1 /* Target-dependent code for the RISC-V architecture, for GDB.
3 Copyright (C) 2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "arch-utils.h"
35 #include "riscv-tdep.h"
37 #include "reggroups.h"
38 #include "opcode/riscv.h"
39 #include "elf/riscv.h"
43 #include "frame-unwind.h"
44 #include "frame-base.h"
45 #include "trad-frame.h"
47 #include "floatformat.h"
49 #include "target-descriptions.h"
50 #include "dwarf2-frame.h"
51 #include "user-regs.h"
53 #include "common-defs.h"
54 #include "opcode/riscv-opc.h"
55 #include "cli/cli-decode.h"
56 #include "observable.h"
57 #include "prologue-value.h"
59 /* The stack must be 16-byte aligned. */
60 #define SP_ALIGNMENT 16
62 /* Forward declarations. */
63 static bool riscv_has_feature (struct gdbarch *gdbarch, char feature);
65 /* Define a series of is_XXX_insn functions to check if the value INSN
66 is an instance of instruction XXX. */
67 #define DECLARE_INSN(INSN_NAME, INSN_MATCH, INSN_MASK) \
68 static inline bool is_ ## INSN_NAME ## _insn (long insn) \
70 return (insn & INSN_MASK) == INSN_MATCH; \
72 #include "opcode/riscv-opc.h"
75 /* Cached information about a frame. */
77 struct riscv_unwind_cache
79 /* The register from which we can calculate the frame base. This is
80 usually $sp or $fp. */
83 /* The offset from the current value in register FRAME_BASE_REG to the
84 actual frame base address. */
85 int frame_base_offset;
87 /* Information about previous register values. */
88 struct trad_frame_saved_reg *regs;
90 /* The id for this frame. */
91 struct frame_id this_id;
93 /* The base (stack) address for this frame. This is the stack pointer
94 value on entry to this frame before any adjustments are made. */
98 /* The preferred register names for all the general purpose and floating
99 point registers. These are what GDB will use when referencing a
102 static const char * const riscv_gdb_reg_names[RISCV_LAST_FP_REGNUM + 1] =
104 "zero", "ra", "sp", "gp", "tp", "t0", "t1", "t2", "fp", "s1",
105 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "s2", "s3", "s4",
106 "s5", "s6", "s7", "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6",
108 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", "fs0", "fs1",
109 "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", "fa6", "fa7", "fs2", "fs3",
110 "fs4", "fs5", "fs6", "fs7", "fs8", "fs9", "fs10", "fs11", "ft8", "ft9",
114 /* Map alternative register names onto their GDB register number. */
116 struct riscv_register_alias
118 /* The register alias. Usually more descriptive than the
119 architectural name of the register. */
122 /* The GDB register number. */
126 /* Table of register aliases. */
128 static const struct riscv_register_alias riscv_register_aliases[] =
130 /* Aliases for general purpose registers. These are the architectural
131 names, as GDB uses the more user friendly names by default. */
132 { "x0", (RISCV_ZERO_REGNUM + 0) },
133 { "x1", (RISCV_ZERO_REGNUM + 1) },
134 { "x2", (RISCV_ZERO_REGNUM + 2) },
135 { "x3", (RISCV_ZERO_REGNUM + 3) },
136 { "x4", (RISCV_ZERO_REGNUM + 4) },
137 { "x5", (RISCV_ZERO_REGNUM + 5) },
138 { "x6", (RISCV_ZERO_REGNUM + 6) },
139 { "x7", (RISCV_ZERO_REGNUM + 7) },
140 { "x8", (RISCV_ZERO_REGNUM + 8) },
141 { "s0", (RISCV_ZERO_REGNUM + 8) }, /* fp, s0, and x8 are all aliases. */
142 { "x9", (RISCV_ZERO_REGNUM + 9) },
143 { "x10", (RISCV_ZERO_REGNUM + 10) },
144 { "x11", (RISCV_ZERO_REGNUM + 11) },
145 { "x12", (RISCV_ZERO_REGNUM + 12) },
146 { "x13", (RISCV_ZERO_REGNUM + 13) },
147 { "x14", (RISCV_ZERO_REGNUM + 14) },
148 { "x15", (RISCV_ZERO_REGNUM + 15) },
149 { "x16", (RISCV_ZERO_REGNUM + 16) },
150 { "x17", (RISCV_ZERO_REGNUM + 17) },
151 { "x18", (RISCV_ZERO_REGNUM + 18) },
152 { "x19", (RISCV_ZERO_REGNUM + 19) },
153 { "x20", (RISCV_ZERO_REGNUM + 20) },
154 { "x21", (RISCV_ZERO_REGNUM + 21) },
155 { "x22", (RISCV_ZERO_REGNUM + 22) },
156 { "x23", (RISCV_ZERO_REGNUM + 23) },
157 { "x24", (RISCV_ZERO_REGNUM + 24) },
158 { "x25", (RISCV_ZERO_REGNUM + 25) },
159 { "x26", (RISCV_ZERO_REGNUM + 26) },
160 { "x27", (RISCV_ZERO_REGNUM + 27) },
161 { "x28", (RISCV_ZERO_REGNUM + 28) },
162 { "x29", (RISCV_ZERO_REGNUM + 29) },
163 { "x30", (RISCV_ZERO_REGNUM + 30) },
164 { "x31", (RISCV_ZERO_REGNUM + 31) },
166 /* Aliases for the floating-point registers. These are the architectural
167 names as GDB uses the more user friendly names by default. */
168 { "f0", (RISCV_FIRST_FP_REGNUM + 0) },
169 { "f1", (RISCV_FIRST_FP_REGNUM + 1) },
170 { "f2", (RISCV_FIRST_FP_REGNUM + 2) },
171 { "f3", (RISCV_FIRST_FP_REGNUM + 3) },
172 { "f4", (RISCV_FIRST_FP_REGNUM + 4) },
173 { "f5", (RISCV_FIRST_FP_REGNUM + 5) },
174 { "f6", (RISCV_FIRST_FP_REGNUM + 6) },
175 { "f7", (RISCV_FIRST_FP_REGNUM + 7) },
176 { "f8", (RISCV_FIRST_FP_REGNUM + 8) },
177 { "f9", (RISCV_FIRST_FP_REGNUM + 9) },
178 { "f10", (RISCV_FIRST_FP_REGNUM + 10) },
179 { "f11", (RISCV_FIRST_FP_REGNUM + 11) },
180 { "f12", (RISCV_FIRST_FP_REGNUM + 12) },
181 { "f13", (RISCV_FIRST_FP_REGNUM + 13) },
182 { "f14", (RISCV_FIRST_FP_REGNUM + 14) },
183 { "f15", (RISCV_FIRST_FP_REGNUM + 15) },
184 { "f16", (RISCV_FIRST_FP_REGNUM + 16) },
185 { "f17", (RISCV_FIRST_FP_REGNUM + 17) },
186 { "f18", (RISCV_FIRST_FP_REGNUM + 18) },
187 { "f19", (RISCV_FIRST_FP_REGNUM + 19) },
188 { "f20", (RISCV_FIRST_FP_REGNUM + 20) },
189 { "f21", (RISCV_FIRST_FP_REGNUM + 21) },
190 { "f22", (RISCV_FIRST_FP_REGNUM + 22) },
191 { "f23", (RISCV_FIRST_FP_REGNUM + 23) },
192 { "f24", (RISCV_FIRST_FP_REGNUM + 24) },
193 { "f25", (RISCV_FIRST_FP_REGNUM + 25) },
194 { "f26", (RISCV_FIRST_FP_REGNUM + 26) },
195 { "f27", (RISCV_FIRST_FP_REGNUM + 27) },
196 { "f28", (RISCV_FIRST_FP_REGNUM + 28) },
197 { "f29", (RISCV_FIRST_FP_REGNUM + 29) },
198 { "f30", (RISCV_FIRST_FP_REGNUM + 30) },
199 { "f31", (RISCV_FIRST_FP_REGNUM + 31) },
202 /* Controls whether we place compressed breakpoints or not. When in auto
203 mode GDB tries to determine if the target supports compressed
204 breakpoints, and uses them if it does. */
206 static enum auto_boolean use_compressed_breakpoints;
208 /* The show callback for 'show riscv use-compressed-breakpoints'. */
211 show_use_compressed_breakpoints (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c,
215 fprintf_filtered (file,
216 _("Debugger's use of compressed breakpoints is set "
220 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
222 static struct cmd_list_element *setriscvcmdlist = NULL;
223 static struct cmd_list_element *showriscvcmdlist = NULL;
225 /* The show callback for the 'show riscv' prefix command. */
228 show_riscv_command (const char *args, int from_tty)
230 help_list (showriscvcmdlist, "show riscv ", all_commands, gdb_stdout);
233 /* The set callback for the 'set riscv' prefix command. */
236 set_riscv_command (const char *args, int from_tty)
239 (_("\"set riscv\" must be followed by an appropriate subcommand.\n"));
240 help_list (setriscvcmdlist, "set riscv ", all_commands, gdb_stdout);
243 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
245 static struct cmd_list_element *setdebugriscvcmdlist = NULL;
246 static struct cmd_list_element *showdebugriscvcmdlist = NULL;
248 /* The show callback for the 'show debug riscv' prefix command. */
251 show_debug_riscv_command (const char *args, int from_tty)
253 help_list (showdebugriscvcmdlist, "show debug riscv ", all_commands, gdb_stdout);
256 /* The set callback for the 'set debug riscv' prefix command. */
259 set_debug_riscv_command (const char *args, int from_tty)
262 (_("\"set debug riscv\" must be followed by an appropriate subcommand.\n"));
263 help_list (setdebugriscvcmdlist, "set debug riscv ", all_commands, gdb_stdout);
266 /* The show callback for all 'show debug riscv VARNAME' variables. */
269 show_riscv_debug_variable (struct ui_file *file, int from_tty,
270 struct cmd_list_element *c,
273 fprintf_filtered (file,
274 _("RiscV debug variable `%s' is set to: %s\n"),
278 /* When this is set to non-zero debugging information about breakpoint
279 kinds will be printed. */
281 static unsigned int riscv_debug_breakpoints = 0;
283 /* When this is set to non-zero debugging information about inferior calls
286 static unsigned int riscv_debug_infcall = 0;
288 /* When this is set to non-zero debugging information about stack unwinding
291 static unsigned int riscv_debug_unwinder = 0;
293 /* Read the MISA register from the target. There are a couple of locations
294 that the register might be found, these are all tried. If the MISA
295 register can't be found at all then the default value of 0 is returned,
296 this is inline with the RISC-V specification. */
299 riscv_read_misa_reg ()
303 if (target_has_registers)
305 /* Old cores might have MISA located at a different offset. */
306 static int misa_regs[] =
307 { RISCV_CSR_MISA_REGNUM, RISCV_CSR_LEGACY_MISA_REGNUM };
309 struct frame_info *frame = get_current_frame ();
311 for (int i = 0; i < ARRAY_SIZE (misa_regs); ++i)
313 bool success = false;
317 value = get_frame_register_unsigned (frame, misa_regs[i]);
320 CATCH (ex, RETURN_MASK_ERROR)
322 /* Ignore errors, it is acceptable for a target to not
323 provide a MISA register, in which case the default value
324 of 0 should be used. */
336 /* Return true if FEATURE is available for the architecture GDBARCH. The
337 FEATURE should be one of the single character feature codes described in
338 the RiscV ISA manual, these are between 'A' and 'Z'. */
341 riscv_has_feature (struct gdbarch *gdbarch, char feature)
343 gdb_assert (feature >= 'A' && feature <= 'Z');
345 uint32_t misa = riscv_read_misa_reg ();
347 misa = gdbarch_tdep (gdbarch)->core_features;
349 return (misa & (1 << (feature - 'A'))) != 0;
352 /* Return the width in bytes of the general purpose registers for GDBARCH.
353 Possible return values are 4, 8, or 16 for RiscV variants RV32, RV64, or
357 riscv_isa_xlen (struct gdbarch *gdbarch)
359 switch (gdbarch_tdep (gdbarch)->abi.fields.base_len)
362 warning (_("unknown xlen size, assuming 4 bytes"));
373 /* Return the width in bytes of the floating point registers for GDBARCH.
