1703 /* The number of scalar fields found within the structure after recursing
1704 into nested structures. */
1705 int m_number_of_fields;
1707 /* The types of the first two scalar fields found within the structure
1708 after recursing into nested structures. */
1709 struct type *m_types[2];
1712 /* Analyse TYPE descending into nested structures, count the number of
1713 scalar fields and record the types of the first two fields found. */
1716 riscv_struct_info::analyse (struct type *type)
1718 unsigned int count = TYPE_NFIELDS (type);
1721 for (i = 0; i < count; ++i)
1723 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1726 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1727 field_type = check_typedef (field_type);
1729 switch (TYPE_CODE (field_type))
1731 case TYPE_CODE_STRUCT:
1732 analyse (field_type);
1736 /* RiscV only flattens out structures. Anything else does not
1737 need to be flattened, we just record the type, and when we
1738 look at the analysis results we'll realise this is not a
1739 structure we can special case, and pass the structure in
1741 if (m_number_of_fields < 2)
1742 m_types[m_number_of_fields] = field_type;
1743 m_number_of_fields++;
1747 /* RiscV only has special handling for structures with 1 or 2 scalar
1748 fields, any more than that and the structure is just passed in
1749 memory. We can safely drop out early when we find 3 or more
1752 if (m_number_of_fields > 2)
1757 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
1758 is a structure. Small structures on RiscV have some special case
1759 handling in order that the structure might be passed in register.
1760 Larger structures are passed in memory. After assigning location
1761 information to AINFO, CINFO will have been updated. */
1764 riscv_call_arg_struct (struct riscv_arg_info *ainfo,
1765 struct riscv_call_info *cinfo)
1767 if (riscv_arg_regs_available (&cinfo->float_regs) >= 1)
1769 struct riscv_struct_info sinfo;
1771 sinfo.analyse (ainfo->type);
1772 if (sinfo.number_of_fields () == 1
1773 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_COMPLEX)
1775 gdb_assert (TYPE_LENGTH (ainfo->type)
1776 == TYPE_LENGTH (sinfo.field_type (0)));
1777 return riscv_call_arg_complex_float (ainfo, cinfo);
1780 if (sinfo.number_of_fields () == 1
1781 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT)
1783 gdb_assert (TYPE_LENGTH (ainfo->type)
1784 == TYPE_LENGTH (sinfo.field_type (0)));
1785 return riscv_call_arg_scalar_float (ainfo, cinfo);
1788 if (sinfo.number_of_fields () == 2
1789 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT
1790 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->flen
1791 && TYPE_CODE (sinfo.field_type (1)) == TYPE_CODE_FLT
1792 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->flen
1793 && riscv_arg_regs_available (&cinfo->float_regs) >= 2)
1795 int len0, len1, offset;
1797 gdb_assert (TYPE_LENGTH (ainfo->type) <= (2 * cinfo->flen));
1799 len0 = TYPE_LENGTH (sinfo.field_type (0));
1800 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1801 &cinfo->float_regs, len0, 0))
1802 error (_("failed during argument setup"));
1804 len1 = TYPE_LENGTH (sinfo.field_type (1));
1805 offset = align_up (len0, riscv_type_alignment (sinfo.field_type (1)));
1806 gdb_assert (len1 <= (TYPE_LENGTH (ainfo->type)
1807 - TYPE_LENGTH (sinfo.field_type (0))));
1809 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1812 error (_("failed during argument setup"));
1816 if (sinfo.number_of_fields () == 2
1817 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
