1 /* Target-dependent code for the RISC-V architecture, for GDB.
3 Copyright (C) 2018-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "arch-utils.h"
35 #include "riscv-tdep.h"
37 #include "reggroups.h"
38 #include "opcode/riscv.h"
39 #include "elf/riscv.h"
43 #include "frame-unwind.h"
44 #include "frame-base.h"
45 #include "trad-frame.h"
47 #include "floatformat.h"
49 #include "target-descriptions.h"
50 #include "dwarf2-frame.h"
51 #include "user-regs.h"
53 #include "common/common-defs.h"
54 #include "opcode/riscv-opc.h"
55 #include "cli/cli-decode.h"
56 #include "observable.h"
57 #include "prologue-value.h"
58 #include "arch/riscv.h"
60 /* The stack must be 16-byte aligned. */
61 #define SP_ALIGNMENT 16
63 /* The biggest alignment that the target supports. */
64 #define BIGGEST_ALIGNMENT 16
66 /* Define a series of is_XXX_insn functions to check if the value INSN
67 is an instance of instruction XXX. */
68 #define DECLARE_INSN(INSN_NAME, INSN_MATCH, INSN_MASK) \
69 static inline bool is_ ## INSN_NAME ## _insn (long insn) \
71 return (insn & INSN_MASK) == INSN_MATCH; \
73 #include "opcode/riscv-opc.h"
76 /* Cached information about a frame. */
78 struct riscv_unwind_cache
80 /* The register from which we can calculate the frame base. This is
81 usually $sp or $fp. */
84 /* The offset from the current value in register FRAME_BASE_REG to the
85 actual frame base address. */
86 int frame_base_offset;
88 /* Information about previous register values. */
89 struct trad_frame_saved_reg *regs;
91 /* The id for this frame. */
92 struct frame_id this_id;
94 /* The base (stack) address for this frame. This is the stack pointer
95 value on entry to this frame before any adjustments are made. */
99 /* RISC-V specific register group for CSRs. */
101 static reggroup *csr_reggroup = NULL;
103 /* A set of registers that we expect to find in a tdesc_feature. These
104 are use in RISCV_GDBARCH_INIT when processing the target description. */
106 struct riscv_register_feature
108 /* Information for a single register. */
111 /* The GDB register number for this register. */
114 /* List of names for this register. The first name in this list is the
115 preferred name, the name GDB should use when describing this
117 std::vector <const char *> names;
119 /* When true this register is required in this feature set. */
123 /* The name for this feature. This is the name used to find this feature
124 within the target description. */
127 /* List of all the registers that we expect that we might find in this
129 std::vector <struct register_info> registers;
132 /* The general x-registers feature set. */
134 static const struct riscv_register_feature riscv_xreg_feature =
136 "org.gnu.gdb.riscv.cpu",
138 { RISCV_ZERO_REGNUM + 0, { "zero", "x0" }, true },
139 { RISCV_ZERO_REGNUM + 1, { "ra", "x1" }, true },
140 { RISCV_ZERO_REGNUM + 2, { "sp", "x2" }, true },
141 { RISCV_ZERO_REGNUM + 3, { "gp", "x3" }, true },
142 { RISCV_ZERO_REGNUM + 4, { "tp", "x4" }, true },
143 { RISCV_ZERO_REGNUM + 5, { "t0", "x5" }, true },
144 { RISCV_ZERO_REGNUM + 6, { "t1", "x6" }, true },
145 { RISCV_ZERO_REGNUM + 7, { "t2", "x7" }, true },
146 { RISCV_ZERO_REGNUM + 8, { "fp", "x8", "s0" }, true },
147 { RISCV_ZERO_REGNUM + 9, { "s1", "x9" }, true },
148 { RISCV_ZERO_REGNUM + 10, { "a0", "x10" }, true },
149 { RISCV_ZERO_REGNUM + 11, { "a1", "x11" }, true },
150 { RISCV_ZERO_REGNUM + 12, { "a2", "x12" }, true },
151 { RISCV_ZERO_REGNUM + 13, { "a3", "x13" }, true },
152 { RISCV_ZERO_REGNUM + 14, { "a4", "x14" }, true },
153 { RISCV_ZERO_REGNUM + 15, { "a5", "x15" }, true },
154 { RISCV_ZERO_REGNUM + 16, { "a6", "x16" }, true },
155 { RISCV_ZERO_REGNUM + 17, { "a7", "x17" }, true },
156 { RISCV_ZERO_REGNUM + 18, { "s2", "x18" }, true },
157 { RISCV_ZERO_REGNUM + 19, { "s3", "x19" }, true },
158 { RISCV_ZERO_REGNUM + 20, { "s4", "x20" }, true },
159 { RISCV_ZERO_REGNUM + 21, { "s5", "x21" }, true },
160 { RISCV_ZERO_REGNUM + 22, { "s6", "x22" }, true },
161 { RISCV_ZERO_REGNUM + 23, { "s7", "x23" }, true },
162 { RISCV_ZERO_REGNUM + 24, { "s8", "x24" }, true },
163 { RISCV_ZERO_REGNUM + 25, { "s9", "x25" }, true },
164 { RISCV_ZERO_REGNUM + 26, { "s10", "x26" }, true },
165 { RISCV_ZERO_REGNUM + 27, { "s11", "x27" }, true },
166 { RISCV_ZERO_REGNUM + 28, { "t3", "x28" }, true },
167 { RISCV_ZERO_REGNUM + 29, { "t4", "x29" }, true },
168 { RISCV_ZERO_REGNUM + 30, { "t5", "x30" }, true },
169 { RISCV_ZERO_REGNUM + 31, { "t6", "x31" }, true },
170 { RISCV_ZERO_REGNUM + 32, { "pc" }, true }
174 /* The f-registers feature set. */
176 static const struct riscv_register_feature riscv_freg_feature =
178 "org.gnu.gdb.riscv.fpu",
180 { RISCV_FIRST_FP_REGNUM + 0, { "ft0", "f0" }, true },
181 { RISCV_FIRST_FP_REGNUM + 1, { "ft1", "f1" }, true },
182 { RISCV_FIRST_FP_REGNUM + 2, { "ft2", "f2" }, true },
183 { RISCV_FIRST_FP_REGNUM + 3, { "ft3", "f3" }, true },
184 { RISCV_FIRST_FP_REGNUM + 4, { "ft4", "f4" }, true },
185 { RISCV_FIRST_FP_REGNUM + 5, { "ft5", "f5" }, true },
186 { RISCV_FIRST_FP_REGNUM + 6, { "ft6", "f6" }, true },
187 { RISCV_FIRST_FP_REGNUM + 7, { "ft7", "f7" }, true },
188 { RISCV_FIRST_FP_REGNUM + 8, { "fs0", "f8" }, true },
189 { RISCV_FIRST_FP_REGNUM + 9, { "fs1", "f9" }, true },
190 { RISCV_FIRST_FP_REGNUM + 10, { "fa0", "f10" }, true },
191 { RISCV_FIRST_FP_REGNUM + 11, { "fa1", "f11" }, true },
192 { RISCV_FIRST_FP_REGNUM + 12, { "fa2", "f12" }, true },
193 { RISCV_FIRST_FP_REGNUM + 13, { "fa3", "f13" }, true },
194 { RISCV_FIRST_FP_REGNUM + 14, { "fa4", "f14" }, true },
195 { RISCV_FIRST_FP_REGNUM + 15, { "fa5", "f15" }, true },
196 { RISCV_FIRST_FP_REGNUM + 16, { "fa6", "f16" }, true },
197 { RISCV_FIRST_FP_REGNUM + 17, { "fa7", "f17" }, true },
198 { RISCV_FIRST_FP_REGNUM + 18, { "fs2", "f18" }, true },
199 { RISCV_FIRST_FP_REGNUM + 19, { "fs3", "f19" }, true },
200 { RISCV_FIRST_FP_REGNUM + 20, { "fs4", "f20" }, true },
201 { RISCV_FIRST_FP_REGNUM + 21, { "fs5", "f21" }, true },
202 { RISCV_FIRST_FP_REGNUM + 22, { "fs6", "f22" }, true },
203 { RISCV_FIRST_FP_REGNUM + 23, { "fs7", "f23" }, true },
204 { RISCV_FIRST_FP_REGNUM + 24, { "fs8", "f24" }, true },
205 { RISCV_FIRST_FP_REGNUM + 25, { "fs9", "f25" }, true },
206 { RISCV_FIRST_FP_REGNUM + 26, { "fs10", "f26" }, true },
207 { RISCV_FIRST_FP_REGNUM + 27, { "fs11", "f27" }, true },
208 { RISCV_FIRST_FP_REGNUM + 28, { "ft8", "f28" }, true },
209 { RISCV_FIRST_FP_REGNUM + 29, { "ft9", "f29" }, true },
210 { RISCV_FIRST_FP_REGNUM + 30, { "ft10", "f30" }, true },
211 { RISCV_FIRST_FP_REGNUM + 31, { "ft11", "f31" }, true },
213 { RISCV_CSR_FFLAGS_REGNUM, { "fflags" }, true },
214 { RISCV_CSR_FRM_REGNUM, { "frm" }, true },
215 { RISCV_CSR_FCSR_REGNUM, { "fcsr" }, true },
220 /* Set of virtual registers. These are not physical registers on the
221 hardware, but might be available from the target. These are not pseudo
222 registers, reading these really does result in a register read from the
223 target, it is just that there might not be a physical register backing
226 static const struct riscv_register_feature riscv_virtual_feature =
228 "org.gnu.gdb.riscv.virtual",
230 { RISCV_PRIV_REGNUM, { "priv" }, false }
234 /* Feature set for CSRs. This set is NOT constant as the register names
235 list for each register is not complete. The aliases are computed
236 during RISCV_CREATE_CSR_ALIASES. */
238 static struct riscv_register_feature riscv_csr_feature =
240 "org.gnu.gdb.riscv.csr",
242 #define DECLARE_CSR(NAME,VALUE) \
243 { RISCV_ ## VALUE ## _REGNUM, { # NAME }, false },
244 #include "opcode/riscv-opc.h"
249 /* Complete RISCV_CSR_FEATURE, building the CSR alias names and adding them
250 to the name list for each register. */
253 riscv_create_csr_aliases ()
255 for (auto ® : riscv_csr_feature.registers)
257 int csr_num = reg.regnum - RISCV_FIRST_CSR_REGNUM;
258 const char *alias = xstrprintf ("csr%d", csr_num);
259 reg.names.push_back (alias);
263 /* Controls whether we place compressed breakpoints or not. When in auto
264 mode GDB tries to determine if the target supports compressed
265 breakpoints, and uses them if it does. */
267 static enum auto_boolean use_compressed_breakpoints;
269 /* The show callback for 'show riscv use-compressed-breakpoints'. */
272 show_use_compressed_breakpoints (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c,
276 fprintf_filtered (file,
277 _("Debugger's use of compressed breakpoints is set "
281 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
283 static struct cmd_list_element *setriscvcmdlist = NULL;
284 static struct cmd_list_element *showriscvcmdlist = NULL;
286 /* The show callback for the 'show riscv' prefix command. */
289 show_riscv_command (const char *args, int from_tty)
291 help_list (showriscvcmdlist, "show riscv ", all_commands, gdb_stdout);
294 /* The set callback for the 'set riscv' prefix command. */
297 set_riscv_command (const char *args, int from_tty)
300 (_("\"set riscv\" must be followed by an appropriate subcommand.\n"));
301 help_list (setriscvcmdlist, "set riscv ", all_commands, gdb_stdout);
304 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
306 static struct cmd_list_element *setdebugriscvcmdlist = NULL;
307 static struct cmd_list_element *showdebugriscvcmdlist = NULL;
309 /* The show callback for the 'show debug riscv' prefix command. */
312 show_debug_riscv_command (const char *args, int from_tty)
314 help_list (showdebugriscvcmdlist, "show debug riscv ", all_commands, gdb_stdout);
317 /* The set callback for the 'set debug riscv' prefix command. */
320 set_debug_riscv_command (const char *args, int from_tty)
323 (_("\"set debug riscv\" must be followed by an appropriate subcommand.\n"));
324 help_list (setdebugriscvcmdlist, "set debug riscv ", all_commands, gdb_stdout);
327 /* The show callback for all 'show debug riscv VARNAME' variables. */
330 show_riscv_debug_variable (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
334 fprintf_filtered (file,
335 _("RiscV debug variable `%s' is set to: %s\n"),
339 /* When this is set to non-zero debugging information about breakpoint
340 kinds will be printed. */
342 static unsigned int riscv_debug_breakpoints = 0;
344 /* When this is set to non-zero debugging information about inferior calls
347 static unsigned int riscv_debug_infcall = 0;
349 /* When this is set to non-zero debugging information about stack unwinding
352 static unsigned int riscv_debug_unwinder = 0;
354 /* When this is set to non-zero debugging information about gdbarch
355 initialisation will be printed. */
357 static unsigned int riscv_debug_gdbarch = 0;
359 /* See riscv-tdep.h. */
362 riscv_isa_xlen (struct gdbarch *gdbarch)
364 return gdbarch_tdep (gdbarch)->isa_features.xlen;
367 /* See riscv-tdep.h. */
370 riscv_abi_xlen (struct gdbarch *gdbarch)
372 return gdbarch_tdep (gdbarch)->abi_features.xlen;
375 /* See riscv-tdep.h. */
378 riscv_isa_flen (struct gdbarch *gdbarch)
380 return gdbarch_tdep (gdbarch)->isa_features.flen;
383 /* See riscv-tdep.h. */
386 riscv_abi_flen (struct gdbarch *gdbarch)
388 return gdbarch_tdep (gdbarch)->abi_features.flen;
391 /* Return true if the target for GDBARCH has floating point hardware. */
394 riscv_has_fp_regs (struct gdbarch *gdbarch)
396 return (riscv_isa_flen (gdbarch) > 0);
399 /* Return true if GDBARCH is using any of the floating point hardware ABIs. */
402 riscv_has_fp_abi (struct gdbarch *gdbarch)
404 return gdbarch_tdep (gdbarch)->abi_features.flen > 0;
407 /* Return true if REGNO is a floating pointer register. */
410 riscv_is_fp_regno_p (int regno)
412 return (regno >= RISCV_FIRST_FP_REGNUM
413 && regno <= RISCV_LAST_FP_REGNUM);
416 /* Implement the breakpoint_kind_from_pc gdbarch method. */
419 riscv_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
421 if (use_compressed_breakpoints == AUTO_BOOLEAN_AUTO)
423 bool unaligned_p = false;
426 /* Some targets don't support unaligned reads. The address can only
427 be unaligned if the C extension is supported. So it is safe to
428 use a compressed breakpoint in this case. */
433 /* Read the opcode byte to determine the instruction length. If
434 the read fails this may be because we tried to set the
435 breakpoint at an invalid address, in this case we provide a
436 fake result which will give a breakpoint length of 4.