374 If this architecture has no floating point registers, then return 0.
375 Possible values are 4, 8, or 16 for depending on which of single, double
376 or quad floating point support is available. */
379 riscv_isa_flen (struct gdbarch *gdbarch)
381 if (riscv_has_feature (gdbarch, 'Q'))
383 else if (riscv_has_feature (gdbarch, 'D'))
385 else if (riscv_has_feature (gdbarch, 'F'))
391 /* Return true if the target for GDBARCH has floating point hardware. */
394 riscv_has_fp_regs (struct gdbarch *gdbarch)
396 return (riscv_isa_flen (gdbarch) > 0);
399 /* Return true if GDBARCH is using any of the floating point hardware ABIs. */
402 riscv_has_fp_abi (struct gdbarch *gdbarch)
404 return (gdbarch_tdep (gdbarch)->abi.fields.float_abi != 0);
407 /* Return true if REGNO is a floating pointer register. */
410 riscv_is_fp_regno_p (int regno)
412 return (regno >= RISCV_FIRST_FP_REGNUM
413 && regno <= RISCV_LAST_FP_REGNUM);
416 /* Implement the breakpoint_kind_from_pc gdbarch method. */
419 riscv_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
421 if (use_compressed_breakpoints == AUTO_BOOLEAN_AUTO)
425 /* Read the opcode byte to determine the instruction length. */
426 read_code (*pcptr, buf, 1);
428 if (riscv_debug_breakpoints)
431 "Using %s for breakpoint at %s (instruction length %d)\n",
432 riscv_insn_length (buf[0]) == 2 ? "C.EBREAK" : "EBREAK",
433 paddress (gdbarch, *pcptr), riscv_insn_length (buf[0]));
434 if (riscv_insn_length (buf[0]) == 2)
439 else if (use_compressed_breakpoints == AUTO_BOOLEAN_TRUE)
445 /* Implement the sw_breakpoint_from_kind gdbarch method. */
447 static const gdb_byte *
448 riscv_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
450 static const gdb_byte ebreak[] = { 0x73, 0x00, 0x10, 0x00, };
451 static const gdb_byte c_ebreak[] = { 0x02, 0x90 };
461 gdb_assert_not_reached (_("unhandled breakpoint kind"));
465 /* Callback function for user_reg_add. */
467 static struct value *
468 value_of_riscv_user_reg (struct frame_info *frame, const void *baton)
470 const int *reg_p = (const int *) baton;
471 return value_of_register (*reg_p, frame);
474 /* Implement the register_name gdbarch method. */
477 riscv_register_name (struct gdbarch *gdbarch, int regnum)
479 /* Prefer to use the alias. */
480 if (regnum >= RISCV_ZERO_REGNUM && regnum <= RISCV_LAST_FP_REGNUM)
482 gdb_assert (regnum < ARRAY_SIZE (riscv_gdb_reg_names));
483 return riscv_gdb_reg_names[regnum];
486 /* Check that there's no gap between the set of registers handled above,
487 and the set of registers handled next. */
488 gdb_assert ((RISCV_LAST_FP_REGNUM + 1) == RISCV_FIRST_CSR_REGNUM);
490 if (regnum >= RISCV_FIRST_CSR_REGNUM && regnum <= RISCV_LAST_CSR_REGNUM)
492 #define DECLARE_CSR(NAME,VALUE) \
493 case RISCV_ ## VALUE ## _REGNUM: return # NAME;
497 #include "opcode/riscv-opc.h"
502 xsnprintf (buf, sizeof (buf), "csr%d",
503 regnum - RISCV_FIRST_CSR_REGNUM);
510 if (regnum == RISCV_PRIV_REGNUM)
516 /* Construct a type for 64-bit FP registers. */
519 riscv_fpreg_d_type (struct gdbarch *gdbarch)
521 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
523 if (tdep->riscv_fpreg_d_type == nullptr)
525 const struct builtin_type *bt = builtin_type (gdbarch);
527 /* The type we're building is this: */
529 union __gdb_builtin_type_fpreg_d
538 t = arch_composite_type (gdbarch,
539 "__gdb_builtin_type_fpreg_d", TYPE_CODE_UNION);
540 append_composite_type_field (t, "float", bt->builtin_float);
541 append_composite_type_field (t, "double", bt->builtin_double);
543 TYPE_NAME (t) = "builtin_type_fpreg_d";
544 tdep->riscv_fpreg_d_type = t;
547 return tdep->riscv_fpreg_d_type;
550 /* Construct a type for 128-bit FP registers. */
553 riscv_fpreg_q_type (struct gdbarch *gdbarch)
555 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
557 if (tdep->riscv_fpreg_q_type == nullptr)
559 const struct builtin_type *bt = builtin_type (gdbarch);
561 /* The type we're building is this: */
563 union __gdb_builtin_type_fpreg_d
573 t = arch_composite_type (gdbarch,
574 "__gdb_builtin_type_fpreg_q", TYPE_CODE_UNION);
575 append_composite_type_field (t, "float", bt->builtin_float);
576 append_composite_type_field (t, "double", bt->builtin_double);
577 append_composite_type_field (t, "long double", bt->builtin_long_double);
579 TYPE_NAME (t) = "builtin_type_fpreg_q";
580 tdep->riscv_fpreg_q_type = t;
583 return tdep->riscv_fpreg_q_type;
586 /* Implement the register_type gdbarch method. */
589 riscv_register_type (struct gdbarch *gdbarch, int regnum)
593 if (regnum < RISCV_FIRST_FP_REGNUM)
595 if (regnum == gdbarch_pc_regnum (gdbarch)
596 || regnum == RISCV_RA_REGNUM)
597 return builtin_type (gdbarch)->builtin_func_ptr;
599 if (regnum == RISCV_FP_REGNUM
600 || regnum == RISCV_SP_REGNUM
601 || regnum == RISCV_GP_REGNUM
602 || regnum == RISCV_TP_REGNUM)
603 return builtin_type (gdbarch)->builtin_data_ptr;
605 /* Remaining GPRs vary in size based on the current ISA. */
606 regsize = riscv_isa_xlen (gdbarch);
610 return builtin_type (gdbarch)->builtin_uint32;
612 return builtin_type (gdbarch)->builtin_uint64;
614 return builtin_type (gdbarch)->builtin_uint128;
616 internal_error (__FILE__, __LINE__,
617 _("unknown isa regsize %i"), regsize);
620 else if (regnum <= RISCV_LAST_FP_REGNUM)
622 regsize = riscv_isa_xlen (gdbarch);
626 return builtin_type (gdbarch)->builtin_float;
628 return riscv_fpreg_d_type (gdbarch);
630 return riscv_fpreg_q_type (gdbarch);
632 internal_error (__FILE__, __LINE__,
633 _("unknown isa regsize %i"), regsize);
636 else if (regnum == RISCV_PRIV_REGNUM)
637 return builtin_type (gdbarch)->builtin_int8;
640 if (regnum == RISCV_CSR_FFLAGS_REGNUM
641 || regnum == RISCV_CSR_FRM_REGNUM
642 || regnum == RISCV_CSR_FCSR_REGNUM)
643 return builtin_type (gdbarch)->builtin_int32;
645 regsize = riscv_isa_xlen (gdbarch);
649 return builtin_type (gdbarch)->builtin_int32;
651 return builtin_type (gdbarch)->builtin_int64;
653 return builtin_type (gdbarch)->builtin_int128;
655 internal_error (__FILE__, __LINE__,
656 _("unknown isa regsize %i"), regsize);
661 /* Helper for riscv_print_registers_info, prints info for a single register
665 riscv_print_one_register_info (struct gdbarch *gdbarch,
666 struct ui_file *file,
667 struct frame_info *frame,
670 const char *name = gdbarch_register_name (gdbarch, regnum);
671 struct value *val = value_of_register (regnum, frame);
672 struct type *regtype = value_type (val);
673 int print_raw_format;
674 enum tab_stops { value_column_1 = 15 };
676 fputs_filtered (name, file);
677 print_spaces_filtered (value_column_1 - strlen (name), file);
679 print_raw_format = (value_entirely_available (val)
680 && !value_optimized_out (val));
682 if (TYPE_CODE (regtype) == TYPE_CODE_FLT
683 || (TYPE_CODE (regtype) == TYPE_CODE_UNION
684 && TYPE_NFIELDS (regtype) == 2
685 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 0)) == TYPE_CODE_FLT
686 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 1)) == TYPE_CODE_FLT)
687 || (TYPE_CODE (regtype) == TYPE_CODE_UNION
688 && TYPE_NFIELDS (regtype) == 3
689 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 0)) == TYPE_CODE_FLT
690 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 1)) == TYPE_CODE_FLT
691 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 2)) == TYPE_CODE_FLT))
693 struct value_print_options opts;
694 const gdb_byte *valaddr = value_contents_for_printing (val);
695 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (regtype));
697 get_user_print_options (&opts);
701 value_embedded_offset (val), 0,
702 file, 0, val, &opts, current_language);
704 if (print_raw_format)
706 fprintf_filtered (file, "\t(raw ");
707 print_hex_chars (file, valaddr, TYPE_LENGTH (regtype), byte_order,
709 fprintf_filtered (file, ")");
714 struct value_print_options opts;
716 /* Print the register in hex. */
717 get_formatted_print_options (&opts, 'x');
720 value_embedded_offset (val), 0,
721 file, 0, val, &opts, current_language);
723 if (print_raw_format)
725 if (regnum == RISCV_CSR_MSTATUS_REGNUM)
728 int size = register_size (gdbarch, regnum);
731 d = value_as_long (val);
733 fprintf_filtered (file,
734 "\tSD:%X VM:%02X MXR:%X PUM:%X MPRV:%X XS:%X "
735 "FS:%X MPP:%x HPP:%X SPP:%X MPIE:%X HPIE:%X "
736 "SPIE:%X UPIE:%X MIE:%X HIE:%X SIE:%X UIE:%X",
737 (int) ((d >> (xlen - 1)) & 0x1),
738 (int) ((d >> 24) & 0x1f),
739 (int) ((d >> 19) & 0x1),
740 (int) ((d >> 18) & 0x1),
741 (int) ((d >> 17) & 0x1),
742 (int) ((d >> 15) & 0x3),
743 (int) ((d >> 13) & 0x3),
744 (int) ((d >> 11) & 0x3),
745 (int) ((d >> 9) & 0x3),
746 (int) ((d >> 8) & 0x1),
747 (int) ((d >> 7) & 0x1),
748 (int) ((d >> 6) & 0x1),
749 (int) ((d >> 5) & 0x1),
750 (int) ((d >> 4) & 0x1),
751 (int) ((d >> 3) & 0x1),
752 (int) ((d >> 2) & 0x1),
753 (int) ((d >> 1) & 0x1),
754 (int) ((d >> 0) & 0x1));
756 else if (regnum == RISCV_CSR_MISA_REGNUM)
762 d = value_as_long (val);
766 for (; base > 0; base--)
768 fprintf_filtered (file, "\tRV%d", xlen);
770 for (i = 0; i < 26; i++)
773 fprintf_filtered (file, "%c", 'A' + i);
776 else if (regnum == RISCV_CSR_FCSR_REGNUM
777 || regnum == RISCV_CSR_FFLAGS_REGNUM
778 || regnum == RISCV_CSR_FRM_REGNUM)
782 d = value_as_long (val);
784 fprintf_filtered (file, "\t");
785 if (regnum != RISCV_CSR_FRM_REGNUM)
786 fprintf_filtered (file,
787 "RD:%01X NV:%d DZ:%d OF:%d UF:%d NX:%d",
788 (int) ((d >> 5) & 0x7),
789 (int) ((d >> 4) & 0x1),
790 (int) ((d >> 3) & 0x1),
791 (int) ((d >> 2) & 0x1),
792 (int) ((d >> 1) & 0x1),
793 (int) ((d >> 0) & 0x1));
795 if (regnum != RISCV_CSR_FFLAGS_REGNUM)
797 static const char * const sfrm[] =
799 "RNE (round to nearest; ties to even)",
800 "RTZ (Round towards zero)",
801 "RDN (Round down towards -INF)",
802 "RUP (Round up towards +INF)",
803 "RMM (Round to nearest; ties to max magnitude)",
806 "dynamic rounding mode",
808 int frm = ((regnum == RISCV_CSR_FCSR_REGNUM)
809 ? (d >> 5) : d) & 0x3;
811 fprintf_filtered (file, "%sFRM:%i [%s]",
812 (regnum == RISCV_CSR_FCSR_REGNUM
817 else if (regnum == RISCV_PRIV_REGNUM)
822 d = value_as_long (val);
827 static const char * const sprv[] =
834 fprintf_filtered (file, "\tprv:%d [%s]",
838 fprintf_filtered (file, "\tprv:%d [INVALID]", priv);
842 /* If not a vector register, print it also according to its
844 if (TYPE_VECTOR (regtype) == 0)
846 get_user_print_options (&opts);
848 fprintf_filtered (file, "\t");
850 value_embedded_offset (val), 0,
851 file, 0, val, &opts, current_language);
856 fprintf_filtered (file, "\n");
859 /* Return true if REGNUM is a valid CSR register. The CSR register space
860 is sparsely populated, so not every number is a named CSR. */
863 riscv_is_regnum_a_named_csr (int regnum)
865 gdb_assert (regnum >= RISCV_FIRST_CSR_REGNUM
866 && regnum <= RISCV_LAST_CSR_REGNUM);
870 #define DECLARE_CSR(name, num) case RISCV_ ## num ## _REGNUM:
871 #include "opcode/riscv-opc.h"
880 /* Implement the register_reggroup_p gdbarch method. Is REGNUM a member
884 riscv_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
885 struct reggroup *reggroup)
887 /* Used by 'info registers' and 'info registers <groupname>'. */
889 if (gdbarch_register_name (gdbarch, regnum) == NULL
890 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
893 if (reggroup == all_reggroup)
895 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum == RISCV_PRIV_REGNUM)
897 if (riscv_is_regnum_a_named_csr (regnum))
901 else if (reggroup == float_reggroup)
902 return (riscv_is_fp_regno_p (regnum)
903 || regnum == RISCV_CSR_FCSR_REGNUM
904 || regnum == RISCV_CSR_FFLAGS_REGNUM
905 || regnum == RISCV_CSR_FRM_REGNUM);
906 else if (reggroup == general_reggroup)
907 return regnum < RISCV_FIRST_FP_REGNUM;
908 else if (reggroup == restore_reggroup || reggroup == save_reggroup)
910 if (riscv_has_fp_regs (gdbarch))
911 return regnum <= RISCV_LAST_FP_REGNUM;
913 return regnum < RISCV_FIRST_FP_REGNUM;
915 else if (reggroup == system_reggroup)
917 if (regnum == RISCV_PRIV_REGNUM)
919 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum > RISCV_LAST_CSR_REGNUM)
921 if (riscv_is_regnum_a_named_csr (regnum))