1818 && (TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT
1819 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->flen
1820 && is_integral_type (sinfo.field_type (1))
1821 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->xlen))
1823 int len0, len1, offset;
1825 gdb_assert (TYPE_LENGTH (ainfo->type)
1826 <= (cinfo->flen + cinfo->xlen));
1828 len0 = TYPE_LENGTH (sinfo.field_type (0));
1829 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1830 &cinfo->float_regs, len0, 0))
1831 error (_("failed during argument setup"));
1833 len1 = TYPE_LENGTH (sinfo.field_type (1));
1834 offset = align_up (len0, riscv_type_alignment (sinfo.field_type (1)));
1835 gdb_assert (len1 <= cinfo->xlen);
1836 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1837 &cinfo->int_regs, len1, offset))
1838 error (_("failed during argument setup"));
1842 if (sinfo.number_of_fields () == 2
1843 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
1844 && (is_integral_type (sinfo.field_type (0))
1845 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->xlen
1846 && TYPE_CODE (sinfo.field_type (1)) == TYPE_CODE_FLT
1847 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->flen))
1849 int len0, len1, offset;
1851 gdb_assert (TYPE_LENGTH (ainfo->type)
1852 <= (cinfo->flen + cinfo->xlen));
1854 len0 = TYPE_LENGTH (sinfo.field_type (0));
1855 len1 = TYPE_LENGTH (sinfo.field_type (1));
1856 offset = align_up (len0, riscv_type_alignment (sinfo.field_type (1)));
1858 gdb_assert (len0 <= cinfo->xlen);
1859 gdb_assert (len1 <= cinfo->flen);
1861 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1862 &cinfo->int_regs, len0, 0))
1863 error (_("failed during argument setup"));
1865 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1868 error (_("failed during argument setup"));
1874 /* Non of the structure flattening cases apply, so we just pass using
1876 ainfo->length = align_up (ainfo->length, cinfo->xlen);
1877 riscv_call_arg_scalar_int (ainfo, cinfo);
1880 /* Assign a location to call (or return) argument AINFO, the location is
1881 selected from CINFO which holds information about what call argument
1882 locations are available for use next. The TYPE is the type of the
1883 argument being passed, this information is recorded into AINFO (along
1884 with some additional information derived from the type).
1886 After assigning a location to AINFO, CINFO will have been updated. */
1889 riscv_arg_location (struct gdbarch *gdbarch,
1890 struct riscv_arg_info *ainfo,
1891 struct riscv_call_info *cinfo,
1895 ainfo->length = TYPE_LENGTH (ainfo->type);
1896 ainfo->align = riscv_type_alignment (ainfo->type);
1897 ainfo->contents = nullptr;
1899 switch (TYPE_CODE (ainfo->type))
1902 case TYPE_CODE_BOOL:
1903 case TYPE_CODE_CHAR:
1904 case TYPE_CODE_RANGE:
1905 case TYPE_CODE_ENUM:
1907 if (ainfo->length <= cinfo->xlen)
1909 ainfo->type = builtin_type (gdbarch)->builtin_long;
1910 ainfo->length = cinfo->xlen;
1912 else if (ainfo->length <= (2 * cinfo->xlen))
1914 ainfo->type = builtin_type (gdbarch)->builtin_long_long;
1915 ainfo->length = 2 * cinfo->xlen;
1918 /* Recalculate the alignment requirement. */
1919 ainfo->align = riscv_type_alignment (ainfo->type);
1920 riscv_call_arg_scalar_int (ainfo, cinfo);
1924 riscv_call_arg_scalar_float (ainfo, cinfo);
1927 case TYPE_CODE_COMPLEX:
1928 riscv_call_arg_complex_float (ainfo, cinfo);
1931 case TYPE_CODE_STRUCT:
1932 riscv_call_arg_struct (ainfo, cinfo);
1936 riscv_call_arg_scalar_int (ainfo, cinfo);