437 Hopefully when we try to actually insert the breakpoint we
438 will see a failure then too which will be reported to the
440 if (target_read_code (*pcptr, buf, 1) == -1)
442 read_code (*pcptr, buf, 1);
445 if (riscv_debug_breakpoints)
447 const char *bp = (unaligned_p || riscv_insn_length (buf[0]) == 2
448 ? "C.EBREAK" : "EBREAK");
450 fprintf_unfiltered (gdb_stdlog, "Using %s for breakpoint at %s ",
451 bp, paddress (gdbarch, *pcptr));
453 fprintf_unfiltered (gdb_stdlog, "(unaligned address)\n");
455 fprintf_unfiltered (gdb_stdlog, "(instruction length %d)\n",
456 riscv_insn_length (buf[0]));
458 if (unaligned_p || riscv_insn_length (buf[0]) == 2)
463 else if (use_compressed_breakpoints == AUTO_BOOLEAN_TRUE)
469 /* Implement the sw_breakpoint_from_kind gdbarch method. */
471 static const gdb_byte *
472 riscv_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
474 static const gdb_byte ebreak[] = { 0x73, 0x00, 0x10, 0x00, };
475 static const gdb_byte c_ebreak[] = { 0x02, 0x90 };
485 gdb_assert_not_reached (_("unhandled breakpoint kind"));
489 /* Callback function for user_reg_add. */
491 static struct value *
492 value_of_riscv_user_reg (struct frame_info *frame, const void *baton)
494 const int *reg_p = (const int *) baton;
495 return value_of_register (*reg_p, frame);
498 /* Implement the register_name gdbarch method. This is used instead of
499 the function supplied by calling TDESC_USE_REGISTERS so that we can
500 ensure the preferred names are offered. */
503 riscv_register_name (struct gdbarch *gdbarch, int regnum)
505 /* Lookup the name through the target description. If we get back NULL
506 then this is an unknown register. If we do get a name back then we
507 look up the registers preferred name below. */
508 const char *name = tdesc_register_name (gdbarch, regnum);
509 if (name == NULL || name[0] == '\0')
512 if (regnum >= RISCV_ZERO_REGNUM && regnum < RISCV_FIRST_FP_REGNUM)
514 gdb_assert (regnum < riscv_xreg_feature.registers.size ());
515 return riscv_xreg_feature.registers[regnum].names[0];
518 if (regnum >= RISCV_FIRST_FP_REGNUM && regnum <= RISCV_LAST_FP_REGNUM)
520 if (riscv_has_fp_regs (gdbarch))
522 regnum -= RISCV_FIRST_FP_REGNUM;
523 gdb_assert (regnum < riscv_freg_feature.registers.size ());
524 return riscv_freg_feature.registers[regnum].names[0];
530 /* Check that there's no gap between the set of registers handled above,
531 and the set of registers handled next. */
532 gdb_assert ((RISCV_LAST_FP_REGNUM + 1) == RISCV_FIRST_CSR_REGNUM);
534 if (regnum >= RISCV_FIRST_CSR_REGNUM && regnum <= RISCV_LAST_CSR_REGNUM)
536 #define DECLARE_CSR(NAME,VALUE) \
537 case RISCV_ ## VALUE ## _REGNUM: return # NAME;
541 #include "opcode/riscv-opc.h"
546 if (regnum == RISCV_PRIV_REGNUM)
549 /* It is possible that that the target provides some registers that GDB
550 is unaware of, in that case just return the NAME from the target
555 /* Construct a type for 64-bit FP registers. */
558 riscv_fpreg_d_type (struct gdbarch *gdbarch)
560 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
562 if (tdep->riscv_fpreg_d_type == nullptr)
564 const struct builtin_type *bt = builtin_type (gdbarch);
566 /* The type we're building is this: */
568 union __gdb_builtin_type_fpreg_d
577 t = arch_composite_type (gdbarch,
578 "__gdb_builtin_type_fpreg_d", TYPE_CODE_UNION);
579 append_composite_type_field (t, "float", bt->builtin_float);
580 append_composite_type_field (t, "double", bt->builtin_double);
582 TYPE_NAME (t) = "builtin_type_fpreg_d";
583 tdep->riscv_fpreg_d_type = t;
586 return tdep->riscv_fpreg_d_type;
589 /* Implement the register_type gdbarch method. This is installed as an
590 for the override setup by TDESC_USE_REGISTERS, for most registers we
591 delegate the type choice to the target description, but for a few
592 registers we try to improve the types if the target description has
593 taken a simplistic approach. */
596 riscv_register_type (struct gdbarch *gdbarch, int regnum)
598 struct type *type = tdesc_register_type (gdbarch, regnum);
599 int xlen = riscv_isa_xlen (gdbarch);
601 /* We want to perform some specific type "fixes" in cases where we feel
602 that we really can do better than the target description. For all
603 other cases we just return what the target description says. */
604 if (riscv_is_fp_regno_p (regnum))
606 /* This spots the case for RV64 where the double is defined as
607 either 'ieee_double' or 'float' (which is the generic name that
608 converts to 'double' on 64-bit). In these cases its better to
609 present the registers using a union type. */
610 int flen = riscv_isa_flen (gdbarch);
612 && TYPE_CODE (type) == TYPE_CODE_FLT
613 && TYPE_LENGTH (type) == flen
614 && (strcmp (TYPE_NAME (type), "builtin_type_ieee_double") == 0
615 || strcmp (TYPE_NAME (type), "double") == 0))
616 type = riscv_fpreg_d_type (gdbarch);
619 if ((regnum == gdbarch_pc_regnum (gdbarch)
620 || regnum == RISCV_RA_REGNUM
621 || regnum == RISCV_FP_REGNUM
622 || regnum == RISCV_SP_REGNUM
623 || regnum == RISCV_GP_REGNUM
624 || regnum == RISCV_TP_REGNUM)
625 && TYPE_CODE (type) == TYPE_CODE_INT
626 && TYPE_LENGTH (type) == xlen)
628 /* This spots the case where some interesting registers are defined
629 as simple integers of the expected size, we force these registers
630 to be pointers as we believe that is more useful. */
631 if (regnum == gdbarch_pc_regnum (gdbarch)
632 || regnum == RISCV_RA_REGNUM)
633 type = builtin_type (gdbarch)->builtin_func_ptr;
634 else if (regnum == RISCV_FP_REGNUM
635 || regnum == RISCV_SP_REGNUM
636 || regnum == RISCV_GP_REGNUM
637 || regnum == RISCV_TP_REGNUM)
638 type = builtin_type (gdbarch)->builtin_data_ptr;
644 /* Helper for riscv_print_registers_info, prints info for a single register
648 riscv_print_one_register_info (struct gdbarch *gdbarch,
649 struct ui_file *file,
650 struct frame_info *frame,
653 const char *name = gdbarch_register_name (gdbarch, regnum);
655 struct type *regtype;
656 int print_raw_format;
657 enum tab_stops { value_column_1 = 15 };
659 fputs_filtered (name, file);
660 print_spaces_filtered (value_column_1 - strlen (name), file);
664 val = value_of_register (regnum, frame);
665 regtype = value_type (val);
667 catch (const gdb_exception_error &ex)
669 /* Handle failure to read a register without interrupting the entire
670 'info registers' flow. */
671 fprintf_filtered (file, "%s\n", ex.what ());
675 print_raw_format = (value_entirely_available (val)
676 && !value_optimized_out (val));
678 if (TYPE_CODE (regtype) == TYPE_CODE_FLT
679 || (TYPE_CODE (regtype) == TYPE_CODE_UNION
680 && TYPE_NFIELDS (regtype) == 2
681 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 0)) == TYPE_CODE_FLT
682 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 1)) == TYPE_CODE_FLT)
683 || (TYPE_CODE (regtype) == TYPE_CODE_UNION
684 && TYPE_NFIELDS (regtype) == 3
685 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 0)) == TYPE_CODE_FLT
686 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 1)) == TYPE_CODE_FLT
687 && TYPE_CODE (TYPE_FIELD_TYPE (regtype, 2)) == TYPE_CODE_FLT))
689 struct value_print_options opts;
690 const gdb_byte *valaddr = value_contents_for_printing (val);
691 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (regtype));
693 get_user_print_options (&opts);
697 value_embedded_offset (val), 0,
698 file, 0, val, &opts, current_language);
700 if (print_raw_format)
702 fprintf_filtered (file, "\t(raw ");
703 print_hex_chars (file, valaddr, TYPE_LENGTH (regtype), byte_order,
705 fprintf_filtered (file, ")");
710 struct value_print_options opts;
712 /* Print the register in hex. */
713 get_formatted_print_options (&opts, 'x');
716 value_embedded_offset (val), 0,
717 file, 0, val, &opts, current_language);
719 if (print_raw_format)
721 if (regnum == RISCV_CSR_MSTATUS_REGNUM)
724 int size = register_size (gdbarch, regnum);
727 /* The SD field is always in the upper bit of MSTATUS, regardless
728 of the number of bits in MSTATUS. */
729 d = value_as_long (val);
731 fprintf_filtered (file,
732 "\tSD:%X VM:%02X MXR:%X PUM:%X MPRV:%X XS:%X "
733 "FS:%X MPP:%x HPP:%X SPP:%X MPIE:%X HPIE:%X "
734 "SPIE:%X UPIE:%X MIE:%X HIE:%X SIE:%X UIE:%X",
735 (int) ((d >> (xlen - 1)) & 0x1),
736 (int) ((d >> 24) & 0x1f),
737 (int) ((d >> 19) & 0x1),
738 (int) ((d >> 18) & 0x1),
739 (int) ((d >> 17) & 0x1),
740 (int) ((d >> 15) & 0x3),
741 (int) ((d >> 13) & 0x3),
742 (int) ((d >> 11) & 0x3),
743 (int) ((d >> 9) & 0x3),
744 (int) ((d >> 8) & 0x1),
745 (int) ((d >> 7) & 0x1),
746 (int) ((d >> 6) & 0x1),
747 (int) ((d >> 5) & 0x1),
748 (int) ((d >> 4) & 0x1),
749 (int) ((d >> 3) & 0x1),
750 (int) ((d >> 2) & 0x1),
751 (int) ((d >> 1) & 0x1),
752 (int) ((d >> 0) & 0x1));
754 else if (regnum == RISCV_CSR_MISA_REGNUM)
759 int size = register_size (gdbarch, regnum);
761 /* The MXL field is always in the upper two bits of MISA,
762 regardless of the number of bits in MISA. Mask out other
763 bits to ensure we have a positive value. */
764 d = value_as_long (val);
765 base = (d >> ((size * 8) - 2)) & 0x3;
768 for (; base > 0; base--)
770 fprintf_filtered (file, "\tRV%d", xlen);
772 for (i = 0; i < 26; i++)
775 fprintf_filtered (file, "%c", 'A' + i);
778 else if (regnum == RISCV_CSR_FCSR_REGNUM
779 || regnum == RISCV_CSR_FFLAGS_REGNUM
780 || regnum == RISCV_CSR_FRM_REGNUM)
784 d = value_as_long (val);
786 fprintf_filtered (file, "\t");
787 if (regnum != RISCV_CSR_FRM_REGNUM)
788 fprintf_filtered (file,
789 "RD:%01X NV:%d DZ:%d OF:%d UF:%d NX:%d",
790 (int) ((d >> 5) & 0x7),
791 (int) ((d >> 4) & 0x1),
792 (int) ((d >> 3) & 0x1),
793 (int) ((d >> 2) & 0x1),
794 (int) ((d >> 1) & 0x1),
795 (int) ((d >> 0) & 0x1));
797 if (regnum != RISCV_CSR_FFLAGS_REGNUM)
799 static const char * const sfrm[] =
801 "RNE (round to nearest; ties to even)",
802 "RTZ (Round towards zero)",
803 "RDN (Round down towards -INF)",
804 "RUP (Round up towards +INF)",
805 "RMM (Round to nearest; ties to max magnitude)",
808 "dynamic rounding mode",
810 int frm = ((regnum == RISCV_CSR_FCSR_REGNUM)
811 ? (d >> 5) : d) & 0x3;
813 fprintf_filtered (file, "%sFRM:%i [%s]",
814 (regnum == RISCV_CSR_FCSR_REGNUM
819 else if (regnum == RISCV_PRIV_REGNUM)
824 d = value_as_long (val);
829 static const char * const sprv[] =
836 fprintf_filtered (file, "\tprv:%d [%s]",
840 fprintf_filtered (file, "\tprv:%d [INVALID]", priv);
844 /* If not a vector register, print it also according to its
846 if (TYPE_VECTOR (regtype) == 0)
848 get_user_print_options (&opts);
850 fprintf_filtered (file, "\t");
852 value_embedded_offset (val), 0,
853 file, 0, val, &opts, current_language);
858 fprintf_filtered (file, "\n");
861 /* Return true if REGNUM is a valid CSR register. The CSR register space
862 is sparsely populated, so not every number is a named CSR. */
865 riscv_is_regnum_a_named_csr (int regnum)
867 gdb_assert (regnum >= RISCV_FIRST_CSR_REGNUM
868 && regnum <= RISCV_LAST_CSR_REGNUM);
872 #define DECLARE_CSR(name, num) case RISCV_ ## num ## _REGNUM:
873 #include "opcode/riscv-opc.h"
882 /* Implement the register_reggroup_p gdbarch method. Is REGNUM a member
886 riscv_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
887 struct reggroup *reggroup)
889 /* Used by 'info registers' and 'info registers <groupname>'. */
891 if (gdbarch_register_name (gdbarch, regnum) == NULL
892 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
895 if (regnum > RISCV_LAST_REGNUM)
897 int ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup);
901 return default_register_reggroup_p (gdbarch, regnum, reggroup);
904 if (reggroup == all_reggroup)
906 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum == RISCV_PRIV_REGNUM)
908 if (riscv_is_regnum_a_named_csr (regnum))
912 else if (reggroup == float_reggroup)
913 return (riscv_is_fp_regno_p (regnum)
914 || regnum == RISCV_CSR_FCSR_REGNUM
915 || regnum == RISCV_CSR_FFLAGS_REGNUM
916 || regnum == RISCV_CSR_FRM_REGNUM);
917 else if (reggroup == general_reggroup)
918 return regnum < RISCV_FIRST_FP_REGNUM;
919 else if (reggroup == restore_reggroup || reggroup == save_reggroup)
921 if (riscv_has_fp_regs (gdbarch))
922 return (regnum <= RISCV_LAST_FP_REGNUM
923 || regnum == RISCV_CSR_FCSR_REGNUM
924 || regnum == RISCV_CSR_FFLAGS_REGNUM
925 || regnum == RISCV_CSR_FRM_REGNUM);
927 return regnum < RISCV_FIRST_FP_REGNUM;
