1 /* Remote target communications for serial-line targets in custom GDB protocol
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* See the GDB User Guide for details of the GDB remote protocol. */
25 #include "gdb_string.h"
31 #include "exceptions.h"
33 /*#include "terminal.h" */
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
41 #include "gdb_assert.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
51 #include "event-loop.h"
52 #include "event-top.h"
58 #include "gdbcore.h" /* for exec_bfd */
60 #include "remote-fileio.h"
62 #include "memory-map.h"
64 /* The size to align memory write packets, when practical. The protocol
65 does not guarantee any alignment, and gdb will generate short
66 writes and unaligned writes, but even as a best-effort attempt this
67 can improve bulk transfers. For instance, if a write is misaligned
68 relative to the target's data bus, the stub may need to make an extra
69 round trip fetching data from the target. This doesn't make a
70 huge difference, but it's easy to do, so we try to be helpful.
72 The alignment chosen is arbitrary; usually data bus width is
73 important here, not the possibly larger cache line size. */
74 enum { REMOTE_ALIGN_WRITES = 16 };
76 /* Prototypes for local functions. */
77 static void cleanup_sigint_signal_handler (void *dummy);
78 static void initialize_sigint_signal_handler (void);
79 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81 static void handle_remote_sigint (int);
82 static void handle_remote_sigint_twice (int);
83 static void async_remote_interrupt (gdb_client_data);
84 void async_remote_interrupt_twice (gdb_client_data);
86 static void remote_files_info (struct target_ops *ignore);
88 static void remote_prepare_to_store (struct regcache *regcache);
90 static void remote_fetch_registers (struct regcache *regcache, int regno);
92 static void remote_resume (ptid_t ptid, int step,
93 enum target_signal siggnal);
94 static void remote_async_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97 static void remote_async_open (char *name, int from_tty);
99 static void extended_remote_open (char *name, int from_tty);
100 static void extended_remote_async_open (char *name, int from_tty);
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
105 static void remote_close (int quitting);
107 static void remote_store_registers (struct regcache *regcache, int regno);
109 static void remote_mourn (void);
110 static void remote_async_mourn (void);
112 static void extended_remote_restart (void);
114 static void extended_remote_mourn (void);
116 static void remote_mourn_1 (struct target_ops *);
118 static void remote_send (char **buf, long *sizeof_buf_p);
120 static int readchar (int timeout);
122 static ptid_t remote_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124 static ptid_t remote_async_wait (ptid_t ptid,
125 struct target_waitstatus *status);
127 static void remote_kill (void);
128 static void remote_async_kill (void);
130 static int tohex (int nib);
132 static void remote_detach (char *args, int from_tty);
134 static void remote_interrupt (int signo);
136 static void remote_interrupt_twice (int signo);
138 static void interrupt_query (void);
140 static void set_thread (int, int);
142 static int remote_thread_alive (ptid_t);
144 static void get_offsets (void);
146 static void skip_frame (void);
148 static long read_frame (char **buf_p, long *sizeof_buf);
150 static int hexnumlen (ULONGEST num);
152 static void init_remote_ops (void);
154 static void init_extended_remote_ops (void);
156 static void remote_stop (void);
158 static int ishex (int ch, int *val);
160 static int stubhex (int ch);
162 static int hexnumstr (char *, ULONGEST);
164 static int hexnumnstr (char *, ULONGEST, int);
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
168 static void print_packet (char *);
170 static unsigned long crc32 (unsigned char *, int, unsigned int);
172 static void compare_sections_command (char *, int);
174 static void packet_command (char *, int);
176 static int stub_unpack_int (char *buff, int fieldlength);
178 static ptid_t remote_current_thread (ptid_t oldptid);
180 static void remote_find_new_threads (void);
182 static void record_currthread (int currthread);
184 static int fromhex (int a);
186 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190 static int putpkt_binary (char *buf, int cnt);
192 static void check_binary_download (CORE_ADDR addr);
194 struct packet_config;
196 static void show_packet_config_cmd (struct packet_config *config);
198 static void update_packet_config (struct packet_config *config);
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 struct cmd_list_element *c,
208 void _initialize_remote (void);
210 /* For "set remote" and "show remote". */
212 static struct cmd_list_element *remote_set_cmdlist;
213 static struct cmd_list_element *remote_show_cmdlist;
215 /* Description of the remote protocol state for the currently
216 connected target. This is per-target state, and independent of the
217 selected architecture. */
221 /* A buffer to use for incoming packets, and its current size. The
222 buffer is grown dynamically for larger incoming packets.
223 Outgoing packets may also be constructed in this buffer.
224 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
225 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 /* If we negotiated packet size explicitly (and thus can bypass
231 heuristics for the largest packet size that will not overflow
232 a buffer in the stub), this will be set to that packet size.
233 Otherwise zero, meaning to use the guessed size. */
234 long explicit_packet_size;
237 /* This data could be associated with a target, but we do not always
238 have access to the current target when we need it, so for now it is
239 static. This will be fine for as long as only one target is in use
241 static struct remote_state remote_state;
243 static struct remote_state *
244 get_remote_state_raw (void)
246 return &remote_state;
249 /* Description of the remote protocol for a given architecture. */
253 long offset; /* Offset into G packet. */
254 long regnum; /* GDB's internal register number. */
255 LONGEST pnum; /* Remote protocol register number. */
256 int in_g_packet; /* Always part of G packet. */
257 /* long size in bytes; == register_size (current_gdbarch, regnum);
259 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
263 struct remote_arch_state
265 /* Description of the remote protocol registers. */
266 long sizeof_g_packet;
268 /* Description of the remote protocol registers indexed by REGNUM
269 (making an array gdbarch_num_regs in size). */
270 struct packet_reg *regs;
272 /* This is the size (in chars) of the first response to the ``g''
273 packet. It is used as a heuristic when determining the maximum
274 size of memory-read and memory-write packets. A target will
275 typically only reserve a buffer large enough to hold the ``g''
276 packet. The size does not include packet overhead (headers and
278 long actual_register_packet_size;
280 /* This is the maximum size (in chars) of a non read/write packet.
281 It is also used as a cap on the size of read/write packets. */
282 long remote_packet_size;
286 /* Handle for retreving the remote protocol data from gdbarch. */
287 static struct gdbarch_data *remote_gdbarch_data_handle;
289 static struct remote_arch_state *
290 get_remote_arch_state (void)
292 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
295 /* Fetch the global remote target state. */
297 static struct remote_state *
298 get_remote_state (void)
300 /* Make sure that the remote architecture state has been
301 initialized, because doing so might reallocate rs->buf. Any
302 function which calls getpkt also needs to be mindful of changes
303 to rs->buf, but this call limits the number of places which run
305 get_remote_arch_state ();
307 return get_remote_state_raw ();
311 compare_pnums (const void *lhs_, const void *rhs_)
313 const struct packet_reg * const *lhs = lhs_;
314 const struct packet_reg * const *rhs = rhs_;
316 if ((*lhs)->pnum < (*rhs)->pnum)
318 else if ((*lhs)->pnum == (*rhs)->pnum)
325 init_remote_state (struct gdbarch *gdbarch)
327 int regnum, num_remote_regs, offset;
328 struct remote_state *rs = get_remote_state_raw ();
329 struct remote_arch_state *rsa;
330 struct packet_reg **remote_regs;
332 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
334 /* Use the architecture to build a regnum<->pnum table, which will be
335 1:1 unless a feature set specifies otherwise. */
336 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
337 gdbarch_num_regs (current_gdbarch),
339 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
341 struct packet_reg *r = &rsa->regs[regnum];
343 if (register_size (current_gdbarch, regnum) == 0)
344 /* Do not try to fetch zero-sized (placeholder) registers. */
347 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
352 /* Define the g/G packet format as the contents of each register
353 with a remote protocol number, in order of ascending protocol
356 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
357 * sizeof (struct packet_reg *));
358 for (num_remote_regs = 0, regnum = 0;
359 regnum < gdbarch_num_regs (current_gdbarch);
361 if (rsa->regs[regnum].pnum != -1)
362 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
364 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
367 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
369 remote_regs[regnum]->in_g_packet = 1;
370 remote_regs[regnum]->offset = offset;
371 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
374 /* Record the maximum possible size of the g packet - it may turn out
376 rsa->sizeof_g_packet = offset;
378 /* Default maximum number of characters in a packet body. Many
379 remote stubs have a hardwired buffer size of 400 bytes
380 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
381 as the maximum packet-size to ensure that the packet and an extra
382 NUL character can always fit in the buffer. This stops GDB
383 trashing stubs that try to squeeze an extra NUL into what is
384 already a full buffer (As of 1999-12-04 that was most stubs). */
385 rsa->remote_packet_size = 400 - 1;
387 /* This one is filled in when a ``g'' packet is received. */
388 rsa->actual_register_packet_size = 0;
390 /* Should rsa->sizeof_g_packet needs more space than the
391 default, adjust the size accordingly. Remember that each byte is
392 encoded as two characters. 32 is the overhead for the packet
393 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
394 (``$NN:G...#NN'') is a better guess, the below has been padded a
396 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
397 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
399 /* Make sure that the packet buffer is plenty big enough for
400 this architecture. */
401 if (rs->buf_size < rsa->remote_packet_size)
403 rs->buf_size = 2 * rsa->remote_packet_size;
404 rs->buf = xrealloc (rs->buf, rs->buf_size);
410 /* Return the current allowed size of a remote packet. This is
411 inferred from the current architecture, and should be used to
412 limit the length of outgoing packets. */
414 get_remote_packet_size (void)
416 struct remote_state *rs = get_remote_state ();
417 struct remote_arch_state *rsa = get_remote_arch_state ();
419 if (rs->explicit_packet_size)
420 return rs->explicit_packet_size;
422 return rsa->remote_packet_size;
425 static struct packet_reg *
426 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
428 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
432 struct packet_reg *r = &rsa->regs[regnum];
433 gdb_assert (r->regnum == regnum);
438 static struct packet_reg *
439 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
442 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
444 struct packet_reg *r = &rsa->regs[i];
451 /* FIXME: graces/2002-08-08: These variables should eventually be
452 bound to an instance of the target object (as in gdbarch-tdep()),
453 when such a thing exists. */
455 /* This is set to the data address of the access causing the target
456 to stop for a watchpoint. */
457 static CORE_ADDR remote_watch_data_address;
459 /* This is non-zero if target stopped for a watchpoint. */
460 static int remote_stopped_by_watchpoint_p;
462 static struct target_ops remote_ops;
464 static struct target_ops extended_remote_ops;
466 /* Temporary target ops. Just like the remote_ops and
467 extended_remote_ops, but with asynchronous support. */
468 static struct target_ops remote_async_ops;
470 static struct target_ops extended_async_remote_ops;
472 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
473 ``forever'' still use the normal timeout mechanism. This is
474 currently used by the ASYNC code to guarentee that target reads
475 during the initial connect always time-out. Once getpkt has been
476 modified to return a timeout indication and, in turn
477 remote_wait()/wait_for_inferior() have gained a timeout parameter
479 static int wait_forever_enabled_p = 1;
482 /* This variable chooses whether to send a ^C or a break when the user
483 requests program interruption. Although ^C is usually what remote
484 systems expect, and that is the default here, sometimes a break is
485 preferable instead. */
487 static int remote_break;
489 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
490 remote_open knows that we don't have a file open when the program
492 static struct serial *remote_desc = NULL;
494 /* This variable sets the number of bits in an address that are to be
495 sent in a memory ("M" or "m") packet. Normally, after stripping
496 leading zeros, the entire address would be sent. This variable
497 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
498 initial implementation of remote.c restricted the address sent in
499 memory packets to ``host::sizeof long'' bytes - (typically 32
500 bits). Consequently, for 64 bit targets, the upper 32 bits of an
501 address was never sent. Since fixing this bug may cause a break in
502 some remote targets this variable is principly provided to
503 facilitate backward compatibility. */
505 static int remote_address_size;
507 /* Tempoary to track who currently owns the terminal. See
508 target_async_terminal_* for more details. */
510 static int remote_async_terminal_ours_p;
513 /* User configurable variables for the number of characters in a
514 memory read/write packet. MIN (rsa->remote_packet_size,
515 rsa->sizeof_g_packet) is the default. Some targets need smaller
516 values (fifo overruns, et.al.) and some users need larger values
517 (speed up transfers). The variables ``preferred_*'' (the user
518 request), ``current_*'' (what was actually set) and ``forced_*''
519 (Positive - a soft limit, negative - a hard limit). */
521 struct memory_packet_config
528 /* Compute the current size of a read/write packet. Since this makes
529 use of ``actual_register_packet_size'' the computation is dynamic. */
532 get_memory_packet_size (struct memory_packet_config *config)
534 struct remote_state *rs = get_remote_state ();
535 struct remote_arch_state *rsa = get_remote_arch_state ();
537 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
538 law?) that some hosts don't cope very well with large alloca()
539 calls. Eventually the alloca() code will be replaced by calls to
540 xmalloc() and make_cleanups() allowing this restriction to either
541 be lifted or removed. */
542 #ifndef MAX_REMOTE_PACKET_SIZE
543 #define MAX_REMOTE_PACKET_SIZE 16384
545 /* NOTE: 20 ensures we can write at least one byte. */
546 #ifndef MIN_REMOTE_PACKET_SIZE
547 #define MIN_REMOTE_PACKET_SIZE 20
552 if (config->size <= 0)
553 what_they_get = MAX_REMOTE_PACKET_SIZE;
555 what_they_get = config->size;
559 what_they_get = get_remote_packet_size ();
560 /* Limit the packet to the size specified by the user. */
562 && what_they_get > config->size)
563 what_they_get = config->size;
565 /* Limit it to the size of the targets ``g'' response unless we have
566 permission from the stub to use a larger packet size. */
567 if (rs->explicit_packet_size == 0
568 && rsa->actual_register_packet_size > 0
569 && what_they_get > rsa->actual_register_packet_size)
570 what_they_get = rsa->actual_register_packet_size;
572 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
573 what_they_get = MAX_REMOTE_PACKET_SIZE;
574 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
575 what_they_get = MIN_REMOTE_PACKET_SIZE;
577 /* Make sure there is room in the global buffer for this packet
578 (including its trailing NUL byte). */
579 if (rs->buf_size < what_they_get + 1)
581 rs->buf_size = 2 * what_they_get;
582 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
585 return what_they_get;
588 /* Update the size of a read/write packet. If they user wants
589 something really big then do a sanity check. */
592 set_memory_packet_size (char *args, struct memory_packet_config *config)
594 int fixed_p = config->fixed_p;
595 long size = config->size;
597 error (_("Argument required (integer, `fixed' or `limited')."));
598 else if (strcmp (args, "hard") == 0
599 || strcmp (args, "fixed") == 0)
601 else if (strcmp (args, "soft") == 0
602 || strcmp (args, "limit") == 0)
607 size = strtoul (args, &end, 0);
609 error (_("Invalid %s (bad syntax)."), config->name);
611 /* Instead of explicitly capping the size of a packet to
612 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
613 instead allowed to set the size to something arbitrarily
615 if (size > MAX_REMOTE_PACKET_SIZE)
616 error (_("Invalid %s (too large)."), config->name);
620 if (fixed_p && !config->fixed_p)
622 if (! query (_("The target may not be able to correctly handle a %s\n"
623 "of %ld bytes. Change the packet size? "),
625 error (_("Packet size not changed."));
627 /* Update the config. */
628 config->fixed_p = fixed_p;
633 show_memory_packet_size (struct memory_packet_config *config)
635 printf_filtered (_("The %s is %ld. "), config->name, config->size);
637 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
638 get_memory_packet_size (config));
640 printf_filtered (_("Packets are limited to %ld bytes.\n"),
641 get_memory_packet_size (config));
644 static struct memory_packet_config memory_write_packet_config =
646 "memory-write-packet-size",
650 set_memory_write_packet_size (char *args, int from_tty)
652 set_memory_packet_size (args, &memory_write_packet_config);
656 show_memory_write_packet_size (char *args, int from_tty)
658 show_memory_packet_size (&memory_write_packet_config);
662 get_memory_write_packet_size (void)
664 return get_memory_packet_size (&memory_write_packet_config);
667 static struct memory_packet_config memory_read_packet_config =
669 "memory-read-packet-size",
673 set_memory_read_packet_size (char *args, int from_tty)
675 set_memory_packet_size (args, &memory_read_packet_config);
679 show_memory_read_packet_size (char *args, int from_tty)
681 show_memory_packet_size (&memory_read_packet_config);
685 get_memory_read_packet_size (void)
687 long size = get_memory_packet_size (&memory_read_packet_config);
688 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
689 extra buffer size argument before the memory read size can be
690 increased beyond this. */
691 if (size > get_remote_packet_size ())
692 size = get_remote_packet_size ();
697 /* Generic configuration support for packets the stub optionally
698 supports. Allows the user to specify the use of the packet as well
699 as allowing GDB to auto-detect support in the remote stub. */
703 PACKET_SUPPORT_UNKNOWN = 0,
712 enum auto_boolean detect;
713 enum packet_support support;
716 /* Analyze a packet's return value and update the packet config
727 update_packet_config (struct packet_config *config)
729 switch (config->detect)
731 case AUTO_BOOLEAN_TRUE:
732 config->support = PACKET_ENABLE;
734 case AUTO_BOOLEAN_FALSE:
735 config->support = PACKET_DISABLE;
737 case AUTO_BOOLEAN_AUTO:
738 config->support = PACKET_SUPPORT_UNKNOWN;
744 show_packet_config_cmd (struct packet_config *config)
746 char *support = "internal-error";
747 switch (config->support)
753 support = "disabled";
755 case PACKET_SUPPORT_UNKNOWN:
759 switch (config->detect)
761 case AUTO_BOOLEAN_AUTO:
762 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
763 config->name, support);
765 case AUTO_BOOLEAN_TRUE:
766 case AUTO_BOOLEAN_FALSE:
767 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
768 config->name, support);
774 add_packet_config_cmd (struct packet_config *config, const char *name,
775 const char *title, int legacy)
782 config->title = title;
783 config->detect = AUTO_BOOLEAN_AUTO;
784 config->support = PACKET_SUPPORT_UNKNOWN;
785 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
787 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
789 /* set/show TITLE-packet {auto,on,off} */
790 cmd_name = xstrprintf ("%s-packet", title);
791 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
792 &config->detect, set_doc, show_doc, NULL, /* help_doc */
793 set_remote_protocol_packet_cmd,
794 show_remote_protocol_packet_cmd,
795 &remote_set_cmdlist, &remote_show_cmdlist);
796 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
800 legacy_name = xstrprintf ("%s-packet", name);
801 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
802 &remote_set_cmdlist);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_show_cmdlist);
808 static enum packet_result
809 packet_check_result (const char *buf)
813 /* The stub recognized the packet request. Check that the
814 operation succeeded. */
816 && isxdigit (buf[1]) && isxdigit (buf[2])
818 /* "Enn" - definitly an error. */
821 /* Always treat "E." as an error. This will be used for
822 more verbose error messages, such as E.memtypes. */
823 if (buf[0] == 'E' && buf[1] == '.')