1941 /* Used for printing debug information about the call argument location in
1942 INFO to STREAM. The addresses in SP_REFS and SP_ARGS are the base
1943 addresses for the location of pass-by-reference and
1944 arguments-on-the-stack memory areas. */
1947 riscv_print_arg_location (ui_file *stream, struct gdbarch *gdbarch,
1948 struct riscv_arg_info *info,
1949 CORE_ADDR sp_refs, CORE_ADDR sp_args)
1951 fprintf_unfiltered (stream, "type: '%s', length: 0x%x, alignment: 0x%x",
1952 TYPE_SAFE_NAME (info->type), info->length, info->align);
1953 switch (info->argloc[0].loc_type)
1955 case riscv_arg_info::location::in_reg:
1957 (stream, ", register %s",
1958 gdbarch_register_name (gdbarch, info->argloc[0].loc_data.regno));
1959 if (info->argloc[0].c_length < info->length)
1961 switch (info->argloc[1].loc_type)
1963 case riscv_arg_info::location::in_reg:
1965 (stream, ", register %s",
1966 gdbarch_register_name (gdbarch,
1967 info->argloc[1].loc_data.regno));
1970 case riscv_arg_info::location::on_stack:
1971 fprintf_unfiltered (stream, ", on stack at offset 0x%x",
1972 info->argloc[1].loc_data.offset);
1975 case riscv_arg_info::location::by_ref:
1977 /* The second location should never be a reference, any
1978 argument being passed by reference just places its address
1979 in the first location and is done. */
1980 error (_("invalid argument location"));
1984 if (info->argloc[1].c_offset > info->argloc[0].c_length)
1985 fprintf_unfiltered (stream, " (offset 0x%x)",
1986 info->argloc[1].c_offset);
1990 case riscv_arg_info::location::on_stack:
1991 fprintf_unfiltered (stream, ", on stack at offset 0x%x",
1992 info->argloc[0].loc_data.offset);
1995 case riscv_arg_info::location::by_ref:
1997 (stream, ", by reference, data at offset 0x%x (%s)",
1998 info->argloc[0].loc_data.offset,
1999 core_addr_to_string (sp_refs + info->argloc[0].loc_data.offset));
2000 if (info->argloc[1].loc_type
2001 == riscv_arg_info::location::in_reg)
2003 (stream, ", address in register %s",
2004 gdbarch_register_name (gdbarch, info->argloc[1].loc_data.regno));
2007 gdb_assert (info->argloc[1].loc_type
2008 == riscv_arg_info::location::on_stack);
2010 (stream, ", address on stack at offset 0x%x (%s)",
2011 info->argloc[1].loc_data.offset,
2012 core_addr_to_string (sp_args + info->argloc[1].loc_data.offset));
2017 gdb_assert_not_reached (_("unknown argument location type"));
2021 /* Implement the push dummy call gdbarch callback. */
2024 riscv_push_dummy_call (struct gdbarch *gdbarch,
2025 struct value *function,
2026 struct regcache *regcache,
2029 struct value **args,
2032 CORE_ADDR struct_addr)
2035 CORE_ADDR sp_args, sp_refs;
2036 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2039 struct riscv_arg_info *arg_info =
2040 (struct riscv_arg_info *) alloca (nargs * sizeof (struct riscv_arg_info));
2041 struct riscv_arg_info *info;
2043 struct riscv_call_info call_info (gdbarch);
2047 /* We'll use register $a0 if we're returning a struct. */
2049 ++call_info.int_regs.next_regnum;
2051 for (i = 0, info = &arg_info[0];
2055 struct value *arg_value;
2056 struct type *arg_type;
2058 arg_value = args[i];
2059 arg_type = check_typedef (value_type (arg_value));
2061 riscv_arg_location (gdbarch, info, &call_info, arg_type);
2063 if (info->type != arg_type)
2064 arg_value = value_cast (info->type, arg_value);
2065 info->contents = value_contents (arg_value);
2068 /* Adjust the stack pointer and align it. */
2069 sp = sp_refs = align_down (sp - call_info.memory.ref_offset, SP_ALIGNMENT);
2070 sp = sp_args = align_down (sp - call_info.memory.arg_offset, SP_ALIGNMENT);