929 else if (reggroup == system_reggroup || reggroup == csr_reggroup)
931 if (regnum == RISCV_PRIV_REGNUM)
933 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum > RISCV_LAST_CSR_REGNUM)
935 if (riscv_is_regnum_a_named_csr (regnum))
939 else if (reggroup == vector_reggroup)
945 /* Implement the print_registers_info gdbarch method. This is used by
946 'info registers' and 'info all-registers'. */
949 riscv_print_registers_info (struct gdbarch *gdbarch,
950 struct ui_file *file,
951 struct frame_info *frame,
952 int regnum, int print_all)
956 /* Print one specified register. */
957 if (gdbarch_register_name (gdbarch, regnum) == NULL
958 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
959 error (_("Not a valid register for the current processor type"));
960 riscv_print_one_register_info (gdbarch, file, frame, regnum);
964 struct reggroup *reggroup;
967 reggroup = all_reggroup;
969 reggroup = general_reggroup;
971 for (regnum = 0; regnum <= RISCV_LAST_REGNUM; ++regnum)
973 /* Zero never changes, so might as well hide by default. */
974 if (regnum == RISCV_ZERO_REGNUM && !print_all)
977 /* Registers with no name are not valid on this ISA. */
978 if (gdbarch_register_name (gdbarch, regnum) == NULL
979 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
982 /* Is the register in the group we're interested in? */
983 if (!gdbarch_register_reggroup_p (gdbarch, regnum, reggroup))
986 riscv_print_one_register_info (gdbarch, file, frame, regnum);
991 /* Class that handles one decoded RiscV instruction. */
997 /* Enum of all the opcodes that GDB cares about during the prologue scan. */
1000 /* Unknown value is used at initialisation time. */
1003 /* These instructions are all the ones we are interested in during the
1013 /* These are needed for software breakopint support. */
1022 /* These are needed for stepping over atomic sequences. */
1026 /* Other instructions are not interesting during the prologue scan, and
1041 void decode (struct gdbarch *gdbarch, CORE_ADDR pc);
1043 /* Get the length of the instruction in bytes. */
1045 { return m_length; }
1047 /* Get the opcode for this instruction. */
1048 enum opcode opcode () const
1049 { return m_opcode; }
1051 /* Get destination register field for this instruction. This is only
1052 valid if the OPCODE implies there is such a field for this
1057 /* Get the RS1 register field for this instruction. This is only valid
1058 if the OPCODE implies there is such a field for this instruction. */
1062 /* Get the RS2 register field for this instruction. This is only valid
1063 if the OPCODE implies there is such a field for this instruction. */
1067 /* Get the immediate for this instruction in signed form. This is only
1068 valid if the OPCODE implies there is such a field for this
1070 int imm_signed () const
1075 /* Extract 5 bit register field at OFFSET from instruction OPCODE. */
1076 int decode_register_index (unsigned long opcode, int offset)
1078 return (opcode >> offset) & 0x1F;
1081 /* Extract 5 bit register field at OFFSET from instruction OPCODE. */
1082 int decode_register_index_short (unsigned long opcode, int offset)
1084 return ((opcode >> offset) & 0x7) + 8;
1087 /* Helper for DECODE, decode 32-bit R-type instruction. */
1088 void decode_r_type_insn (enum opcode opcode, ULONGEST ival)
1091 m_rd = decode_register_index (ival, OP_SH_RD);
1092 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1093 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1096 /* Helper for DECODE, decode 16-bit compressed R-type instruction. */
1097 void decode_cr_type_insn (enum opcode opcode, ULONGEST ival)
1100 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
1101 m_rs2 = decode_register_index (ival, OP_SH_CRS2);
1104 /* Helper for DECODE, decode 32-bit I-type instruction. */
1105 void decode_i_type_insn (enum opcode opcode, ULONGEST ival)
1108 m_rd = decode_register_index (ival, OP_SH_RD);
1109 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1110 m_imm.s = EXTRACT_ITYPE_IMM (ival);
1113 /* Helper for DECODE, decode 16-bit compressed I-type instruction. */
1114 void decode_ci_type_insn (enum opcode opcode, ULONGEST ival)
1117 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
1118 m_imm.s = EXTRACT_RVC_IMM (ival);
1121 /* Helper for DECODE, decode 32-bit S-type instruction. */
1122 void decode_s_type_insn (enum opcode opcode, ULONGEST ival)
1125 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1126 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1127 m_imm.s = EXTRACT_STYPE_IMM (ival);
1130 /* Helper for DECODE, decode 16-bit CS-type instruction. The immediate
1131 encoding is different for each CS format instruction, so extracting
1132 the immediate is left up to the caller, who should pass the extracted
1133 immediate value through in IMM. */
1134 void decode_cs_type_insn (enum opcode opcode, ULONGEST ival, int imm)
1138 m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
1139 m_rs2 = decode_register_index_short (ival, OP_SH_CRS2S);
1142 /* Helper for DECODE, decode 16-bit CSS-type instruction. The immediate
1143 encoding is different for each CSS format instruction, so extracting
1144 the immediate is left up to the caller, who should pass the extracted
1145 immediate value through in IMM. */
1146 void decode_css_type_insn (enum opcode opcode, ULONGEST ival, int imm)
1150 m_rs1 = RISCV_SP_REGNUM;
1151 /* Not a compressed register number in this case. */
1152 m_rs2 = decode_register_index (ival, OP_SH_CRS2);
1155 /* Helper for DECODE, decode 32-bit U-type instruction. */
1156 void decode_u_type_insn (enum opcode opcode, ULONGEST ival)
1159 m_rd = decode_register_index (ival, OP_SH_RD);
1160 m_imm.s = EXTRACT_UTYPE_IMM (ival);
1163 /* Helper for DECODE, decode 32-bit J-type instruction. */
1164 void decode_j_type_insn (enum opcode opcode, ULONGEST ival)
1167 m_rd = decode_register_index (ival, OP_SH_RD);
1168 m_imm.s = EXTRACT_UJTYPE_IMM (ival);
1171 /* Helper for DECODE, decode 32-bit J-type instruction. */
1172 void decode_cj_type_insn (enum opcode opcode, ULONGEST ival)
1175 m_imm.s = EXTRACT_RVC_J_IMM (ival);
1178 void decode_b_type_insn (enum opcode opcode, ULONGEST ival)
1181 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1182 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1183 m_imm.s = EXTRACT_SBTYPE_IMM (ival);
1186 void decode_cb_type_insn (enum opcode opcode, ULONGEST ival)
1189 m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
1190 m_imm.s = EXTRACT_RVC_B_IMM (ival);
1193 /* Fetch instruction from target memory at ADDR, return the content of
1194 the instruction, and update LEN with the instruction length. */
1195 static ULONGEST fetch_instruction (struct gdbarch *gdbarch,
1196 CORE_ADDR addr, int *len);
1198 /* The length of the instruction in bytes. Should be 2 or 4. */
1201 /* The instruction opcode. */
1202 enum opcode m_opcode;
1204 /* The three possible registers an instruction might reference. Not
1205 every instruction fills in all of these registers. Which fields are
1206 valid depends on the opcode. The naming of these fields matches the
1207 naming in the riscv isa manual. */
1212 /* Possible instruction immediate. This is only valid if the instruction
1213 format contains an immediate, not all instruction, whether this is
1214 valid depends on the opcode. Despite only having one format for now
1215 the immediate is packed into a union, later instructions might require
1216 an unsigned formatted immediate, having the union in place now will
1217 reduce the need for code churn later. */
1218 union riscv_insn_immediate
1220 riscv_insn_immediate ()
1230 /* Fetch instruction from target memory at ADDR, return the content of the
1231 instruction, and update LEN with the instruction length. */
1234 riscv_insn::fetch_instruction (struct gdbarch *gdbarch,
1235 CORE_ADDR addr, int *len)
1237 enum bfd_endian byte_order = gdbarch_byte_order_for_code (gdbarch);
1239 int instlen, status;
1241 /* All insns are at least 16 bits. */
1242 status = target_read_memory (addr, buf, 2);
1244 memory_error (TARGET_XFER_E_IO, addr);
1246 /* If we need more, grab it now. */
1247 instlen = riscv_insn_length (buf[0]);
1248 gdb_assert (instlen <= sizeof (buf));
1253 status = target_read_memory (addr + 2, buf + 2, instlen - 2);
1255 memory_error (TARGET_XFER_E_IO, addr + 2);
1258 return extract_unsigned_integer (buf, instlen, byte_order);
1261 /* Fetch from target memory an instruction at PC and decode it. This can
1262 throw an error if the memory access fails, callers are responsible for
1263 handling this error if that is appropriate. */
1266 riscv_insn::decode (struct gdbarch *gdbarch, CORE_ADDR pc)
1270 /* Fetch the instruction, and the instructions length. */
1271 ival = fetch_instruction (gdbarch, pc, &m_length);
1275 if (is_add_insn (ival))
1276 decode_r_type_insn (ADD, ival);
1277 else if (is_addw_insn (ival))
1278 decode_r_type_insn (ADDW, ival);
1279 else if (is_addi_insn (ival))
1280 decode_i_type_insn (ADDI, ival);
1281 else if (is_addiw_insn (ival))
1282 decode_i_type_insn (ADDIW, ival);
1283 else if (is_auipc_insn (ival))
1284 decode_u_type_insn (AUIPC, ival);
1285 else if (is_lui_insn (ival))
1286 decode_u_type_insn (LUI, ival);
1287 else if (is_sd_insn (ival))
1288 decode_s_type_insn (SD, ival);
1289 else if (is_sw_insn (ival))
1290 decode_s_type_insn (SW, ival);
1291 else if (is_jal_insn (ival))
1292 decode_j_type_insn (JAL, ival);
1293 else if (is_jalr_insn (ival))
1294 decode_i_type_insn (JALR, ival);
1295 else if (is_beq_insn (ival))
1296 decode_b_type_insn (BEQ, ival);
1297 else if (is_bne_insn (ival))
1298 decode_b_type_insn (BNE, ival);
1299 else if (is_blt_insn (ival))
1300 decode_b_type_insn (BLT, ival);
1301 else if (is_bge_insn (ival))
1302 decode_b_type_insn (BGE, ival);
1303 else if (is_bltu_insn (ival))
1304 decode_b_type_insn (BLTU, ival);
1305 else if (is_bgeu_insn (ival))
1306 decode_b_type_insn (BGEU, ival);
1307 else if (is_lr_w_insn (ival))
1308 decode_r_type_insn (LR, ival);
1309 else if (is_lr_d_insn (ival))
1310 decode_r_type_insn (LR, ival);
1311 else if (is_sc_w_insn (ival))
1312 decode_r_type_insn (SC, ival);
1313 else if (is_sc_d_insn (ival))
1314 decode_r_type_insn (SC, ival);
1316 /* None of the other fields are valid in this case. */
1319 else if (m_length == 2)
1321 int xlen = riscv_isa_xlen (gdbarch);
1323 /* C_ADD and C_JALR have the same opcode. If RS2 is 0, then this is a
1324 C_JALR. So must try to match C_JALR first as it has more bits in
1326 if (is_c_jalr_insn (ival))
1327 decode_cr_type_insn (JALR, ival);
1328 else if (is_c_add_insn (ival))
1329 decode_cr_type_insn (ADD, ival);
1330 /* C_ADDW is RV64 and RV128 only. */
1331 else if (xlen != 4 && is_c_addw_insn (ival))
1332 decode_cr_type_insn (ADDW, ival);
1333 else if (is_c_addi_insn (ival))
1334 decode_ci_type_insn (ADDI, ival);
1335 /* C_ADDIW and C_JAL have the same opcode. C_ADDIW is RV64 and RV128
1336 only and C_JAL is RV32 only. */
1337 else if (xlen != 4 && is_c_addiw_insn (ival))
1338 decode_ci_type_insn (ADDIW, ival);
1339 else if (xlen == 4 && is_c_jal_insn (ival))
1340 decode_cj_type_insn (JAL, ival);
1341 /* C_ADDI16SP and C_LUI have the same opcode. If RD is 2, then this is a
1342 C_ADDI16SP. So must try to match C_ADDI16SP first as it has more bits
1344 else if (is_c_addi16sp_insn (ival))
1347 m_rd = m_rs1 = decode_register_index (ival, OP_SH_RD);
1348 m_imm.s = EXTRACT_RVC_ADDI16SP_IMM (ival);
1350 else if (is_c_addi4spn_insn (ival))
1353 m_rd = decode_register_index_short (ival, OP_SH_CRS2S);
1354 m_rs1 = RISCV_SP_REGNUM;
1355 m_imm.s = EXTRACT_RVC_ADDI4SPN_IMM (ival);
1357 else if (is_c_lui_insn (ival))
1360 m_rd = decode_register_index (ival, OP_SH_CRS1S);
1361 m_imm.s = EXTRACT_RVC_LUI_IMM (ival);
1363 /* C_SD and C_FSW have the same opcode. C_SD is RV64 and RV128 only,
1364 and C_FSW is RV32 only. */
1365 else if (xlen != 4 && is_c_sd_insn (ival))
1366 decode_cs_type_insn (SD, ival, EXTRACT_RVC_LD_IMM (ival));
1367 else if (is_c_sw_insn (ival))
1368 decode_cs_type_insn (SW, ival, EXTRACT_RVC_LW_IMM (ival));
1369 else if (is_c_swsp_insn (ival))
1370 decode_css_type_insn (SW, ival, EXTRACT_RVC_SWSP_IMM (ival));
1371 else if (xlen != 4 && is_c_sdsp_insn (ival))
1372 decode_css_type_insn (SW, ival, EXTRACT_RVC_SDSP_IMM (ival));
1373 /* C_JR and C_MV have the same opcode. If RS2 is 0, then this is a C_JR.