826 /* The packet may or may not be OK. Just assume it is. */
830 /* The stub does not support the packet. */
831 return PACKET_UNKNOWN;
834 static enum packet_result
835 packet_ok (const char *buf, struct packet_config *config)
837 enum packet_result result;
839 result = packet_check_result (buf);
844 /* The stub recognized the packet request. */
845 switch (config->support)
847 case PACKET_SUPPORT_UNKNOWN:
849 fprintf_unfiltered (gdb_stdlog,
850 "Packet %s (%s) is supported\n",
851 config->name, config->title);
852 config->support = PACKET_ENABLE;
855 internal_error (__FILE__, __LINE__,
856 _("packet_ok: attempt to use a disabled packet"));
863 /* The stub does not support the packet. */
864 switch (config->support)
867 if (config->detect == AUTO_BOOLEAN_AUTO)
868 /* If the stub previously indicated that the packet was
869 supported then there is a protocol error.. */
870 error (_("Protocol error: %s (%s) conflicting enabled responses."),
871 config->name, config->title);
873 /* The user set it wrong. */
874 error (_("Enabled packet %s (%s) not recognized by stub"),
875 config->name, config->title);
877 case PACKET_SUPPORT_UNKNOWN:
879 fprintf_unfiltered (gdb_stdlog,
880 "Packet %s (%s) is NOT supported\n",
881 config->name, config->title);
882 config->support = PACKET_DISABLE;
905 PACKET_qXfer_features,
906 PACKET_qXfer_libraries,
907 PACKET_qXfer_memory_map,
908 PACKET_qXfer_spu_read,
909 PACKET_qXfer_spu_write,
916 static struct packet_config remote_protocol_packets[PACKET_MAX];
919 set_remote_protocol_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
922 struct packet_config *packet;
924 for (packet = remote_protocol_packets;
925 packet < &remote_protocol_packets[PACKET_MAX];
928 if (&packet->detect == c->var)
930 update_packet_config (packet);
934 internal_error (__FILE__, __LINE__, "Could not find config for %s",
939 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
940 struct cmd_list_element *c,
943 struct packet_config *packet;
945 for (packet = remote_protocol_packets;
946 packet < &remote_protocol_packets[PACKET_MAX];
949 if (&packet->detect == c->var)
951 show_packet_config_cmd (packet);
955 internal_error (__FILE__, __LINE__, "Could not find config for %s",
959 /* Should we try one of the 'Z' requests? */
963 Z_PACKET_SOFTWARE_BP,
964 Z_PACKET_HARDWARE_BP,
971 /* For compatibility with older distributions. Provide a ``set remote
972 Z-packet ...'' command that updates all the Z packet types. */
974 static enum auto_boolean remote_Z_packet_detect;
977 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
978 struct cmd_list_element *c)
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
983 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
984 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
989 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
994 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
996 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1000 /* Should we try the 'ThreadInfo' query packet?
1002 This variable (NOT available to the user: auto-detect only!)
1003 determines whether GDB will use the new, simpler "ThreadInfo"
1004 query or the older, more complex syntax for thread queries.
1005 This is an auto-detect variable (set to true at each connect,
1006 and set to false when the target fails to recognize it). */
1008 static int use_threadinfo_query;
1009 static int use_threadextra_query;
1011 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1012 static struct async_signal_handler *sigint_remote_twice_token;
1013 static struct async_signal_handler *sigint_remote_token;
1015 /* These are pointers to hook functions that may be set in order to
1016 modify resume/wait behavior for a particular architecture. */
1018 void (*deprecated_target_resume_hook) (void);
1019 void (*deprecated_target_wait_loop_hook) (void);
1023 /* These are the threads which we last sent to the remote system.
1024 -1 for all or -2 for not sent yet. */
1025 static int general_thread;
1026 static int continue_thread;
1028 /* Call this function as a result of
1029 1) A halt indication (T packet) containing a thread id
1030 2) A direct query of currthread
1031 3) Successful execution of set thread
1035 record_currthread (int currthread)
1037 general_thread = currthread;
1039 /* If this is a new thread, add it to GDB's thread list.
1040 If we leave it up to WFI to do this, bad things will happen. */
1041 if (!in_thread_list (pid_to_ptid (currthread)))
1043 add_thread (pid_to_ptid (currthread));
1044 ui_out_text (uiout, "[New ");
1045 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1046 ui_out_text (uiout, "]\n");
1050 static char *last_pass_packet;
1052 /* If 'QPassSignals' is supported, tell the remote stub what signals
1053 it can simply pass through to the inferior without reporting. */
1056 remote_pass_signals (void)
1058 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1060 char *pass_packet, *p;
1061 int numsigs = (int) TARGET_SIGNAL_LAST;
1064 gdb_assert (numsigs < 256);
1065 for (i = 0; i < numsigs; i++)
1067 if (signal_stop_state (i) == 0
1068 && signal_print_state (i) == 0
1069 && signal_pass_state (i) == 1)
1072 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1073 strcpy (pass_packet, "QPassSignals:");
1074 p = pass_packet + strlen (pass_packet);
1075 for (i = 0; i < numsigs; i++)
1077 if (signal_stop_state (i) == 0
1078 && signal_print_state (i) == 0
1079 && signal_pass_state (i) == 1)
1082 *p++ = tohex (i >> 4);
1083 *p++ = tohex (i & 15);
1092 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1094 struct remote_state *rs = get_remote_state ();
1095 char *buf = rs->buf;
1097 putpkt (pass_packet);
1098 getpkt (&rs->buf, &rs->buf_size, 0);
1099 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1100 if (last_pass_packet)
1101 xfree (last_pass_packet);
1102 last_pass_packet = pass_packet;
1105 xfree (pass_packet);
1109 #define MAGIC_NULL_PID 42000
1112 set_thread (int th, int gen)
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116 int state = gen ? general_thread : continue_thread;
1122 buf[1] = gen ? 'g' : 'c';
1123 if (th == MAGIC_NULL_PID)
1129 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1133 getpkt (&rs->buf, &rs->buf_size, 0);
1135 general_thread = th;
1137 continue_thread = th;
1140 /* Return nonzero if the thread TH is still alive on the remote system. */
1143 remote_thread_alive (ptid_t ptid)
1145 struct remote_state *rs = get_remote_state ();
1146 int tid = PIDGET (ptid);
1149 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1157 /* About these extended threadlist and threadinfo packets. They are
1158 variable length packets but, the fields within them are often fixed
1159 length. They are redundent enough to send over UDP as is the
1160 remote protocol in general. There is a matching unit test module
1163 #define OPAQUETHREADBYTES 8
1165 /* a 64 bit opaque identifier */
1166 typedef unsigned char threadref[OPAQUETHREADBYTES];
1168 /* WARNING: This threadref data structure comes from the remote O.S.,
1169 libstub protocol encoding, and remote.c. it is not particularly
1172 /* Right now, the internal structure is int. We want it to be bigger.
1176 typedef int gdb_threadref; /* Internal GDB thread reference. */
1178 /* gdb_ext_thread_info is an internal GDB data structure which is
1179 equivalent to the reply of the remote threadinfo packet. */
1181 struct gdb_ext_thread_info
1183 threadref threadid; /* External form of thread reference. */
1184 int active; /* Has state interesting to GDB?
1186 char display[256]; /* Brief state display, name,
1187 blocked/suspended. */
1188 char shortname[32]; /* To be used to name threads. */
1189 char more_display[256]; /* Long info, statistics, queue depth,
1193 /* The volume of remote transfers can be limited by submitting
1194 a mask containing bits specifying the desired information.
1195 Use a union of these values as the 'selection' parameter to
1196 get_thread_info. FIXME: Make these TAG names more thread specific.
1199 #define TAG_THREADID 1
1200 #define TAG_EXISTS 2
1201 #define TAG_DISPLAY 4
1202 #define TAG_THREADNAME 8
1203 #define TAG_MOREDISPLAY 16
1205 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1207 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1209 static char *unpack_nibble (char *buf, int *val);
1211 static char *pack_nibble (char *buf, int nibble);
1213 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1215 static char *unpack_byte (char *buf, int *value);
1217 static char *pack_int (char *buf, int value);
1219 static char *unpack_int (char *buf, int *value);
1221 static char *unpack_string (char *src, char *dest, int length);
1223 static char *pack_threadid (char *pkt, threadref *id);
1225 static char *unpack_threadid (char *inbuf, threadref *id);
1227 void int_to_threadref (threadref *id, int value);
1229 static int threadref_to_int (threadref *ref);
1231 static void copy_threadref (threadref *dest, threadref *src);
1233 static int threadmatch (threadref *dest, threadref *src);
1235 static char *pack_threadinfo_request (char *pkt, int mode,
1238 static int remote_unpack_thread_info_response (char *pkt,
1239 threadref *expectedref,
1240 struct gdb_ext_thread_info
1244 static int remote_get_threadinfo (threadref *threadid,
1245 int fieldset, /*TAG mask */
1246 struct gdb_ext_thread_info *info);
1248 static char *pack_threadlist_request (char *pkt, int startflag,
1250 threadref *nextthread);
1252 static int parse_threadlist_response (char *pkt,
1254 threadref *original_echo,
1255 threadref *resultlist,
1258 static int remote_get_threadlist (int startflag,
1259 threadref *nextthread,
1263 threadref *threadlist);
1265 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1267 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1268 void *context, int looplimit);
1270 static int remote_newthread_step (threadref *ref, void *context);
1272 /* Encode 64 bits in 16 chars of hex. */
1274 static const char hexchars[] = "0123456789abcdef";
1277 ishex (int ch, int *val)
1279 if ((ch >= 'a') && (ch <= 'f'))
1281 *val = ch - 'a' + 10;
1284 if ((ch >= 'A') && (ch <= 'F'))
1286 *val = ch - 'A' + 10;
1289 if ((ch >= '0') && (ch <= '9'))
1300 if (ch >= 'a' && ch <= 'f')
1301 return ch - 'a' + 10;
1302 if (ch >= '0' && ch <= '9')
1304 if (ch >= 'A' && ch <= 'F')
1305 return ch - 'A' + 10;
1310 stub_unpack_int (char *buff, int fieldlength)
1317 nibble = stubhex (*buff++);
1321 retval = retval << 4;
1327 unpack_varlen_hex (char *buff, /* packet to parse */
1331 ULONGEST retval = 0;
1333 while (ishex (*buff, &nibble))
1336 retval = retval << 4;
1337 retval |= nibble & 0x0f;
1344 unpack_nibble (char *buf, int *val)
1346 ishex (*buf++, val);
1351 pack_nibble (char *buf, int nibble)
1353 *buf++ = hexchars[(nibble & 0x0f)];
1358 pack_hex_byte (char *pkt, int byte)
1360 *pkt++ = hexchars[(byte >> 4) & 0xf];
1361 *pkt++ = hexchars[(byte & 0xf)];
1366 unpack_byte (char *buf, int *value)
1368 *value = stub_unpack_int (buf, 2);
1373 pack_int (char *buf, int value)
1375 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1376 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1377 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1378 buf = pack_hex_byte (buf, (value & 0xff));
1383 unpack_int (char *buf, int *value)
1385 *value = stub_unpack_int (buf, 8);
1389 #if 0 /* Currently unused, uncomment when needed. */
1390 static char *pack_string (char *pkt, char *string);
1393 pack_string (char *pkt, char *string)
1398 len = strlen (string);
1400 len = 200; /* Bigger than most GDB packets, junk??? */
1401 pkt = pack_hex_byte (pkt, len);
1405 if ((ch == '\0') || (ch == '#'))
1406 ch = '*'; /* Protect encapsulation. */
1411 #endif /* 0 (unused) */
1414 unpack_string (char *src, char *dest, int length)
1423 pack_threadid (char *pkt, threadref *id)
1426 unsigned char *altid;
1428 altid = (unsigned char *) id;
1429 limit = pkt + BUF_THREAD_ID_SIZE;
1431 pkt = pack_hex_byte (pkt, *altid++);
1437 unpack_threadid (char *inbuf, threadref *id)
1440 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1443 altref = (char *) id;
1445 while (inbuf < limit)
1447 x = stubhex (*inbuf++);
1448 y = stubhex (*inbuf++);
1449 *altref++ = (x << 4) | y;
1454 /* Externally, threadrefs are 64 bits but internally, they are still
1455 ints. This is due to a mismatch of specifications. We would like
1456 to use 64bit thread references internally. This is an adapter
1460 int_to_threadref (threadref *id, int value)
1462 unsigned char *scan;
1464 scan = (unsigned char *) id;
1470 *scan++ = (value >> 24) & 0xff;
1471 *scan++ = (value >> 16) & 0xff;
1472 *scan++ = (value >> 8) & 0xff;
1473 *scan++ = (value & 0xff);
1477 threadref_to_int (threadref *ref)
1480 unsigned char *scan;
1486 value = (value << 8) | ((*scan++) & 0xff);
1491 copy_threadref (threadref *dest, threadref *src)
1494 unsigned char *csrc, *cdest;
1496 csrc = (unsigned char *) src;
1497 cdest = (unsigned char *) dest;
1504 threadmatch (threadref *dest, threadref *src)
1506 /* Things are broken right now, so just assume we got a match. */
1508 unsigned char *srcp, *destp;
1510 srcp = (char *) src;
1511 destp = (char *) dest;
1515 result &= (*srcp++ == *destp++) ? 1 : 0;
1522 threadid:1, # always request threadid
1529 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1532 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1534 *pkt++ = 'q'; /* Info Query */
1535 *pkt++ = 'P'; /* process or thread info */
1536 pkt = pack_int (pkt, mode); /* mode */
1537 pkt = pack_threadid (pkt, id); /* threadid */
1538 *pkt = '\0'; /* terminate */
1542 /* These values tag the fields in a thread info response packet. */
1543 /* Tagging the fields allows us to request specific fields and to
1544 add more fields as time goes by. */
1546 #define TAG_THREADID 1 /* Echo the thread identifier. */
1547 #define TAG_EXISTS 2 /* Is this process defined enough to
1548 fetch registers and its stack? */
1549 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1550 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1551 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1555 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1556 struct gdb_ext_thread_info *info)
1558 struct remote_state *rs = get_remote_state ();
1562 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1565 /* info->threadid = 0; FIXME: implement zero_threadref. */
1567 info->display[0] = '\0';
1568 info->shortname[0] = '\0';
1569 info->more_display[0] = '\0';
1571 /* Assume the characters indicating the packet type have been
1573 pkt = unpack_int (pkt, &mask); /* arg mask */
1574 pkt = unpack_threadid (pkt, &ref);
1577 warning (_("Incomplete response to threadinfo request."));
1578 if (!threadmatch (&ref, expectedref))
1579 { /* This is an answer to a different request. */
1580 warning (_("ERROR RMT Thread info mismatch."));
1583 copy_threadref (&info->threadid, &ref);
1585 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1587 /* Packets are terminated with nulls. */
1588 while ((pkt < limit) && mask && *pkt)
1590 pkt = unpack_int (pkt, &tag); /* tag */
1591 pkt = unpack_byte (pkt, &length); /* length */
1592 if (!(tag & mask)) /* Tags out of synch with mask. */
1594 warning (_("ERROR RMT: threadinfo tag mismatch."));
1598 if (tag == TAG_THREADID)
1602 warning (_("ERROR RMT: length of threadid is not 16."));
1606 pkt = unpack_threadid (pkt, &ref);
1607 mask = mask & ~TAG_THREADID;
1610 if (tag == TAG_EXISTS)
1612 info->active = stub_unpack_int (pkt, length);
1614 mask = mask & ~(TAG_EXISTS);
1617 warning (_("ERROR RMT: 'exists' length too long."));
1623 if (tag == TAG_THREADNAME)
1625 pkt = unpack_string (pkt, &info->shortname[0], length);
1626 mask = mask & ~TAG_THREADNAME;
1629 if (tag == TAG_DISPLAY)
1631 pkt = unpack_string (pkt, &info->display[0], length);
1632 mask = mask & ~TAG_DISPLAY;
1635 if (tag == TAG_MOREDISPLAY)
1637 pkt = unpack_string (pkt, &info->more_display[0], length);
1638 mask = mask & ~TAG_MOREDISPLAY;