2072 if (riscv_debug_infcall > 0)
2074 fprintf_unfiltered (gdb_stdlog, "dummy call args:\n");
2075 fprintf_unfiltered (gdb_stdlog, ": floating point ABI %s in use\n",
2076 (riscv_has_fp_abi (gdbarch) ? "is" : "is not"));
2077 fprintf_unfiltered (gdb_stdlog, ": xlen: %d\n: flen: %d\n",
2078 call_info.xlen, call_info.flen);
2080 fprintf_unfiltered (gdb_stdlog,
2081 "[*] struct return pointer in register $A0\n");
2082 for (i = 0; i < nargs; ++i)
2084 struct riscv_arg_info *info = &arg_info [i];
2086 fprintf_unfiltered (gdb_stdlog, "[%2d] ", i);
2087 riscv_print_arg_location (gdb_stdlog, gdbarch, info, sp_refs, sp_args);
2088 fprintf_unfiltered (gdb_stdlog, "\n");
2090 if (call_info.memory.arg_offset > 0
2091 || call_info.memory.ref_offset > 0)
2093 fprintf_unfiltered (gdb_stdlog, " Original sp: %s\n",
2094 core_addr_to_string (osp));
2095 fprintf_unfiltered (gdb_stdlog, "Stack required (for args): 0x%x\n",
2096 call_info.memory.arg_offset);
2097 fprintf_unfiltered (gdb_stdlog, "Stack required (for refs): 0x%x\n",
2098 call_info.memory.ref_offset);
2099 fprintf_unfiltered (gdb_stdlog, " Stack allocated: %s\n",
2100 core_addr_to_string_nz (osp - sp));
2104 /* Now load the argument into registers, or onto the stack. */
2108 gdb_byte buf[sizeof (LONGEST)];
2110 store_unsigned_integer (buf, call_info.xlen, byte_order, struct_addr);
2111 regcache->cooked_write (RISCV_A0_REGNUM, buf);
2114 for (i = 0; i < nargs; ++i)
2117 int second_arg_length = 0;
2118 const gdb_byte *second_arg_data;
2119 struct riscv_arg_info *info = &arg_info [i];
2121 gdb_assert (info->length > 0);
2123 switch (info->argloc[0].loc_type)
2125 case riscv_arg_info::location::in_reg:
2127 gdb_byte tmp [sizeof (ULONGEST)];
2129 gdb_assert (info->argloc[0].c_length <= info->length);
2130 memset (tmp, 0, sizeof (tmp));
2131 memcpy (tmp, info->contents, info->argloc[0].c_length);
2132 regcache->cooked_write (info->argloc[0].loc_data.regno, tmp);
2134 ((info->argloc[0].c_length < info->length)
2135 ? info->argloc[1].c_length : 0);
2136 second_arg_data = info->contents + info->argloc[1].c_offset;
2140 case riscv_arg_info::location::on_stack:
2141 dst = sp_args + info->argloc[0].loc_data.offset;
2142 write_memory (dst, info->contents, info->length);
2143 second_arg_length = 0;
2146 case riscv_arg_info::location::by_ref:
2147 dst = sp_refs + info->argloc[0].loc_data.offset;
2148 write_memory (dst, info->contents, info->length);
2150 second_arg_length = call_info.xlen;
2151 second_arg_data = (gdb_byte *) &dst;
2155 gdb_assert_not_reached (_("unknown argument location type"));
2158 if (second_arg_length > 0)
2160 switch (info->argloc[1].loc_type)
2162 case riscv_arg_info::location::in_reg:
2164 gdb_byte tmp [sizeof (ULONGEST)];
2166 gdb_assert ((riscv_is_fp_regno_p (info->argloc[1].loc_data.regno)
2167 && second_arg_length <= call_info.flen)
2168 || second_arg_length <= call_info.xlen);
2169 memset (tmp, 0, sizeof (tmp));
2170 memcpy (tmp, second_arg_data, second_arg_length);
2171 regcache->cooked_write (info->argloc[1].loc_data.regno, tmp);
2175 case riscv_arg_info::location::on_stack:
2179 arg_addr = sp_args + info->argloc[1].loc_data.offset;
2180 write_memory (arg_addr, second_arg_data, second_arg_length);
2184 case riscv_arg_info::location::by_ref:
2186 /* The second location should never be a reference, any
2187 argument being passed by reference just places its address
2188 in the first location and is done. */
2189 error (_("invalid argument location"));
2195 /* Set the dummy return value to bp_addr.