925 else if (reggroup == vector_reggroup)
931 /* Implement the print_registers_info gdbarch method. This is used by
932 'info registers' and 'info all-registers'. */
935 riscv_print_registers_info (struct gdbarch *gdbarch,
936 struct ui_file *file,
937 struct frame_info *frame,
938 int regnum, int print_all)
942 /* Print one specified register. */
943 gdb_assert (regnum <= RISCV_LAST_REGNUM);
944 if (gdbarch_register_name (gdbarch, regnum) == NULL
945 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
946 error (_("Not a valid register for the current processor type"));
947 riscv_print_one_register_info (gdbarch, file, frame, regnum);
951 struct reggroup *reggroup;
954 reggroup = all_reggroup;
956 reggroup = general_reggroup;
958 for (regnum = 0; regnum <= RISCV_LAST_REGNUM; ++regnum)
960 /* Zero never changes, so might as well hide by default. */
961 if (regnum == RISCV_ZERO_REGNUM && !print_all)
964 /* Registers with no name are not valid on this ISA. */
965 if (gdbarch_register_name (gdbarch, regnum) == NULL
966 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
969 /* Is the register in the group we're interested in? */
970 if (!riscv_register_reggroup_p (gdbarch, regnum, reggroup))
973 riscv_print_one_register_info (gdbarch, file, frame, regnum);
978 /* Class that handles one decoded RiscV instruction. */
984 /* Enum of all the opcodes that GDB cares about during the prologue scan. */
987 /* Unknown value is used at initialisation time. */
990 /* These instructions are all the ones we are interested in during the
1000 /* These are needed for software breakopint support. */
1009 /* These are needed for stepping over atomic sequences. */
1013 /* Other instructions are not interesting during the prologue scan, and
1028 void decode (struct gdbarch *gdbarch, CORE_ADDR pc);
1030 /* Get the length of the instruction in bytes. */
1032 { return m_length; }
1034 /* Get the opcode for this instruction. */
1035 enum opcode opcode () const
1036 { return m_opcode; }
1038 /* Get destination register field for this instruction. This is only
1039 valid if the OPCODE implies there is such a field for this
1044 /* Get the RS1 register field for this instruction. This is only valid
1045 if the OPCODE implies there is such a field for this instruction. */
1049 /* Get the RS2 register field for this instruction. This is only valid
1050 if the OPCODE implies there is such a field for this instruction. */
1054 /* Get the immediate for this instruction in signed form. This is only
1055 valid if the OPCODE implies there is such a field for this
1057 int imm_signed () const
1062 /* Extract 5 bit register field at OFFSET from instruction OPCODE. */
1063 int decode_register_index (unsigned long opcode, int offset)
1065 return (opcode >> offset) & 0x1F;
1068 /* Extract 5 bit register field at OFFSET from instruction OPCODE. */
1069 int decode_register_index_short (unsigned long opcode, int offset)
1071 return ((opcode >> offset) & 0x7) + 8;
1074 /* Helper for DECODE, decode 32-bit R-type instruction. */
1075 void decode_r_type_insn (enum opcode opcode, ULONGEST ival)
1078 m_rd = decode_register_index (ival, OP_SH_RD);
1079 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1080 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1083 /* Helper for DECODE, decode 16-bit compressed R-type instruction. */
1084 void decode_cr_type_insn (enum opcode opcode, ULONGEST ival)
1087 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
1088 m_rs2 = decode_register_index (ival, OP_SH_CRS2);
1091 /* Helper for DECODE, decode 32-bit I-type instruction. */
1092 void decode_i_type_insn (enum opcode opcode, ULONGEST ival)
1095 m_rd = decode_register_index (ival, OP_SH_RD);
1096 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1097 m_imm.s = EXTRACT_ITYPE_IMM (ival);
1100 /* Helper for DECODE, decode 16-bit compressed I-type instruction. */
1101 void decode_ci_type_insn (enum opcode opcode, ULONGEST ival)
1104 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
1105 m_imm.s = EXTRACT_RVC_IMM (ival);
1108 /* Helper for DECODE, decode 32-bit S-type instruction. */
1109 void decode_s_type_insn (enum opcode opcode, ULONGEST ival)
1112 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1113 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1114 m_imm.s = EXTRACT_STYPE_IMM (ival);
1117 /* Helper for DECODE, decode 16-bit CS-type instruction. The immediate
1118 encoding is different for each CS format instruction, so extracting
1119 the immediate is left up to the caller, who should pass the extracted
1120 immediate value through in IMM. */
1121 void decode_cs_type_insn (enum opcode opcode, ULONGEST ival, int imm)
1125 m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
1126 m_rs2 = decode_register_index_short (ival, OP_SH_CRS2S);
1129 /* Helper for DECODE, decode 16-bit CSS-type instruction. The immediate
1130 encoding is different for each CSS format instruction, so extracting
1131 the immediate is left up to the caller, who should pass the extracted
1132 immediate value through in IMM. */
1133 void decode_css_type_insn (enum opcode opcode, ULONGEST ival, int imm)
1137 m_rs1 = RISCV_SP_REGNUM;
1138 /* Not a compressed register number in this case. */
1139 m_rs2 = decode_register_index (ival, OP_SH_CRS2);
1142 /* Helper for DECODE, decode 32-bit U-type instruction. */
1143 void decode_u_type_insn (enum opcode opcode, ULONGEST ival)
1146 m_rd = decode_register_index (ival, OP_SH_RD);
1147 m_imm.s = EXTRACT_UTYPE_IMM (ival);
1150 /* Helper for DECODE, decode 32-bit J-type instruction. */
1151 void decode_j_type_insn (enum opcode opcode, ULONGEST ival)
1154 m_rd = decode_register_index (ival, OP_SH_RD);
1155 m_imm.s = EXTRACT_UJTYPE_IMM (ival);
1158 /* Helper for DECODE, decode 32-bit J-type instruction. */
1159 void decode_cj_type_insn (enum opcode opcode, ULONGEST ival)
1162 m_imm.s = EXTRACT_RVC_J_IMM (ival);
1165 void decode_b_type_insn (enum opcode opcode, ULONGEST ival)
1168 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1169 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1170 m_imm.s = EXTRACT_SBTYPE_IMM (ival);
1173 void decode_cb_type_insn (enum opcode opcode, ULONGEST ival)
1176 m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
1177 m_imm.s = EXTRACT_RVC_B_IMM (ival);
1180 /* Fetch instruction from target memory at ADDR, return the content of
1181 the instruction, and update LEN with the instruction length. */
1182 static ULONGEST fetch_instruction (struct gdbarch *gdbarch,
1183 CORE_ADDR addr, int *len);
1185 /* The length of the instruction in bytes. Should be 2 or 4. */
1188 /* The instruction opcode. */
1189 enum opcode m_opcode;
1191 /* The three possible registers an instruction might reference. Not
1192 every instruction fills in all of these registers. Which fields are
1193 valid depends on the opcode. The naming of these fields matches the
1194 naming in the riscv isa manual. */
1199 /* Possible instruction immediate. This is only valid if the instruction
1200 format contains an immediate, not all instruction, whether this is
1201 valid depends on the opcode. Despite only having one format for now
1202 the immediate is packed into a union, later instructions might require
1203 an unsigned formatted immediate, having the union in place now will
1204 reduce the need for code churn later. */
1205 union riscv_insn_immediate
1207 riscv_insn_immediate ()
1217 /* Fetch instruction from target memory at ADDR, return the content of the
1218 instruction, and update LEN with the instruction length. */
1221 riscv_insn::fetch_instruction (struct gdbarch *gdbarch,
1222 CORE_ADDR addr, int *len)
1224 enum bfd_endian byte_order = gdbarch_byte_order_for_code (gdbarch);
1226 int instlen, status;
1228 /* All insns are at least 16 bits. */
1229 status = target_read_memory (addr, buf, 2);
1231 memory_error (TARGET_XFER_E_IO, addr);
1233 /* If we need more, grab it now. */
1234 instlen = riscv_insn_length (buf[0]);
1235 gdb_assert (instlen <= sizeof (buf));
1240 status = target_read_memory (addr + 2, buf + 2, instlen - 2);
1242 memory_error (TARGET_XFER_E_IO, addr + 2);
1245 return extract_unsigned_integer (buf, instlen, byte_order);
1248 /* Fetch from target memory an instruction at PC and decode it. */
1251 riscv_insn::decode (struct gdbarch *gdbarch, CORE_ADDR pc)
1255 /* Fetch the instruction, and the instructions length. */
1256 ival = fetch_instruction (gdbarch, pc, &m_length);
1260 if (is_add_insn (ival))
1261 decode_r_type_insn (ADD, ival);
1262 else if (is_addw_insn (ival))
1263 decode_r_type_insn (ADDW, ival);
1264 else if (is_addi_insn (ival))
1265 decode_i_type_insn (ADDI, ival);
1266 else if (is_addiw_insn (ival))
1267 decode_i_type_insn (ADDIW, ival);
1268 else if (is_auipc_insn (ival))
1269 decode_u_type_insn (AUIPC, ival);
1270 else if (is_lui_insn (ival))
1271 decode_u_type_insn (LUI, ival);
1272 else if (is_sd_insn (ival))
1273 decode_s_type_insn (SD, ival);
1274 else if (is_sw_insn (ival))
1275 decode_s_type_insn (SW, ival);
1276 else if (is_jal_insn (ival))
1277 decode_j_type_insn (JAL, ival);
1278 else if (is_jalr_insn (ival))
1279 decode_i_type_insn (JALR, ival);
1280 else if (is_beq_insn (ival))
1281 decode_b_type_insn (BEQ, ival);
1282 else if (is_bne_insn (ival))
1283 decode_b_type_insn (BNE, ival);
1284 else if (is_blt_insn (ival))
1285 decode_b_type_insn (BLT, ival);
1286 else if (is_bge_insn (ival))
1287 decode_b_type_insn (BGE, ival);
1288 else if (is_bltu_insn (ival))
1289 decode_b_type_insn (BLTU, ival);
1290 else if (is_bgeu_insn (ival))
1291 decode_b_type_insn (BGEU, ival);
1292 else if (is_lr_w_insn (ival))
1293 decode_r_type_insn (LR, ival);
1294 else if (is_lr_d_insn (ival))
1295 decode_r_type_insn (LR, ival);
1296 else if (is_sc_w_insn (ival))
1297 decode_r_type_insn (SC, ival);
1298 else if (is_sc_d_insn (ival))
1299 decode_r_type_insn (SC, ival);
1301 /* None of the other fields are valid in this case. */
1304 else if (m_length == 2)
1306 int xlen = riscv_isa_xlen (gdbarch);
1308 /* C_ADD and C_JALR have the same opcode. If RS2 is 0, then this is a
1309 C_JALR. So must try to match C_JALR first as it has more bits in
1311 if (is_c_jalr_insn (ival))
1312 decode_cr_type_insn (JALR, ival);
1313 else if (is_c_add_insn (ival))
1314 decode_cr_type_insn (ADD, ival);
1315 /* C_ADDW is RV64 and RV128 only. */
1316 else if (xlen != 4 && is_c_addw_insn (ival))
1317 decode_cr_type_insn (ADDW, ival);
1318 else if (is_c_addi_insn (ival))
1319 decode_ci_type_insn (ADDI, ival);
1320 /* C_ADDIW and C_JAL have the same opcode. C_ADDIW is RV64 and RV128
1321 only and C_JAL is RV32 only. */
1322 else if (xlen != 4 && is_c_addiw_insn (ival))
1323 decode_ci_type_insn (ADDIW, ival);
1324 else if (xlen == 4 && is_c_jal_insn (ival))
1325 decode_cj_type_insn (JAL, ival);
1326 /* C_ADDI16SP and C_LUI have the same opcode. If RD is 2, then this is a
1327 C_ADDI16SP. So must try to match C_ADDI16SP first as it has more bits
1329 else if (is_c_addi16sp_insn (ival))
1332 m_rd = m_rs1 = decode_register_index (ival, OP_SH_RD);
1333 m_imm.s = EXTRACT_RVC_ADDI16SP_IMM (ival);
1335 else if (is_c_addi4spn_insn (ival))
1338 m_rd = decode_register_index_short (ival, OP_SH_CRS2S);
1339 m_rs1 = RISCV_SP_REGNUM;
1340 m_imm.s = EXTRACT_RVC_ADDI4SPN_IMM (ival);
1342 else if (is_c_lui_insn (ival))
1345 m_rd = decode_register_index (ival, OP_SH_CRS1S);
1346 m_imm.s = EXTRACT_RVC_LUI_IMM (ival);
1348 /* C_SD and C_FSW have the same opcode. C_SD is RV64 and RV128 only,
1349 and C_FSW is RV32 only. */
1350 else if (xlen != 4 && is_c_sd_insn (ival))
1351 decode_cs_type_insn (SD, ival, EXTRACT_RVC_LD_IMM (ival));
1352 else if (is_c_sw_insn (ival))
1353 decode_cs_type_insn (SW, ival, EXTRACT_RVC_LW_IMM (ival));
1354 else if (is_c_swsp_insn (ival))
1355 decode_css_type_insn (SW, ival, EXTRACT_RVC_SWSP_IMM (ival));
1356 else if (xlen != 4 && is_c_sdsp_insn (ival))
1357 decode_css_type_insn (SW, ival, EXTRACT_RVC_SDSP_IMM (ival));
1358 /* C_JR and C_MV have the same opcode. If RS2 is 0, then this is a C_JR.