1641 warning (_("ERROR RMT: unknown thread info tag."));
1642 break; /* Not a tag we know about. */
1648 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1649 struct gdb_ext_thread_info *info)
1651 struct remote_state *rs = get_remote_state ();
1654 pack_threadinfo_request (rs->buf, fieldset, threadid);
1656 getpkt (&rs->buf, &rs->buf_size, 0);
1657 result = remote_unpack_thread_info_response (rs->buf + 2,
1662 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1665 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1666 threadref *nextthread)
1668 *pkt++ = 'q'; /* info query packet */
1669 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1670 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1671 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1672 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1677 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1680 parse_threadlist_response (char *pkt, int result_limit,
1681 threadref *original_echo, threadref *resultlist,
1684 struct remote_state *rs = get_remote_state ();
1686 int count, resultcount, done;
1689 /* Assume the 'q' and 'M chars have been stripped. */
1690 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1691 /* done parse past here */
1692 pkt = unpack_byte (pkt, &count); /* count field */
1693 pkt = unpack_nibble (pkt, &done);
1694 /* The first threadid is the argument threadid. */
1695 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1696 while ((count-- > 0) && (pkt < limit))
1698 pkt = unpack_threadid (pkt, resultlist++);
1699 if (resultcount++ >= result_limit)
1708 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1709 int *done, int *result_count, threadref *threadlist)
1711 struct remote_state *rs = get_remote_state ();
1712 static threadref echo_nextthread;
1715 /* Trancate result limit to be smaller than the packet size. */
1716 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1717 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1719 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1724 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1727 if (!threadmatch (&echo_nextthread, nextthread))
1729 /* FIXME: This is a good reason to drop the packet. */
1730 /* Possably, there is a duplicate response. */
1732 retransmit immediatly - race conditions
1733 retransmit after timeout - yes
1735 wait for packet, then exit
1737 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1738 return 0; /* I choose simply exiting. */
1740 if (*result_count <= 0)
1744 warning (_("RMT ERROR : failed to get remote thread list."));
1747 return result; /* break; */
1749 if (*result_count > result_limit)
1752 warning (_("RMT ERROR: threadlist response longer than requested."));
1758 /* This is the interface between remote and threads, remotes upper
1761 /* remote_find_new_threads retrieves the thread list and for each
1762 thread in the list, looks up the thread in GDB's internal list,
1763 ading the thread if it does not already exist. This involves
1764 getting partial thread lists from the remote target so, polling the
1765 quit_flag is required. */
1768 /* About this many threadisds fit in a packet. */
1770 #define MAXTHREADLISTRESULTS 32
1773 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1776 int done, i, result_count;
1780 static threadref nextthread;
1781 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1786 if (loopcount++ > looplimit)
1789 warning (_("Remote fetch threadlist -infinite loop-."));
1792 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1793 &done, &result_count, resultthreadlist))
1798 /* Clear for later iterations. */
1800 /* Setup to resume next batch of thread references, set nextthread. */
1801 if (result_count >= 1)
1802 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1804 while (result_count--)
1805 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1812 remote_newthread_step (threadref *ref, void *context)
1816 ptid = pid_to_ptid (threadref_to_int (ref));
1818 if (!in_thread_list (ptid))
1820 return 1; /* continue iterator */
1823 #define CRAZY_MAX_THREADS 1000
1826 remote_current_thread (ptid_t oldpid)
1828 struct remote_state *rs = get_remote_state ();
1831 getpkt (&rs->buf, &rs->buf_size, 0);
1832 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1833 /* Use strtoul here, so we'll correctly parse values whose highest
1834 bit is set. The protocol carries them as a simple series of
1835 hex digits; in the absence of a sign, strtol will see such
1836 values as positive numbers out of range for signed 'long', and
1837 return LONG_MAX to indicate an overflow. */
1838 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1843 /* Find new threads for info threads command.
1844 * Original version, using John Metzler's thread protocol.
1848 remote_find_new_threads (void)
1850 remote_threadlist_iterator (remote_newthread_step, 0,
1852 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1853 inferior_ptid = remote_current_thread (inferior_ptid);
1857 * Find all threads for info threads command.
1858 * Uses new thread protocol contributed by Cisco.
1859 * Falls back and attempts to use the older method (above)
1860 * if the target doesn't respond to the new method.
1864 remote_threads_info (void)
1866 struct remote_state *rs = get_remote_state ();
1870 if (remote_desc == 0) /* paranoia */
1871 error (_("Command can only be used when connected to the remote target."));
1873 if (use_threadinfo_query)
1875 putpkt ("qfThreadInfo");
1876 getpkt (&rs->buf, &rs->buf_size, 0);
1878 if (bufp[0] != '\0') /* q packet recognized */
1880 while (*bufp++ == 'm') /* reply contains one or more TID */
1884 /* Use strtoul here, so we'll correctly parse values
1885 whose highest bit is set. The protocol carries
1886 them as a simple series of hex digits; in the
1887 absence of a sign, strtol will see such values as
1888 positive numbers out of range for signed 'long',
1889 and return LONG_MAX to indicate an overflow. */
1890 tid = strtoul (bufp, &bufp, 16);
1891 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1892 add_thread (pid_to_ptid (tid));
1894 while (*bufp++ == ','); /* comma-separated list */
1895 putpkt ("qsThreadInfo");
1896 getpkt (&rs->buf, &rs->buf_size, 0);
1903 /* Else fall back to old method based on jmetzler protocol. */
1904 use_threadinfo_query = 0;
1905 remote_find_new_threads ();
1910 * Collect a descriptive string about the given thread.
1911 * The target may say anything it wants to about the thread
1912 * (typically info about its blocked / runnable state, name, etc.).
1913 * This string will appear in the info threads display.
1915 * Optional: targets are not required to implement this function.
1919 remote_threads_extra_info (struct thread_info *tp)
1921 struct remote_state *rs = get_remote_state ();
1925 struct gdb_ext_thread_info threadinfo;
1926 static char display_buf[100]; /* arbitrary... */
1927 int n = 0; /* position in display_buf */
1929 if (remote_desc == 0) /* paranoia */
1930 internal_error (__FILE__, __LINE__,
1931 _("remote_threads_extra_info"));
1933 if (use_threadextra_query)
1935 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 if (rs->buf[0] != 0)
1941 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1942 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1943 display_buf [result] = '\0';
1948 /* If the above query fails, fall back to the old method. */
1949 use_threadextra_query = 0;
1950 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1951 | TAG_MOREDISPLAY | TAG_DISPLAY;
1952 int_to_threadref (&id, PIDGET (tp->ptid));
1953 if (remote_get_threadinfo (&id, set, &threadinfo))
1954 if (threadinfo.active)
1956 if (*threadinfo.shortname)
1957 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1958 " Name: %s,", threadinfo.shortname);
1959 if (*threadinfo.display)
1960 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1961 " State: %s,", threadinfo.display);
1962 if (*threadinfo.more_display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " Priority: %s", threadinfo.more_display);
1968 /* For purely cosmetic reasons, clear up trailing commas. */
1969 if (',' == display_buf[n-1])
1970 display_buf[n-1] = ' ';
1978 /* Restart the remote side; this is an extended protocol operation. */
1981 extended_remote_restart (void)
1983 struct remote_state *rs = get_remote_state ();
1985 /* Send the restart command; for reasons I don't understand the
1986 remote side really expects a number after the "R". */
1987 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1990 remote_fileio_reset ();
1992 /* Now query for status so this looks just like we restarted
1993 gdbserver from scratch. */
1995 getpkt (&rs->buf, &rs->buf_size, 0);
1998 /* Clean up connection to a remote debugger. */
2001 remote_close (int quitting)
2004 serial_close (remote_desc);
2008 /* Query the remote side for the text, data and bss offsets. */
2013 struct remote_state *rs = get_remote_state ();
2016 int lose, num_segments = 0, do_sections, do_segments;
2017 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2018 struct section_offsets *offs;
2019 struct symfile_segment_data *data;
2021 if (symfile_objfile == NULL)
2024 putpkt ("qOffsets");
2025 getpkt (&rs->buf, &rs->buf_size, 0);
2028 if (buf[0] == '\000')
2029 return; /* Return silently. Stub doesn't support
2033 warning (_("Remote failure reply: %s"), buf);
2037 /* Pick up each field in turn. This used to be done with scanf, but
2038 scanf will make trouble if CORE_ADDR size doesn't match
2039 conversion directives correctly. The following code will work
2040 with any size of CORE_ADDR. */
2041 text_addr = data_addr = bss_addr = 0;
2045 if (strncmp (ptr, "Text=", 5) == 0)
2048 /* Don't use strtol, could lose on big values. */
2049 while (*ptr && *ptr != ';')
2050 text_addr = (text_addr << 4) + fromhex (*ptr++);
2052 if (strncmp (ptr, ";Data=", 6) == 0)
2055 while (*ptr && *ptr != ';')
2056 data_addr = (data_addr << 4) + fromhex (*ptr++);
2061 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2064 while (*ptr && *ptr != ';')
2065 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2067 if (bss_addr != data_addr)
2068 warning (_("Target reported unsupported offsets: %s"), buf);
2073 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2076 /* Don't use strtol, could lose on big values. */
2077 while (*ptr && *ptr != ';')
2078 text_addr = (text_addr << 4) + fromhex (*ptr++);
2081 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2084 while (*ptr && *ptr != ';')
2085 data_addr = (data_addr << 4) + fromhex (*ptr++);
2093 error (_("Malformed response to offset query, %s"), buf);
2094 else if (*ptr != '\0')
2095 warning (_("Target reported unsupported offsets: %s"), buf);
2097 offs = ((struct section_offsets *)
2098 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2099 memcpy (offs, symfile_objfile->section_offsets,
2100 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2102 data = get_symfile_segment_data (symfile_objfile->obfd);
2103 do_segments = (data != NULL);
2104 do_sections = num_segments == 0;
2106 /* Text= and Data= specify offsets for the text and data sections,
2107 but symfile_map_offsets_to_segments expects base addresses
2108 instead of offsets. If we have two segments, we can still
2109 try to relocate the whole segments instead of just ".text"
2111 if (num_segments == 0)
2114 if (data == NULL || data->num_segments != 2)
2118 segments[0] = data->segment_bases[0] + text_addr;
2119 segments[1] = data->segment_bases[1] + data_addr;
2125 segments[0] = text_addr;
2126 segments[1] = data_addr;
2131 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2132 offs, num_segments, segments);
2134 if (ret == 0 && !do_sections)
2135 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2141 free_symfile_segment_data (data);
2145 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2147 /* This is a temporary kludge to force data and bss to use the same offsets
2148 because that's what nlmconv does now. The real solution requires changes
2149 to the stub and remote.c that I don't have time to do right now. */
2151 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2152 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2155 objfile_relocate (symfile_objfile, offs);
2158 /* Stub for catch_exception. */
2161 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2163 int from_tty = * (int *) from_tty_p;
2165 immediate_quit++; /* Allow user to interrupt it. */
2167 /* Ack any packet which the remote side has already sent. */
2168 serial_write (remote_desc, "+", 1);
2170 /* Let the stub know that we want it to return the thread. */
2173 inferior_ptid = remote_current_thread (inferior_ptid);
2175 get_offsets (); /* Get text, data & bss offsets. */
2177 putpkt ("?"); /* Initiate a query from remote machine. */
2180 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2183 /* Open a connection to a remote debugger.
2184 NAME is the filename used for communication. */
2187 remote_open (char *name, int from_tty)
2189 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2192 /* Just like remote_open, but with asynchronous support. */
2194 remote_async_open (char *name, int from_tty)
2196 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2199 /* Open a connection to a remote debugger using the extended
2200 remote gdb protocol. NAME is the filename used for communication. */
2203 extended_remote_open (char *name, int from_tty)
2205 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2209 /* Just like extended_remote_open, but with asynchronous support. */
2211 extended_remote_async_open (char *name, int from_tty)
2213 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2214 1 /*extended_p */, 1 /* async_p */);
2217 /* Generic code for opening a connection to a remote target. */
2220 init_all_packet_configs (void)
2223 for (i = 0; i < PACKET_MAX; i++)
2224 update_packet_config (&remote_protocol_packets[i]);
2227 /* Symbol look-up. */
2230 remote_check_symbols (struct objfile *objfile)
2232 struct remote_state *rs = get_remote_state ();
2233 char *msg, *reply, *tmp;
2234 struct minimal_symbol *sym;
2237 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2240 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2241 because we need both at the same time. */
2242 msg = alloca (get_remote_packet_size ());
2244 /* Invite target to request symbol lookups. */
2246 putpkt ("qSymbol::");
2247 getpkt (&rs->buf, &rs->buf_size, 0);
2248 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2251 while (strncmp (reply, "qSymbol:", 8) == 0)
2254 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2256 sym = lookup_minimal_symbol (msg, NULL, NULL);
2258 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2261 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2263 /* If this is a function address, return the start of code
2264 instead of any data function descriptor. */
2265 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2269 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2270 paddr_nz (sym_addr), &reply[8]);
2274 getpkt (&rs->buf, &rs->buf_size, 0);
2279 static struct serial *
2280 remote_serial_open (char *name)
2282 static int udp_warning = 0;
2284 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2285 of in ser-tcp.c, because it is the remote protocol assuming that the
2286 serial connection is reliable and not the serial connection promising
2288 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2291 The remote protocol may be unreliable over UDP.\n\
2292 Some events may be lost, rendering further debugging impossible."));
2296 return serial_open (name);
2299 /* This type describes each known response to the qSupported
2301 struct protocol_feature
2303 /* The name of this protocol feature. */
2306 /* The default for this protocol feature. */
2307 enum packet_support default_support;
2309 /* The function to call when this feature is reported, or after
2310 qSupported processing if the feature is not supported.