1374 So must try to match C_JR first as it ahs more bits in mask. */
1375 else if (is_c_jr_insn (ival))
1376 decode_cr_type_insn (JALR, ival);
1377 else if (is_c_j_insn (ival))
1378 decode_cj_type_insn (JAL, ival);
1379 else if (is_c_beqz_insn (ival))
1380 decode_cb_type_insn (BEQ, ival);
1381 else if (is_c_bnez_insn (ival))
1382 decode_cb_type_insn (BNE, ival);
1384 /* None of the other fields of INSN are valid in this case. */
1388 internal_error (__FILE__, __LINE__,
1389 _("unable to decode %d byte instructions in "
1390 "prologue at %s"), m_length,
1391 core_addr_to_string (pc));
1394 /* The prologue scanner. This is currently only used for skipping the
1395 prologue of a function when the DWARF information is not sufficient.
1396 However, it is written with filling of the frame cache in mind, which
1397 is why different groups of stack setup instructions are split apart
1398 during the core of the inner loop. In the future, the intention is to
1399 extend this function to fully support building up a frame cache that
1400 can unwind register values when there is no DWARF information. */
1403 riscv_scan_prologue (struct gdbarch *gdbarch,
1404 CORE_ADDR start_pc, CORE_ADDR end_pc,
1405 struct riscv_unwind_cache *cache)
1407 CORE_ADDR cur_pc, next_pc, after_prologue_pc;
1408 CORE_ADDR end_prologue_addr = 0;
1410 /* Find an upper limit on the function prologue using the debug
1411 information. If the debug information could not be used to provide
1412 that bound, then use an arbitrary large number as the upper bound. */
1413 after_prologue_pc = skip_prologue_using_sal (gdbarch, start_pc);
1414 if (after_prologue_pc == 0)
1415 after_prologue_pc = start_pc + 100; /* Arbitrary large number. */
1416 if (after_prologue_pc < end_pc)
1417 end_pc = after_prologue_pc;
1419 pv_t regs[RISCV_NUM_INTEGER_REGS]; /* Number of GPR. */
1420 for (int regno = 0; regno < RISCV_NUM_INTEGER_REGS; regno++)
1421 regs[regno] = pv_register (regno, 0);
1422 pv_area stack (RISCV_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1424 if (riscv_debug_unwinder)
1427 "Prologue scan for function starting at %s (limit %s)\n",
1428 core_addr_to_string (start_pc),
1429 core_addr_to_string (end_pc));
1431 for (next_pc = cur_pc = start_pc; cur_pc < end_pc; cur_pc = next_pc)
1433 struct riscv_insn insn;
1435 /* Decode the current instruction, and decide where the next
1436 instruction lives based on the size of this instruction. */
1437 insn.decode (gdbarch, cur_pc);
1438 gdb_assert (insn.length () > 0);
1439 next_pc = cur_pc + insn.length ();
1441 /* Look for common stack adjustment insns. */
1442 if ((insn.opcode () == riscv_insn::ADDI
1443 || insn.opcode () == riscv_insn::ADDIW)
1444 && insn.rd () == RISCV_SP_REGNUM
1445 && insn.rs1 () == RISCV_SP_REGNUM)
1447 /* Handle: addi sp, sp, -i
1448 or: addiw sp, sp, -i */
1449 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1450 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1452 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
1454 else if ((insn.opcode () == riscv_insn::SW
1455 || insn.opcode () == riscv_insn::SD)
1456 && (insn.rs1 () == RISCV_SP_REGNUM
1457 || insn.rs1 () == RISCV_FP_REGNUM))
1459 /* Handle: sw reg, offset(sp)
1460 or: sd reg, offset(sp)
1461 or: sw reg, offset(s0)
1462 or: sd reg, offset(s0) */
1463 /* Instruction storing a register onto the stack. */
1464 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1465 gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
1466 stack.store (pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ()),
1467 (insn.opcode () == riscv_insn::SW ? 4 : 8),
1470 else if (insn.opcode () == riscv_insn::ADDI
1471 && insn.rd () == RISCV_FP_REGNUM
1472 && insn.rs1 () == RISCV_SP_REGNUM)
1474 /* Handle: addi s0, sp, size */
1475 /* Instructions setting up the frame pointer. */
1476 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1477 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1479 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
1481 else if ((insn.opcode () == riscv_insn::ADD
1482 || insn.opcode () == riscv_insn::ADDW)
1483 && insn.rd () == RISCV_FP_REGNUM
1484 && insn.rs1 () == RISCV_SP_REGNUM
1485 && insn.rs2 () == RISCV_ZERO_REGNUM)
1487 /* Handle: add s0, sp, 0
1488 or: addw s0, sp, 0 */
1489 /* Instructions setting up the frame pointer. */
1490 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1491 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1492 regs[insn.rd ()] = pv_add_constant (regs[insn.rs1 ()], 0);
1494 else if ((insn.opcode () == riscv_insn::ADDI
1495 && insn.rd () == RISCV_ZERO_REGNUM
1496 && insn.rs1 () == RISCV_ZERO_REGNUM
1497 && insn.imm_signed () == 0))
1499 /* Handle: add x0, x0, 0 (NOP) */
1501 else if (insn.opcode () == riscv_insn::AUIPC)
1503 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1504 regs[insn.rd ()] = pv_constant (cur_pc + insn.imm_signed ());
1506 else if (insn.opcode () == riscv_insn::LUI)
1508 /* Handle: lui REG, n
1509 Where REG is not gp register. */
1510 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1511 regs[insn.rd ()] = pv_constant (insn.imm_signed ());
1513 else if (insn.opcode () == riscv_insn::ADDI)
1515 /* Handle: addi REG1, REG2, IMM */
1516 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1517 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1519 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
1521 else if (insn.opcode () == riscv_insn::ADD)
1523 /* Handle: addi REG1, REG2, IMM */
1524 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
1525 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
1526 gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
1527 regs[insn.rd ()] = pv_add (regs[insn.rs1 ()], regs[insn.rs2 ()]);
1531 end_prologue_addr = cur_pc;
1536 if (end_prologue_addr == 0)
1537 end_prologue_addr = cur_pc;
1539 if (riscv_debug_unwinder)
1540 fprintf_unfiltered (gdb_stdlog, "End of prologue at %s\n",
1541 core_addr_to_string (end_prologue_addr));
1545 /* Figure out if it is a frame pointer or just a stack pointer. Also
1546 the offset held in the pv_t is from the original register value to
1547 the current value, which for a grows down stack means a negative
1548 value. The FRAME_BASE_OFFSET is the negation of this, how to get
1549 from the current value to the original value. */
1550 if (pv_is_register (regs[RISCV_FP_REGNUM], RISCV_SP_REGNUM))
1552 cache->frame_base_reg = RISCV_FP_REGNUM;
1553 cache->frame_base_offset = -regs[RISCV_FP_REGNUM].k;
1557 cache->frame_base_reg = RISCV_SP_REGNUM;
1558 cache->frame_base_offset = -regs[RISCV_SP_REGNUM].k;
1561 /* Assign offset from old SP to all saved registers. As we don't
1562 have the previous value for the frame base register at this
1563 point, we store the offset as the address in the trad_frame, and
1564 then convert this to an actual address later. */
1565 for (int i = 0; i <= RISCV_NUM_INTEGER_REGS; i++)
1568 if (stack.find_reg (gdbarch, i, &offset))
1570 if (riscv_debug_unwinder)
1572 /* Display OFFSET as a signed value, the offsets are from
1573 the frame base address to the registers location on
1574 the stack, with a descending stack this means the
1575 offsets are always negative. */
1576 fprintf_unfiltered (gdb_stdlog,
1577 "Register $%s at stack offset %s\n",
1578 gdbarch_register_name (gdbarch, i),
1579 plongest ((LONGEST) offset));
1581 trad_frame_set_addr (cache->regs, i, offset);
1586 return end_prologue_addr;
1589 /* Implement the riscv_skip_prologue gdbarch method. */
1592 riscv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1594 CORE_ADDR func_addr;
1596 /* See if we can determine the end of the prologue via the symbol
1597 table. If so, then return either PC, or the PC after the
1598 prologue, whichever is greater. */
1599 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1601 CORE_ADDR post_prologue_pc
1602 = skip_prologue_using_sal (gdbarch, func_addr);
1604 if (post_prologue_pc != 0)
1605 return std::max (pc, post_prologue_pc);
1608 /* Can't determine prologue from the symbol table, need to examine
1609 instructions. Pass -1 for the end address to indicate the prologue
1610 scanner can scan as far as it needs to find the end of the prologue. */
1611 return riscv_scan_prologue (gdbarch, pc, ((CORE_ADDR) -1), NULL);
1614 /* Implement the gdbarch push dummy code callback. */
1617 riscv_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
1618 CORE_ADDR funaddr, struct value **args, int nargs,
1619 struct type *value_type, CORE_ADDR *real_pc,
1620 CORE_ADDR *bp_addr, struct regcache *regcache)
1622 /* Allocate space for a breakpoint, and keep the stack correctly
1630 /* Implement the gdbarch type alignment method, overrides the generic
1631 alignment algorithm for anything that is RISC-V specific. */
1634 riscv_type_align (gdbarch *gdbarch, type *type)
1636 type = check_typedef (type);
1637 if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1638 return std::min (TYPE_LENGTH (type), (ULONGEST) BIGGEST_ALIGNMENT);
1640 /* Anything else will be aligned by the generic code. */
1644 /* Holds information about a single argument either being passed to an
1645 inferior function, or returned from an inferior function. This includes
1646 information about the size, type, etc of the argument, and also
1647 information about how the argument will be passed (or returned). */
1649 struct riscv_arg_info
1651 /* Contents of the argument. */
1652 const gdb_byte *contents;
1654 /* Length of argument. */
1657 /* Alignment required for an argument of this type. */
1660 /* The type for this argument. */
1663 /* Each argument can have either 1 or 2 locations assigned to it. Each
1664 location describes where part of the argument will be placed. The
1665 second location is valid based on the LOC_TYPE and C_LENGTH fields
1666 of the first location (which is always valid). */
1669 /* What type of location this is. */
1672 /* Argument passed in a register. */
1675 /* Argument passed as an on stack argument. */
1678 /* Argument passed by reference. The second location is always
1679 valid for a BY_REF argument, and describes where the address
1680 of the BY_REF argument should be placed. */
1684 /* Information that depends on the location type. */
1687 /* Which register number to use. */
1690 /* The offset into the stack region. */
1694 /* The length of contents covered by this location. If this is less
1695 than the total length of the argument, then the second location
1696 will be valid, and will describe where the rest of the argument
1700 /* The offset within CONTENTS for this part of the argument. Will
1701 always be 0 for the first part. For the second part of the
1702 argument, this might be the C_LENGTH value of the first part,
1703 however, if we are passing a structure in two registers, and there's
1704 is padding between the first and second field, then this offset
1705 might be greater than the length of the first argument part. When
1706 the second argument location is not holding part of the argument
1707 value, but is instead holding the address of a reference argument,
1708 then this offset will be set to 0. */
1712 /* TRUE if this is an unnamed argument. */
1716 /* Information about a set of registers being used for passing arguments as
1717 part of a function call. The register set must be numerically
1718 sequential from NEXT_REGNUM to LAST_REGNUM. The register set can be
1719 disabled from use by setting NEXT_REGNUM greater than LAST_REGNUM. */
1721 struct riscv_arg_reg
1723 riscv_arg_reg (int first, int last)
1724 : next_regnum (first),
1730 /* The GDB register number to use in this set. */
1733 /* The last GDB register number to use in this set. */
1737 /* Arguments can be passed as on stack arguments, or by reference. The
1738 on stack arguments must be in a continuous region starting from $sp,
1739 while the by reference arguments can be anywhere, but we'll put them
1740 on the stack after (at higher address) the on stack arguments.
1742 This might not be the right approach to take. The ABI is clear that
1743 an argument passed by reference can be modified by the callee, which
1744 us placing the argument (temporarily) onto the stack will not achieve
1745 (changes will be lost). There's also the possibility that very large
1746 arguments could overflow the stack.