1359 So must try to match C_JR first as it ahs more bits in mask. */
1360 else if (is_c_jr_insn (ival))
1361 decode_cr_type_insn (JALR, ival);
1362 else if (is_c_j_insn (ival))
1363 decode_cj_type_insn (JAL, ival);
1364 else if (is_c_beqz_insn (ival))
1365 decode_cb_type_insn (BEQ, ival);
1366 else if (is_c_bnez_insn (ival))
1367 decode_cb_type_insn (BNE, ival);
1369 /* None of the other fields of INSN are valid in this case. */
1373 internal_error (__FILE__, __LINE__,
1374 _("unable to decode %d byte instructions in "
1375 "prologue at %s"), m_length,
1376 core_addr_to_string (pc));
1379 /* The prologue scanner. This is currently only used for skipping the
1380 prologue of a function when the DWARF information is not sufficient.
1381 However, it is written with filling of the frame cache in mind, which
1382 is why different groups of stack setup instructions are split apart
1383 during the core of the inner loop. In the future, the intention is to
1384 extend this function to fully support building up a frame cache that
1385 can unwind register values when there is no DWARF information. */
1388 riscv_scan_prologue (struct gdbarch *gdbarch,
1389 CORE_ADDR start_pc, CORE_ADDR end_pc,
1390 struct riscv_unwind_cache *cache)
1392 CORE_ADDR cur_pc, next_pc, after_prologue_pc;
1393 CORE_ADDR end_prologue_addr = 0;
1395 /* Find an upper limit on the function prologue using the debug
1396 information. If the debug information could not be used to provide
1397 that bound, then use an arbitrary large number as the upper bound. */
1398 after_prologue_pc = skip_prologue_using_sal (gdbarch, start_pc);
1399 if (after_prologue_pc == 0)
1400 after_prologue_pc = start_pc + 100; /* Arbitrary large number. */
1401 if (after_prologue_pc < end_pc)
1402 end_pc = after_prologue_pc;
1404 pv_t regs[RISCV_NUM_INTEGER_REGS]; /* Number of GPR. */
1405 for (int regno = 0; regno < RISCV_NUM_INTEGER_REGS; regno++)
1406 regs[regno] = pv_register (regno, 0);
1407 pv_area stack (RISCV_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1409 if (riscv_debug_unwinder)
1412 "Prologue scan for function starting at %s (limit %s)\n",
1413 core_addr_to_string (start_pc),
1414 core_addr_to_string (end_pc));
1416 for (next_pc = cur_pc = start_pc; cur_pc < end_pc; cur_pc = next_pc)
1418 struct riscv_insn insn;
1420 /* Decode the current instruction, and decide where the next
1421 instruction lives based on the size of this instruction. */
1422 insn.decode (gdbarch, cur_pc);
1423 gdb_assert (insn.length () > 0);
1424 next_pc = cur_pc + insn.length ();
1426 /* Look for common stack adjustment insns. */
1427 if ((insn.opcode () == riscv_insn::ADDI
1428 || insn.opcode () == riscv_insn::ADDIW)
1429 && insn.rd () == RISCV_SP_REGNUM
1430 && insn.rs1 () == RISCV_SP_REGNUM)
1432 /* Handle: addi sp, sp, -i
1433 or: addiw sp, sp, -i */
1434 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1435 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1437 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
1439 else if ((insn.opcode () == riscv_insn::SW
1440 || insn.opcode () == riscv_insn::SD)
1441 && (insn.rs1 () == RISCV_SP_REGNUM
1442 || insn.rs1 () == RISCV_FP_REGNUM))
1444 /* Handle: sw reg, offset(sp)
1445 or: sd reg, offset(sp)
1446 or: sw reg, offset(s0)
1447 or: sd reg, offset(s0) */
1448 /* Instruction storing a register onto the stack. */
1449 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1450 gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
1451 stack.store (pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ()),
1452 (insn.opcode () == riscv_insn::SW ? 4 : 8),
1455 else if (insn.opcode () == riscv_insn::ADDI
1456 && insn.rd () == RISCV_FP_REGNUM
1457 && insn.rs1 () == RISCV_SP_REGNUM)
1459 /* Handle: addi s0, sp, size */
1460 /* Instructions setting up the frame pointer. */
1461 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1462 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1464 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
1466 else if ((insn.opcode () == riscv_insn::ADD
1467 || insn.opcode () == riscv_insn::ADDW)
1468 && insn.rd () == RISCV_FP_REGNUM
1469 && insn.rs1 () == RISCV_SP_REGNUM
1470 && insn.rs2 () == RISCV_ZERO_REGNUM)
1472 /* Handle: add s0, sp, 0
1473 or: addw s0, sp, 0 */
1474 /* Instructions setting up the frame pointer. */
1475 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1476 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1477 regs[insn.rd ()] = pv_add_constant (regs[insn.rs1 ()], 0);
1479 else if ((insn.opcode () == riscv_insn::ADDI
1480 && insn.rd () == RISCV_ZERO_REGNUM
1481 && insn.rs1 () == RISCV_ZERO_REGNUM
1482 && insn.imm_signed () == 0))
1484 /* Handle: add x0, x0, 0 (NOP) */
1486 else if (insn.opcode () == riscv_insn::AUIPC)
1488 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1489 regs[insn.rd ()] = pv_constant (cur_pc + insn.imm_signed ());
1491 else if (insn.opcode () == riscv_insn::LUI)
1493 /* Handle: lui REG, n
1494 Where REG is not gp register. */
1495 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1496 regs[insn.rd ()] = pv_constant (insn.imm_signed ());
1498 else if (insn.opcode () == riscv_insn::ADDI)
1500 /* Handle: addi REG1, REG2, IMM */
1501 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1502 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1504 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
1506 else if (insn.opcode () == riscv_insn::ADD)
1508 /* Handle: addi REG1, REG2, IMM */
1509 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1510 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1511 gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
1512 regs[insn.rd ()] = pv_add (regs[insn.rs1 ()], regs[insn.rs2 ()]);
1516 end_prologue_addr = cur_pc;
1521 if (end_prologue_addr == 0)
1522 end_prologue_addr = cur_pc;
1524 if (riscv_debug_unwinder)
1525 fprintf_unfiltered (gdb_stdlog, "End of prologue at %s\n",
1526 core_addr_to_string (end_prologue_addr));
1530 /* Figure out if it is a frame pointer or just a stack pointer. Also
1531 the offset held in the pv_t is from the original register value to
1532 the current value, which for a grows down stack means a negative
1533 value. The FRAME_BASE_OFFSET is the negation of this, how to get
1534 from the current value to the original value. */
1535 if (pv_is_register (regs[RISCV_FP_REGNUM], RISCV_SP_REGNUM))
1537 cache->frame_base_reg = RISCV_FP_REGNUM;
1538 cache->frame_base_offset = -regs[RISCV_FP_REGNUM].k;
1542 cache->frame_base_reg = RISCV_SP_REGNUM;
1543 cache->frame_base_offset = -regs[RISCV_SP_REGNUM].k;
1546 /* Assign offset from old SP to all saved registers. As we don't
1547 have the previous value for the frame base register at this
1548 point, we store the offset as the address in the trad_frame, and
1549 then convert this to an actual address later. */
1550 for (int i = 0; i <= RISCV_NUM_INTEGER_REGS; i++)
1553 if (stack.find_reg (gdbarch, i, &offset))
1555 if (riscv_debug_unwinder)
1556 fprintf_unfiltered (gdb_stdlog,
1557 "Register $%s at stack offset %ld\n",
1558 gdbarch_register_name (gdbarch, i),
1560 trad_frame_set_addr (cache->regs, i, offset);
1565 return end_prologue_addr;
1568 /* Implement the riscv_skip_prologue gdbarch method. */
1571 riscv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1573 CORE_ADDR func_addr;
1575 /* See if we can determine the end of the prologue via the symbol
1576 table. If so, then return either PC, or the PC after the
1577 prologue, whichever is greater. */
1578 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1580 CORE_ADDR post_prologue_pc
1581 = skip_prologue_using_sal (gdbarch, func_addr);
1583 if (post_prologue_pc != 0)
1584 return std::max (pc, post_prologue_pc);
1587 /* Can't determine prologue from the symbol table, need to examine
1588 instructions. Pass -1 for the end address to indicate the prologue
1589 scanner can scan as far as it needs to find the end of the prologue. */
1590 return riscv_scan_prologue (gdbarch, pc, ((CORE_ADDR) -1), NULL);
1593 /* Implement the gdbarch push dummy code callback. */
1596 riscv_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
1597 CORE_ADDR funaddr, struct value **args, int nargs,
1598 struct type *value_type, CORE_ADDR *real_pc,
1599 CORE_ADDR *bp_addr, struct regcache *regcache)
1601 /* Allocate space for a breakpoint, and keep the stack correctly
1609 /* Compute the alignment of the type T. Used while setting up the
1610 arguments for a dummy call. */
1613 riscv_type_alignment (struct type *t)
1615 t = check_typedef (t);
1616 switch (TYPE_CODE (t))
1619 error (_("Could not compute alignment of type"));
1621 case TYPE_CODE_RVALUE_REF:
1623 case TYPE_CODE_ENUM:
1627 case TYPE_CODE_CHAR:
1628 case TYPE_CODE_BOOL:
1629 return TYPE_LENGTH (t);
1631 case TYPE_CODE_ARRAY:
1632 case TYPE_CODE_COMPLEX:
1633 return riscv_type_alignment (TYPE_TARGET_TYPE (t));
1635 case TYPE_CODE_STRUCT:
1636 case TYPE_CODE_UNION:
1641 for (i = 0; i < TYPE_NFIELDS (t); ++i)
1643 if (TYPE_FIELD_LOC_KIND (t, i) == FIELD_LOC_KIND_BITPOS)
1645 int a = riscv_type_alignment (TYPE_FIELD_TYPE (t, i));
1655 /* Holds information about a single argument either being passed to an
1656 inferior function, or returned from an inferior function. This includes
1657 information about the size, type, etc of the argument, and also
1658 information about how the argument will be passed (or returned). */
1660 struct riscv_arg_info
1662 /* Contents of the argument. */
1663 const gdb_byte *contents;
1665 /* Length of argument. */
1668 /* Alignment required for an argument of this type. */
1671 /* The type for this argument. */
1674 /* Each argument can have either 1 or 2 locations assigned to it. Each
1675 location describes where part of the argument will be placed. The
1676 second location is valid based on the LOC_TYPE and C_LENGTH fields
1677 of the first location (which is always valid). */
1680 /* What type of location this is. */
1683 /* Argument passed in a register. */
1686 /* Argument passed as an on stack argument. */
1689 /* Argument passed by reference. The second location is always
1690 valid for a BY_REF argument, and describes where the address
1691 of the BY_REF argument should be placed. */
1695 /* Information that depends on the location type. */
1698 /* Which register number to use. */
1701 /* The offset into the stack region. */
1705 /* The length of contents covered by this location. If this is less
1706 than the total length of the argument, then the second location
1707 will be valid, and will describe where the rest of the argument
1711 /* The offset within CONTENTS for this part of the argument. Will
1712 always be 0 for the first part. For the second part of the
1713 argument, this might be the C_LENGTH value of the first part,
1714 however, if we are passing a structure in two registers, and there's
1715 is padding between the first and second field, then this offset
1716 might be greater than the length of the first argument part. When
1717 the second argument location is not holding part of the argument
1718 value, but is instead holding the address of a reference argument,
1719 then this offset will be set to 0. */
1724 /* Information about a set of registers being used for passing arguments as
1725 part of a function call. The register set must be numerically
1726 sequential from NEXT_REGNUM to LAST_REGNUM. The register set can be
1727 disabled from use by setting NEXT_REGNUM greater than LAST_REGNUM. */
1729 struct riscv_arg_reg
1731 riscv_arg_reg (int first, int last)
1732 : next_regnum (first),
1738 /* The GDB register number to use in this set. */
1741 /* The last GDB register number to use in this set. */
1745 /* Arguments can be passed as on stack arguments, or by reference. The
1746 on stack arguments must be in a continuous region starting from $sp,
1747 while the by reference arguments can be anywhere, but we'll put them
1748 on the stack after (at higher address) the on stack arguments.