2196 A dummy breakpoint will be setup to execute the call. */
2198 if (riscv_debug_infcall > 0)
2199 fprintf_unfiltered (gdb_stdlog, ": writing $ra = %s\n",
2200 core_addr_to_string (bp_addr));
2201 regcache_cooked_write_unsigned (regcache, RISCV_RA_REGNUM, bp_addr);
2203 /* Finally, update the stack pointer. */
2205 if (riscv_debug_infcall > 0)
2206 fprintf_unfiltered (gdb_stdlog, ": writing $sp = %s\n",
2207 core_addr_to_string (sp));
2208 regcache_cooked_write_unsigned (regcache, RISCV_SP_REGNUM, sp);
2213 /* Implement the return_value gdbarch method. */
2215 static enum return_value_convention
2216 riscv_return_value (struct gdbarch *gdbarch,
2217 struct value *function,
2219 struct regcache *regcache,
2221 const gdb_byte *writebuf)
2223 enum type_code rv_type = TYPE_CODE (type);
2224 unsigned int rv_size = TYPE_LENGTH (type);
2225 int fp, regnum, flen;
2227 struct riscv_call_info call_info (gdbarch);
2228 struct riscv_arg_info info;
2229 struct type *arg_type;
2231 arg_type = check_typedef (type);
2232 riscv_arg_location (gdbarch, &info, &call_info, arg_type);
2234 if (riscv_debug_infcall > 0)
2236 fprintf_unfiltered (gdb_stdlog, "riscv return value:\n");
2237 fprintf_unfiltered (gdb_stdlog, "[R] ");
2238 riscv_print_arg_location (gdb_stdlog, gdbarch, &info, 0, 0);
2239 fprintf_unfiltered (gdb_stdlog, "\n");
2242 if (readbuf != nullptr || writebuf != nullptr)
2246 switch (info.argloc[0].loc_type)
2248 /* Return value in register(s). */
2249 case riscv_arg_info::location::in_reg:
2251 regnum = info.argloc[0].loc_data.regno;
2254 regcache->cooked_read (regnum, readbuf);
2257 regcache->cooked_write (regnum, writebuf);
2259 /* A return value in register can have a second part in a
2261 if (info.argloc[0].c_length < info.length)
2263 switch (info.argloc[1].loc_type)
2265 case riscv_arg_info::location::in_reg:
2266 regnum = info.argloc[1].loc_data.regno;
2270 readbuf += info.argloc[1].c_offset;
2271 regcache->cooked_read (regnum, readbuf);
2276 writebuf += info.argloc[1].c_offset;
2277 regcache->cooked_write (regnum, writebuf);
2281 case riscv_arg_info::location::by_ref:
2282 case riscv_arg_info::location::on_stack:
2284 error (_("invalid argument location"));
2291 /* Return value by reference will have its address in A0. */
2292 case riscv_arg_info::location::by_ref:
2296 regcache_cooked_read_unsigned (regcache, RISCV_A0_REGNUM,
2298 if (readbuf != nullptr)
2299 read_memory (addr, readbuf, info.length);
2300 if (writebuf != nullptr)
2301 write_memory (addr, writebuf, info.length);
2305 case riscv_arg_info::location::on_stack:
2307 error (_("invalid argument location"));
2312 switch (info.argloc[0].loc_type)
2314 case riscv_arg_info::location::in_reg:
2315 return RETURN_VALUE_REGISTER_CONVENTION;
2316 case riscv_arg_info::location::by_ref:
2317 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2318 case riscv_arg_info::location::on_stack:
2320 error (_("invalid argument location"));
2324 /* Implement the frame_align gdbarch method. */
2327 riscv_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2329 return align_down (addr, 16);
2332 /* Implement the unwind_pc gdbarch method. */
2335 riscv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2337 return frame_unwind_register_unsigned (next_frame, RISCV_PC_REGNUM);
2340 /* Implement the unwind_sp gdbarch method. */
2343 riscv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2345 return frame_unwind_register_unsigned (next_frame, RISCV_SP_REGNUM);
2348 /* Implement the dummy_id gdbarch method. */
2350 static struct frame_id
2351 riscv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2353 return frame_id_build (get_frame_register_signed (this_frame, RISCV_SP_REGNUM),
2354 get_frame_pc (this_frame));
2357 /* Generate, or return the cached frame cache for the RiscV frame