2311 The first argument points to this structure. The second
2312 argument indicates whether the packet requested support be
2313 enabled, disabled, or probed (or the default, if this function
2314 is being called at the end of processing and this feature was
2315 not reported). The third argument may be NULL; if not NULL, it
2316 is a NUL-terminated string taken from the packet following
2317 this feature's name and an equals sign. */
2318 void (*func) (const struct protocol_feature *, enum packet_support,
2321 /* The corresponding packet for this feature. Only used if
2322 FUNC is remote_supported_packet. */
2327 remote_supported_packet (const struct protocol_feature *feature,
2328 enum packet_support support,
2329 const char *argument)
2333 warning (_("Remote qSupported response supplied an unexpected value for"
2334 " \"%s\"."), feature->name);
2338 if (remote_protocol_packets[feature->packet].support
2339 == PACKET_SUPPORT_UNKNOWN)
2340 remote_protocol_packets[feature->packet].support = support;
2344 remote_packet_size (const struct protocol_feature *feature,
2345 enum packet_support support, const char *value)
2347 struct remote_state *rs = get_remote_state ();
2352 if (support != PACKET_ENABLE)
2355 if (value == NULL || *value == '\0')
2357 warning (_("Remote target reported \"%s\" without a size."),
2363 packet_size = strtol (value, &value_end, 16);
2364 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2366 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2367 feature->name, value);
2371 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2373 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2374 packet_size, MAX_REMOTE_PACKET_SIZE);
2375 packet_size = MAX_REMOTE_PACKET_SIZE;
2378 /* Record the new maximum packet size. */
2379 rs->explicit_packet_size = packet_size;
2382 static struct protocol_feature remote_protocol_features[] = {
2383 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2384 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2385 PACKET_qXfer_auxv },
2386 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_features },
2388 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_qXfer_libraries },
2390 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2391 PACKET_qXfer_memory_map },
2392 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2393 PACKET_qXfer_spu_read },
2394 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2395 PACKET_qXfer_spu_write },
2396 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2397 PACKET_QPassSignals },
2401 remote_query_supported (void)
2403 struct remote_state *rs = get_remote_state ();
2406 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2408 /* The packet support flags are handled differently for this packet
2409 than for most others. We treat an error, a disabled packet, and
2410 an empty response identically: any features which must be reported
2411 to be used will be automatically disabled. An empty buffer
2412 accomplishes this, since that is also the representation for a list
2413 containing no features. */
2416 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2418 putpkt ("qSupported");
2419 getpkt (&rs->buf, &rs->buf_size, 0);
2421 /* If an error occured, warn, but do not return - just reset the
2422 buffer to empty and go on to disable features. */
2423 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2426 warning (_("Remote failure reply: %s"), rs->buf);
2431 memset (seen, 0, sizeof (seen));
2436 enum packet_support is_supported;
2437 char *p, *end, *name_end, *value;
2439 /* First separate out this item from the rest of the packet. If
2440 there's another item after this, we overwrite the separator
2441 (terminated strings are much easier to work with). */
2443 end = strchr (p, ';');
2446 end = p + strlen (p);
2456 warning (_("empty item in \"qSupported\" response"));
2461 name_end = strchr (p, '=');
2464 /* This is a name=value entry. */
2465 is_supported = PACKET_ENABLE;
2466 value = name_end + 1;
2475 is_supported = PACKET_ENABLE;
2479 is_supported = PACKET_DISABLE;
2483 is_supported = PACKET_SUPPORT_UNKNOWN;
2487 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2493 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2494 if (strcmp (remote_protocol_features[i].name, p) == 0)
2496 const struct protocol_feature *feature;
2499 feature = &remote_protocol_features[i];
2500 feature->func (feature, is_supported, value);
2505 /* If we increased the packet size, make sure to increase the global
2506 buffer size also. We delay this until after parsing the entire
2507 qSupported packet, because this is the same buffer we were
2509 if (rs->buf_size < rs->explicit_packet_size)
2511 rs->buf_size = rs->explicit_packet_size;
2512 rs->buf = xrealloc (rs->buf, rs->buf_size);
2515 /* Handle the defaults for unmentioned features. */
2516 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2519 const struct protocol_feature *feature;
2521 feature = &remote_protocol_features[i];
2522 feature->func (feature, feature->default_support, NULL);
2528 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2529 int extended_p, int async_p)
2531 struct remote_state *rs = get_remote_state ();
2533 error (_("To open a remote debug connection, you need to specify what\n"
2534 "serial device is attached to the remote system\n"
2535 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2537 /* See FIXME above. */
2539 wait_forever_enabled_p = 1;
2541 target_preopen (from_tty);
2543 unpush_target (target);
2545 /* Make sure we send the passed signals list the next time we resume. */
2546 xfree (last_pass_packet);
2547 last_pass_packet = NULL;
2549 remote_fileio_reset ();
2550 reopen_exec_file ();
2553 remote_desc = remote_serial_open (name);
2555 perror_with_name (name);
2557 if (baud_rate != -1)
2559 if (serial_setbaudrate (remote_desc, baud_rate))
2561 /* The requested speed could not be set. Error out to
2562 top level after closing remote_desc. Take care to
2563 set remote_desc to NULL to avoid closing remote_desc
2565 serial_close (remote_desc);
2567 perror_with_name (name);
2571 serial_raw (remote_desc);
2573 /* If there is something sitting in the buffer we might take it as a
2574 response to a command, which would be bad. */
2575 serial_flush_input (remote_desc);
2579 puts_filtered ("Remote debugging using ");
2580 puts_filtered (name);
2581 puts_filtered ("\n");
2583 push_target (target); /* Switch to using remote target now. */
2585 /* Reset the target state; these things will be queried either by
2586 remote_query_supported or as they are needed. */
2587 init_all_packet_configs ();
2588 rs->explicit_packet_size = 0;
2590 general_thread = -2;
2591 continue_thread = -2;
2593 /* Probe for ability to use "ThreadInfo" query, as required. */
2594 use_threadinfo_query = 1;
2595 use_threadextra_query = 1;
2597 /* The first packet we send to the target is the optional "supported
2598 packets" request. If the target can answer this, it will tell us
2599 which later probes to skip. */
2600 remote_query_supported ();
2602 /* Next, if the target can specify a description, read it. We do
2603 this before anything involving memory or registers. */
2604 target_find_description ();
2606 /* Without this, some commands which require an active target (such
2607 as kill) won't work. This variable serves (at least) double duty
2608 as both the pid of the target process (if it has such), and as a
2609 flag indicating that a target is active. These functions should
2610 be split out into seperate variables, especially since GDB will
2611 someday have a notion of debugging several processes. */
2613 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2617 /* With this target we start out by owning the terminal. */
2618 remote_async_terminal_ours_p = 1;
2620 /* FIXME: cagney/1999-09-23: During the initial connection it is
2621 assumed that the target is already ready and able to respond to
2622 requests. Unfortunately remote_start_remote() eventually calls
2623 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2624 around this. Eventually a mechanism that allows
2625 wait_for_inferior() to expect/get timeouts will be
2627 wait_forever_enabled_p = 0;
2630 /* First delete any symbols previously loaded from shared libraries. */
2631 no_shared_libraries (NULL, 0);
2633 /* Start the remote connection. If error() or QUIT, discard this
2634 target (we'd otherwise be in an inconsistent state) and then
2635 propogate the error on up the exception chain. This ensures that
2636 the caller doesn't stumble along blindly assuming that the
2637 function succeeded. The CLI doesn't have this problem but other
2638 UI's, such as MI do.
2640 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2641 this function should return an error indication letting the
2642 caller restore the previous state. Unfortunately the command
2643 ``target remote'' is directly wired to this function making that
2644 impossible. On a positive note, the CLI side of this problem has
2645 been fixed - the function set_cmd_context() makes it possible for
2646 all the ``target ....'' commands to share a common callback
2647 function. See cli-dump.c. */
2649 struct gdb_exception ex
2650 = catch_exception (uiout, remote_start_remote, &from_tty,
2656 wait_forever_enabled_p = 1;
2657 throw_exception (ex);
2662 wait_forever_enabled_p = 1;
2666 /* Tell the remote that we are using the extended protocol. */
2668 getpkt (&rs->buf, &rs->buf_size, 0);
2671 if (exec_bfd) /* No use without an exec file. */
2672 remote_check_symbols (symfile_objfile);
2675 /* This takes a program previously attached to and detaches it. After
2676 this is done, GDB can be used to debug some other program. We
2677 better not have left any breakpoints in the target program or it'll
2678 die when it hits one. */
2681 remote_detach (char *args, int from_tty)
2683 struct remote_state *rs = get_remote_state ();
2686 error (_("Argument given to \"detach\" when remotely debugging."));
2688 /* Tell the remote target to detach. */
2689 strcpy (rs->buf, "D");
2691 getpkt (&rs->buf, &rs->buf_size, 0);
2693 if (rs->buf[0] == 'E')
2694 error (_("Can't detach process."));
2696 /* Unregister the file descriptor from the event loop. */
2697 if (target_is_async_p ())
2698 serial_async (remote_desc, NULL, 0);
2700 target_mourn_inferior ();
2702 puts_filtered ("Ending remote debugging.\n");
2705 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2708 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2711 error (_("Argument given to \"detach\" when remotely debugging."));
2713 /* Unregister the file descriptor from the event loop. */
2714 if (target_is_async_p ())
2715 serial_async (remote_desc, NULL, 0);
2717 target_mourn_inferior ();
2719 puts_filtered ("Ending remote debugging.\n");
2722 /* Convert hex digit A to a number. */
2727 if (a >= '0' && a <= '9')
2729 else if (a >= 'a' && a <= 'f')
2730 return a - 'a' + 10;
2731 else if (a >= 'A' && a <= 'F')
2732 return a - 'A' + 10;
2734 error (_("Reply contains invalid hex digit %d"), a);
2738 hex2bin (const char *hex, gdb_byte *bin, int count)
2742 for (i = 0; i < count; i++)
2744 if (hex[0] == 0 || hex[1] == 0)
2746 /* Hex string is short, or of uneven length.
2747 Return the count that has been converted so far. */
2750 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2756 /* Convert number NIB to a hex digit. */
2764 return 'a' + nib - 10;
2768 bin2hex (const gdb_byte *bin, char *hex, int count)
2771 /* May use a length, or a nul-terminated string as input. */
2773 count = strlen ((char *) bin);
2775 for (i = 0; i < count; i++)
2777 *hex++ = tohex ((*bin >> 4) & 0xf);
2778 *hex++ = tohex (*bin++ & 0xf);
2784 /* Check for the availability of vCont. This function should also check
2788 remote_vcont_probe (struct remote_state *rs)
2792 strcpy (rs->buf, "vCont?");
2794 getpkt (&rs->buf, &rs->buf_size, 0);
2797 /* Make sure that the features we assume are supported. */
2798 if (strncmp (buf, "vCont", 5) == 0)
2801 int support_s, support_S, support_c, support_C;
2807 while (p && *p == ';')
2810 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2812 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2814 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2816 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2819 p = strchr (p, ';');
2822 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2823 BUF will make packet_ok disable the packet. */
2824 if (!support_s || !support_S || !support_c || !support_C)
2828 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2831 /* Resume the remote inferior by using a "vCont" packet. The thread
2832 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2833 resumed thread should be single-stepped and/or signalled. If PTID's
2834 PID is -1, then all threads are resumed; the thread to be stepped and/or
2835 signalled is given in the global INFERIOR_PTID. This function returns
2836 non-zero iff it resumes the inferior.
2838 This function issues a strict subset of all possible vCont commands at the
2842 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2844 struct remote_state *rs = get_remote_state ();
2845 int pid = PIDGET (ptid);
2846 char *buf = NULL, *outbuf;
2847 struct cleanup *old_cleanup;
2849 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2850 remote_vcont_probe (rs);
2852 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2855 /* If we could generate a wider range of packets, we'd have to worry
2856 about overflowing BUF. Should there be a generic
2857 "multi-part-packet" packet? */
2859 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2861 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2862 don't have any PID numbers the inferior will understand. Make sure
2863 to only send forms that do not specify a PID. */
2864 if (step && siggnal != TARGET_SIGNAL_0)
2865 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2867 outbuf = xstrprintf ("vCont;s");
2868 else if (siggnal != TARGET_SIGNAL_0)
2869 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2871 outbuf = xstrprintf ("vCont;c");
2875 /* Resume all threads, with preference for INFERIOR_PTID. */
2876 if (step && siggnal != TARGET_SIGNAL_0)
2877 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2878 PIDGET (inferior_ptid));
2880 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2881 else if (siggnal != TARGET_SIGNAL_0)
2882 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2883 PIDGET (inferior_ptid));
2885 outbuf = xstrprintf ("vCont;c");
2889 /* Scheduler locking; resume only PTID. */
2890 if (step && siggnal != TARGET_SIGNAL_0)
2891 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2893 outbuf = xstrprintf ("vCont;s:%x", pid);
2894 else if (siggnal != TARGET_SIGNAL_0)
2895 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2897 outbuf = xstrprintf ("vCont;c:%x", pid);
2900 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2901 old_cleanup = make_cleanup (xfree, outbuf);
2905 do_cleanups (old_cleanup);
2910 /* Tell the remote machine to resume. */
2912 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2914 static int last_sent_step;
2917 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2919 struct remote_state *rs = get_remote_state ();
2921 int pid = PIDGET (ptid);
2923 last_sent_signal = siggnal;
2924 last_sent_step = step;
2926 /* A hook for when we need to do something at the last moment before
2928 if (deprecated_target_resume_hook)
2929 (*deprecated_target_resume_hook) ();
2931 /* Update the inferior on signals to silently pass, if they've changed. */
2932 remote_pass_signals ();
2934 /* The vCont packet doesn't need to specify threads via Hc. */
2935 if (remote_vcont_resume (ptid, step, siggnal))
2938 /* All other supported resume packets do use Hc, so call set_thread. */
2940 set_thread (0, 0); /* Run any thread. */
2942 set_thread (pid, 0); /* Run this thread. */
2945 if (siggnal != TARGET_SIGNAL_0)
2947 buf[0] = step ? 'S' : 'C';
2948 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2949 buf[2] = tohex (((int) siggnal) & 0xf);
2953 strcpy (buf, step ? "s" : "c");
2958 /* Same as remote_resume, but with async support. */
2960 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2962 remote_resume (ptid, step, siggnal);
2964 /* We are about to start executing the inferior, let's register it
2965 with the event loop. NOTE: this is the one place where all the
2966 execution commands end up. We could alternatively do this in each
2967 of the execution commands in infcmd.c. */
2968 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2969 into infcmd.c in order to allow inferior function calls to work
2970 NOT asynchronously. */
2971 if (target_can_async_p ())
2972 target_async (inferior_event_handler, 0);
2973 /* Tell the world that the target is now executing. */
2974 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2975 this? Instead, should the client of target just assume (for
2976 async targets) that the target is going to start executing? Is
2977 this information already found in the continuation block? */
2978 if (target_is_async_p ())
2979 target_executing = 1;
2983 /* Set up the signal handler for SIGINT, while the target is
2984 executing, ovewriting the 'regular' SIGINT signal handler. */
2986 initialize_sigint_signal_handler (void)
2988 sigint_remote_token =
2989 create_async_signal_handler (async_remote_interrupt, NULL);
2990 signal (SIGINT, handle_remote_sigint);
2993 /* Signal handler for SIGINT, while the target is executing. */
2995 handle_remote_sigint (int sig)
2997 signal (sig, handle_remote_sigint_twice);
2998 sigint_remote_twice_token =
2999 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3000 mark_async_signal_handler_wrapper (sigint_remote_token);
3003 /* Signal handler for SIGINT, installed after SIGINT has already been
3004 sent once. It will take effect the second time that the user sends
3007 handle_remote_sigint_twice (int sig)
3009 signal (sig, handle_sigint);
3010 sigint_remote_twice_token =
3011 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3012 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3015 /* Perform the real interruption of the target execution, in response
3018 async_remote_interrupt (gdb_client_data arg)
3021 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3026 /* Perform interrupt, if the first attempt did not succeed. Just give
3027 up on the target alltogether. */
3029 async_remote_interrupt_twice (gdb_client_data arg)
3032 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3033 /* Do something only if the target was not killed by the previous
3035 if (target_executing)
3038 signal (SIGINT, handle_remote_sigint);
3042 /* Reinstall the usual SIGINT handlers, after the target has
3045 cleanup_sigint_signal_handler (void *dummy)
3047 signal (SIGINT, handle_sigint);
3048 if (sigint_remote_twice_token)
3049 delete_async_signal_handler (&sigint_remote_twice_token);
3050 if (sigint_remote_token)
3051 delete_async_signal_handler (&sigint_remote_token);
3054 /* Send ^C to target to halt it. Target will respond, and send us a
3056 static void (*ofunc) (int);
3058 /* The command line interface's stop routine. This function is installed
3059 as a signal handler for SIGINT. The first time a user requests a
3060 stop, we call remote_stop to send a break or ^C. If there is no
3061 response from the target (it didn't stop when the user requested it),
3062 we ask the user if he'd like to detach from the target. */
3064 remote_interrupt (int signo)
3066 /* If this doesn't work, try more severe steps. */
3067 signal (signo, remote_interrupt_twice);
3070 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3075 /* The user typed ^C twice. */
3078 remote_interrupt_twice (int signo)
3080 signal (signo, ofunc);
3082 signal (signo, remote_interrupt);
3085 /* This is the generic stop called via the target vector. When a target
3086 interrupt is requested, either by the command line or the GUI, we
3087 will eventually end up here. */
3091 /* Send a break or a ^C, depending on user preference. */
3093 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3096 serial_send_break (remote_desc);
3098 serial_write (remote_desc, "\003", 1);
3101 /* Ask the user what to do when an interrupt is received. */
3104 interrupt_query (void)
3106 target_terminal_ours ();
3108 if (query ("Interrupted while waiting for the program.\n\
3109 Give up (and stop debugging it)? "))
3111 target_mourn_inferior ();
3112 deprecated_throw_reason (RETURN_QUIT);
3115 target_terminal_inferior ();
3118 /* Enable/disable target terminal ownership. Most targets can use
3119 terminal groups to control terminal ownership. Remote targets are
3120 different in that explicit transfer of ownership to/from GDB/target
3124 remote_async_terminal_inferior (void)
3126 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3127 sync_execution here. This function should only be called when
3128 GDB is resuming the inferior in the forground. A background
3129 resume (``run&'') should leave GDB in control of the terminal and
3130 consequently should not call this code. */
3131 if (!sync_execution)
3133 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3134 calls target_terminal_*() idenpotent. The event-loop GDB talking
3135 to an asynchronous target with a synchronous command calls this
3136 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3137 stops trying to transfer the terminal to the target when it
3138 shouldn't this guard can go away. */
3139 if (!remote_async_terminal_ours_p)
3141 delete_file_handler (input_fd);
3142 remote_async_terminal_ours_p = 0;
3143 initialize_sigint_signal_handler ();
3144 /* NOTE: At this point we could also register our selves as the
3145 recipient of all input. Any characters typed could then be
3146 passed on down to the target. */
3150 remote_async_terminal_ours (void)
3152 /* See FIXME in remote_async_terminal_inferior. */
3153 if (!sync_execution)
3155 /* See FIXME in remote_async_terminal_inferior. */
3156 if (remote_async_terminal_ours_p)
3158 cleanup_sigint_signal_handler (NULL);
3159 add_file_handler (input_fd, stdin_event_handler, 0);
3160 remote_async_terminal_ours_p = 1;
3163 /* If nonzero, ignore the next kill. */
3168 remote_console_output (char *msg)
3172 for (p = msg; p[0] && p[1]; p += 2)
3175 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3178 fputs_unfiltered (tb, gdb_stdtarg);
3180 gdb_flush (gdb_stdtarg);
3183 /* Wait until the remote machine stops, then return,
3184 storing status in STATUS just as `wait' would.