1750 This might not be the right approach to take. The ABI is clear that
1751 an argument passed by reference can be modified by the callee, which
1752 us placing the argument (temporarily) onto the stack will not achieve
1753 (changes will be lost). There's also the possibility that very large
1754 arguments could overflow the stack.
1756 This struct is used to track offset into these two areas for where
1757 arguments are to be placed. */
1758 struct riscv_memory_offsets
1760 riscv_memory_offsets ()
1767 /* Offset into on stack argument area. */
1770 /* Offset into the pass by reference area. */
1774 /* Holds information about where arguments to a call will be placed. This
1775 is updated as arguments are added onto the call, and can be used to
1776 figure out where the next argument should be placed. */
1778 struct riscv_call_info
1780 riscv_call_info (struct gdbarch *gdbarch)
1781 : int_regs (RISCV_A0_REGNUM, RISCV_A0_REGNUM + 7),
1782 float_regs (RISCV_FA0_REGNUM, RISCV_FA0_REGNUM + 7)
1784 xlen = riscv_isa_xlen (gdbarch);
1785 flen = riscv_isa_flen (gdbarch);
1787 /* Disable use of floating point registers if needed. */
1788 if (!riscv_has_fp_abi (gdbarch))
1789 float_regs.next_regnum = float_regs.last_regnum + 1;
1792 /* Track the memory areas used for holding in-memory arguments to a
1794 struct riscv_memory_offsets memory;
1796 /* Holds information about the next integer register to use for passing
1798 struct riscv_arg_reg int_regs;
1800 /* Holds information about the next floating point register to use for
1801 passing an argument. */
1802 struct riscv_arg_reg float_regs;
1804 /* The XLEN and FLEN are copied in to this structure for convenience, and
1805 are just the results of calling RISCV_ISA_XLEN and RISCV_ISA_FLEN. */
1810 /* Return the number of registers available for use as parameters in the
1811 register set REG. Returned value can be 0 or more. */
1814 riscv_arg_regs_available (struct riscv_arg_reg *reg)
1816 if (reg->next_regnum > reg->last_regnum)
1819 return (reg->last_regnum - reg->next_regnum + 1);
1822 /* If there is at least one register available in the register set REG then
1823 the next register from REG is assigned to LOC and the length field of
1824 LOC is updated to LENGTH. The register set REG is updated to indicate
1825 that the assigned register is no longer available and the function
1828 If there are no registers available in REG then the function returns
1829 false, and LOC and REG are unchanged. */
1832 riscv_assign_reg_location (struct riscv_arg_info::location *loc,
1833 struct riscv_arg_reg *reg,
1834 int length, int offset)
1836 if (reg->next_regnum <= reg->last_regnum)
1838 loc->loc_type = riscv_arg_info::location::in_reg;
1839 loc->loc_data.regno = reg->next_regnum;
1841 loc->c_length = length;
1842 loc->c_offset = offset;
1849 /* Assign LOC a location as the next stack parameter, and update MEMORY to
1850 record that an area of stack has been used to hold the parameter
1853 The length field of LOC is updated to LENGTH, the length of the
1854 parameter being stored, and ALIGN is the alignment required by the
1855 parameter, which will affect how memory is allocated out of MEMORY. */
1858 riscv_assign_stack_location (struct riscv_arg_info::location *loc,
1859 struct riscv_memory_offsets *memory,
1860 int length, int align)
1862 loc->loc_type = riscv_arg_info::location::on_stack;
1864 = align_up (memory->arg_offset, align);
1865 loc->loc_data.offset = memory->arg_offset;
1866 memory->arg_offset += length;
1867 loc->c_length = length;
1869 /* Offset is always 0, either we're the first location part, in which
1870 case we're reading content from the start of the argument, or we're
1871 passing the address of a reference argument, so 0. */
1875 /* Update AINFO, which describes an argument that should be passed or
1876 returned using the integer ABI. The argloc fields within AINFO are
1877 updated to describe the location in which the argument will be passed to
1878 a function, or returned from a function.
1880 The CINFO structure contains the ongoing call information, the holds
1881 information such as which argument registers are remaining to be
1882 assigned to parameter, and how much memory has been used by parameters
1885 By examining the state of CINFO a suitable location can be selected,
1886 and assigned to AINFO. */
1889 riscv_call_arg_scalar_int (struct riscv_arg_info *ainfo,
1890 struct riscv_call_info *cinfo)
1892 if (ainfo->length > (2 * cinfo->xlen))
1894 /* Argument is going to be passed by reference. */
1895 ainfo->argloc[0].loc_type
1896 = riscv_arg_info::location::by_ref;
1897 cinfo->memory.ref_offset
1898 = align_up (cinfo->memory.ref_offset, ainfo->align);
1899 ainfo->argloc[0].loc_data.offset = cinfo->memory.ref_offset;
1900 cinfo->memory.ref_offset += ainfo->length;
1901 ainfo->argloc[0].c_length = ainfo->length;
1903 /* The second location for this argument is given over to holding the
1904 address of the by-reference data. Pass 0 for the offset as this
1905 is not part of the actual argument value. */
1906 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1909 riscv_assign_stack_location (&ainfo->argloc[1],
1910 &cinfo->memory, cinfo->xlen,
1915 int len = (ainfo->length > cinfo->xlen) ? cinfo->xlen : ainfo->length;
1917 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1918 &cinfo->int_regs, len, 0))
1919 riscv_assign_stack_location (&ainfo->argloc[0],
1920 &cinfo->memory, len, ainfo->align);
1922 if (len < ainfo->length)
1924 len = ainfo->length - len;
1925 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1926 &cinfo->int_regs, len,
1928 riscv_assign_stack_location (&ainfo->argloc[1],
1929 &cinfo->memory, len, cinfo->xlen);
1934 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
1935 is being passed with the floating point ABI. */
1938 riscv_call_arg_scalar_float (struct riscv_arg_info *ainfo,
1939 struct riscv_call_info *cinfo)
1941 if (ainfo->length > cinfo->flen)
1942 return riscv_call_arg_scalar_int (ainfo, cinfo);
1945 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1948 return riscv_call_arg_scalar_int (ainfo, cinfo);
1952 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
1953 is a complex floating point argument, and is therefore handled
1954 differently to other argument types. */
1957 riscv_call_arg_complex_float (struct riscv_arg_info *ainfo,
1958 struct riscv_call_info *cinfo)
1960 if (ainfo->length <= (2 * cinfo->flen)
1961 && riscv_arg_regs_available (&cinfo->float_regs) >= 2)
1964 int len = ainfo->length / 2;
1966 result = riscv_assign_reg_location (&ainfo->argloc[0],
1967 &cinfo->float_regs, len, len);
1968 gdb_assert (result);
1970 result = riscv_assign_reg_location (&ainfo->argloc[1],
1971 &cinfo->float_regs, len, len);
1972 gdb_assert (result);
1975 return riscv_call_arg_scalar_int (ainfo, cinfo);
1978 /* A structure used for holding information about a structure type within
1979 the inferior program. The RiscV ABI has special rules for handling some
1980 structures with a single field or with two fields. The counting of
1981 fields here is done after flattening out all nested structures. */
1983 class riscv_struct_info
1986 riscv_struct_info ()
1987 : m_number_of_fields (0),
1988 m_types { nullptr, nullptr }
1993 /* Analyse TYPE descending into nested structures, count the number of
1994 scalar fields and record the types of the first two fields found. */
1995 void analyse (struct type *type);
1997 /* The number of scalar fields found in the analysed type. This is
1998 currently only accurate if the value returned is 0, 1, or 2 as the
1999 analysis stops counting when the number of fields is 3. This is
2000 because the RiscV ABI only has special cases for 1 or 2 fields,
2001 anything else we just don't care about. */
2002 int number_of_fields () const
2003 { return m_number_of_fields; }
2005 /* Return the type for scalar field INDEX within the analysed type. Will
2006 return nullptr if there is no field at that index. Only INDEX values
2007 0 and 1 can be requested as the RiscV ABI only has special cases for
2008 structures with 1 or 2 fields. */
2009 struct type *field_type (int index) const
2011 gdb_assert (index < (sizeof (m_types) / sizeof (m_types[0])));
2012 return m_types[index];
2016 /* The number of scalar fields found within the structure after recursing
2017 into nested structures. */
2018 int m_number_of_fields;
2020 /* The types of the first two scalar fields found within the structure
2021 after recursing into nested structures. */
2022 struct type *m_types[2];
2025 /* Analyse TYPE descending into nested structures, count the number of
2026 scalar fields and record the types of the first two fields found. */
2029 riscv_struct_info::analyse (struct type *type)
2031 unsigned int count = TYPE_NFIELDS (type);
2034 for (i = 0; i < count; ++i)
2036 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2039 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2040 field_type = check_typedef (field_type);
2042 switch (TYPE_CODE (field_type))
2044 case TYPE_CODE_STRUCT:
2045 analyse (field_type);
2049 /* RiscV only flattens out structures. Anything else does not
2050 need to be flattened, we just record the type, and when we
2051 look at the analysis results we'll realise this is not a
2052 structure we can special case, and pass the structure in
2054 if (m_number_of_fields < 2)
2055 m_types[m_number_of_fields] = field_type;
2056 m_number_of_fields++;
2060 /* RiscV only has special handling for structures with 1 or 2 scalar
2061 fields, any more than that and the structure is just passed in
2062 memory. We can safely drop out early when we find 3 or more
2065 if (m_number_of_fields > 2)
2070 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
2071 is a structure. Small structures on RiscV have some special case
2072 handling in order that the structure might be passed in register.