2360 static struct trad_frame_cache *
2361 riscv_frame_cache (struct frame_info *this_frame, void **this_cache)
2364 CORE_ADDR start_addr;
2365 CORE_ADDR stack_addr;
2366 struct trad_frame_cache *this_trad_cache;
2367 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2369 if ((*this_cache) != NULL)
2370 return (struct trad_frame_cache *) *this_cache;
2371 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2372 (*this_cache) = this_trad_cache;
2374 trad_frame_set_reg_realreg (this_trad_cache, gdbarch_pc_regnum (gdbarch),
2377 pc = get_frame_pc (this_frame);
2378 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2379 stack_addr = get_frame_register_signed (this_frame, RISCV_SP_REGNUM);
2380 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2382 trad_frame_set_this_base (this_trad_cache, stack_addr);
2384 return this_trad_cache;
2387 /* Implement the this_id callback for RiscV frame unwinder. */
2390 riscv_frame_this_id (struct frame_info *this_frame,
2391 void **prologue_cache,
2392 struct frame_id *this_id)
2394 struct trad_frame_cache *info;
2396 info = riscv_frame_cache (this_frame, prologue_cache);
2397 trad_frame_get_id (info, this_id);
2400 /* Implement the prev_register callback for RiscV frame unwinder. */
2402 static struct value *
2403 riscv_frame_prev_register (struct frame_info *this_frame,
2404 void **prologue_cache,
2407 struct trad_frame_cache *info;
2409 info = riscv_frame_cache (this_frame, prologue_cache);
2410 return trad_frame_get_register (info, this_frame, regnum);
2413 /* Structure defining the RiscV normal frame unwind functions. Since we
2414 are the fallback unwinder (DWARF unwinder is used first), we use the
2415 default frame sniffer, which always accepts the frame. */
2417 static const struct frame_unwind riscv_frame_unwind =
2419 /*.type =*/ NORMAL_FRAME,
2420 /*.stop_reason =*/ default_frame_unwind_stop_reason,
2421 /*.this_id =*/ riscv_frame_this_id,
2422 /*.prev_register =*/ riscv_frame_prev_register,
2423 /*.unwind_data =*/ NULL,
2424 /*.sniffer =*/ default_frame_sniffer,
2425 /*.dealloc_cache =*/ NULL,
2426 /*.prev_arch =*/ NULL,
2429 /* Initialize the current architecture based on INFO. If possible,
2430 re-use an architecture from ARCHES, which is a list of
2431 architectures already created during this debugging session.
2433 Called e.g. at program startup, when reading a core file, and when
2434 reading a binary file. */
2436 static struct gdbarch *
2437 riscv_gdbarch_init (struct gdbarch_info info,
2438 struct gdbarch_list *arches)
2440 struct gdbarch *gdbarch;
2441 struct gdbarch_tdep *tdep;
2442 struct gdbarch_tdep tmp_tdep;
2443 bool has_compressed_isa = false;
2446 /* Ideally, we'd like to get as much information from the target for
2447 things like register size, and whether the target has floating point
2448 hardware. However, there are some things that the target can't tell
2449 us, like, what ABI is being used.
2451 So, for now, we take as much information as possible from the ELF,
2452 including things like register size, and FP hardware support, along
2453 with information about the ABI.
2455 Information about this target is built up in TMP_TDEP, and then we
2456 look for an existing gdbarch in ARCHES that matches TMP_TDEP. If no
2457 match is found we'll create a new gdbarch and copy TMP_TDEP over. */
2458 memset (&tmp_tdep, 0, sizeof (tmp_tdep));
2460 if (info.abfd != NULL
2461 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2463 unsigned char eclass = elf_elfheader (info.abfd)->e_ident[EI_CLASS];
2464 int e_flags = elf_elfheader (info.abfd)->e_flags;
2466 if (eclass == ELFCLASS32)
2467 tmp_tdep.abi.fields.base_len = 1;
2468 else if (eclass == ELFCLASS64)
2469 tmp_tdep.abi.fields.base_len = 2;
2471 internal_error (__FILE__, __LINE__,