3185 Returns "pid", which in the case of a multi-threaded
3186 remote OS, is the thread-id. */
3189 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3191 struct remote_state *rs = get_remote_state ();
3192 struct remote_arch_state *rsa = get_remote_arch_state ();
3193 ULONGEST thread_num = -1;
3195 int solibs_changed = 0;
3197 status->kind = TARGET_WAITKIND_EXITED;
3198 status->value.integer = 0;
3204 ofunc = signal (SIGINT, remote_interrupt);
3205 getpkt (&rs->buf, &rs->buf_size, 1);
3206 signal (SIGINT, ofunc);
3210 /* This is a hook for when we need to do something (perhaps the
3211 collection of trace data) every time the target stops. */
3212 if (deprecated_target_wait_loop_hook)
3213 (*deprecated_target_wait_loop_hook) ();
3215 remote_stopped_by_watchpoint_p = 0;
3219 case 'E': /* Error of some sort. */
3220 warning (_("Remote failure reply: %s"), buf);
3222 case 'F': /* File-I/O request. */
3223 remote_fileio_request (buf);
3225 case 'T': /* Status with PC, SP, FP, ... */
3227 gdb_byte regs[MAX_REGISTER_SIZE];
3229 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3230 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3232 n... = register number
3233 r... = register contents
3235 p = &buf[3]; /* after Txx */
3244 /* If the packet contains a register number save it in
3245 pnum and set p1 to point to the character following
3246 it. Otherwise p1 points to p. */
3248 /* If this packet is an awatch packet, don't parse the
3249 'a' as a register number. */
3251 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3253 /* Read the ``P'' register number. */
3254 pnum = strtol (p, &p_temp, 16);
3260 if (p1 == p) /* No register number present here. */
3262 p1 = strchr (p, ':');
3264 error (_("Malformed packet(a) (missing colon): %s\n\
3267 if (strncmp (p, "thread", p1 - p) == 0)
3269 p_temp = unpack_varlen_hex (++p1, &thread_num);
3270 record_currthread (thread_num);
3273 else if ((strncmp (p, "watch", p1 - p) == 0)
3274 || (strncmp (p, "rwatch", p1 - p) == 0)
3275 || (strncmp (p, "awatch", p1 - p) == 0))
3277 remote_stopped_by_watchpoint_p = 1;
3278 p = unpack_varlen_hex (++p1, &addr);
3279 remote_watch_data_address = (CORE_ADDR)addr;
3281 else if (strncmp (p, "library", p1 - p) == 0)
3285 while (*p_temp && *p_temp != ';')
3293 /* Silently skip unknown optional info. */
3294 p_temp = strchr (p1 + 1, ';');
3301 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3305 error (_("Malformed packet(b) (missing colon): %s\n\
3310 error (_("Remote sent bad register number %s: %s\n\
3312 phex_nz (pnum, 0), p, buf);
3314 fieldsize = hex2bin (p, regs,
3315 register_size (current_gdbarch,
3318 if (fieldsize < register_size (current_gdbarch,
3320 warning (_("Remote reply is too short: %s"), buf);
3321 regcache_raw_supply (get_current_regcache (),
3326 error (_("Remote register badly formatted: %s\nhere: %s"),
3331 case 'S': /* Old style status, just signal only. */
3333 status->kind = TARGET_WAITKIND_LOADED;
3336 status->kind = TARGET_WAITKIND_STOPPED;
3337 status->value.sig = (enum target_signal)
3338 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3343 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3344 record_currthread (thread_num);
3347 case 'W': /* Target exited. */
3349 /* The remote process exited. */
3350 status->kind = TARGET_WAITKIND_EXITED;
3351 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3355 status->kind = TARGET_WAITKIND_SIGNALLED;
3356 status->value.sig = (enum target_signal)
3357 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3361 case 'O': /* Console output. */
3362 remote_console_output (buf + 1);
3365 if (last_sent_signal != TARGET_SIGNAL_0)
3367 /* Zero length reply means that we tried 'S' or 'C' and
3368 the remote system doesn't support it. */
3369 target_terminal_ours_for_output ();
3371 ("Can't send signals to this remote system. %s not sent.\n",
3372 target_signal_to_name (last_sent_signal));
3373 last_sent_signal = TARGET_SIGNAL_0;
3374 target_terminal_inferior ();
3376 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3377 putpkt ((char *) buf);
3380 /* else fallthrough */
3382 warning (_("Invalid remote reply: %s"), buf);
3387 if (thread_num != -1)
3389 return pid_to_ptid (thread_num);
3391 return inferior_ptid;
3394 /* Async version of remote_wait. */
3396 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3398 struct remote_state *rs = get_remote_state ();
3399 struct remote_arch_state *rsa = get_remote_arch_state ();
3400 ULONGEST thread_num = -1;
3402 int solibs_changed = 0;
3404 status->kind = TARGET_WAITKIND_EXITED;
3405 status->value.integer = 0;
3407 remote_stopped_by_watchpoint_p = 0;
3413 if (!target_is_async_p ())
3414 ofunc = signal (SIGINT, remote_interrupt);
3415 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3416 _never_ wait for ever -> test on target_is_async_p().
3417 However, before we do that we need to ensure that the caller
3418 knows how to take the target into/out of async mode. */
3419 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3420 if (!target_is_async_p ())
3421 signal (SIGINT, ofunc);
3425 /* This is a hook for when we need to do something (perhaps the
3426 collection of trace data) every time the target stops. */
3427 if (deprecated_target_wait_loop_hook)
3428 (*deprecated_target_wait_loop_hook) ();
3432 case 'E': /* Error of some sort. */
3433 warning (_("Remote failure reply: %s"), buf);
3435 case 'F': /* File-I/O request. */
3436 remote_fileio_request (buf);
3438 case 'T': /* Status with PC, SP, FP, ... */
3440 gdb_byte regs[MAX_REGISTER_SIZE];
3442 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3443 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3445 n... = register number
3446 r... = register contents
3448 p = &buf[3]; /* after Txx */
3457 /* If the packet contains a register number, save it
3458 in pnum and set p1 to point to the character
3459 following it. Otherwise p1 points to p. */
3461 /* If this packet is an awatch packet, don't parse the 'a'
3462 as a register number. */
3464 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3466 /* Read the register number. */
3467 pnum = strtol (p, &p_temp, 16);
3473 if (p1 == p) /* No register number present here. */
3475 p1 = strchr (p, ':');
3477 error (_("Malformed packet(a) (missing colon): %s\n\
3480 if (strncmp (p, "thread", p1 - p) == 0)
3482 p_temp = unpack_varlen_hex (++p1, &thread_num);
3483 record_currthread (thread_num);
3486 else if ((strncmp (p, "watch", p1 - p) == 0)
3487 || (strncmp (p, "rwatch", p1 - p) == 0)
3488 || (strncmp (p, "awatch", p1 - p) == 0))
3490 remote_stopped_by_watchpoint_p = 1;
3491 p = unpack_varlen_hex (++p1, &addr);
3492 remote_watch_data_address = (CORE_ADDR)addr;
3494 else if (strncmp (p, "library", p1 - p) == 0)
3498 while (*p_temp && *p_temp != ';')
3506 /* Silently skip unknown optional info. */
3507 p_temp = strchr (p1 + 1, ';');
3515 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3518 error (_("Malformed packet(b) (missing colon): %s\n\
3523 error (_("Remote sent bad register number %ld: %s\n\
3527 fieldsize = hex2bin (p, regs,
3528 register_size (current_gdbarch,
3531 if (fieldsize < register_size (current_gdbarch,
3533 warning (_("Remote reply is too short: %s"), buf);
3534 regcache_raw_supply (get_current_regcache (),
3539 error (_("Remote register badly formatted: %s\nhere: %s"),
3544 case 'S': /* Old style status, just signal only. */
3546 status->kind = TARGET_WAITKIND_LOADED;
3549 status->kind = TARGET_WAITKIND_STOPPED;
3550 status->value.sig = (enum target_signal)
3551 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3556 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3557 record_currthread (thread_num);
3560 case 'W': /* Target exited. */
3562 /* The remote process exited. */
3563 status->kind = TARGET_WAITKIND_EXITED;
3564 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3568 status->kind = TARGET_WAITKIND_SIGNALLED;
3569 status->value.sig = (enum target_signal)
3570 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3574 case 'O': /* Console output. */
3575 remote_console_output (buf + 1);
3576 /* Return immediately to the event loop. The event loop will
3577 still be waiting on the inferior afterwards. */
3578 status->kind = TARGET_WAITKIND_IGNORE;
3581 if (last_sent_signal != TARGET_SIGNAL_0)
3583 /* Zero length reply means that we tried 'S' or 'C' and
3584 the remote system doesn't support it. */
3585 target_terminal_ours_for_output ();
3587 ("Can't send signals to this remote system. %s not sent.\n",
3588 target_signal_to_name (last_sent_signal));
3589 last_sent_signal = TARGET_SIGNAL_0;
3590 target_terminal_inferior ();
3592 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3593 putpkt ((char *) buf);
3596 /* else fallthrough */
3598 warning (_("Invalid remote reply: %s"), buf);
3603 if (thread_num != -1)
3605 return pid_to_ptid (thread_num);
3607 return inferior_ptid;
3610 /* Fetch a single register using a 'p' packet. */
3613 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3615 struct remote_state *rs = get_remote_state ();
3617 char regp[MAX_REGISTER_SIZE];
3620 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3623 if (reg->pnum == -1)
3628 p += hexnumstr (p, reg->pnum);
3630 remote_send (&rs->buf, &rs->buf_size);
3634 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3638 case PACKET_UNKNOWN:
3641 error (_("Could not fetch register \"%s\""),
3642 gdbarch_register_name (current_gdbarch, reg->regnum));
3645 /* If this register is unfetchable, tell the regcache. */
3648 regcache_raw_supply (regcache, reg->regnum, NULL);
3652 /* Otherwise, parse and supply the value. */
3658 error (_("fetch_register_using_p: early buf termination"));
3660 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3663 regcache_raw_supply (regcache, reg->regnum, regp);
3667 /* Fetch the registers included in the target's 'g' packet. */
3670 send_g_packet (void)
3672 struct remote_state *rs = get_remote_state ();
3677 sprintf (rs->buf, "g");
3678 remote_send (&rs->buf, &rs->buf_size);
3680 /* We can get out of synch in various cases. If the first character
3681 in the buffer is not a hex character, assume that has happened
3682 and try to fetch another packet to read. */
3683 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3684 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3685 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3686 && rs->buf[0] != 'x') /* New: unavailable register value. */
3689 fprintf_unfiltered (gdb_stdlog,
3690 "Bad register packet; fetching a new packet\n");
3691 getpkt (&rs->buf, &rs->buf_size, 0);
3694 buf_len = strlen (rs->buf);
3696 /* Sanity check the received packet. */
3697 if (buf_len % 2 != 0)
3698 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3704 process_g_packet (struct regcache *regcache)
3706 struct remote_state *rs = get_remote_state ();
3707 struct remote_arch_state *rsa = get_remote_arch_state ();
3712 buf_len = strlen (rs->buf);
3714 /* Further sanity checks, with knowledge of the architecture. */
3715 if (buf_len > 2 * rsa->sizeof_g_packet)
3716 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3718 /* Save the size of the packet sent to us by the target. It is used
3719 as a heuristic when determining the max size of packets that the
3720 target can safely receive. */
3721 if (rsa->actual_register_packet_size == 0)
3722 rsa->actual_register_packet_size = buf_len;
3724 /* If this is smaller than we guessed the 'g' packet would be,
3725 update our records. A 'g' reply that doesn't include a register's
3726 value implies either that the register is not available, or that
3727 the 'p' packet must be used. */
3728 if (buf_len < 2 * rsa->sizeof_g_packet)
3730 rsa->sizeof_g_packet = buf_len / 2;
3732 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3734 if (rsa->regs[i].pnum == -1)
3737 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3738 rsa->regs[i].in_g_packet = 0;
3740 rsa->regs[i].in_g_packet = 1;
3744 regs = alloca (rsa->sizeof_g_packet);
3746 /* Unimplemented registers read as all bits zero. */
3747 memset (regs, 0, rsa->sizeof_g_packet);
3749 /* Reply describes registers byte by byte, each byte encoded as two
3750 hex characters. Suck them all up, then supply them to the
3751 register cacheing/storage mechanism. */
3754 for (i = 0; i < rsa->sizeof_g_packet; i++)
3756 if (p[0] == 0 || p[1] == 0)
3757 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3758 internal_error (__FILE__, __LINE__,
3759 "unexpected end of 'g' packet reply");
3761 if (p[0] == 'x' && p[1] == 'x')
3762 regs[i] = 0; /* 'x' */
3764 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3770 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3772 struct packet_reg *r = &rsa->regs[i];
3775 if (r->offset * 2 >= strlen (rs->buf))
3776 /* This shouldn't happen - we adjusted in_g_packet above. */
3777 internal_error (__FILE__, __LINE__,
3778 "unexpected end of 'g' packet reply");
3779 else if (rs->buf[r->offset * 2] == 'x')
3781 gdb_assert (r->offset * 2 < strlen (rs->buf));
3782 /* The register isn't available, mark it as such (at
3783 the same time setting the value to zero). */
3784 regcache_raw_supply (regcache, r->regnum, NULL);
3787 regcache_raw_supply (regcache, r->regnum,
3795 fetch_registers_using_g (struct regcache *regcache)
3798 process_g_packet (regcache);
3802 remote_fetch_registers (struct regcache *regcache, int regnum)
3804 struct remote_state *rs = get_remote_state ();
3805 struct remote_arch_state *rsa = get_remote_arch_state ();
3808 set_thread (PIDGET (inferior_ptid), 1);
3812 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3813 gdb_assert (reg != NULL);
3815 /* If this register might be in the 'g' packet, try that first -
3816 we are likely to read more than one register. If this is the
3817 first 'g' packet, we might be overly optimistic about its
3818 contents, so fall back to 'p'. */
3819 if (reg->in_g_packet)
3821 fetch_registers_using_g (regcache);
3822 if (reg->in_g_packet)
3826 if (fetch_register_using_p (regcache, reg))
3829 /* This register is not available. */
3830 regcache_raw_supply (regcache, reg->regnum, NULL);
3835 fetch_registers_using_g (regcache);
3837 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3838 if (!rsa->regs[i].in_g_packet)
3839 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3841 /* This register is not available. */
3842 regcache_raw_supply (regcache, i, NULL);
3846 /* Prepare to store registers. Since we may send them all (using a
3847 'G' request), we have to read out the ones we don't want to change
3851 remote_prepare_to_store (struct regcache *regcache)
3853 struct remote_arch_state *rsa = get_remote_arch_state ();
3855 gdb_byte buf[MAX_REGISTER_SIZE];
3857 /* Make sure the entire registers array is valid. */
3858 switch (remote_protocol_packets[PACKET_P].support)
3860 case PACKET_DISABLE:
3861 case PACKET_SUPPORT_UNKNOWN:
3862 /* Make sure all the necessary registers are cached. */
3863 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3864 if (rsa->regs[i].in_g_packet)
3865 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3872 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3873 packet was not recognized. */
3876 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3878 struct remote_state *rs = get_remote_state ();
3879 struct remote_arch_state *rsa = get_remote_arch_state ();
3880 /* Try storing a single register. */
3881 char *buf = rs->buf;
3882 gdb_byte regp[MAX_REGISTER_SIZE];
3885 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3888 if (reg->pnum == -1)
3891 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3892 p = buf + strlen (buf);
3893 regcache_raw_collect (regcache, reg->regnum, regp);
3894 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3895 remote_send (&rs->buf, &rs->buf_size);
3897 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3902 error (_("Could not write register \"%s\""),
3903 gdbarch_register_name (current_gdbarch, reg->regnum));
3904 case PACKET_UNKNOWN:
3907 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3911 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3912 contents of the register cache buffer. FIXME: ignores errors. */
3915 store_registers_using_G (const struct regcache *regcache)
3917 struct remote_state *rs = get_remote_state ();
3918 struct remote_arch_state *rsa = get_remote_arch_state ();
3922 /* Extract all the registers in the regcache copying them into a
3926 regs = alloca (rsa->sizeof_g_packet);
3927 memset (regs, 0, rsa->sizeof_g_packet);
3928 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3930 struct packet_reg *r = &rsa->regs[i];
3932 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3936 /* Command describes registers byte by byte,
3937 each byte encoded as two hex characters. */
3940 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3942 bin2hex (regs, p, rsa->sizeof_g_packet);
3943 remote_send (&rs->buf, &rs->buf_size);
3946 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3947 of the register cache buffer. FIXME: ignores errors. */
3950 remote_store_registers (struct regcache *regcache, int regnum)
3952 struct remote_state *rs = get_remote_state ();
3953 struct remote_arch_state *rsa = get_remote_arch_state ();
3956 set_thread (PIDGET (inferior_ptid), 1);
3960 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3961 gdb_assert (reg != NULL);
3963 /* Always prefer to store registers using the 'P' packet if
3964 possible; we often change only a small number of registers.