1748 This struct is used to track offset into these two areas for where
1749 arguments are to be placed. */
1750 struct riscv_memory_offsets
1752 riscv_memory_offsets ()
1759 /* Offset into on stack argument area. */
1762 /* Offset into the pass by reference area. */
1766 /* Holds information about where arguments to a call will be placed. This
1767 is updated as arguments are added onto the call, and can be used to
1768 figure out where the next argument should be placed. */
1770 struct riscv_call_info
1772 riscv_call_info (struct gdbarch *gdbarch)
1773 : int_regs (RISCV_A0_REGNUM, RISCV_A0_REGNUM + 7),
1774 float_regs (RISCV_FA0_REGNUM, RISCV_FA0_REGNUM + 7)
1776 xlen = riscv_abi_xlen (gdbarch);
1777 flen = riscv_abi_flen (gdbarch);
1779 /* Disable use of floating point registers if needed. */
1780 if (!riscv_has_fp_abi (gdbarch))
1781 float_regs.next_regnum = float_regs.last_regnum + 1;
1784 /* Track the memory areas used for holding in-memory arguments to a
1786 struct riscv_memory_offsets memory;
1788 /* Holds information about the next integer register to use for passing
1790 struct riscv_arg_reg int_regs;
1792 /* Holds information about the next floating point register to use for
1793 passing an argument. */
1794 struct riscv_arg_reg float_regs;
1796 /* The XLEN and FLEN are copied in to this structure for convenience, and
1797 are just the results of calling RISCV_ABI_XLEN and RISCV_ABI_FLEN. */
1802 /* Return the number of registers available for use as parameters in the
1803 register set REG. Returned value can be 0 or more. */
1806 riscv_arg_regs_available (struct riscv_arg_reg *reg)
1808 if (reg->next_regnum > reg->last_regnum)
1811 return (reg->last_regnum - reg->next_regnum + 1);
1814 /* If there is at least one register available in the register set REG then
1815 the next register from REG is assigned to LOC and the length field of
1816 LOC is updated to LENGTH. The register set REG is updated to indicate
1817 that the assigned register is no longer available and the function
1820 If there are no registers available in REG then the function returns
1821 false, and LOC and REG are unchanged. */
1824 riscv_assign_reg_location (struct riscv_arg_info::location *loc,
1825 struct riscv_arg_reg *reg,
1826 int length, int offset)
1828 if (reg->next_regnum <= reg->last_regnum)
1830 loc->loc_type = riscv_arg_info::location::in_reg;
1831 loc->loc_data.regno = reg->next_regnum;
1833 loc->c_length = length;
1834 loc->c_offset = offset;
1841 /* Assign LOC a location as the next stack parameter, and update MEMORY to
1842 record that an area of stack has been used to hold the parameter
1845 The length field of LOC is updated to LENGTH, the length of the
1846 parameter being stored, and ALIGN is the alignment required by the
1847 parameter, which will affect how memory is allocated out of MEMORY. */
1850 riscv_assign_stack_location (struct riscv_arg_info::location *loc,
1851 struct riscv_memory_offsets *memory,
1852 int length, int align)
1854 loc->loc_type = riscv_arg_info::location::on_stack;
1856 = align_up (memory->arg_offset, align);
1857 loc->loc_data.offset = memory->arg_offset;
1858 memory->arg_offset += length;
1859 loc->c_length = length;
1861 /* Offset is always 0, either we're the first location part, in which
1862 case we're reading content from the start of the argument, or we're
1863 passing the address of a reference argument, so 0. */
1867 /* Update AINFO, which describes an argument that should be passed or
1868 returned using the integer ABI. The argloc fields within AINFO are
1869 updated to describe the location in which the argument will be passed to
1870 a function, or returned from a function.
1872 The CINFO structure contains the ongoing call information, the holds
1873 information such as which argument registers are remaining to be
1874 assigned to parameter, and how much memory has been used by parameters
1877 By examining the state of CINFO a suitable location can be selected,
1878 and assigned to AINFO. */
1881 riscv_call_arg_scalar_int (struct riscv_arg_info *ainfo,
1882 struct riscv_call_info *cinfo)
1884 if (ainfo->length > (2 * cinfo->xlen))
1886 /* Argument is going to be passed by reference. */
1887 ainfo->argloc[0].loc_type
1888 = riscv_arg_info::location::by_ref;
1889 cinfo->memory.ref_offset
1890 = align_up (cinfo->memory.ref_offset, ainfo->align);
1891 ainfo->argloc[0].loc_data.offset = cinfo->memory.ref_offset;
1892 cinfo->memory.ref_offset += ainfo->length;
1893 ainfo->argloc[0].c_length = ainfo->length;
1895 /* The second location for this argument is given over to holding the
1896 address of the by-reference data. Pass 0 for the offset as this
1897 is not part of the actual argument value. */
1898 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1901 riscv_assign_stack_location (&ainfo->argloc[1],
1902 &cinfo->memory, cinfo->xlen,
1907 int len = std::min (ainfo->length, cinfo->xlen);
1908 int align = std::max (ainfo->align, cinfo->xlen);
1910 /* Unnamed arguments in registers that require 2*XLEN alignment are
1911 passed in an aligned register pair. */
1912 if (ainfo->is_unnamed && (align == cinfo->xlen * 2)
1913 && cinfo->int_regs.next_regnum & 1)
1914 cinfo->int_regs.next_regnum++;
1916 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1917 &cinfo->int_regs, len, 0))
1918 riscv_assign_stack_location (&ainfo->argloc[0],
1919 &cinfo->memory, len, align);
1921 if (len < ainfo->length)
1923 len = ainfo->length - len;
1924 if (!riscv_assign_reg_location (&ainfo->argloc[1],
1925 &cinfo->int_regs, len,
1927 riscv_assign_stack_location (&ainfo->argloc[1],
1928 &cinfo->memory, len, cinfo->xlen);
1933 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
1934 is being passed with the floating point ABI. */
1937 riscv_call_arg_scalar_float (struct riscv_arg_info *ainfo,
1938 struct riscv_call_info *cinfo)
1940 if (ainfo->length > cinfo->flen || ainfo->is_unnamed)
1941 return riscv_call_arg_scalar_int (ainfo, cinfo);
1944 if (!riscv_assign_reg_location (&ainfo->argloc[0],
1947 return riscv_call_arg_scalar_int (ainfo, cinfo);
1951 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
1952 is a complex floating point argument, and is therefore handled
1953 differently to other argument types. */
1956 riscv_call_arg_complex_float (struct riscv_arg_info *ainfo,
1957 struct riscv_call_info *cinfo)
1959 if (ainfo->length <= (2 * cinfo->flen)
1960 && riscv_arg_regs_available (&cinfo->float_regs) >= 2
1961 && !ainfo->is_unnamed)
1964 int len = ainfo->length / 2;
1966 result = riscv_assign_reg_location (&ainfo->argloc[0],
1967 &cinfo->float_regs, len, 0);
1968 gdb_assert (result);
1970 result = riscv_assign_reg_location (&ainfo->argloc[1],
1971 &cinfo->float_regs, len, len);
1972 gdb_assert (result);
1975 return riscv_call_arg_scalar_int (ainfo, cinfo);
1978 /* A structure used for holding information about a structure type within
1979 the inferior program. The RiscV ABI has special rules for handling some
1980 structures with a single field or with two fields. The counting of
1981 fields here is done after flattening out all nested structures. */
1983 class riscv_struct_info
1986 riscv_struct_info ()
1987 : m_number_of_fields (0),
1988 m_types { nullptr, nullptr },
1994 /* Analyse TYPE descending into nested structures, count the number of
1995 scalar fields and record the types of the first two fields found. */
1996 void analyse (struct type *type)
1998 analyse_inner (type, 0);
2001 /* The number of scalar fields found in the analysed type. This is
2002 currently only accurate if the value returned is 0, 1, or 2 as the
2003 analysis stops counting when the number of fields is 3. This is
2004 because the RiscV ABI only has special cases for 1 or 2 fields,
2005 anything else we just don't care about. */
2006 int number_of_fields () const
2007 { return m_number_of_fields; }
2009 /* Return the type for scalar field INDEX within the analysed type. Will
2010 return nullptr if there is no field at that index. Only INDEX values
2011 0 and 1 can be requested as the RiscV ABI only has special cases for
2012 structures with 1 or 2 fields. */
2013 struct type *field_type (int index) const
2015 gdb_assert (index < (sizeof (m_types) / sizeof (m_types[0])));
2016 return m_types[index];
2019 /* Return the offset of scalar field INDEX within the analysed type. Will
2020 return 0 if there is no field at that index. Only INDEX values 0 and
2021 1 can be requested as the RiscV ABI only has special cases for
2022 structures with 1 or 2 fields. */
2023 int field_offset (int index) const
2025 gdb_assert (index < (sizeof (m_offsets) / sizeof (m_offsets[0])));
2026 return m_offsets[index];
2030 /* The number of scalar fields found within the structure after recursing
2031 into nested structures. */
2032 int m_number_of_fields;
2034 /* The types of the first two scalar fields found within the structure
2035 after recursing into nested structures. */
2036 struct type *m_types[2];
2038 /* The offsets of the first two scalar fields found within the structure
2039 after recursing into nested structures. */
2042 /* Recursive core for ANALYSE, the OFFSET parameter tracks the byte
2043 offset from the start of the top level structure being analysed. */
2044 void analyse_inner (struct type *type, int offset);
2047 /* See description in class declaration. */
2050 riscv_struct_info::analyse_inner (struct type *type, int offset)
2052 unsigned int count = TYPE_NFIELDS (type);
2055 for (i = 0; i < count; ++i)
2057 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2060 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2061 field_type = check_typedef (field_type);
2063 = offset + TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT;
2065 switch (TYPE_CODE (field_type))
2067 case TYPE_CODE_STRUCT:
2068 analyse_inner (field_type, field_offset);
2072 /* RiscV only flattens out structures. Anything else does not
2073 need to be flattened, we just record the type, and when we
2074 look at the analysis results we'll realise this is not a
2075 structure we can special case, and pass the structure in
2077 if (m_number_of_fields < 2)
2079 m_types[m_number_of_fields] = field_type;
2080 m_offsets[m_number_of_fields] = field_offset;
2082 m_number_of_fields++;
2086 /* RiscV only has special handling for structures with 1 or 2 scalar
2087 fields, any more than that and the structure is just passed in
2088 memory. We can safely drop out early when we find 3 or more
2091 if (m_number_of_fields > 2)
2096 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
2097 is a structure. Small structures on RiscV have some special case
2098 handling in order that the structure might be passed in register.
2099 Larger structures are passed in memory. After assigning location
2100 information to AINFO, CINFO will have been updated. */
2103 riscv_call_arg_struct (struct riscv_arg_info *ainfo,
2104 struct riscv_call_info *cinfo)
2106 if (riscv_arg_regs_available (&cinfo->float_regs) >= 1)
2108 struct riscv_struct_info sinfo;
2110 sinfo.analyse (ainfo->type);
2111 if (sinfo.number_of_fields () == 1
2112 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_COMPLEX)
2114 /* The following is similar to RISCV_CALL_ARG_COMPLEX_FLOAT,
2115 except we use the type of the complex field instead of the
2116 type from AINFO, and the first location might be at a non-zero
2118 if (TYPE_LENGTH (sinfo.field_type (0)) <= (2 * cinfo->flen)
2119 && riscv_arg_regs_available (&cinfo->float_regs) >= 2
2120 && !ainfo->is_unnamed)
2123 int len = TYPE_LENGTH (sinfo.field_type (0)) / 2;
2124 int offset = sinfo.field_offset (0);
2126 result = riscv_assign_reg_location (&ainfo->argloc[0],
2127 &cinfo->float_regs, len,
2129 gdb_assert (result);
2131 result = riscv_assign_reg_location (&ainfo->argloc[1],
2132 &cinfo->float_regs, len,
2134 gdb_assert (result);
2137 riscv_call_arg_scalar_int (ainfo, cinfo);
2141 if (sinfo.number_of_fields () == 1
2142 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT)
2144 /* The following is similar to RISCV_CALL_ARG_SCALAR_FLOAT,
2145 except we use the type of the first scalar field instead of
2146 the type from AINFO. Also the location might be at a non-zero
2148 if (TYPE_LENGTH (sinfo.field_type (0)) > cinfo->flen
2149 || ainfo->is_unnamed)
2150 riscv_call_arg_scalar_int (ainfo, cinfo);
2153 int offset = sinfo.field_offset (0);
2154 int len = TYPE_LENGTH (sinfo.field_type (0));
2156 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2159 riscv_call_arg_scalar_int (ainfo, cinfo);
2164 if (sinfo.number_of_fields () == 2
2165 && TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT
2166 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->flen
2167 && TYPE_CODE (sinfo.field_type (1)) == TYPE_CODE_FLT
2168 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->flen
2169 && riscv_arg_regs_available (&cinfo->float_regs) >= 2)
2171 int len0 = TYPE_LENGTH (sinfo.field_type (0));
2172 int offset = sinfo.field_offset (0);
2173 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2174 &cinfo->float_regs, len0, offset))
2175 error (_("failed during argument setup"));
2177 int len1 = TYPE_LENGTH (sinfo.field_type (1));
2178 offset = sinfo.field_offset (1);
2179 gdb_assert (len1 <= (TYPE_LENGTH (ainfo->type)
2180 - TYPE_LENGTH (sinfo.field_type (0))));
2182 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2185 error (_("failed during argument setup"));
2189 if (sinfo.number_of_fields () == 2
2190 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
2191 && (TYPE_CODE (sinfo.field_type (0)) == TYPE_CODE_FLT
2192 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->flen
2193 && is_integral_type (sinfo.field_type (1))
2194 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->xlen))
2196 int len0 = TYPE_LENGTH (sinfo.field_type (0));
2197 int offset = sinfo.field_offset (0);
2198 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2199 &cinfo->float_regs, len0, offset))
2200 error (_("failed during argument setup"));
2202 int len1 = TYPE_LENGTH (sinfo.field_type (1));
2203 offset = sinfo.field_offset (1);
2204 gdb_assert (len1 <= cinfo->xlen);
2205 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2206 &cinfo->int_regs, len1, offset))
2207 error (_("failed during argument setup"));
2211 if (sinfo.number_of_fields () == 2
2212 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
2213 && (is_integral_type (sinfo.field_type (0))
2214 && TYPE_LENGTH (sinfo.field_type (0)) <= cinfo->xlen
2215 && TYPE_CODE (sinfo.field_type (1)) == TYPE_CODE_FLT
2216 && TYPE_LENGTH (sinfo.field_type (1)) <= cinfo->flen))
2218 int len0 = TYPE_LENGTH (sinfo.field_type (0));
2219 int len1 = TYPE_LENGTH (sinfo.field_type (1));
2221 gdb_assert (len0 <= cinfo->xlen);
2222 gdb_assert (len1 <= cinfo->flen);
2224 int offset = sinfo.field_offset (0);
2225 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2226 &cinfo->int_regs, len0, offset))
2227 error (_("failed during argument setup"));
2229 offset = sinfo.field_offset (1);
2230 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2233 error (_("failed during argument setup"));
2239 /* Non of the structure flattening cases apply, so we just pass using
2241 riscv_call_arg_scalar_int (ainfo, cinfo);
2244 /* Assign a location to call (or return) argument AINFO, the location is
2245 selected from CINFO which holds information about what call argument
2246 locations are available for use next. The TYPE is the type of the
2247 argument being passed, this information is recorded into AINFO (along
2248 with some additional information derived from the type). IS_UNNAMED
2249 is true if this is an unnamed (stdarg) argument, this info is also
2250 recorded into AINFO.