2472 _("unknown ELF header class %d"), eclass);
2474 if (e_flags & EF_RISCV_RVC)
2476 has_compressed_isa = true;
2477 tmp_tdep.core_features |= (1 << ('C' - 'A'));
2480 if (e_flags & EF_RISCV_FLOAT_ABI_DOUBLE)
2482 tmp_tdep.abi.fields.float_abi = 2;
2483 tmp_tdep.core_features |= (1 << ('D' - 'A'));
2484 tmp_tdep.core_features |= (1 << ('F' - 'A'));
2486 else if (e_flags & EF_RISCV_FLOAT_ABI_SINGLE)
2488 tmp_tdep.abi.fields.float_abi = 1;
2489 tmp_tdep.core_features |= (1 << ('F' - 'A'));
2494 const struct bfd_arch_info *binfo = info.bfd_arch_info;
2496 if (binfo->bits_per_word == 32)
2497 tmp_tdep.abi.fields.base_len = 1;
2498 else if (binfo->bits_per_word == 64)
2499 tmp_tdep.abi.fields.base_len = 2;
2501 internal_error (__FILE__, __LINE__, _("unknown bits_per_word %d"),
2502 binfo->bits_per_word);
2505 /* Find a candidate among the list of pre-declared architectures. */
2506 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2508 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2509 if (gdbarch_tdep (arches->gdbarch)->abi.value == tmp_tdep.abi.value)
2510 return arches->gdbarch;
2512 /* None found, so create a new architecture from the information provided. */
2513 tdep = (struct gdbarch_tdep *) xmalloc (sizeof *tdep);
2514 gdbarch = gdbarch_alloc (&info, tdep);
2515 memcpy (tdep, &tmp_tdep, sizeof (tmp_tdep));
2517 /* Target data types. */
2518 set_gdbarch_short_bit (gdbarch, 16);
2519 set_gdbarch_int_bit (gdbarch, 32);
2520 set_gdbarch_long_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
2521 set_gdbarch_long_long_bit (gdbarch, 64);
2522 set_gdbarch_float_bit (gdbarch, 32);
2523 set_gdbarch_double_bit (gdbarch, 64);
2524 set_gdbarch_long_double_bit (gdbarch, 128);
2525 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2526 set_gdbarch_ptr_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
2527 set_gdbarch_char_signed (gdbarch, 0);
2529 /* Information about the target architecture. */
2530 set_gdbarch_return_value (gdbarch, riscv_return_value);
2531 set_gdbarch_breakpoint_kind_from_pc (gdbarch, riscv_breakpoint_kind_from_pc);
2532 set_gdbarch_sw_breakpoint_from_kind (gdbarch, riscv_sw_breakpoint_from_kind);
2534 /* Register architecture. */
2535 set_gdbarch_num_regs (gdbarch, RISCV_LAST_REGNUM + 1);
2536 set_gdbarch_sp_regnum (gdbarch, RISCV_SP_REGNUM);
2537 set_gdbarch_pc_regnum (gdbarch, RISCV_PC_REGNUM);
2538 set_gdbarch_ps_regnum (gdbarch, RISCV_FP_REGNUM);
2539 set_gdbarch_deprecated_fp_regnum (gdbarch, RISCV_FP_REGNUM);
2541 /* Functions to supply register information. */
2542 set_gdbarch_register_name (gdbarch, riscv_register_name);
2543 set_gdbarch_register_type (gdbarch, riscv_register_type);
2544 set_gdbarch_print_registers_info (gdbarch, riscv_print_registers_info);
2545 set_gdbarch_register_reggroup_p (gdbarch, riscv_register_reggroup_p);
2547 /* Functions to analyze frames. */
2548 set_gdbarch_decr_pc_after_break (gdbarch, (has_compressed_isa ? 2 : 4));
2549 set_gdbarch_skip_prologue (gdbarch, riscv_skip_prologue);
2550 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2551 set_gdbarch_frame_align (gdbarch, riscv_frame_align);
2553 /* Functions to access frame data. */
2554 set_gdbarch_unwind_pc (gdbarch, riscv_unwind_pc);
2555 set_gdbarch_unwind_sp (gdbarch, riscv_unwind_sp);
2557 /* Functions handling dummy frames. */
2558 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2559 set_gdbarch_push_dummy_code (gdbarch, riscv_push_dummy_code);
2560 set_gdbarch_push_dummy_call (gdbarch, riscv_push_dummy_call);
2561 set_gdbarch_dummy_id (gdbarch, riscv_dummy_id);
2563 /* Frame unwinders. Use DWARF debug info if available, otherwise use our own
2565 dwarf2_append_unwinders (gdbarch);
2566 frame_unwind_append_unwinder (gdbarch, &riscv_frame_unwind);