3965 Sometimes we change a larger number; we'd need help from a
3966 higher layer to know to use 'G'. */
3967 if (store_register_using_P (regcache, reg))
3970 /* For now, don't complain if we have no way to write the
3971 register. GDB loses track of unavailable registers too
3972 easily. Some day, this may be an error. We don't have
3973 any way to read the register, either... */
3974 if (!reg->in_g_packet)
3977 store_registers_using_G (regcache);
3981 store_registers_using_G (regcache);
3983 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3984 if (!rsa->regs[i].in_g_packet)
3985 if (!store_register_using_P (regcache, &rsa->regs[i]))
3986 /* See above for why we do not issue an error here. */
3991 /* Return the number of hex digits in num. */
3994 hexnumlen (ULONGEST num)
3998 for (i = 0; num != 0; i++)
4004 /* Set BUF to the minimum number of hex digits representing NUM. */
4007 hexnumstr (char *buf, ULONGEST num)
4009 int len = hexnumlen (num);
4010 return hexnumnstr (buf, num, len);
4014 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4017 hexnumnstr (char *buf, ULONGEST num, int width)
4023 for (i = width - 1; i >= 0; i--)
4025 buf[i] = "0123456789abcdef"[(num & 0xf)];
4032 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4035 remote_address_masked (CORE_ADDR addr)
4037 int address_size = remote_address_size;
4038 /* If "remoteaddresssize" was not set, default to target address size. */
4040 address_size = gdbarch_addr_bit (current_gdbarch);
4042 if (address_size > 0
4043 && address_size < (sizeof (ULONGEST) * 8))
4045 /* Only create a mask when that mask can safely be constructed
4046 in a ULONGEST variable. */
4048 mask = (mask << address_size) - 1;
4054 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4055 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4056 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4057 (which may be more than *OUT_LEN due to escape characters). The
4058 total number of bytes in the output buffer will be at most
4062 remote_escape_output (const gdb_byte *buffer, int len,
4063 gdb_byte *out_buf, int *out_len,
4066 int input_index, output_index;
4069 for (input_index = 0; input_index < len; input_index++)
4071 gdb_byte b = buffer[input_index];
4073 if (b == '$' || b == '#' || b == '}')
4075 /* These must be escaped. */
4076 if (output_index + 2 > out_maxlen)
4078 out_buf[output_index++] = '}';
4079 out_buf[output_index++] = b ^ 0x20;
4083 if (output_index + 1 > out_maxlen)
4085 out_buf[output_index++] = b;
4089 *out_len = input_index;
4090 return output_index;
4093 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4094 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4095 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4097 This function reverses remote_escape_output. It allows more
4098 escaped characters than that function does, in particular because
4099 '*' must be escaped to avoid the run-length encoding processing
4100 in reading packets. */
4103 remote_unescape_input (const gdb_byte *buffer, int len,
4104 gdb_byte *out_buf, int out_maxlen)
4106 int input_index, output_index;
4111 for (input_index = 0; input_index < len; input_index++)
4113 gdb_byte b = buffer[input_index];
4115 if (output_index + 1 > out_maxlen)
4117 warning (_("Received too much data from remote target;"
4118 " ignoring overflow."));
4119 return output_index;
4124 out_buf[output_index++] = b ^ 0x20;
4130 out_buf[output_index++] = b;
4134 error (_("Unmatched escape character in target response."));
4136 return output_index;
4139 /* Determine whether the remote target supports binary downloading.
4140 This is accomplished by sending a no-op memory write of zero length
4141 to the target at the specified address. It does not suffice to send
4142 the whole packet, since many stubs strip the eighth bit and
4143 subsequently compute a wrong checksum, which causes real havoc with
4146 NOTE: This can still lose if the serial line is not eight-bit
4147 clean. In cases like this, the user should clear "remote
4151 check_binary_download (CORE_ADDR addr)
4153 struct remote_state *rs = get_remote_state ();
4155 switch (remote_protocol_packets[PACKET_X].support)
4157 case PACKET_DISABLE:
4161 case PACKET_SUPPORT_UNKNOWN:
4167 p += hexnumstr (p, (ULONGEST) addr);
4169 p += hexnumstr (p, (ULONGEST) 0);
4173 putpkt_binary (rs->buf, (int) (p - rs->buf));
4174 getpkt (&rs->buf, &rs->buf_size, 0);
4176 if (rs->buf[0] == '\0')
4179 fprintf_unfiltered (gdb_stdlog,
4180 "binary downloading NOT suppported by target\n");
4181 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4186 fprintf_unfiltered (gdb_stdlog,
4187 "binary downloading suppported by target\n");
4188 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4195 /* Write memory data directly to the remote machine.
4196 This does not inform the data cache; the data cache uses this.
4197 HEADER is the starting part of the packet.
4198 MEMADDR is the address in the remote memory space.
4199 MYADDR is the address of the buffer in our space.
4200 LEN is the number of bytes.
4201 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4202 should send data as binary ('X'), or hex-encoded ('M').
4204 The function creates packet of the form
4205 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4207 where encoding of <DATA> is termined by PACKET_FORMAT.
4209 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4212 Returns the number of bytes transferred, or 0 (setting errno) for
4213 error. Only transfer a single packet. */
4216 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4217 const gdb_byte *myaddr, int len,
4218 char packet_format, int use_length)
4220 struct remote_state *rs = get_remote_state ();
4230 if (packet_format != 'X' && packet_format != 'M')
4231 internal_error (__FILE__, __LINE__,
4232 "remote_write_bytes_aux: bad packet format");
4237 payload_size = get_memory_write_packet_size ();
4239 /* The packet buffer will be large enough for the payload;
4240 get_memory_packet_size ensures this. */
4243 /* Compute the size of the actual payload by subtracting out the
4244 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4246 payload_size -= strlen ("$,:#NN");
4248 /* The comma won't be used. */
4250 header_length = strlen (header);
4251 payload_size -= header_length;
4252 payload_size -= hexnumlen (memaddr);
4254 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4256 strcat (rs->buf, header);
4257 p = rs->buf + strlen (header);
4259 /* Compute a best guess of the number of bytes actually transfered. */
4260 if (packet_format == 'X')
4262 /* Best guess at number of bytes that will fit. */
4263 todo = min (len, payload_size);
4265 payload_size -= hexnumlen (todo);
4266 todo = min (todo, payload_size);
4270 /* Num bytes that will fit. */
4271 todo = min (len, payload_size / 2);
4273 payload_size -= hexnumlen (todo);
4274 todo = min (todo, payload_size / 2);
4278 internal_error (__FILE__, __LINE__,
4279 _("minumum packet size too small to write data"));
4281 /* If we already need another packet, then try to align the end
4282 of this packet to a useful boundary. */
4283 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4284 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4286 /* Append "<memaddr>". */
4287 memaddr = remote_address_masked (memaddr);
4288 p += hexnumstr (p, (ULONGEST) memaddr);
4295 /* Append <len>. Retain the location/size of <len>. It may need to
4296 be adjusted once the packet body has been created. */
4298 plenlen = hexnumstr (p, (ULONGEST) todo);
4306 /* Append the packet body. */
4307 if (packet_format == 'X')
4309 /* Binary mode. Send target system values byte by byte, in
4310 increasing byte addresses. Only escape certain critical
4312 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4315 /* If not all TODO bytes fit, then we'll need another packet. Make
4316 a second try to keep the end of the packet aligned. Don't do
4317 this if the packet is tiny. */
4318 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4322 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4324 if (new_nr_bytes != nr_bytes)
4325 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4330 p += payload_length;
4331 if (use_length && nr_bytes < todo)
4333 /* Escape chars have filled up the buffer prematurely,
4334 and we have actually sent fewer bytes than planned.
4335 Fix-up the length field of the packet. Use the same
4336 number of characters as before. */
4337 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4338 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4343 /* Normal mode: Send target system values byte by byte, in
4344 increasing byte addresses. Each byte is encoded as a two hex
4346 nr_bytes = bin2hex (myaddr, p, todo);
4350 putpkt_binary (rs->buf, (int) (p - rs->buf));
4351 getpkt (&rs->buf, &rs->buf_size, 0);
4353 if (rs->buf[0] == 'E')
4355 /* There is no correspondance between what the remote protocol
4356 uses for errors and errno codes. We would like a cleaner way
4357 of representing errors (big enough to include errno codes,
4358 bfd_error codes, and others). But for now just return EIO. */
4363 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4364 fewer bytes than we'd planned. */
4368 /* Write memory data directly to the remote machine.
4369 This does not inform the data cache; the data cache uses this.
4370 MEMADDR is the address in the remote memory space.
4371 MYADDR is the address of the buffer in our space.
4372 LEN is the number of bytes.
4374 Returns number of bytes transferred, or 0 (setting errno) for
4375 error. Only transfer a single packet. */
4378 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4380 char *packet_format = 0;
4382 /* Check whether the target supports binary download. */
4383 check_binary_download (memaddr);
4385 switch (remote_protocol_packets[PACKET_X].support)
4388 packet_format = "X";
4390 case PACKET_DISABLE:
4391 packet_format = "M";
4393 case PACKET_SUPPORT_UNKNOWN:
4394 internal_error (__FILE__, __LINE__,
4395 _("remote_write_bytes: bad internal state"));
4397 internal_error (__FILE__, __LINE__, _("bad switch"));
4400 return remote_write_bytes_aux (packet_format,
4401 memaddr, myaddr, len, packet_format[0], 1);
4404 /* Read memory data directly from the remote machine.
4405 This does not use the data cache; the data cache uses this.
4406 MEMADDR is the address in the remote memory space.
4407 MYADDR is the address of the buffer in our space.
4408 LEN is the number of bytes.
4410 Returns number of bytes transferred, or 0 for error. */
4412 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4413 remote targets) shouldn't attempt to read the entire buffer.
4414 Instead it should read a single packet worth of data and then
4415 return the byte size of that packet to the caller. The caller (its
4416 caller and its callers caller ;-) already contains code for
4417 handling partial reads. */
4420 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4422 struct remote_state *rs = get_remote_state ();
4423 int max_buf_size; /* Max size of packet output buffer. */
4429 max_buf_size = get_memory_read_packet_size ();
4430 /* The packet buffer will be large enough for the payload;
4431 get_memory_packet_size ensures this. */
4440 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4442 /* construct "m"<memaddr>","<len>" */
4443 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4444 memaddr = remote_address_masked (memaddr);
4447 p += hexnumstr (p, (ULONGEST) memaddr);
4449 p += hexnumstr (p, (ULONGEST) todo);
4453 getpkt (&rs->buf, &rs->buf_size, 0);
4455 if (rs->buf[0] == 'E'
4456 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4457 && rs->buf[3] == '\0')
4459 /* There is no correspondance between what the remote
4460 protocol uses for errors and errno codes. We would like
4461 a cleaner way of representing errors (big enough to
4462 include errno codes, bfd_error codes, and others). But
4463 for now just return EIO. */
4468 /* Reply describes memory byte by byte,
4469 each byte encoded as two hex characters. */
4472 if ((i = hex2bin (p, myaddr, todo)) < todo)
4474 /* Reply is short. This means that we were able to read
4475 only part of what we wanted to. */
4476 return i + (origlen - len);
4485 /* Read or write LEN bytes from inferior memory at MEMADDR,
4486 transferring to or from debugger address BUFFER. Write to inferior
4487 if SHOULD_WRITE is nonzero. Returns length of data written or
4488 read; 0 for error. TARGET is unused. */
4491 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4492 int should_write, struct mem_attrib *attrib,
4493 struct target_ops *target)
4498 res = remote_write_bytes (mem_addr, buffer, mem_len);
4500 res = remote_read_bytes (mem_addr, buffer, mem_len);
4505 /* Sends a packet with content determined by the printf format string
4506 FORMAT and the remaining arguments, then gets the reply. Returns
4507 whether the packet was a success, a failure, or unknown. */
4510 remote_send_printf (const char *format, ...)
4512 struct remote_state *rs = get_remote_state ();
4513 int max_size = get_remote_packet_size ();
4516 va_start (ap, format);
4519 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4520 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4522 if (putpkt (rs->buf) < 0)
4523 error (_("Communication problem with target."));
4526 getpkt (&rs->buf, &rs->buf_size, 0);
4528 return packet_check_result (rs->buf);
4532 restore_remote_timeout (void *p)
4534 int value = *(int *)p;
4535 remote_timeout = value;
4538 /* Flash writing can take quite some time. We'll set
4539 effectively infinite timeout for flash operations.
4540 In future, we'll need to decide on a better approach. */
4541 static const int remote_flash_timeout = 1000;
4544 remote_flash_erase (struct target_ops *ops,
4545 ULONGEST address, LONGEST length)
4547 int saved_remote_timeout = remote_timeout;
4548 enum packet_result ret;
4550 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4551 &saved_remote_timeout);
4552 remote_timeout = remote_flash_timeout;
4554 ret = remote_send_printf ("vFlashErase:%s,%s",
4559 case PACKET_UNKNOWN:
4560 error (_("Remote target does not support flash erase"));
4562 error (_("Error erasing flash with vFlashErase packet"));
4567 do_cleanups (back_to);
4571 remote_flash_write (struct target_ops *ops,
4572 ULONGEST address, LONGEST length,
4573 const gdb_byte *data)
4575 int saved_remote_timeout = remote_timeout;
4577 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4578 &saved_remote_timeout);
4580 remote_timeout = remote_flash_timeout;
4581 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4582 do_cleanups (back_to);
4588 remote_flash_done (struct target_ops *ops)
4590 int saved_remote_timeout = remote_timeout;
4592 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4593 &saved_remote_timeout);
4595 remote_timeout = remote_flash_timeout;
4596 ret = remote_send_printf ("vFlashDone");
4597 do_cleanups (back_to);
4601 case PACKET_UNKNOWN:
4602 error (_("Remote target does not support vFlashDone"));
4604 error (_("Error finishing flash operation"));
4611 remote_files_info (struct target_ops *ignore)
4613 puts_filtered ("Debugging a target over a serial line.\n");
4616 /* Stuff for dealing with the packets which are part of this protocol.