2073 Larger structures are passed in memory. After assigning location
2074 information to AINFO, CINFO will have been updated. */
2077 riscv_call_arg_struct (struct riscv_arg_info *ainfo,
2078 struct riscv_call_info *cinfo)
2080 if (riscv_arg_regs_available (&cinfo->float_regs) >= 1)
2082 struct riscv_struct_info sinfo;
2084 sinfo.analyse (ainfo->type);
2085 if (sinfo.number_of_fields () == 1
2086 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_COMPLEX)
2088 gdb_assert (TYPE_LENGTH (ainfo->type)
2089 == TYPE_LENGTH (sinfo.field_type (0)));
2090 return riscv_call_arg_complex_float (ainfo, cinfo);
2093 if (sinfo.number_of_fields () == 1
2094 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT)
2096 gdb_assert (TYPE_LENGTH (ainfo->type)
2097 == TYPE_LENGTH (sinfo.field_type (0)));
2098 return riscv_call_arg_scalar_float (ainfo, cinfo);
2101 if (sinfo.number_of_fields () == 2
2102 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT
2103 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->flen
2104 && TYPE_CODE (sinfo.field_type (1)) == TYPE_CODE_FLT
2105 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->flen
2106 && riscv_arg_regs_available (&cinfo->float_regs) >= 2)
2108 int len0, len1, offset;
2110 gdb_assert (TYPE_LENGTH (ainfo->type) <= (2 * cinfo->flen));
2112 len0 = TYPE_LENGTH (sinfo.field_type (0));
2113 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2114 &cinfo->float_regs, len0, 0))
2115 error (_("failed during argument setup"));
2117 len1 = TYPE_LENGTH (sinfo.field_type (1));
2118 offset = align_up (len0, riscv_type_alignment (sinfo.field_type (1)));
2119 gdb_assert (len1 <= (TYPE_LENGTH (ainfo->type)
2120 - TYPE_LENGTH (sinfo.field_type (0))));
2122 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2125 error (_("failed during argument setup"));
2129 if (sinfo.number_of_fields () == 2
2130 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
2131 && (TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT
2132 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->flen
2133 && is_integral_type (sinfo.field_type (1))
2134 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->xlen))
2136 int len0, len1, offset;
2138 gdb_assert (TYPE_LENGTH (ainfo->type)
2139 <= (cinfo->flen + cinfo->xlen));
2141 len0 = TYPE_LENGTH (sinfo.field_type (0));
2142 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2143 &cinfo->float_regs, len0, 0))
2144 error (_("failed during argument setup"));
2146 len1 = TYPE_LENGTH (sinfo.field_type (1));
2147 offset = align_up (len0, riscv_type_alignment (sinfo.field_type (1)));
2148 gdb_assert (len1 <= cinfo->xlen);
2149 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2150 &cinfo->int_regs, len1, offset))
2151 error (_("failed during argument setup"));
2155 if (sinfo.number_of_fields () == 2
2156 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
2157 && (is_integral_type (sinfo.field_type (0))
2158 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->xlen
2159 && TYPE_CODE (sinfo.field_type (1)) == TYPE_CODE_FLT
2160 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->flen))
2162 int len0, len1, offset;
2164 gdb_assert (TYPE_LENGTH (ainfo->type)
2165 <= (cinfo->flen + cinfo->xlen));
2167 len0 = TYPE_LENGTH (sinfo.field_type (0));
2168 len1 = TYPE_LENGTH (sinfo.field_type (1));
2169 offset = align_up (len0, riscv_type_alignment (sinfo.field_type (1)));
2171 gdb_assert (len0 <= cinfo->xlen);
2172 gdb_assert (len1 <= cinfo->flen);
2174 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2175 &cinfo->int_regs, len0, 0))
2176 error (_("failed during argument setup"));
2178 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2181 error (_("failed during argument setup"));
2187 /* Non of the structure flattening cases apply, so we just pass using
2189 ainfo->length = align_up (ainfo->length, cinfo->xlen);
2190 riscv_call_arg_scalar_int (ainfo, cinfo);
2193 /* Assign a location to call (or return) argument AINFO, the location is
2194 selected from CINFO which holds information about what call argument
2195 locations are available for use next. The TYPE is the type of the
2196 argument being passed, this information is recorded into AINFO (along
2197 with some additional information derived from the type).
2199 After assigning a location to AINFO, CINFO will have been updated. */
2202 riscv_arg_location (struct gdbarch *gdbarch,
2203 struct riscv_arg_info *ainfo,
2204 struct riscv_call_info *cinfo,
2208 ainfo->length = TYPE_LENGTH (ainfo->type);
2209 ainfo->align = riscv_type_alignment (ainfo->type);
2210 ainfo->contents = nullptr;
2212 switch (TYPE_CODE (ainfo->type))
2215 case TYPE_CODE_BOOL:
2216 case TYPE_CODE_CHAR:
2217 case TYPE_CODE_RANGE:
2218 case TYPE_CODE_ENUM:
2220 if (ainfo->length <= cinfo->xlen)
2222 ainfo->type = builtin_type (gdbarch)->builtin_long;
2223 ainfo->length = cinfo->xlen;
2225 else if (ainfo->length <= (2 * cinfo->xlen))
2227 ainfo->type = builtin_type (gdbarch)->builtin_long_long;
2228 ainfo->length = 2 * cinfo->xlen;
2231 /* Recalculate the alignment requirement. */
2232 ainfo->align = riscv_type_alignment (ainfo->type);
2233 riscv_call_arg_scalar_int (ainfo, cinfo);
2237 riscv_call_arg_scalar_float (ainfo, cinfo);
2240 case TYPE_CODE_COMPLEX:
2241 riscv_call_arg_complex_float (ainfo, cinfo);
2244 case TYPE_CODE_STRUCT:
2245 riscv_call_arg_struct (ainfo, cinfo);
2249 riscv_call_arg_scalar_int (ainfo, cinfo);
2254 /* Used for printing debug information about the call argument location in
2255 INFO to STREAM. The addresses in SP_REFS and SP_ARGS are the base
2256 addresses for the location of pass-by-reference and
2257 arguments-on-the-stack memory areas. */
2260 riscv_print_arg_location (ui_file *stream, struct gdbarch *gdbarch,
2261 struct riscv_arg_info *info,
2262 CORE_ADDR sp_refs, CORE_ADDR sp_args)
2264 fprintf_unfiltered (stream, "type: '%s', length: 0x%x, alignment: 0x%x",
2265 TYPE_SAFE_NAME (info->type), info->length, info->align);
2266 switch (info->argloc[0].loc_type)
2268 case riscv_arg_info::location::in_reg:
2270 (stream, ", register %s",
2271 gdbarch_register_name (gdbarch, info->argloc[0].loc_data.regno));
2272 if (info->argloc[0].c_length < info->length)
2274 switch (info->argloc[1].loc_type)
2276 case riscv_arg_info::location::in_reg:
2278 (stream, ", register %s",
2279 gdbarch_register_name (gdbarch,
2280 info->argloc[1].loc_data.regno));
2283 case riscv_arg_info::location::on_stack:
2284 fprintf_unfiltered (stream, ", on stack at offset 0x%x",
2285 info->argloc[1].loc_data.offset);
2288 case riscv_arg_info::location::by_ref:
2290 /* The second location should never be a reference, any
2291 argument being passed by reference just places its address
2292 in the first location and is done. */
2293 error (_("invalid argument location"));
2297 if (info->argloc[1].c_offset > info->argloc[0].c_length)
2298 fprintf_unfiltered (stream, " (offset 0x%x)",
2299 info->argloc[1].c_offset);
2303 case riscv_arg_info::location::on_stack:
2304 fprintf_unfiltered (stream, ", on stack at offset 0x%x",
2305 info->argloc[0].loc_data.offset);
2308 case riscv_arg_info::location::by_ref:
2310 (stream, ", by reference, data at offset 0x%x (%s)",
2311 info->argloc[0].loc_data.offset,
2312 core_addr_to_string (sp_refs + info->argloc[0].loc_data.offset));
2313 if (info->argloc[1].loc_type
2314 == riscv_arg_info::location::in_reg)
2316 (stream, ", address in register %s",
2317 gdbarch_register_name (gdbarch, info->argloc[1].loc_data.regno));
2320 gdb_assert (info->argloc[1].loc_type
2321 == riscv_arg_info::location::on_stack);
2323 (stream, ", address on stack at offset 0x%x (%s)",
2324 info->argloc[1].loc_data.offset,
2325 core_addr_to_string (sp_args + info->argloc[1].loc_data.offset));
2330 gdb_assert_not_reached (_("unknown argument location type"));
2334 /* Implement the push dummy call gdbarch callback. */
2337 riscv_push_dummy_call (struct gdbarch *gdbarch,
2338 struct value *function,
2339 struct regcache *regcache,
2342 struct value **args,
2345 CORE_ADDR struct_addr)
2348 CORE_ADDR sp_args, sp_refs;
2349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2351 struct riscv_arg_info *arg_info =
2352 (struct riscv_arg_info *) alloca (nargs * sizeof (struct riscv_arg_info));
2354 struct riscv_call_info call_info (gdbarch);
2358 /* We'll use register $a0 if we're returning a struct. */
2360 ++call_info.int_regs.next_regnum;
2362 for (i = 0; i < nargs; ++i)
2364 struct value *arg_value;
2365 struct type *arg_type;
2366 struct riscv_arg_info *info = &arg_info[i];
2368 arg_value = args[i];
2369 arg_type = check_typedef (value_type (arg_value));
2371 riscv_arg_location (gdbarch, info, &call_info, arg_type);
2373 if (info->type != arg_type)
2374 arg_value = value_cast (info->type, arg_value);
2375 info->contents = value_contents (arg_value);
2378 /* Adjust the stack pointer and align it. */
2379 sp = sp_refs = align_down (sp - call_info.memory.ref_offset, SP_ALIGNMENT);
2380 sp = sp_args = align_down (sp - call_info.memory.arg_offset, SP_ALIGNMENT);
2382 if (riscv_debug_infcall > 0)
2384 fprintf_unfiltered (gdb_stdlog, "dummy call args:\n");
2385 fprintf_unfiltered (gdb_stdlog, ": floating point ABI %s in use\n",
2386 (riscv_has_fp_abi (gdbarch) ? "is" : "is not"));
2387 fprintf_unfiltered (gdb_stdlog, ": xlen: %d\n: flen: %d\n",
2388 call_info.xlen, call_info.flen);
2390 fprintf_unfiltered (gdb_stdlog,
2391 "[*] struct return pointer in register $A0\n");
2392 for (i = 0; i < nargs; ++i)
2394 struct riscv_arg_info *info = &arg_info [i];
2396 fprintf_unfiltered (gdb_stdlog, "[%2d] ", i);
2397 riscv_print_arg_location (gdb_stdlog, gdbarch, info, sp_refs, sp_args);
2398 fprintf_unfiltered (gdb_stdlog, "\n");
2400 if (call_info.memory.arg_offset > 0
2401 || call_info.memory.ref_offset > 0)
2403 fprintf_unfiltered (gdb_stdlog, " Original sp: %s\n",
2404 core_addr_to_string (osp));
2405 fprintf_unfiltered (gdb_stdlog, "Stack required (for args): 0x%x\n",
2406 call_info.memory.arg_offset);
2407 fprintf_unfiltered (gdb_stdlog, "Stack required (for refs): 0x%x\n",
2408 call_info.memory.ref_offset);
2409 fprintf_unfiltered (gdb_stdlog, " Stack allocated: %s\n",
2410 core_addr_to_string_nz (osp - sp));
2414 /* Now load the argument into registers, or onto the stack. */
2418 gdb_byte buf[sizeof (LONGEST)];
2420 store_unsigned_integer (buf, call_info.xlen, byte_order, struct_addr);
2421 regcache->cooked_write (RISCV_A0_REGNUM, buf);
2424 for (i = 0; i < nargs; ++i)
2427 int second_arg_length = 0;
2428 const gdb_byte *second_arg_data;
2429 struct riscv_arg_info *info = &arg_info [i];
2431 gdb_assert (info->length > 0);
2433 switch (info->argloc[0].loc_type)
2435 case riscv_arg_info::location::in_reg:
2437 gdb_byte tmp [sizeof (ULONGEST)];
2439 gdb_assert (info->argloc[0].c_length <= info->length);
2440 /* FP values in FP registers must be NaN-boxed. */
2441 if (riscv_is_fp_regno_p (info->argloc[0].loc_data.regno)
2442 && info->argloc[0].c_length < call_info.flen)
2443 memset (tmp, -1, sizeof (tmp));
2445 memset (tmp, 0, sizeof (tmp));
2446 memcpy (tmp, info->contents, info->argloc[0].c_length);
2447 regcache->cooked_write (info->argloc[0].loc_data.regno, tmp);
2449 ((info->argloc[0].c_length < info->length)
2450 ? info->argloc[1].c_length : 0);
2451 second_arg_data = info->contents + info->argloc[1].c_offset;
2455 case riscv_arg_info::location::on_stack:
2456 dst = sp_args + info->argloc[0].loc_data.offset;
2457 write_memory (dst, info->contents, info->length);
2458 second_arg_length = 0;
2461 case riscv_arg_info::location::by_ref:
2462 dst = sp_refs + info->argloc[0].loc_data.offset;
2463 write_memory (dst, info->contents, info->length);
2465 second_arg_length = call_info.xlen;
2466 second_arg_data = (gdb_byte *) &dst;
2470 gdb_assert_not_reached (_("unknown argument location type"));
2473 if (second_arg_length > 0)
2475 switch (info->argloc[1].loc_type)
2477 case riscv_arg_info::location::in_reg:
2479 gdb_byte tmp [sizeof (ULONGEST)];
2481 gdb_assert ((riscv_is_fp_regno_p (info->argloc[1].loc_data.regno)
2482 && second_arg_length <= call_info.flen)
2483 || second_arg_length <= call_info.xlen);
2484 /* FP values in FP registers must be NaN-boxed. */
2485 if (riscv_is_fp_regno_p (info->argloc[1].loc_data.regno)
2486 && second_arg_length < call_info.flen)
2487 memset (tmp, -1, sizeof (tmp));
2489 memset (tmp, 0, sizeof (tmp));
2490 memcpy (tmp, second_arg_data, second_arg_length);
2491 regcache->cooked_write (info->argloc[1].loc_data.regno, tmp);
2495 case riscv_arg_info::location::on_stack:
2499 arg_addr = sp_args + info->argloc[1].loc_data.offset;
2500 write_memory (arg_addr, second_arg_data, second_arg_length);
2504 case riscv_arg_info::location::by_ref:
2506 /* The second location should never be a reference, any
2507 argument being passed by reference just places its address
2508 in the first location and is done. */
2509 error (_("invalid argument location"));
2515 /* Set the dummy return value to bp_addr.