2252 After assigning a location to AINFO, CINFO will have been updated. */
2255 riscv_arg_location (struct gdbarch *gdbarch,
2256 struct riscv_arg_info *ainfo,
2257 struct riscv_call_info *cinfo,
2258 struct type *type, bool is_unnamed)
2261 ainfo->length = TYPE_LENGTH (ainfo->type);
2262 ainfo->align = type_align (ainfo->type);
2263 ainfo->is_unnamed = is_unnamed;
2264 ainfo->contents = nullptr;
2265 ainfo->argloc[0].c_length = 0;
2266 ainfo->argloc[1].c_length = 0;
2268 switch (TYPE_CODE (ainfo->type))
2271 case TYPE_CODE_BOOL:
2272 case TYPE_CODE_CHAR:
2273 case TYPE_CODE_RANGE:
2274 case TYPE_CODE_ENUM:
2276 if (ainfo->length <= cinfo->xlen)
2278 ainfo->type = builtin_type (gdbarch)->builtin_long;
2279 ainfo->length = cinfo->xlen;
2281 else if (ainfo->length <= (2 * cinfo->xlen))
2283 ainfo->type = builtin_type (gdbarch)->builtin_long_long;
2284 ainfo->length = 2 * cinfo->xlen;
2287 /* Recalculate the alignment requirement. */
2288 ainfo->align = type_align (ainfo->type);
2289 riscv_call_arg_scalar_int (ainfo, cinfo);
2293 riscv_call_arg_scalar_float (ainfo, cinfo);
2296 case TYPE_CODE_COMPLEX:
2297 riscv_call_arg_complex_float (ainfo, cinfo);
2300 case TYPE_CODE_STRUCT:
2301 riscv_call_arg_struct (ainfo, cinfo);
2305 riscv_call_arg_scalar_int (ainfo, cinfo);
2310 /* Used for printing debug information about the call argument location in
2311 INFO to STREAM. The addresses in SP_REFS and SP_ARGS are the base
2312 addresses for the location of pass-by-reference and
2313 arguments-on-the-stack memory areas. */
2316 riscv_print_arg_location (ui_file *stream, struct gdbarch *gdbarch,
2317 struct riscv_arg_info *info,
2318 CORE_ADDR sp_refs, CORE_ADDR sp_args)
2320 fprintf_unfiltered (stream, "type: '%s', length: 0x%x, alignment: 0x%x",
2321 TYPE_SAFE_NAME (info->type), info->length, info->align);
2322 switch (info->argloc[0].loc_type)
2324 case riscv_arg_info::location::in_reg:
2326 (stream, ", register %s",
2327 gdbarch_register_name (gdbarch, info->argloc[0].loc_data.regno));
2328 if (info->argloc[0].c_length < info->length)
2330 switch (info->argloc[1].loc_type)
2332 case riscv_arg_info::location::in_reg:
2334 (stream, ", register %s",
2335 gdbarch_register_name (gdbarch,
2336 info->argloc[1].loc_data.regno));
2339 case riscv_arg_info::location::on_stack:
2340 fprintf_unfiltered (stream, ", on stack at offset 0x%x",
2341 info->argloc[1].loc_data.offset);
2344 case riscv_arg_info::location::by_ref:
2346 /* The second location should never be a reference, any
2347 argument being passed by reference just places its address
2348 in the first location and is done. */
2349 error (_("invalid argument location"));
2353 if (info->argloc[1].c_offset > info->argloc[0].c_length)
2354 fprintf_unfiltered (stream, " (offset 0x%x)",
2355 info->argloc[1].c_offset);
2359 case riscv_arg_info::location::on_stack:
2360 fprintf_unfiltered (stream, ", on stack at offset 0x%x",
2361 info->argloc[0].loc_data.offset);
2364 case riscv_arg_info::location::by_ref:
2366 (stream, ", by reference, data at offset 0x%x (%s)",
2367 info->argloc[0].loc_data.offset,
2368 core_addr_to_string (sp_refs + info->argloc[0].loc_data.offset));
2369 if (info->argloc[1].loc_type
2370 == riscv_arg_info::location::in_reg)
2372 (stream, ", address in register %s",
2373 gdbarch_register_name (gdbarch, info->argloc[1].loc_data.regno));
2376 gdb_assert (info->argloc[1].loc_type
2377 == riscv_arg_info::location::on_stack);
2379 (stream, ", address on stack at offset 0x%x (%s)",
2380 info->argloc[1].loc_data.offset,
2381 core_addr_to_string (sp_args + info->argloc[1].loc_data.offset));
2386 gdb_assert_not_reached (_("unknown argument location type"));
2390 /* Implement the push dummy call gdbarch callback. */
2393 riscv_push_dummy_call (struct gdbarch *gdbarch,
2394 struct value *function,
2395 struct regcache *regcache,
2398 struct value **args,
2400 function_call_return_method return_method,
2401 CORE_ADDR struct_addr)
2404 CORE_ADDR sp_args, sp_refs;
2405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2407 struct riscv_arg_info *arg_info =
2408 (struct riscv_arg_info *) alloca (nargs * sizeof (struct riscv_arg_info));
2410 struct riscv_call_info call_info (gdbarch);
2414 struct type *ftype = check_typedef (value_type (function));
2416 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
2417 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
2419 /* We'll use register $a0 if we're returning a struct. */
2420 if (return_method == return_method_struct)
2421 ++call_info.int_regs.next_regnum;
2423 for (i = 0; i < nargs; ++i)
2425 struct value *arg_value;
2426 struct type *arg_type;
2427 struct riscv_arg_info *info = &arg_info[i];
2429 arg_value = args[i];
2430 arg_type = check_typedef (value_type (arg_value));
2432 riscv_arg_location (gdbarch, info, &call_info, arg_type,
2433 TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
2435 if (info->type != arg_type)
2436 arg_value = value_cast (info->type, arg_value);
2437 info->contents = value_contents (arg_value);
2440 /* Adjust the stack pointer and align it. */
2441 sp = sp_refs = align_down (sp - call_info.memory.ref_offset, SP_ALIGNMENT);
2442 sp = sp_args = align_down (sp - call_info.memory.arg_offset, SP_ALIGNMENT);
2444 if (riscv_debug_infcall > 0)
2446 fprintf_unfiltered (gdb_stdlog, "dummy call args:\n");
2447 fprintf_unfiltered (gdb_stdlog, ": floating point ABI %s in use\n",
2448 (riscv_has_fp_abi (gdbarch) ? "is" : "is not"));
2449 fprintf_unfiltered (gdb_stdlog, ": xlen: %d\n: flen: %d\n",
2450 call_info.xlen, call_info.flen);
2451 if (return_method == return_method_struct)
2452 fprintf_unfiltered (gdb_stdlog,
2453 "[*] struct return pointer in register $A0\n");
2454 for (i = 0; i < nargs; ++i)
2456 struct riscv_arg_info *info = &arg_info [i];
2458 fprintf_unfiltered (gdb_stdlog, "[%2d] ", i);
2459 riscv_print_arg_location (gdb_stdlog, gdbarch, info, sp_refs, sp_args);
2460 fprintf_unfiltered (gdb_stdlog, "\n");
2462 if (call_info.memory.arg_offset > 0
2463 || call_info.memory.ref_offset > 0)
2465 fprintf_unfiltered (gdb_stdlog, " Original sp: %s\n",
2466 core_addr_to_string (osp));
2467 fprintf_unfiltered (gdb_stdlog, "Stack required (for args): 0x%x\n",
2468 call_info.memory.arg_offset);
2469 fprintf_unfiltered (gdb_stdlog, "Stack required (for refs): 0x%x\n",
2470 call_info.memory.ref_offset);
2471 fprintf_unfiltered (gdb_stdlog, " Stack allocated: %s\n",
2472 core_addr_to_string_nz (osp - sp));
2476 /* Now load the argument into registers, or onto the stack. */
2478 if (return_method == return_method_struct)
2480 gdb_byte buf[sizeof (LONGEST)];
2482 store_unsigned_integer (buf, call_info.xlen, byte_order, struct_addr);
2483 regcache->cooked_write (RISCV_A0_REGNUM, buf);
2486 for (i = 0; i < nargs; ++i)
2489 int second_arg_length = 0;
2490 const gdb_byte *second_arg_data;
2491 struct riscv_arg_info *info = &arg_info [i];
2493 gdb_assert (info->length > 0);
2495 switch (info->argloc[0].loc_type)
2497 case riscv_arg_info::location::in_reg:
2499 gdb_byte tmp [sizeof (ULONGEST)];
2501 gdb_assert (info->argloc[0].c_length <= info->length);
2502 /* FP values in FP registers must be NaN-boxed. */
2503 if (riscv_is_fp_regno_p (info->argloc[0].loc_data.regno)
2504 && info->argloc[0].c_length < call_info.flen)
2505 memset (tmp, -1, sizeof (tmp));
2507 memset (tmp, 0, sizeof (tmp));
2508 memcpy (tmp, (info->contents + info->argloc[0].c_offset),
2509 info->argloc[0].c_length);
2510 regcache->cooked_write (info->argloc[0].loc_data.regno, tmp);
2512 (((info->argloc[0].c_length + info->argloc[0].c_offset) < info->length)
2513 ? info->argloc[1].c_length : 0);
2514 second_arg_data = info->contents + info->argloc[1].c_offset;
2518 case riscv_arg_info::location::on_stack:
2519 dst = sp_args + info->argloc[0].loc_data.offset;
2520 write_memory (dst, info->contents, info->length);
2521 second_arg_length = 0;
2524 case riscv_arg_info::location::by_ref:
2525 dst = sp_refs + info->argloc[0].loc_data.offset;
2526 write_memory (dst, info->contents, info->length);
2528 second_arg_length = call_info.xlen;
2529 second_arg_data = (gdb_byte *) &dst;
2533 gdb_assert_not_reached (_("unknown argument location type"));
2536 if (second_arg_length > 0)
2538 switch (info->argloc[1].loc_type)
2540 case riscv_arg_info::location::in_reg:
2542 gdb_byte tmp [sizeof (ULONGEST)];
2544 gdb_assert ((riscv_is_fp_regno_p (info->argloc[1].loc_data.regno)
2545 && second_arg_length <= call_info.flen)
2546 || second_arg_length <= call_info.xlen);
2547 /* FP values in FP registers must be NaN-boxed. */
2548 if (riscv_is_fp_regno_p (info->argloc[1].loc_data.regno)
2549 && second_arg_length < call_info.flen)
2550 memset (tmp, -1, sizeof (tmp));
2552 memset (tmp, 0, sizeof (tmp));
2553 memcpy (tmp, second_arg_data, second_arg_length);
2554 regcache->cooked_write (info->argloc[1].loc_data.regno, tmp);
2558 case riscv_arg_info::location::on_stack:
2562 arg_addr = sp_args + info->argloc[1].loc_data.offset;
2563 write_memory (arg_addr, second_arg_data, second_arg_length);
2567 case riscv_arg_info::location::by_ref:
2569 /* The second location should never be a reference, any
2570 argument being passed by reference just places its address
2571 in the first location and is done. */
2572 error (_("invalid argument location"));
2578 /* Set the dummy return value to bp_addr.