4617 See comment at top of file for details. */
4619 /* Read a single character from the remote end. */
4622 readchar (int timeout)
4626 ch = serial_readchar (remote_desc, timeout);
4631 switch ((enum serial_rc) ch)
4634 target_mourn_inferior ();
4635 error (_("Remote connection closed"));
4638 perror_with_name (_("Remote communication error"));
4640 case SERIAL_TIMEOUT:
4646 /* Send the command in *BUF to the remote machine, and read the reply
4647 into *BUF. Report an error if we get an error reply. Resize
4648 *BUF using xrealloc if necessary to hold the result, and update
4652 remote_send (char **buf,
4656 getpkt (buf, sizeof_buf, 0);
4658 if ((*buf)[0] == 'E')
4659 error (_("Remote failure reply: %s"), *buf);
4662 /* Display a null-terminated packet on stdout, for debugging, using C
4666 print_packet (char *buf)
4668 puts_filtered ("\"");
4669 fputstr_filtered (buf, '"', gdb_stdout);
4670 puts_filtered ("\"");
4676 return putpkt_binary (buf, strlen (buf));
4679 /* Send a packet to the remote machine, with error checking. The data
4680 of the packet is in BUF. The string in BUF can be at most
4681 get_remote_packet_size () - 5 to account for the $, # and checksum,
4682 and for a possible /0 if we are debugging (remote_debug) and want
4683 to print the sent packet as a string. */
4686 putpkt_binary (char *buf, int cnt)
4689 unsigned char csum = 0;
4690 char *buf2 = alloca (cnt + 6);
4696 /* Copy the packet into buffer BUF2, encapsulating it
4697 and giving it a checksum. */
4702 for (i = 0; i < cnt; i++)
4708 *p++ = tohex ((csum >> 4) & 0xf);
4709 *p++ = tohex (csum & 0xf);
4711 /* Send it over and over until we get a positive ack. */
4715 int started_error_output = 0;
4720 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4721 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4722 fprintf_unfiltered (gdb_stdlog, "...");
4723 gdb_flush (gdb_stdlog);
4725 if (serial_write (remote_desc, buf2, p - buf2))
4726 perror_with_name (_("putpkt: write failed"));
4728 /* Read until either a timeout occurs (-2) or '+' is read. */
4731 ch = readchar (remote_timeout);
4739 case SERIAL_TIMEOUT:
4741 if (started_error_output)
4743 putchar_unfiltered ('\n');
4744 started_error_output = 0;
4753 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4757 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4758 case SERIAL_TIMEOUT:
4762 break; /* Retransmit buffer. */
4766 fprintf_unfiltered (gdb_stdlog,
4767 "Packet instead of Ack, ignoring it\n");
4768 /* It's probably an old response sent because an ACK
4769 was lost. Gobble up the packet and ack it so it
4770 doesn't get retransmitted when we resend this
4773 serial_write (remote_desc, "+", 1);
4774 continue; /* Now, go look for +. */
4779 if (!started_error_output)
4781 started_error_output = 1;
4782 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4784 fputc_unfiltered (ch & 0177, gdb_stdlog);
4788 break; /* Here to retransmit. */
4792 /* This is wrong. If doing a long backtrace, the user should be
4793 able to get out next time we call QUIT, without anything as
4794 violent as interrupt_query. If we want to provide a way out of
4795 here without getting to the next QUIT, it should be based on
4796 hitting ^C twice as in remote_wait. */
4806 /* Come here after finding the start of a frame when we expected an
4807 ack. Do our best to discard the rest of this packet. */
4816 c = readchar (remote_timeout);
4819 case SERIAL_TIMEOUT:
4820 /* Nothing we can do. */
4823 /* Discard the two bytes of checksum and stop. */
4824 c = readchar (remote_timeout);
4826 c = readchar (remote_timeout);
4829 case '*': /* Run length encoding. */
4830 /* Discard the repeat count. */
4831 c = readchar (remote_timeout);
4836 /* A regular character. */
4842 /* Come here after finding the start of the frame. Collect the rest
4843 into *BUF, verifying the checksum, length, and handling run-length
4844 compression. NUL terminate the buffer. If there is not enough room,
4845 expand *BUF using xrealloc.
4847 Returns -1 on error, number of characters in buffer (ignoring the
4848 trailing NULL) on success. (could be extended to return one of the
4849 SERIAL status indications). */
4852 read_frame (char **buf_p,
4865 c = readchar (remote_timeout);
4868 case SERIAL_TIMEOUT:
4870 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4874 fputs_filtered ("Saw new packet start in middle of old one\n",
4876 return -1; /* Start a new packet, count retries. */
4879 unsigned char pktcsum;
4885 check_0 = readchar (remote_timeout);
4887 check_1 = readchar (remote_timeout);
4889 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4892 fputs_filtered ("Timeout in checksum, retrying\n",
4896 else if (check_0 < 0 || check_1 < 0)
4899 fputs_filtered ("Communication error in checksum\n",
4904 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4905 if (csum == pktcsum)
4910 fprintf_filtered (gdb_stdlog,
4911 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4913 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4914 fputs_filtered ("\n", gdb_stdlog);
4916 /* Number of characters in buffer ignoring trailing
4920 case '*': /* Run length encoding. */
4925 c = readchar (remote_timeout);
4927 repeat = c - ' ' + 3; /* Compute repeat count. */
4929 /* The character before ``*'' is repeated. */
4931 if (repeat > 0 && repeat <= 255 && bc > 0)
4933 if (bc + repeat - 1 >= *sizeof_buf - 1)
4935 /* Make some more room in the buffer. */
4936 *sizeof_buf += repeat;
4937 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4941 memset (&buf[bc], buf[bc - 1], repeat);
4947 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4951 if (bc >= *sizeof_buf - 1)
4953 /* Make some more room in the buffer. */
4955 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4966 /* Read a packet from the remote machine, with error checking, and
4967 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4968 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4969 rather than timing out; this is used (in synchronous mode) to wait
4970 for a target that is is executing user code to stop. */
4971 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4972 don't have to change all the calls to getpkt to deal with the
4973 return value, because at the moment I don't know what the right
4974 thing to do it for those. */
4982 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4986 /* Read a packet from the remote machine, with error checking, and
4987 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4988 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4989 rather than timing out; this is used (in synchronous mode) to wait
4990 for a target that is is executing user code to stop. If FOREVER ==
4991 0, this function is allowed to time out gracefully and return an
4992 indication of this to the caller. Otherwise return the number
4995 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5002 strcpy (*buf, "timeout");
5006 timeout = watchdog > 0 ? watchdog : -1;
5010 timeout = remote_timeout;
5014 for (tries = 1; tries <= MAX_TRIES; tries++)
5016 /* This can loop forever if the remote side sends us characters
5017 continuously, but if it pauses, we'll get a zero from
5018 readchar because of timeout. Then we'll count that as a
5021 /* Note that we will only wait forever prior to the start of a
5022 packet. After that, we expect characters to arrive at a
5023 brisk pace. They should show up within remote_timeout
5028 c = readchar (timeout);
5030 if (c == SERIAL_TIMEOUT)
5032 if (forever) /* Watchdog went off? Kill the target. */
5035 target_mourn_inferior ();
5036 error (_("Watchdog has expired. Target detached."));
5039 fputs_filtered ("Timed out.\n", gdb_stdlog);
5045 /* We've found the start of a packet, now collect the data. */
5047 val = read_frame (buf, sizeof_buf);
5053 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5054 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5055 fprintf_unfiltered (gdb_stdlog, "\n");
5057 serial_write (remote_desc, "+", 1);
5061 /* Try the whole thing again. */
5063 serial_write (remote_desc, "-", 1);
5066 /* We have tried hard enough, and just can't receive the packet.
5069 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5070 serial_write (remote_desc, "+", 1);
5077 /* For some mysterious reason, wait_for_inferior calls kill instead of
5078 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5082 target_mourn_inferior ();
5086 /* Use catch_errors so the user can quit from gdb even when we aren't on
5087 speaking terms with the remote system. */
5088 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5090 /* Don't wait for it to die. I'm not really sure it matters whether
5091 we do or not. For the existing stubs, kill is a noop. */
5092 target_mourn_inferior ();
5095 /* Async version of remote_kill. */
5097 remote_async_kill (void)
5099 /* Unregister the file descriptor from the event loop. */
5100 if (target_is_async_p ())
5101 serial_async (remote_desc, NULL, 0);
5103 /* For some mysterious reason, wait_for_inferior calls kill instead of
5104 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5108 target_mourn_inferior ();
5112 /* Use catch_errors so the user can quit from gdb even when we
5113 aren't on speaking terms with the remote system. */
5114 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5116 /* Don't wait for it to die. I'm not really sure it matters whether
5117 we do or not. For the existing stubs, kill is a noop. */
5118 target_mourn_inferior ();
5124 remote_mourn_1 (&remote_ops);
5128 remote_async_mourn (void)
5130 remote_mourn_1 (&remote_async_ops);
5134 extended_remote_mourn (void)
5136 /* We do _not_ want to mourn the target like this; this will
5137 remove the extended remote target from the target stack,
5138 and the next time the user says "run" it'll fail.
5140 FIXME: What is the right thing to do here? */
5142 remote_mourn_1 (&extended_remote_ops);
5146 /* Worker function for remote_mourn. */
5148 remote_mourn_1 (struct target_ops *target)
5150 unpush_target (target);
5151 generic_mourn_inferior ();
5154 /* In the extended protocol we want to be able to do things like
5155 "run" and have them basically work as expected. So we need
5156 a special create_inferior function.
5158 FIXME: One day add support for changing the exec file
5159 we're debugging, arguments and an environment. */
5162 extended_remote_create_inferior (char *exec_file, char *args,
5163 char **env, int from_tty)
5165 /* Rip out the breakpoints; we'll reinsert them after restarting
5166 the remote server. */
5167 remove_breakpoints ();
5169 /* Now restart the remote server. */
5170 extended_remote_restart ();
5172 /* NOTE: We don't need to recheck for a target description here; but
5173 if we gain the ability to switch the remote executable we may
5174 need to, if for instance we are running a process which requested
5175 different emulated hardware from the operating system. A
5176 concrete example of this is ARM GNU/Linux, where some binaries
5177 will have a legacy FPA coprocessor emulated and others may have
5178 access to a hardware VFP unit. */
5180 /* Now put the breakpoints back in. This way we're safe if the
5181 restart function works via a unix fork on the remote side. */
5182 insert_breakpoints ();
5184 /* Clean up from the last time we were running. */
5185 clear_proceed_status ();
5188 /* Async version of extended_remote_create_inferior. */
5190 extended_remote_async_create_inferior (char *exec_file, char *args,
5191 char **env, int from_tty)
5193 /* Rip out the breakpoints; we'll reinsert them after restarting
5194 the remote server. */
5195 remove_breakpoints ();
5197 /* If running asynchronously, register the target file descriptor
5198 with the event loop. */
5199 if (target_can_async_p ())
5200 target_async (inferior_event_handler, 0);
5202 /* Now restart the remote server. */
5203 extended_remote_restart ();
5205 /* NOTE: We don't need to recheck for a target description here; but
5206 if we gain the ability to switch the remote executable we may
5207 need to, if for instance we are running a process which requested
5208 different emulated hardware from the operating system. A
5209 concrete example of this is ARM GNU/Linux, where some binaries
5210 will have a legacy FPA coprocessor emulated and others may have
5211 access to a hardware VFP unit. */
5213 /* Now put the breakpoints back in. This way we're safe if the
5214 restart function works via a unix fork on the remote side. */
5215 insert_breakpoints ();
5217 /* Clean up from the last time we were running. */
5218 clear_proceed_status ();
5222 /* Insert a breakpoint. On targets that have software breakpoint
5223 support, we ask the remote target to do the work; on targets
5224 which don't, we insert a traditional memory breakpoint. */
5227 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5229 CORE_ADDR addr = bp_tgt->placed_address;
5230 struct remote_state *rs = get_remote_state ();
5232 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5233 If it succeeds, then set the support to PACKET_ENABLE. If it
5234 fails, and the user has explicitly requested the Z support then
5235 report an error, otherwise, mark it disabled and go on. */
5237 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5244 gdbarch_breakpoint_from_pc
5245 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5246 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5247 p += hexnumstr (p, addr);
5248 sprintf (p, ",%d", bp_tgt->placed_size);
5251 getpkt (&rs->buf, &rs->buf_size, 0);
5253 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5259 case PACKET_UNKNOWN:
5264 return memory_insert_breakpoint (bp_tgt);
5268 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5270 CORE_ADDR addr = bp_tgt->placed_address;
5271 struct remote_state *rs = get_remote_state ();
5274 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5282 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5283 p += hexnumstr (p, addr);
5284 sprintf (p, ",%d", bp_tgt->placed_size);
5287 getpkt (&rs->buf, &rs->buf_size, 0);
5289 return (rs->buf[0] == 'E');
5292 return memory_remove_breakpoint (bp_tgt);
5296 watchpoint_to_Z_packet (int type)
5301 return Z_PACKET_WRITE_WP;
5304 return Z_PACKET_READ_WP;
5307 return Z_PACKET_ACCESS_WP;
5310 internal_error (__FILE__, __LINE__,
5311 _("hw_bp_to_z: bad watchpoint type %d"), type);
5316 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5318 struct remote_state *rs = get_remote_state ();
5320 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5322 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5325 sprintf (rs->buf, "Z%x,", packet);
5326 p = strchr (rs->buf, '\0');
5327 addr = remote_address_masked (addr);
5328 p += hexnumstr (p, (ULONGEST) addr);
5329 sprintf (p, ",%x", len);
5332 getpkt (&rs->buf, &rs->buf_size, 0);
5334 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5337 case PACKET_UNKNOWN:
5342 internal_error (__FILE__, __LINE__,
5343 _("remote_insert_watchpoint: reached end of function"));
5348 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5350 struct remote_state *rs = get_remote_state ();
5352 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5354 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5357 sprintf (rs->buf, "z%x,", packet);
5358 p = strchr (rs->buf, '\0');
5359 addr = remote_address_masked (addr);
5360 p += hexnumstr (p, (ULONGEST) addr);
5361 sprintf (p, ",%x", len);
5363 getpkt (&rs->buf, &rs->buf_size, 0);
5365 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5368 case PACKET_UNKNOWN:
5373 internal_error (__FILE__, __LINE__,
5374 _("remote_remove_watchpoint: reached end of function"));
5378 int remote_hw_watchpoint_limit = -1;
5379 int remote_hw_breakpoint_limit = -1;
5382 remote_check_watch_resources (int type, int cnt, int ot)
5384 if (type == bp_hardware_breakpoint)
5386 if (remote_hw_breakpoint_limit == 0)
5388 else if (remote_hw_breakpoint_limit < 0)
5390 else if (cnt <= remote_hw_breakpoint_limit)
5395 if (remote_hw_watchpoint_limit == 0)
5397 else if (remote_hw_watchpoint_limit < 0)
5401 else if (cnt <= remote_hw_watchpoint_limit)
5408 remote_stopped_by_watchpoint (void)
5410 return remote_stopped_by_watchpoint_p;
5413 extern int stepped_after_stopped_by_watchpoint;
5416 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5419 if (remote_stopped_by_watchpoint ()
5420 || stepped_after_stopped_by_watchpoint)
5422 *addr_p = remote_watch_data_address;
5431 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5434 struct remote_state *rs = get_remote_state ();
5437 /* The length field should be set to the size of a breakpoint
5438 instruction, even though we aren't inserting one ourselves. */
5440 gdbarch_breakpoint_from_pc
5441 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5443 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5450 addr = remote_address_masked (bp_tgt->placed_address);
5451 p += hexnumstr (p, (ULONGEST) addr);
5452 sprintf (p, ",%x", bp_tgt->placed_size);
5455 getpkt (&rs->buf, &rs->buf_size, 0);
5457 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5460 case PACKET_UNKNOWN:
5465 internal_error (__FILE__, __LINE__,
5466 _("remote_insert_hw_breakpoint: reached end of function"));
5471 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5474 struct remote_state *rs = get_remote_state ();
5477 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5484 addr = remote_address_masked (bp_tgt->placed_address);
5485 p += hexnumstr (p, (ULONGEST) addr);
5486 sprintf (p, ",%x", bp_tgt->placed_size);
5489 getpkt (&rs->buf, &rs->buf_size, 0);
5491 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5494 case PACKET_UNKNOWN:
5499 internal_error (__FILE__, __LINE__,
5500 _("remote_remove_hw_breakpoint: reached end of function"));
5503 /* Some targets are only capable of doing downloads, and afterwards
5504 they switch to the remote serial protocol. This function provides
5505 a clean way to get from the download target to the remote target.
5506 It's basically just a wrapper so that we don't have to expose any
5507 of the internal workings of remote.c.
5509 Prior to calling this routine, you should shutdown the current
5510 target code, else you will get the "A program is being debugged
5511 already..." message. Usually a call to pop_target() suffices. */
5514 push_remote_target (char *name, int from_tty)
5516 printf_filtered (_("Switching to remote protocol\n"));
5517 remote_open (name, from_tty);
5520 /* Table used by the crc32 function to calcuate the checksum. */
5522 static unsigned long crc32_table[256] =
5525 static unsigned long
5526 crc32 (unsigned char *buf, int len, unsigned int crc)
5528 if (!crc32_table[1])
5530 /* Initialize the CRC table and the decoding table. */
5534 for (i = 0; i < 256; i++)
5536 for (c = i << 24, j = 8; j > 0; --j)
5537 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5544 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5550 /* compare-sections command
5552 With no arguments, compares each loadable section in the exec bfd
5553 with the same memory range on the target, and reports mismatches.