2516 A dummy breakpoint will be setup to execute the call. */
2518 if (riscv_debug_infcall > 0)
2519 fprintf_unfiltered (gdb_stdlog, ": writing $ra = %s\n",
2520 core_addr_to_string (bp_addr));
2521 regcache_cooked_write_unsigned (regcache, RISCV_RA_REGNUM, bp_addr);
2523 /* Finally, update the stack pointer. */
2525 if (riscv_debug_infcall > 0)
2526 fprintf_unfiltered (gdb_stdlog, ": writing $sp = %s\n",
2527 core_addr_to_string (sp));
2528 regcache_cooked_write_unsigned (regcache, RISCV_SP_REGNUM, sp);
2533 /* Implement the return_value gdbarch method. */
2535 static enum return_value_convention
2536 riscv_return_value (struct gdbarch *gdbarch,
2537 struct value *function,
2539 struct regcache *regcache,
2541 const gdb_byte *writebuf)
2543 struct riscv_call_info call_info (gdbarch);
2544 struct riscv_arg_info info;
2545 struct type *arg_type;
2547 arg_type = check_typedef (type);
2548 riscv_arg_location (gdbarch, &info, &call_info, arg_type);
2550 if (riscv_debug_infcall > 0)
2552 fprintf_unfiltered (gdb_stdlog, "riscv return value:\n");
2553 fprintf_unfiltered (gdb_stdlog, "[R] ");
2554 riscv_print_arg_location (gdb_stdlog, gdbarch, &info, 0, 0);
2555 fprintf_unfiltered (gdb_stdlog, "\n");
2558 if (readbuf != nullptr || writebuf != nullptr)
2562 switch (info.argloc[0].loc_type)
2564 /* Return value in register(s). */
2565 case riscv_arg_info::location::in_reg:
2567 regnum = info.argloc[0].loc_data.regno;
2570 regcache->cooked_read (regnum, readbuf);
2573 regcache->cooked_write (regnum, writebuf);
2575 /* A return value in register can have a second part in a
2577 if (info.argloc[0].c_length < info.length)
2579 switch (info.argloc[1].loc_type)
2581 case riscv_arg_info::location::in_reg:
2582 regnum = info.argloc[1].loc_data.regno;
2586 readbuf += info.argloc[1].c_offset;
2587 regcache->cooked_read (regnum, readbuf);
2592 writebuf += info.argloc[1].c_offset;
2593 regcache->cooked_write (regnum, writebuf);
2597 case riscv_arg_info::location::by_ref:
2598 case riscv_arg_info::location::on_stack:
2600 error (_("invalid argument location"));
2607 /* Return value by reference will have its address in A0. */
2608 case riscv_arg_info::location::by_ref:
2612 regcache_cooked_read_unsigned (regcache, RISCV_A0_REGNUM,
2614 if (readbuf != nullptr)
2615 read_memory (addr, readbuf, info.length);
2616 if (writebuf != nullptr)
2617 write_memory (addr, writebuf, info.length);
2621 case riscv_arg_info::location::on_stack:
2623 error (_("invalid argument location"));
2628 switch (info.argloc[0].loc_type)
2630 case riscv_arg_info::location::in_reg:
2631 return RETURN_VALUE_REGISTER_CONVENTION;
2632 case riscv_arg_info::location::by_ref:
2633 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2634 case riscv_arg_info::location::on_stack:
2636 error (_("invalid argument location"));
2640 /* Implement the frame_align gdbarch method. */
2643 riscv_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2645 return align_down (addr, 16);
2648 /* Implement the unwind_pc gdbarch method. */
2651 riscv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2653 return frame_unwind_register_unsigned (next_frame, RISCV_PC_REGNUM);
2656 /* Implement the unwind_sp gdbarch method. */
2659 riscv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2661 return frame_unwind_register_unsigned (next_frame, RISCV_SP_REGNUM);
2664 /* Implement the dummy_id gdbarch method. */
2666 static struct frame_id
2667 riscv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2669 return frame_id_build (get_frame_register_signed (this_frame, RISCV_SP_REGNUM),
2670 get_frame_pc (this_frame));
2673 /* Generate, or return the cached frame cache for the RiscV frame
2676 static struct riscv_unwind_cache *
2677 riscv_frame_cache (struct frame_info *this_frame, void **this_cache)
2679 CORE_ADDR pc, start_addr;
2680 struct riscv_unwind_cache *cache;
2681 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2684 if ((*this_cache) != NULL)
2685 return (struct riscv_unwind_cache *) *this_cache;
2687 cache = FRAME_OBSTACK_ZALLOC (struct riscv_unwind_cache);
2688 cache->regs = trad_frame_alloc_saved_regs (this_frame);
2689 (*this_cache) = cache;
2691 /* Scan the prologue, filling in the cache. */
2692 start_addr = get_frame_func (this_frame);
2693 pc = get_frame_pc (this_frame);
2694 riscv_scan_prologue (gdbarch, start_addr, pc, cache);
2696 /* We can now calculate the frame base address. */
2698 = (get_frame_register_signed (this_frame, cache->frame_base_reg)
2699 + cache->frame_base_offset);
2700 if (riscv_debug_unwinder)
2701 fprintf_unfiltered (gdb_stdlog, "Frame base is %s ($%s + 0x%x)\n",
2702 core_addr_to_string (cache->frame_base),
2703 gdbarch_register_name (gdbarch,
2704 cache->frame_base_reg),
2705 cache->frame_base_offset);
2707 /* The prologue scanner sets the address of registers stored to the stack
2708 as the offset of that register from the frame base. The prologue
2709 scanner doesn't know the actual frame base value, and so is unable to
2710 compute the exact address. We do now know the frame base value, so
2711 update the address of registers stored to the stack. */
2712 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2713 for (regno = 0; regno < numregs; ++regno)
2715 if (trad_frame_addr_p (cache->regs, regno))
2716 cache->regs[regno].addr += cache->frame_base;
2719 /* The previous $pc can be found wherever the $ra value can be found.
2720 The previous $ra value is gone, this would have been stored be the
2721 previous frame if required. */
2722 cache->regs[gdbarch_pc_regnum (gdbarch)] = cache->regs[RISCV_RA_REGNUM];
2723 trad_frame_set_unknown (cache->regs, RISCV_RA_REGNUM);
2725 /* Build the frame id. */
2726 cache->this_id = frame_id_build (cache->frame_base, start_addr);
2728 /* The previous $sp value is the frame base value. */
2729 trad_frame_set_value (cache->regs, gdbarch_sp_regnum (gdbarch),
2735 /* Implement the this_id callback for RiscV frame unwinder. */
2738 riscv_frame_this_id (struct frame_info *this_frame,
2739 void **prologue_cache,
2740 struct frame_id *this_id)
2742 struct riscv_unwind_cache *cache;
2744 cache = riscv_frame_cache (this_frame, prologue_cache);
2745 *this_id = cache->this_id;
2748 /* Implement the prev_register callback for RiscV frame unwinder. */
2750 static struct value *
2751 riscv_frame_prev_register (struct frame_info *this_frame,
2752 void **prologue_cache,
2755 struct riscv_unwind_cache *cache;
2757 cache = riscv_frame_cache (this_frame, prologue_cache);
2758 return trad_frame_get_prev_register (this_frame, cache->regs, regnum);
2761 /* Structure defining the RiscV normal frame unwind functions. Since we
2762 are the fallback unwinder (DWARF unwinder is used first), we use the
2763 default frame sniffer, which always accepts the frame. */
2765 static const struct frame_unwind riscv_frame_unwind =
2767 /*.type =*/ NORMAL_FRAME,
2768 /*.stop_reason =*/ default_frame_unwind_stop_reason,
2769 /*.this_id =*/ riscv_frame_this_id,
2770 /*.prev_register =*/ riscv_frame_prev_register,
2771 /*.unwind_data =*/ NULL,
2772 /*.sniffer =*/ default_frame_sniffer,
2773 /*.dealloc_cache =*/ NULL,
2774 /*.prev_arch =*/ NULL,
2777 /* Initialize the current architecture based on INFO. If possible,
2778 re-use an architecture from ARCHES, which is a list of
2779 architectures already created during this debugging session.
2781 Called e.g. at program startup, when reading a core file, and when
2782 reading a binary file. */
2784 static struct gdbarch *
2785 riscv_gdbarch_init (struct gdbarch_info info,
2786 struct gdbarch_list *arches)
2788 struct gdbarch *gdbarch;
2789 struct gdbarch_tdep *tdep;
2790 struct gdbarch_tdep tmp_tdep;
2793 /* Ideally, we'd like to get as much information from the target for
2794 things like register size, and whether the target has floating point
2795 hardware. However, there are some things that the target can't tell
2796 us, like, what ABI is being used.
2798 So, for now, we take as much information as possible from the ELF,
2799 including things like register size, and FP hardware support, along
2800 with information about the ABI.