2579 A dummy breakpoint will be setup to execute the call. */
2581 if (riscv_debug_infcall > 0)
2582 fprintf_unfiltered (gdb_stdlog, ": writing $ra = %s\n",
2583 core_addr_to_string (bp_addr));
2584 regcache_cooked_write_unsigned (regcache, RISCV_RA_REGNUM, bp_addr);
2586 /* Finally, update the stack pointer. */
2588 if (riscv_debug_infcall > 0)
2589 fprintf_unfiltered (gdb_stdlog, ": writing $sp = %s\n",
2590 core_addr_to_string (sp));
2591 regcache_cooked_write_unsigned (regcache, RISCV_SP_REGNUM, sp);
2596 /* Implement the return_value gdbarch method. */
2598 static enum return_value_convention
2599 riscv_return_value (struct gdbarch *gdbarch,
2600 struct value *function,
2602 struct regcache *regcache,
2604 const gdb_byte *writebuf)
2606 struct riscv_call_info call_info (gdbarch);
2607 struct riscv_arg_info info;
2608 struct type *arg_type;
2610 arg_type = check_typedef (type);
2611 riscv_arg_location (gdbarch, &info, &call_info, arg_type, false);
2613 if (riscv_debug_infcall > 0)
2615 fprintf_unfiltered (gdb_stdlog, "riscv return value:\n");
2616 fprintf_unfiltered (gdb_stdlog, "[R] ");
2617 riscv_print_arg_location (gdb_stdlog, gdbarch, &info, 0, 0);
2618 fprintf_unfiltered (gdb_stdlog, "\n");
2621 if (readbuf != nullptr || writebuf != nullptr)
2623 unsigned int arg_len;
2624 struct value *abi_val;
2625 gdb_byte *old_readbuf = nullptr;
2628 /* We only do one thing at a time. */
2629 gdb_assert (readbuf == nullptr || writebuf == nullptr);
2631 /* In some cases the argument is not returned as the declared type,
2632 and we need to cast to or from the ABI type in order to
2633 correctly access the argument. When writing to the machine we
2634 do the cast here, when reading from the machine the cast occurs
2635 later, after extracting the value. As the ABI type can be
2636 larger than the declared type, then the read or write buffers
2637 passed in might be too small. Here we ensure that we are using
2638 buffers of sufficient size. */
2639 if (writebuf != nullptr)
2641 struct value *arg_val = value_from_contents (arg_type, writebuf);
2642 abi_val = value_cast (info.type, arg_val);
2643 writebuf = value_contents_raw (abi_val);
2647 abi_val = allocate_value (info.type);
2648 old_readbuf = readbuf;
2649 readbuf = value_contents_raw (abi_val);
2651 arg_len = TYPE_LENGTH (info.type);
2653 switch (info.argloc[0].loc_type)
2655 /* Return value in register(s). */
2656 case riscv_arg_info::location::in_reg:
2658 regnum = info.argloc[0].loc_data.regno;
2659 gdb_assert (info.argloc[0].c_length <= arg_len);
2660 gdb_assert (info.argloc[0].c_length
2661 <= register_size (gdbarch, regnum));
2665 gdb_byte *ptr = readbuf + info.argloc[0].c_offset;
2666 regcache->cooked_read_part (regnum, 0,
2667 info.argloc[0].c_length,
2673 const gdb_byte *ptr = writebuf + info.argloc[0].c_offset;
2674 regcache->cooked_write_part (regnum, 0,
2675 info.argloc[0].c_length,
2679 /* A return value in register can have a second part in a
2681 if (info.argloc[1].c_length > 0)
2683 switch (info.argloc[1].loc_type)
2685 case riscv_arg_info::location::in_reg:
2686 regnum = info.argloc[1].loc_data.regno;
2688 gdb_assert ((info.argloc[0].c_length
2689 + info.argloc[1].c_length) <= arg_len);
2690 gdb_assert (info.argloc[1].c_length
2691 <= register_size (gdbarch, regnum));
2695 readbuf += info.argloc[1].c_offset;
2696 regcache->cooked_read_part (regnum, 0,
2697 info.argloc[1].c_length,
2703 writebuf += info.argloc[1].c_offset;
2704 regcache->cooked_write_part (regnum, 0,
2705 info.argloc[1].c_length,
2710 case riscv_arg_info::location::by_ref:
2711 case riscv_arg_info::location::on_stack:
2713 error (_("invalid argument location"));
2720 /* Return value by reference will have its address in A0. */
2721 case riscv_arg_info::location::by_ref:
2725 regcache_cooked_read_unsigned (regcache, RISCV_A0_REGNUM,
2727 if (readbuf != nullptr)
2728 read_memory (addr, readbuf, info.length);
2729 if (writebuf != nullptr)
2730 write_memory (addr, writebuf, info.length);
2734 case riscv_arg_info::location::on_stack:
2736 error (_("invalid argument location"));
2740 /* This completes the cast from abi type back to the declared type
2741 in the case that we are reading from the machine. See the
2742 comment at the head of this block for more details. */
2743 if (readbuf != nullptr)
2745 struct value *arg_val = value_cast (arg_type, abi_val);
2746 memcpy (old_readbuf, value_contents_raw (arg_val),
2747 TYPE_LENGTH (arg_type));
2751 switch (info.argloc[0].loc_type)
2753 case riscv_arg_info::location::in_reg:
2754 return RETURN_VALUE_REGISTER_CONVENTION;
2755 case riscv_arg_info::location::by_ref:
2756 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2757 case riscv_arg_info::location::on_stack:
2759 error (_("invalid argument location"));
2763 /* Implement the frame_align gdbarch method. */
2766 riscv_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2768 return align_down (addr, 16);
2771 /* Generate, or return the cached frame cache for the RiscV frame
2774 static struct riscv_unwind_cache *
2775 riscv_frame_cache (struct frame_info *this_frame, void **this_cache)
2777 CORE_ADDR pc, start_addr;
2778 struct riscv_unwind_cache *cache;
2779 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2782 if ((*this_cache) != NULL)
2783 return (struct riscv_unwind_cache *) *this_cache;
2785 cache = FRAME_OBSTACK_ZALLOC (struct riscv_unwind_cache);
2786 cache->regs = trad_frame_alloc_saved_regs (this_frame);
2787 (*this_cache) = cache;
2789 /* Scan the prologue, filling in the cache. */
2790 start_addr = get_frame_func (this_frame);
2791 pc = get_frame_pc (this_frame);
2792 riscv_scan_prologue (gdbarch, start_addr, pc, cache);
2794 /* We can now calculate the frame base address. */
2796 = (get_frame_register_signed (this_frame, cache->frame_base_reg)
2797 + cache->frame_base_offset);
2798 if (riscv_debug_unwinder)
2799 fprintf_unfiltered (gdb_stdlog, "Frame base is %s ($%s + 0x%x)\n",
2800 core_addr_to_string (cache->frame_base),
2801 gdbarch_register_name (gdbarch,
2802 cache->frame_base_reg),
2803 cache->frame_base_offset);
2805 /* The prologue scanner sets the address of registers stored to the stack
2806 as the offset of that register from the frame base. The prologue
2807 scanner doesn't know the actual frame base value, and so is unable to
2808 compute the exact address. We do now know the frame base value, so
2809 update the address of registers stored to the stack. */
2810 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2811 for (regno = 0; regno < numregs; ++regno)
2813 if (trad_frame_addr_p (cache->regs, regno))
2814 cache->regs[regno].addr += cache->frame_base;
2817 /* The previous $pc can be found wherever the $ra value can be found.
2818 The previous $ra value is gone, this would have been stored be the
2819 previous frame if required. */
2820 cache->regs[gdbarch_pc_regnum (gdbarch)] = cache->regs[RISCV_RA_REGNUM];
2821 trad_frame_set_unknown (cache->regs, RISCV_RA_REGNUM);
2823 /* Build the frame id. */
2824 cache->this_id = frame_id_build (cache->frame_base, start_addr);
2826 /* The previous $sp value is the frame base value. */
2827 trad_frame_set_value (cache->regs, gdbarch_sp_regnum (gdbarch),
2833 /* Implement the this_id callback for RiscV frame unwinder. */
2836 riscv_frame_this_id (struct frame_info *this_frame,
2837 void **prologue_cache,
2838 struct frame_id *this_id)
2840 struct riscv_unwind_cache *cache;
2844 cache = riscv_frame_cache (this_frame, prologue_cache);
2845 *this_id = cache->this_id;
2847 catch (const gdb_exception_error &ex)
2849 /* Ignore errors, this leaves the frame id as the predefined outer
2850 frame id which terminates the backtrace at this point. */
2854 /* Implement the prev_register callback for RiscV frame unwinder. */
2856 static struct value *
2857 riscv_frame_prev_register (struct frame_info *this_frame,
2858 void **prologue_cache,
2861 struct riscv_unwind_cache *cache;
2863 cache = riscv_frame_cache (this_frame, prologue_cache);
2864 return trad_frame_get_prev_register (this_frame, cache->regs, regnum);
2867 /* Structure defining the RiscV normal frame unwind functions. Since we
2868 are the fallback unwinder (DWARF unwinder is used first), we use the
2869 default frame sniffer, which always accepts the frame. */
2871 static const struct frame_unwind riscv_frame_unwind =
2873 /*.type =*/ NORMAL_FRAME,
2874 /*.stop_reason =*/ default_frame_unwind_stop_reason,
2875 /*.this_id =*/ riscv_frame_this_id,
2876 /*.prev_register =*/ riscv_frame_prev_register,
2877 /*.unwind_data =*/ NULL,
2878 /*.sniffer =*/ default_frame_sniffer,
2879 /*.dealloc_cache =*/ NULL,
2880 /*.prev_arch =*/ NULL,
2883 /* Extract a set of required target features out of INFO, specifically the
2884 bfd being executed is examined to see what target features it requires.
2885 IF there is no current bfd, or the bfd doesn't indicate any useful
2886 features then a RISCV_GDBARCH_FEATURES is returned in its default state. */
2888 static struct riscv_gdbarch_features
2889 riscv_features_from_gdbarch_info (const struct gdbarch_info info)
2891 struct riscv_gdbarch_features features;
2893 /* Now try to improve on the defaults by looking at the binary we are
2894 going to execute. We assume the user knows what they are doing and
2895 that the target will match the binary. Remember, this code path is
2896 only used at all if the target hasn't given us a description, so this
2897 is really a last ditched effort to do something sane before giving
2899 if (info.abfd != NULL
2900 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2902 unsigned char eclass = elf_elfheader (info.abfd)->e_ident[EI_CLASS];
2903 int e_flags = elf_elfheader (info.abfd)->e_flags;
2905 if (eclass == ELFCLASS32)
2907 else if (eclass == ELFCLASS64)
2910 internal_error (__FILE__, __LINE__,
2911 _("unknown ELF header class %d"), eclass);
2913 if (e_flags & EF_RISCV_FLOAT_ABI_DOUBLE)
2915 else if (e_flags & EF_RISCV_FLOAT_ABI_SINGLE)
2920 const struct bfd_arch_info *binfo = info.bfd_arch_info;
2922 if (binfo->bits_per_word == 32)
2924 else if (binfo->bits_per_word == 64)
2927 internal_error (__FILE__, __LINE__, _("unknown bits_per_word %d"),
2928 binfo->bits_per_word);
2934 /* Find a suitable default target description. Use the contents of INFO,
2935 specifically the bfd object being executed, to guide the selection of a
2936 suitable default target description. */
2938 static const struct target_desc *
2939 riscv_find_default_target_description (const struct gdbarch_info info)
2941 /* Extract desired feature set from INFO. */
2942 struct riscv_gdbarch_features features
2943 = riscv_features_from_gdbarch_info (info);
2945 /* If the XLEN field is still 0 then we got nothing useful from INFO. In
2946 this case we fall back to a minimal useful target, 8-byte x-registers,
2947 with no floating point. */
2948 if (features.xlen == 0)
2951 /* Now build a target description based on the feature set. */
2952 return riscv_create_target_description (features);
2955 /* All of the registers in REG_SET are checked for in FEATURE, TDESC_DATA
2956 is updated with the register numbers for each register as listed in
2957 REG_SET. If any register marked as required in REG_SET is not found in
2958 FEATURE then this function returns false, otherwise, it returns true. */
2961 riscv_check_tdesc_feature (struct tdesc_arch_data *tdesc_data,
2962 const struct tdesc_feature *feature,
2963 const struct riscv_register_feature *reg_set)
2965 for (const auto ® : reg_set->registers)
2969 for (const char *name : reg.names)
2972 tdesc_numbered_register (feature, tdesc_data, reg.regnum, name);
2978 if (!found && reg.required_p)
2985 /* Add all the expected register sets into GDBARCH. */
2988 riscv_add_reggroups (struct gdbarch *gdbarch)
2990 /* Add predefined register groups. */
2991 reggroup_add (gdbarch, all_reggroup);
2992 reggroup_add (gdbarch, save_reggroup);
2993 reggroup_add (gdbarch, restore_reggroup);
2994 reggroup_add (gdbarch, system_reggroup);
2995 reggroup_add (gdbarch, vector_reggroup);
2996 reggroup_add (gdbarch, general_reggroup);
2997 reggroup_add (gdbarch, float_reggroup);
2999 /* Add RISC-V specific register groups. */
3000 reggroup_add (gdbarch, csr_reggroup);
3003 /* Create register aliases for all the alternative names that exist for
3004 registers in REG_SET. */
3007 riscv_setup_register_aliases (struct gdbarch *gdbarch,
3008 const struct riscv_register_feature *reg_set)
3010 for (auto ® : reg_set->registers)
3012 /* The first item in the names list is the preferred name for the
3013 register, this is what RISCV_REGISTER_NAME returns, and so we
3014 don't need to create an alias with that name here. */
3015 for (int i = 1; i < reg.names.size (); ++i)
3016 user_reg_add (gdbarch, reg.names[i], value_of_riscv_user_reg,
3021 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
3024 riscv_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
3026 if (reg < RISCV_DWARF_REGNUM_X31)
3027 return RISCV_ZERO_REGNUM + (reg - RISCV_DWARF_REGNUM_X0);
3029 else if (reg < RISCV_DWARF_REGNUM_F31)
3030 return RISCV_FIRST_FP_REGNUM + (reg - RISCV_DWARF_REGNUM_F0);
3035 /* Initialize the current architecture based on INFO. If possible,
3036 re-use an architecture from ARCHES, which is a list of
3037 architectures already created during this debugging session.