2568 for (i = 0; i < ARRAY_SIZE (riscv_register_aliases); ++i)
2569 user_reg_add (gdbarch, riscv_register_aliases[i].name,
2570 value_of_riscv_user_reg, &riscv_register_aliases[i].regnum);
2576 /* Allocate new riscv_inferior_data object. */
2578 static struct riscv_inferior_data *
2579 riscv_new_inferior_data (void)
2581 struct riscv_inferior_data *inf_data
2582 = new (struct riscv_inferior_data);
2583 inf_data->misa_read = false;
2587 /* Free inferior data. */
2590 riscv_inferior_data_cleanup (struct inferior *inf, void *data)
2592 struct riscv_inferior_data *inf_data =
2593 static_cast <struct riscv_inferior_data *> (data);
2597 /* Return riscv_inferior_data for the given INFERIOR. If not yet created,
2600 struct riscv_inferior_data *
2601 riscv_inferior_data (struct inferior *const inf)
2603 struct riscv_inferior_data *inf_data;
2605 gdb_assert (inf != NULL);
2608 = (struct riscv_inferior_data *) inferior_data (inf, riscv_inferior_data_reg);
2609 if (inf_data == NULL)
2611 inf_data = riscv_new_inferior_data ();
2612 set_inferior_data (inf, riscv_inferior_data_reg, inf_data);
2618 /* Free the inferior data when an inferior exits. */
2621 riscv_invalidate_inferior_data (struct inferior *inf)
2623 struct riscv_inferior_data *inf_data;
2625 gdb_assert (inf != NULL);
2627 /* Don't call RISCV_INFERIOR_DATA as we don't want to create the data if
2628 we've not already created it by this point. */
2630 = (struct riscv_inferior_data *) inferior_data (inf, riscv_inferior_data_reg);
2631 if (inf_data != NULL)
2634 set_inferior_data (inf, riscv_inferior_data_reg, NULL);
2639 _initialize_riscv_tdep (void)
2641 gdbarch_register (bfd_arch_riscv, riscv_gdbarch_init, NULL);
2643 /* Register per-inferior data. */
2644 riscv_inferior_data_reg
2645 = register_inferior_data_with_cleanup (NULL, riscv_inferior_data_cleanup);
2647 /* Observers used to invalidate the inferior data when needed. */
2648 gdb::observers::inferior_exit.attach (riscv_invalidate_inferior_data);
2649 gdb::observers::inferior_appeared.attach (riscv_invalidate_inferior_data);
2651 /* Add root prefix command for all "set debug riscv" and "show debug
2653 add_prefix_cmd ("riscv", no_class, set_debug_riscv_command,
2654 _("RISC-V specific debug commands."),
2655 &setdebugriscvcmdlist, "set debug riscv ", 0,
2658 add_prefix_cmd ("riscv", no_class, show_debug_riscv_command,
2659 _("RISC-V specific debug commands."),
2660 &showdebugriscvcmdlist, "show debug riscv ", 0,
2663 add_setshow_zuinteger_cmd ("infcall", class_maintenance,
2664 &riscv_debug_infcall, _("\
2665 Set riscv inferior call debugging."), _("\
2666 Show riscv inferior call debugging."), _("\
2667 When non-zero, print debugging information for the riscv specific parts\n\
2668 of the inferior call mechanism."),
2670 show_riscv_debug_variable,
2671 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
2673 /* Add root prefix command for all "set riscv" and "show riscv" commands. */
2674 add_prefix_cmd ("riscv", no_class, set_riscv_command,
2675 _("RISC-V specific commands."),
2676 &setriscvcmdlist, "set riscv ", 0, &setlist);
2678 add_prefix_cmd ("riscv", no_class, show_riscv_command,
2679 _("RISC-V specific commands."),
2680 &showriscvcmdlist, "show riscv ", 0, &showlist);
2683 use_compressed_breakpoints = AUTO_BOOLEAN_AUTO;
2684 add_setshow_auto_boolean_cmd ("use-compressed-breakpoints", no_class,
2685 &use_compressed_breakpoints,
2687 Set debugger's use of compressed breakpoints."), _(" \
2688 Show debugger's use of compressed breakpoints."), _("\
2689 Debugging compressed code requires compressed breakpoints to be used. If\n \
2690 left to 'auto' then gdb will use them if $misa indicates the C extension\n \
2691 is supported. If that doesn't give the correct behavior, then this option\n\
2694 show_use_compressed_breakpoints,