2802 Information about this target is built up in TMP_TDEP, and then we
2803 look for an existing gdbarch in ARCHES that matches TMP_TDEP. If no
2804 match is found we'll create a new gdbarch and copy TMP_TDEP over. */
2805 memset (&tmp_tdep, 0, sizeof (tmp_tdep));
2807 if (info.abfd != NULL
2808 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2810 unsigned char eclass = elf_elfheader (info.abfd)->e_ident[EI_CLASS];
2811 int e_flags = elf_elfheader (info.abfd)->e_flags;
2813 if (eclass == ELFCLASS32)
2814 tmp_tdep.abi.fields.base_len = 1;
2815 else if (eclass == ELFCLASS64)
2816 tmp_tdep.abi.fields.base_len = 2;
2818 internal_error (__FILE__, __LINE__,
2819 _("unknown ELF header class %d"), eclass);
2821 if (e_flags & EF_RISCV_RVC)
2822 tmp_tdep.core_features |= (1 << ('C' - 'A'));
2824 if (e_flags & EF_RISCV_FLOAT_ABI_DOUBLE)
2826 tmp_tdep.abi.fields.float_abi = 2;
2827 tmp_tdep.core_features |= (1 << ('D' - 'A'));
2828 tmp_tdep.core_features |= (1 << ('F' - 'A'));
2830 else if (e_flags & EF_RISCV_FLOAT_ABI_SINGLE)
2832 tmp_tdep.abi.fields.float_abi = 1;
2833 tmp_tdep.core_features |= (1 << ('F' - 'A'));
2838 const struct bfd_arch_info *binfo = info.bfd_arch_info;
2840 if (binfo->bits_per_word == 32)
2841 tmp_tdep.abi.fields.base_len = 1;
2842 else if (binfo->bits_per_word == 64)
2843 tmp_tdep.abi.fields.base_len = 2;
2845 internal_error (__FILE__, __LINE__, _("unknown bits_per_word %d"),
2846 binfo->bits_per_word);
2849 /* Find a candidate among the list of pre-declared architectures. */
2850 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2852 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2853 if (gdbarch_tdep (arches->gdbarch)->abi.value == tmp_tdep.abi.value)
2854 return arches->gdbarch;
2856 /* None found, so create a new architecture from the information provided. */
2857 tdep = (struct gdbarch_tdep *) xmalloc (sizeof *tdep);
2858 gdbarch = gdbarch_alloc (&info, tdep);
2859 memcpy (tdep, &tmp_tdep, sizeof (tmp_tdep));
2861 /* Target data types. */
2862 set_gdbarch_short_bit (gdbarch, 16);
2863 set_gdbarch_int_bit (gdbarch, 32);
2864 set_gdbarch_long_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
2865 set_gdbarch_long_long_bit (gdbarch, 64);
2866 set_gdbarch_float_bit (gdbarch, 32);
2867 set_gdbarch_double_bit (gdbarch, 64);
2868 set_gdbarch_long_double_bit (gdbarch, 128);
2869 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2870 set_gdbarch_ptr_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
2871 set_gdbarch_char_signed (gdbarch, 0);
2873 /* Information about the target architecture. */
2874 set_gdbarch_return_value (gdbarch, riscv_return_value);
2875 set_gdbarch_breakpoint_kind_from_pc (gdbarch, riscv_breakpoint_kind_from_pc);
2876 set_gdbarch_sw_breakpoint_from_kind (gdbarch, riscv_sw_breakpoint_from_kind);
2877 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2879 /* Register architecture. */
2880 set_gdbarch_num_regs (gdbarch, RISCV_LAST_REGNUM + 1);
2881 set_gdbarch_sp_regnum (gdbarch, RISCV_SP_REGNUM);
2882 set_gdbarch_pc_regnum (gdbarch, RISCV_PC_REGNUM);
2883 set_gdbarch_ps_regnum (gdbarch, RISCV_FP_REGNUM);
2884 set_gdbarch_deprecated_fp_regnum (gdbarch, RISCV_FP_REGNUM);
2886 /* Functions to supply register information. */
2887 set_gdbarch_register_name (gdbarch, riscv_register_name);
2888 set_gdbarch_register_type (gdbarch, riscv_register_type);
2889 set_gdbarch_print_registers_info (gdbarch, riscv_print_registers_info);
2890 set_gdbarch_register_reggroup_p (gdbarch, riscv_register_reggroup_p);
2892 /* Functions to analyze frames. */
2893 set_gdbarch_skip_prologue (gdbarch, riscv_skip_prologue);
2894 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2895 set_gdbarch_frame_align (gdbarch, riscv_frame_align);
2897 /* Functions to access frame data. */
2898 set_gdbarch_unwind_pc (gdbarch, riscv_unwind_pc);
2899 set_gdbarch_unwind_sp (gdbarch, riscv_unwind_sp);
2901 /* Functions handling dummy frames. */
2902 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2903 set_gdbarch_push_dummy_code (gdbarch, riscv_push_dummy_code);
2904 set_gdbarch_push_dummy_call (gdbarch, riscv_push_dummy_call);
2905 set_gdbarch_dummy_id (gdbarch, riscv_dummy_id);
2907 /* Frame unwinders. Use DWARF debug info if available, otherwise use our own
2909 dwarf2_append_unwinders (gdbarch);
2910 frame_unwind_append_unwinder (gdbarch, &riscv_frame_unwind);
2912 for (i = 0; i < ARRAY_SIZE (riscv_register_aliases); ++i)
2913 user_reg_add (gdbarch, riscv_register_aliases[i].name,
2914 value_of_riscv_user_reg, &riscv_register_aliases[i].regnum);
2916 /* Hook in OS ABI-specific overrides, if they have been registered. */
2917 gdbarch_init_osabi (info, gdbarch);
2922 /* This decodes the current instruction and determines the address of the
2923 next instruction. */
2926 riscv_next_pc (struct regcache *regcache, CORE_ADDR pc)
2928 struct gdbarch *gdbarch = regcache->arch ();
2929 struct riscv_insn insn;
2932 insn.decode (gdbarch, pc);
2933 next_pc = pc + insn.length ();
2935 if (insn.opcode () == riscv_insn::JAL)
2936 next_pc = pc + insn.imm_signed ();
2937 else if (insn.opcode () == riscv_insn::JALR)
2940 regcache->cooked_read (insn.rs1 (), &source);
2941 next_pc = (source + insn.imm_signed ()) & ~(CORE_ADDR) 0x1;
2943 else if (insn.opcode () == riscv_insn::BEQ)
2946 regcache->cooked_read (insn.rs1 (), &src1);
2947 regcache->cooked_read (insn.rs2 (), &src2);
2949 next_pc = pc + insn.imm_signed ();
2951 else if (insn.opcode () == riscv_insn::BNE)
2954 regcache->cooked_read (insn.rs1 (), &src1);
2955 regcache->cooked_read (insn.rs2 (), &src2);
2957 next_pc = pc + insn.imm_signed ();
2959 else if (insn.opcode () == riscv_insn::BLT)
2962 regcache->cooked_read (insn.rs1 (), &src1);
2963 regcache->cooked_read (insn.rs2 (), &src2);
2965 next_pc = pc + insn.imm_signed ();
2967 else if (insn.opcode () == riscv_insn::BGE)
2970 regcache->cooked_read (insn.rs1 (), &src1);
2971 regcache->cooked_read (insn.rs2 (), &src2);
2973 next_pc = pc + insn.imm_signed ();
2975 else if (insn.opcode () == riscv_insn::BLTU)
2977 ULONGEST src1, src2;
2978 regcache->cooked_read (insn.rs1 (), &src1);
2979 regcache->cooked_read (insn.rs2 (), &src2);
2981 next_pc = pc + insn.imm_signed ();
2983 else if (insn.opcode () == riscv_insn::BGEU)
2985 ULONGEST src1, src2;
2986 regcache->cooked_read (insn.rs1 (), &src1);
2987 regcache->cooked_read (insn.rs2 (), &src2);
2989 next_pc = pc + insn.imm_signed ();
2995 /* We can't put a breakpoint in the middle of a lr/sc atomic sequence, so look
2996 for the end of the sequence and put the breakpoint there. */
2999 riscv_next_pc_atomic_sequence (struct regcache *regcache, CORE_ADDR pc,
3002 struct gdbarch *gdbarch = regcache->arch ();
3003 struct riscv_insn insn;
3004 CORE_ADDR cur_step_pc = pc;
3005 CORE_ADDR last_addr = 0;
3007 /* First instruction has to be a load reserved. */
3008 insn.decode (gdbarch, cur_step_pc);
3009 if (insn.opcode () != riscv_insn::LR)
3011 cur_step_pc = cur_step_pc + insn.length ();
3013 /* Next instruction should be branch to exit. */
3014 insn.decode (gdbarch, cur_step_pc);
3015 if (insn.opcode () != riscv_insn::BNE)
3017 last_addr = cur_step_pc + insn.imm_signed ();
3018 cur_step_pc = cur_step_pc + insn.length ();
3020 /* Next instruction should be store conditional. */
3021 insn.decode (gdbarch, cur_step_pc);
3022 if (insn.opcode () != riscv_insn::SC)
3024 cur_step_pc = cur_step_pc + insn.length ();
3026 /* Next instruction should be branch to start. */
3027 insn.decode (gdbarch, cur_step_pc);
3028 if (insn.opcode () != riscv_insn::BNE)
3030 if (pc != (cur_step_pc + insn.imm_signed ()))
3032 cur_step_pc = cur_step_pc + insn.length ();
3034 /* We should now be at the end of the sequence. */
3035 if (cur_step_pc != last_addr)
3038 *next_pc = cur_step_pc;
3042 /* This is called just before we want to resume the inferior, if we want to
3043 single-step it but there is no hardware or kernel single-step support. We
3044 find the target of the coming instruction and breakpoint it. */
3046 std::vector<CORE_ADDR>
3047 riscv_software_single_step (struct regcache *regcache)
3049 CORE_ADDR pc, next_pc;
3051 pc = regcache_read_pc (regcache);
3053 if (riscv_next_pc_atomic_sequence (regcache, pc, &next_pc))
3056 next_pc = riscv_next_pc (regcache, pc);
3062 _initialize_riscv_tdep (void)
3064 gdbarch_register (bfd_arch_riscv, riscv_gdbarch_init, NULL);
3066 /* Add root prefix command for all "set debug riscv" and "show debug
3068 add_prefix_cmd ("riscv", no_class, set_debug_riscv_command,
3069 _("RISC-V specific debug commands."),
3070 &setdebugriscvcmdlist, "set debug riscv ", 0,
3073 add_prefix_cmd ("riscv", no_class, show_debug_riscv_command,
3074 _("RISC-V specific debug commands."),
3075 &showdebugriscvcmdlist, "show debug riscv ", 0,
3078 add_setshow_zuinteger_cmd ("breakpoints", class_maintenance,
3079 &riscv_debug_breakpoints, _("\
3080 Set riscv breakpoint debugging."), _("\
3081 Show riscv breakpoint debugging."), _("\
3082 When non-zero, print debugging information for the riscv specific parts\n\
3083 of the breakpoint mechanism."),
3085 show_riscv_debug_variable,
3086 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
3088 add_setshow_zuinteger_cmd ("infcall", class_maintenance,
3089 &riscv_debug_infcall, _("\
3090 Set riscv inferior call debugging."), _("\
3091 Show riscv inferior call debugging."), _("\
3092 When non-zero, print debugging information for the riscv specific parts\n\
3093 of the inferior call mechanism."),
3095 show_riscv_debug_variable,
3096 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
3098 add_setshow_zuinteger_cmd ("unwinder", class_maintenance,
3099 &riscv_debug_unwinder, _("\
3100 Set riscv stack unwinding debugging."), _("\
3101 Show riscv stack unwinding debugging."), _("\
3102 When non-zero, print debugging information for the riscv specific parts\n\
3103 of the stack unwinding mechanism."),
3105 show_riscv_debug_variable,
3106 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
3108 /* Add root prefix command for all "set riscv" and "show riscv" commands. */
3109 add_prefix_cmd ("riscv", no_class, set_riscv_command,
3110 _("RISC-V specific commands."),
3111 &setriscvcmdlist, "set riscv ", 0, &setlist);
3113 add_prefix_cmd ("riscv", no_class, show_riscv_command,
3114 _("RISC-V specific commands."),
3115 &showriscvcmdlist, "show riscv ", 0, &showlist);
3118 use_compressed_breakpoints = AUTO_BOOLEAN_AUTO;
3119 add_setshow_auto_boolean_cmd ("use-compressed-breakpoints", no_class,
3120 &use_compressed_breakpoints,
3122 Set debugger's use of compressed breakpoints."), _(" \
3123 Show debugger's use of compressed breakpoints."), _("\
3124 Debugging compressed code requires compressed breakpoints to be used. If\n\
3125 left to 'auto' then gdb will use them if the existing instruction is a\n\
3126 compressed instruction. If that doesn't give the correct behavior, then\n\
3127 this option can be used."),
3129 show_use_compressed_breakpoints,