3039 Called e.g. at program startup, when reading a core file, and when
3040 reading a binary file. */
3042 static struct gdbarch *
3043 riscv_gdbarch_init (struct gdbarch_info info,
3044 struct gdbarch_list *arches)
3046 struct gdbarch *gdbarch;
3047 struct gdbarch_tdep *tdep;
3048 struct riscv_gdbarch_features features;
3049 const struct target_desc *tdesc = info.target_desc;
3051 /* Ensure we always have a target description. */
3052 if (!tdesc_has_registers (tdesc))
3053 tdesc = riscv_find_default_target_description (info);
3056 if (riscv_debug_gdbarch)
3057 fprintf_unfiltered (gdb_stdlog, "Have got a target description\n");
3059 const struct tdesc_feature *feature_cpu
3060 = tdesc_find_feature (tdesc, riscv_xreg_feature.name);
3061 const struct tdesc_feature *feature_fpu
3062 = tdesc_find_feature (tdesc, riscv_freg_feature.name);
3063 const struct tdesc_feature *feature_virtual
3064 = tdesc_find_feature (tdesc, riscv_virtual_feature.name);
3065 const struct tdesc_feature *feature_csr
3066 = tdesc_find_feature (tdesc, riscv_csr_feature.name);
3068 if (feature_cpu == NULL)
3071 struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
3073 bool valid_p = riscv_check_tdesc_feature (tdesc_data,
3075 &riscv_xreg_feature);
3078 /* Check that all of the core cpu registers have the same bitsize. */
3079 int xlen_bitsize = tdesc_register_bitsize (feature_cpu, "pc");
3081 for (auto &tdesc_reg : feature_cpu->registers)
3082 valid_p &= (tdesc_reg->bitsize == xlen_bitsize);
3084 if (riscv_debug_gdbarch)
3087 "From target-description, xlen = %d\n", xlen_bitsize);
3089 features.xlen = (xlen_bitsize / 8);
3092 if (feature_fpu != NULL)
3094 valid_p &= riscv_check_tdesc_feature (tdesc_data, feature_fpu,
3095 &riscv_freg_feature);
3097 int bitsize = tdesc_register_bitsize (feature_fpu, "ft0");
3098 features.flen = (bitsize / 8);
3100 if (riscv_debug_gdbarch)
3103 "From target-description, flen = %d\n", bitsize);
3109 if (riscv_debug_gdbarch)
3112 "No FPU in target-description, assume soft-float ABI\n");
3115 if (feature_virtual)
3116 riscv_check_tdesc_feature (tdesc_data, feature_virtual,
3117 &riscv_virtual_feature);
3120 riscv_check_tdesc_feature (tdesc_data, feature_csr,
3121 &riscv_csr_feature);
3125 if (riscv_debug_gdbarch)
3126 fprintf_unfiltered (gdb_stdlog, "Target description is not valid\n");
3127 tdesc_data_cleanup (tdesc_data);
3131 /* Have a look at what the supplied (if any) bfd object requires of the
3132 target, then check that this matches with what the target is
3134 struct riscv_gdbarch_features abi_features
3135 = riscv_features_from_gdbarch_info (info);
3136 /* In theory a binary compiled for RV32 could run on an RV64 target,
3137 however, this has not been tested in GDB yet, so for now we require
3138 that the requested xlen match the targets xlen. */
3139 if (abi_features.xlen != 0 && abi_features.xlen != features.xlen)
3140 error (_("bfd requires xlen %d, but target has xlen %d"),
3141 abi_features.xlen, features.xlen);
3142 /* We do support running binaries compiled for 32-bit float on targets
3143 with 64-bit float, so we only complain if the binary requires more
3144 than the target has available. */
3145 if (abi_features.flen > features.flen)
3146 error (_("bfd requires flen %d, but target has flen %d"),
3147 abi_features.flen, features.flen);
3149 /* If the ABI_FEATURES xlen is 0 then this indicates we got no useful abi
3150 features from the INFO object. In this case we assume that the xlen
3151 abi matches the hardware. */
3152 if (abi_features.xlen == 0)
3153 abi_features.xlen = features.xlen;
3155 /* Find a candidate among the list of pre-declared architectures. */
3156 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3158 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3160 /* Check that the feature set of the ARCHES matches the feature set
3161 we are looking for. If it doesn't then we can't reuse this
3163 struct gdbarch_tdep *other_tdep = gdbarch_tdep (arches->gdbarch);
3165 if (other_tdep->isa_features != features
3166 || other_tdep->abi_features != abi_features)
3174 tdesc_data_cleanup (tdesc_data);
3175 return arches->gdbarch;
3178 /* None found, so create a new architecture from the information provided. */
3179 tdep = new (struct gdbarch_tdep);
3180 gdbarch = gdbarch_alloc (&info, tdep);
3181 tdep->isa_features = features;
3182 tdep->abi_features = abi_features;
3184 /* Target data types. */
3185 set_gdbarch_short_bit (gdbarch, 16);
3186 set_gdbarch_int_bit (gdbarch, 32);
3187 set_gdbarch_long_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
3188 set_gdbarch_long_long_bit (gdbarch, 64);
3189 set_gdbarch_float_bit (gdbarch, 32);
3190 set_gdbarch_double_bit (gdbarch, 64);
3191 set_gdbarch_long_double_bit (gdbarch, 128);
3192 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3193 set_gdbarch_ptr_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
3194 set_gdbarch_char_signed (gdbarch, 0);
3195 set_gdbarch_type_align (gdbarch, riscv_type_align);
3197 /* Information about the target architecture. */
3198 set_gdbarch_return_value (gdbarch, riscv_return_value);
3199 set_gdbarch_breakpoint_kind_from_pc (gdbarch, riscv_breakpoint_kind_from_pc);
3200 set_gdbarch_sw_breakpoint_from_kind (gdbarch, riscv_sw_breakpoint_from_kind);
3201 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3203 /* Functions to analyze frames. */
3204 set_gdbarch_skip_prologue (gdbarch, riscv_skip_prologue);
3205 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3206 set_gdbarch_frame_align (gdbarch, riscv_frame_align);
3208 /* Functions handling dummy frames. */
3209 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3210 set_gdbarch_push_dummy_code (gdbarch, riscv_push_dummy_code);
3211 set_gdbarch_push_dummy_call (gdbarch, riscv_push_dummy_call);
3213 /* Frame unwinders. Use DWARF debug info if available, otherwise use our own
3215 dwarf2_append_unwinders (gdbarch);
3216 frame_unwind_append_unwinder (gdbarch, &riscv_frame_unwind);
3218 /* Register architecture. */
3219 riscv_add_reggroups (gdbarch);
3221 /* Internal <-> external register number maps. */
3222 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, riscv_dwarf_reg_to_regnum);
3224 /* We reserve all possible register numbers for the known registers.
3225 This means the target description mechanism will add any target
3226 specific registers after this number. This helps make debugging GDB
3227 just a little easier. */
3228 set_gdbarch_num_regs (gdbarch, RISCV_LAST_REGNUM + 1);
3230 /* We don't have to provide the count of 0 here (its the default) but
3231 include this line to make it explicit that, right now, we don't have
3232 any pseudo registers on RISC-V. */
3233 set_gdbarch_num_pseudo_regs (gdbarch, 0);
3235 /* Some specific register numbers GDB likes to know about. */
3236 set_gdbarch_sp_regnum (gdbarch, RISCV_SP_REGNUM);
3237 set_gdbarch_pc_regnum (gdbarch, RISCV_PC_REGNUM);
3239 set_gdbarch_print_registers_info (gdbarch, riscv_print_registers_info);
3241 /* Finalise the target description registers. */
3242 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3244 /* Override the register type callback setup by the target description
3245 mechanism. This allows us to provide special type for floating point
3247 set_gdbarch_register_type (gdbarch, riscv_register_type);
3249 /* Override the register name callback setup by the target description
3250 mechanism. This allows us to force our preferred names for the
3251 registers, no matter what the target description called them. */
3252 set_gdbarch_register_name (gdbarch, riscv_register_name);
3254 /* Override the register group callback setup by the target description
3255 mechanism. This allows us to force registers into the groups we
3256 want, ignoring what the target tells us. */
3257 set_gdbarch_register_reggroup_p (gdbarch, riscv_register_reggroup_p);
3259 /* Create register aliases for alternative register names. */
3260 riscv_setup_register_aliases (gdbarch, &riscv_xreg_feature);
3261 if (riscv_has_fp_regs (gdbarch))
3262 riscv_setup_register_aliases (gdbarch, &riscv_freg_feature);
3263 riscv_setup_register_aliases (gdbarch, &riscv_csr_feature);
3265 /* Hook in OS ABI-specific overrides, if they have been registered. */
3266 gdbarch_init_osabi (info, gdbarch);
3271 /* This decodes the current instruction and determines the address of the
3272 next instruction. */
3275 riscv_next_pc (struct regcache *regcache, CORE_ADDR pc)
3277 struct gdbarch *gdbarch = regcache->arch ();
3278 struct riscv_insn insn;
3281 insn.decode (gdbarch, pc);
3282 next_pc = pc + insn.length ();
3284 if (insn.opcode () == riscv_insn::JAL)
3285 next_pc = pc + insn.imm_signed ();
3286 else if (insn.opcode () == riscv_insn::JALR)
3289 regcache->cooked_read (insn.rs1 (), &source);
3290 next_pc = (source + insn.imm_signed ()) & ~(CORE_ADDR) 0x1;
3292 else if (insn.opcode () == riscv_insn::BEQ)
3295 regcache->cooked_read (insn.rs1 (), &src1);
3296 regcache->cooked_read (insn.rs2 (), &src2);
3298 next_pc = pc + insn.imm_signed ();
3300 else if (insn.opcode () == riscv_insn::BNE)
3303 regcache->cooked_read (insn.rs1 (), &src1);
3304 regcache->cooked_read (insn.rs2 (), &src2);
3306 next_pc = pc + insn.imm_signed ();
3308 else if (insn.opcode () == riscv_insn::BLT)
3311 regcache->cooked_read (insn.rs1 (), &src1);
3312 regcache->cooked_read (insn.rs2 (), &src2);
3314 next_pc = pc + insn.imm_signed ();
3316 else if (insn.opcode () == riscv_insn::BGE)
3319 regcache->cooked_read (insn.rs1 (), &src1);
3320 regcache->cooked_read (insn.rs2 (), &src2);
3322 next_pc = pc + insn.imm_signed ();
3324 else if (insn.opcode () == riscv_insn::BLTU)
3326 ULONGEST src1, src2;
3327 regcache->cooked_read (insn.rs1 (), &src1);
3328 regcache->cooked_read (insn.rs2 (), &src2);
3330 next_pc = pc + insn.imm_signed ();
3332 else if (insn.opcode () == riscv_insn::BGEU)
3334 ULONGEST src1, src2;
3335 regcache->cooked_read (insn.rs1 (), &src1);
3336 regcache->cooked_read (insn.rs2 (), &src2);
3338 next_pc = pc + insn.imm_signed ();
3344 /* We can't put a breakpoint in the middle of a lr/sc atomic sequence, so look
3345 for the end of the sequence and put the breakpoint there. */
3348 riscv_next_pc_atomic_sequence (struct regcache *regcache, CORE_ADDR pc,
3351 struct gdbarch *gdbarch = regcache->arch ();
3352 struct riscv_insn insn;
3353 CORE_ADDR cur_step_pc = pc;
3354 CORE_ADDR last_addr = 0;
3356 /* First instruction has to be a load reserved. */
3357 insn.decode (gdbarch, cur_step_pc);
3358 if (insn.opcode () != riscv_insn::LR)
3360 cur_step_pc = cur_step_pc + insn.length ();
3362 /* Next instruction should be branch to exit. */
3363 insn.decode (gdbarch, cur_step_pc);
3364 if (insn.opcode () != riscv_insn::BNE)
3366 last_addr = cur_step_pc + insn.imm_signed ();
3367 cur_step_pc = cur_step_pc + insn.length ();
3369 /* Next instruction should be store conditional. */
3370 insn.decode (gdbarch, cur_step_pc);
3371 if (insn.opcode () != riscv_insn::SC)
3373 cur_step_pc = cur_step_pc + insn.length ();
3375 /* Next instruction should be branch to start. */
3376 insn.decode (gdbarch, cur_step_pc);
3377 if (insn.opcode () != riscv_insn::BNE)
3379 if (pc != (cur_step_pc + insn.imm_signed ()))
3381 cur_step_pc = cur_step_pc + insn.length ();
3383 /* We should now be at the end of the sequence. */
3384 if (cur_step_pc != last_addr)
3387 *next_pc = cur_step_pc;
3391 /* This is called just before we want to resume the inferior, if we want to
3392 single-step it but there is no hardware or kernel single-step support. We
3393 find the target of the coming instruction and breakpoint it. */
3395 std::vector<CORE_ADDR>
3396 riscv_software_single_step (struct regcache *regcache)
3398 CORE_ADDR pc, next_pc;
3400 pc = regcache_read_pc (regcache);
3402 if (riscv_next_pc_atomic_sequence (regcache, pc, &next_pc))
3405 next_pc = riscv_next_pc (regcache, pc);
3410 /* Create RISC-V specific reggroups. */
3413 riscv_init_reggroups ()
3415 csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
3419 _initialize_riscv_tdep (void)
3421 riscv_create_csr_aliases ();
3422 riscv_init_reggroups ();
3424 gdbarch_register (bfd_arch_riscv, riscv_gdbarch_init, NULL);
3426 /* Add root prefix command for all "set debug riscv" and "show debug
3428 add_prefix_cmd ("riscv", no_class, set_debug_riscv_command,
3429 _("RISC-V specific debug commands."),
3430 &setdebugriscvcmdlist, "set debug riscv ", 0,
3433 add_prefix_cmd ("riscv", no_class, show_debug_riscv_command,
3434 _("RISC-V specific debug commands."),
3435 &showdebugriscvcmdlist, "show debug riscv ", 0,
3438 add_setshow_zuinteger_cmd ("breakpoints", class_maintenance,
3439 &riscv_debug_breakpoints, _("\
3440 Set riscv breakpoint debugging."), _("\
3441 Show riscv breakpoint debugging."), _("\
3442 When non-zero, print debugging information for the riscv specific parts\n\
3443 of the breakpoint mechanism."),
3445 show_riscv_debug_variable,
3446 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
3448 add_setshow_zuinteger_cmd ("infcall", class_maintenance,
3449 &riscv_debug_infcall, _("\
3450 Set riscv inferior call debugging."), _("\
3451 Show riscv inferior call debugging."), _("\
3452 When non-zero, print debugging information for the riscv specific parts\n\
3453 of the inferior call mechanism."),
3455 show_riscv_debug_variable,
3456 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
3458 add_setshow_zuinteger_cmd ("unwinder", class_maintenance,
3459 &riscv_debug_unwinder, _("\
3460 Set riscv stack unwinding debugging."), _("\
3461 Show riscv stack unwinding debugging."), _("\
3462 When non-zero, print debugging information for the riscv specific parts\n\
3463 of the stack unwinding mechanism."),
3465 show_riscv_debug_variable,
3466 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
3468 add_setshow_zuinteger_cmd ("gdbarch", class_maintenance,
3469 &riscv_debug_gdbarch, _("\
3470 Set riscv gdbarch initialisation debugging."), _("\
3471 Show riscv gdbarch initialisation debugging."), _("\
3472 When non-zero, print debugging information for the riscv gdbarch\n\
3473 initialisation process."),
3475 show_riscv_debug_variable,
3476 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
3478 /* Add root prefix command for all "set riscv" and "show riscv" commands. */
3479 add_prefix_cmd ("riscv", no_class, set_riscv_command,
3480 _("RISC-V specific commands."),
3481 &setriscvcmdlist, "set riscv ", 0, &setlist);
3483 add_prefix_cmd ("riscv", no_class, show_riscv_command,
3484 _("RISC-V specific commands."),
3485 &showriscvcmdlist, "show riscv ", 0, &showlist);
3488 use_compressed_breakpoints = AUTO_BOOLEAN_AUTO;
3489 add_setshow_auto_boolean_cmd ("use-compressed-breakpoints", no_class,
3490 &use_compressed_breakpoints,
3492 Set debugger's use of compressed breakpoints."), _(" \
3493 Show debugger's use of compressed breakpoints."), _("\
3494 Debugging compressed code requires compressed breakpoints to be used. If\n\
3495 left to 'auto' then gdb will use them if the existing instruction is a\n\
3496 compressed instruction. If that doesn't give the correct behavior, then\n\
3497 this option can be used."),
3499 show_use_compressed_breakpoints,