5554 Useful for verifying the image on the target against the exec file.
5555 Depends on the target understanding the new "qCRC:" request. */
5557 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5558 target method (target verify memory) and generic version of the
5559 actual command. This will allow other high-level code (especially
5560 generic_load()) to make use of this target functionality. */
5563 compare_sections_command (char *args, int from_tty)
5565 struct remote_state *rs = get_remote_state ();
5567 unsigned long host_crc, target_crc;
5568 extern bfd *exec_bfd;
5569 struct cleanup *old_chain;
5572 const char *sectname;
5579 error (_("command cannot be used without an exec file"));
5580 if (!current_target.to_shortname ||
5581 strcmp (current_target.to_shortname, "remote") != 0)
5582 error (_("command can only be used with remote target"));
5584 for (s = exec_bfd->sections; s; s = s->next)
5586 if (!(s->flags & SEC_LOAD))
5587 continue; /* skip non-loadable section */
5589 size = bfd_get_section_size (s);
5591 continue; /* skip zero-length section */
5593 sectname = bfd_get_section_name (exec_bfd, s);
5594 if (args && strcmp (args, sectname) != 0)
5595 continue; /* not the section selected by user */
5597 matched = 1; /* do this section */
5599 /* FIXME: assumes lma can fit into long. */
5600 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5601 (long) lma, (long) size);
5604 /* Be clever; compute the host_crc before waiting for target
5606 sectdata = xmalloc (size);
5607 old_chain = make_cleanup (xfree, sectdata);
5608 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5609 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5611 getpkt (&rs->buf, &rs->buf_size, 0);
5612 if (rs->buf[0] == 'E')
5613 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5614 sectname, paddr (lma), paddr (lma + size));
5615 if (rs->buf[0] != 'C')
5616 error (_("remote target does not support this operation"));
5618 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5619 target_crc = target_crc * 16 + fromhex (*tmp);
5621 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5622 sectname, paddr (lma), paddr (lma + size));
5623 if (host_crc == target_crc)
5624 printf_filtered ("matched.\n");
5627 printf_filtered ("MIS-MATCHED!\n");
5631 do_cleanups (old_chain);
5634 warning (_("One or more sections of the remote executable does not match\n\
5635 the loaded file\n"));
5636 if (args && !matched)
5637 printf_filtered (_("No loaded section named '%s'.\n"), args);
5640 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5641 into remote target. The number of bytes written to the remote
5642 target is returned, or -1 for error. */
5645 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5646 const char *annex, const gdb_byte *writebuf,
5647 ULONGEST offset, LONGEST len,
5648 struct packet_config *packet)
5653 struct remote_state *rs = get_remote_state ();
5654 int max_size = get_memory_write_packet_size ();
5656 if (packet->support == PACKET_DISABLE)
5659 /* Insert header. */
5660 i = snprintf (rs->buf, max_size,
5661 "qXfer:%s:write:%s:%s:",
5662 object_name, annex ? annex : "",
5663 phex_nz (offset, sizeof offset));
5664 max_size -= (i + 1);
5666 /* Escape as much data as fits into rs->buf. */
5667 buf_len = remote_escape_output
5668 (writebuf, len, (rs->buf + i), &max_size, max_size);
5670 if (putpkt_binary (rs->buf, i + buf_len) < 0
5671 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5672 || packet_ok (rs->buf, packet) != PACKET_OK)
5675 unpack_varlen_hex (rs->buf, &n);
5679 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5680 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5681 number of bytes read is returned, or 0 for EOF, or -1 for error.
5682 The number of bytes read may be less than LEN without indicating an
5683 EOF. PACKET is checked and updated to indicate whether the remote
5684 target supports this object. */
5687 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5689 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5690 struct packet_config *packet)
5692 static char *finished_object;
5693 static char *finished_annex;
5694 static ULONGEST finished_offset;
5696 struct remote_state *rs = get_remote_state ();
5697 unsigned int total = 0;
5698 LONGEST i, n, packet_len;
5700 if (packet->support == PACKET_DISABLE)
5703 /* Check whether we've cached an end-of-object packet that matches
5705 if (finished_object)
5707 if (strcmp (object_name, finished_object) == 0
5708 && strcmp (annex ? annex : "", finished_annex) == 0
5709 && offset == finished_offset)
5712 /* Otherwise, we're now reading something different. Discard
5714 xfree (finished_object);
5715 xfree (finished_annex);
5716 finished_object = NULL;
5717 finished_annex = NULL;
5720 /* Request only enough to fit in a single packet. The actual data
5721 may not, since we don't know how much of it will need to be escaped;
5722 the target is free to respond with slightly less data. We subtract
5723 five to account for the response type and the protocol frame. */
5724 n = min (get_remote_packet_size () - 5, len);
5725 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5726 object_name, annex ? annex : "",
5727 phex_nz (offset, sizeof offset),
5728 phex_nz (n, sizeof n));
5729 i = putpkt (rs->buf);
5734 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5735 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5738 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5739 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5741 /* 'm' means there is (or at least might be) more data after this
5742 batch. That does not make sense unless there's at least one byte
5743 of data in this reply. */
5744 if (rs->buf[0] == 'm' && packet_len == 1)
5745 error (_("Remote qXfer reply contained no data."));
5747 /* Got some data. */
5748 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5750 /* 'l' is an EOF marker, possibly including a final block of data,
5751 or possibly empty. If we have the final block of a non-empty
5752 object, record this fact to bypass a subsequent partial read. */
5753 if (rs->buf[0] == 'l' && offset + i > 0)
5755 finished_object = xstrdup (object_name);
5756 finished_annex = xstrdup (annex ? annex : "");
5757 finished_offset = offset + i;
5764 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5765 const char *annex, gdb_byte *readbuf,
5766 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5768 struct remote_state *rs = get_remote_state ();
5773 /* Handle memory using the standard memory routines. */
5774 if (object == TARGET_OBJECT_MEMORY)
5779 if (writebuf != NULL)
5780 xfered = remote_write_bytes (offset, writebuf, len);
5782 xfered = remote_read_bytes (offset, readbuf, len);
5786 else if (xfered == 0 && errno == 0)
5792 /* Handle SPU memory using qxfer packets. */
5793 if (object == TARGET_OBJECT_SPU)
5796 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5797 &remote_protocol_packets
5798 [PACKET_qXfer_spu_read]);
5800 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5801 &remote_protocol_packets
5802 [PACKET_qXfer_spu_write]);
5805 /* Only handle flash writes. */
5806 if (writebuf != NULL)
5812 case TARGET_OBJECT_FLASH:
5813 xfered = remote_flash_write (ops, offset, len, writebuf);
5817 else if (xfered == 0 && errno == 0)
5827 /* Map pre-existing objects onto letters. DO NOT do this for new
5828 objects!!! Instead specify new query packets. */
5831 case TARGET_OBJECT_AVR:
5835 case TARGET_OBJECT_AUXV:
5836 gdb_assert (annex == NULL);
5837 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5838 &remote_protocol_packets[PACKET_qXfer_auxv]);
5840 case TARGET_OBJECT_AVAILABLE_FEATURES:
5841 return remote_read_qxfer
5842 (ops, "features", annex, readbuf, offset, len,
5843 &remote_protocol_packets[PACKET_qXfer_features]);
5845 case TARGET_OBJECT_LIBRARIES:
5846 return remote_read_qxfer
5847 (ops, "libraries", annex, readbuf, offset, len,
5848 &remote_protocol_packets[PACKET_qXfer_libraries]);
5850 case TARGET_OBJECT_MEMORY_MAP:
5851 gdb_assert (annex == NULL);
5852 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5853 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5859 /* Note: a zero OFFSET and LEN can be used to query the minimum
5861 if (offset == 0 && len == 0)
5862 return (get_remote_packet_size ());
5863 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5864 large enough let the caller deal with it. */
5865 if (len < get_remote_packet_size ())
5867 len = get_remote_packet_size ();
5869 /* Except for querying the minimum buffer size, target must be open. */
5871 error (_("remote query is only available after target open"));
5873 gdb_assert (annex != NULL);
5874 gdb_assert (readbuf != NULL);
5880 /* We used one buffer char for the remote protocol q command and
5881 another for the query type. As the remote protocol encapsulation
5882 uses 4 chars plus one extra in case we are debugging
5883 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5886 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5888 /* Bad caller may have sent forbidden characters. */
5889 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5894 gdb_assert (annex[i] == '\0');
5896 i = putpkt (rs->buf);
5900 getpkt (&rs->buf, &rs->buf_size, 0);
5901 strcpy ((char *) readbuf, rs->buf);
5903 return strlen ((char *) readbuf);
5907 remote_rcmd (char *command,
5908 struct ui_file *outbuf)
5910 struct remote_state *rs = get_remote_state ();
5914 error (_("remote rcmd is only available after target open"));
5916 /* Send a NULL command across as an empty command. */
5917 if (command == NULL)
5920 /* The query prefix. */
5921 strcpy (rs->buf, "qRcmd,");
5922 p = strchr (rs->buf, '\0');
5924 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5925 error (_("\"monitor\" command ``%s'' is too long."), command);
5927 /* Encode the actual command. */
5928 bin2hex ((gdb_byte *) command, p, 0);
5930 if (putpkt (rs->buf) < 0)
5931 error (_("Communication problem with target."));
5933 /* get/display the response */
5938 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5940 getpkt (&rs->buf, &rs->buf_size, 0);
5943 error (_("Target does not support this command."));
5944 if (buf[0] == 'O' && buf[1] != 'K')
5946 remote_console_output (buf + 1); /* 'O' message from stub. */
5949 if (strcmp (buf, "OK") == 0)
5951 if (strlen (buf) == 3 && buf[0] == 'E'
5952 && isdigit (buf[1]) && isdigit (buf[2]))
5954 error (_("Protocol error with Rcmd"));
5956 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5958 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5959 fputc_unfiltered (c, outbuf);
5965 static VEC(mem_region_s) *
5966 remote_memory_map (struct target_ops *ops)
5968 VEC(mem_region_s) *result = NULL;
5969 char *text = target_read_stralloc (¤t_target,
5970 TARGET_OBJECT_MEMORY_MAP, NULL);
5974 struct cleanup *back_to = make_cleanup (xfree, text);
5975 result = parse_memory_map (text);
5976 do_cleanups (back_to);
5983 packet_command (char *args, int from_tty)
5985 struct remote_state *rs = get_remote_state ();
5988 error (_("command can only be used with remote target"));
5991 error (_("remote-packet command requires packet text as argument"));
5993 puts_filtered ("sending: ");
5994 print_packet (args);
5995 puts_filtered ("\n");
5998 getpkt (&rs->buf, &rs->buf_size, 0);
5999 puts_filtered ("received: ");
6000 print_packet (rs->buf);
6001 puts_filtered ("\n");
6005 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6007 static void display_thread_info (struct gdb_ext_thread_info *info);
6009 static void threadset_test_cmd (char *cmd, int tty);
6011 static void threadalive_test (char *cmd, int tty);
6013 static void threadlist_test_cmd (char *cmd, int tty);
6015 int get_and_display_threadinfo (threadref *ref);
6017 static void threadinfo_test_cmd (char *cmd, int tty);
6019 static int thread_display_step (threadref *ref, void *context);
6021 static void threadlist_update_test_cmd (char *cmd, int tty);
6023 static void init_remote_threadtests (void);
6025 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6028 threadset_test_cmd (char *cmd, int tty)
6030 int sample_thread = SAMPLE_THREAD;
6032 printf_filtered (_("Remote threadset test\n"));
6033 set_thread (sample_thread, 1);
6038 threadalive_test (char *cmd, int tty)
6040 int sample_thread = SAMPLE_THREAD;
6042 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6043 printf_filtered ("PASS: Thread alive test\n");
6045 printf_filtered ("FAIL: Thread alive test\n");
6048 void output_threadid (char *title, threadref *ref);
6051 output_threadid (char *title, threadref *ref)
6055 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6057 printf_filtered ("%s %s\n", title, (&hexid[0]));
6061 threadlist_test_cmd (char *cmd, int tty)
6064 threadref nextthread;
6065 int done, result_count;
6066 threadref threadlist[3];
6068 printf_filtered ("Remote Threadlist test\n");
6069 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6070 &result_count, &threadlist[0]))
6071 printf_filtered ("FAIL: threadlist test\n");
6074 threadref *scan = threadlist;
6075 threadref *limit = scan + result_count;
6077 while (scan < limit)
6078 output_threadid (" thread ", scan++);
6083 display_thread_info (struct gdb_ext_thread_info *info)
6085 output_threadid ("Threadid: ", &info->threadid);
6086 printf_filtered ("Name: %s\n ", info->shortname);
6087 printf_filtered ("State: %s\n", info->display);
6088 printf_filtered ("other: %s\n\n", info->more_display);
6092 get_and_display_threadinfo (threadref *ref)
6096 struct gdb_ext_thread_info threadinfo;
6098 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6099 | TAG_MOREDISPLAY | TAG_DISPLAY;
6100 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6101 display_thread_info (&threadinfo);
6106 threadinfo_test_cmd (char *cmd, int tty)
6108 int athread = SAMPLE_THREAD;
6112 int_to_threadref (&thread, athread);
6113 printf_filtered ("Remote Threadinfo test\n");
6114 if (!get_and_display_threadinfo (&thread))
6115 printf_filtered ("FAIL cannot get thread info\n");
6119 thread_display_step (threadref *ref, void *context)
6121 /* output_threadid(" threadstep ",ref); *//* simple test */
6122 return get_and_display_threadinfo (ref);
6126 threadlist_update_test_cmd (char *cmd, int tty)
6128 printf_filtered ("Remote Threadlist update test\n");
6129 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6133 init_remote_threadtests (void)
6135 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6136 Fetch and print the remote list of thread identifiers, one pkt only"));
6137 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6138 _("Fetch and display info about one thread"));
6139 add_com ("tset", class_obscure, threadset_test_cmd,
6140 _("Test setting to a different thread"));
6141 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6142 _("Iterate through updating all remote thread info"));
6143 add_com ("talive", class_obscure, threadalive_test,
6144 _(" Remote thread alive test "));
6149 /* Convert a thread ID to a string. Returns the string in a static
6153 remote_pid_to_str (ptid_t ptid)
6155 static char buf[32];
6157 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6161 /* Get the address of the thread local variable in OBJFILE which is
6162 stored at OFFSET within the thread local storage for thread PTID. */
6165 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6167 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6169 struct remote_state *rs = get_remote_state ();
6171 enum packet_result result;
6173 strcpy (p, "qGetTLSAddr:");
6175 p += hexnumstr (p, PIDGET (ptid));
6177 p += hexnumstr (p, offset);
6179 p += hexnumstr (p, lm);
6183 getpkt (&rs->buf, &rs->buf_size, 0);
6184 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6185 if (result == PACKET_OK)
6189 unpack_varlen_hex (rs->buf, &result);
6192 else if (result == PACKET_UNKNOWN)
6193 throw_error (TLS_GENERIC_ERROR,
6194 _("Remote target doesn't support qGetTLSAddr packet"));
6196 throw_error (TLS_GENERIC_ERROR,
6197 _("Remote target failed to process qGetTLSAddr request"));
6200 throw_error (TLS_GENERIC_ERROR,
6201 _("TLS not supported or disabled on this target"));
6206 /* Support for inferring a target description based on the current
6207 architecture and the size of a 'g' packet. While the 'g' packet
6208 can have any size (since optional registers can be left off the
6209 end), some sizes are easily recognizable given knowledge of the
6210 approximate architecture. */
6212 struct remote_g_packet_guess
6215 const struct target_desc *tdesc;
6217 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6218 DEF_VEC_O(remote_g_packet_guess_s);
6220 struct remote_g_packet_data
6222 VEC(remote_g_packet_guess_s) *guesses;
6225 static struct gdbarch_data *remote_g_packet_data_handle;
6228 remote_g_packet_data_init (struct obstack *obstack)
6230 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6234 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6235 const struct target_desc *tdesc)
6237 struct remote_g_packet_data *data
6238 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6239 struct remote_g_packet_guess new_guess, *guess;
6242 gdb_assert (tdesc != NULL);
6245 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6247 if (guess->bytes == bytes)
6248 internal_error (__FILE__, __LINE__,
6249 "Duplicate g packet description added for size %d",
6252 new_guess.bytes = bytes;
6253 new_guess.tdesc = tdesc;
6254 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6257 static const struct target_desc *
6258 remote_read_description (struct target_ops *target)
6260 struct remote_g_packet_data *data
6261 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6263 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6265 struct remote_g_packet_guess *guess;
6267 int bytes = send_g_packet ();
6270 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6272 if (guess->bytes == bytes)
6273 return guess->tdesc;
6275 /* We discard the g packet. A minor optimization would be to
6276 hold on to it, and fill the register cache once we have selected
6277 an architecture, but it's too tricky to do safely. */
6284 init_remote_ops (void)
6286 remote_ops.to_shortname = "remote";
6287 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6289 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6290 Specify the serial device it is connected to\n\
6291 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6292 remote_ops.to_open = remote_open;
6293 remote_ops.to_close = remote_close;
6294 remote_ops.to_detach = remote_detach;
6295 remote_ops.to_disconnect = remote_disconnect;
6296 remote_ops.to_resume = remote_resume;
6297 remote_ops.to_wait = remote_wait;
6298 remote_ops.to_fetch_registers = remote_fetch_registers;
6299 remote_ops.to_store_registers = remote_store_registers;
6300 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6301 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6302 remote_ops.to_files_info = remote_files_info;
6303 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6304 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6305 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6306 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6307 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6308 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6309 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6310 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6311 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6312 remote_ops.to_kill = remote_kill;
6313 remote_ops.to_load = generic_load;
6314 remote_ops.to_mourn_inferior = remote_mourn;
6315 remote_ops.to_thread_alive = remote_thread_alive;
6316 remote_ops.to_find_new_threads = remote_threads_info;
6317 remote_ops.to_pid_to_str = remote_pid_to_str;
6318 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6319 remote_ops.to_stop = remote_stop;
6320 remote_ops.to_xfer_partial = remote_xfer_partial;
6321 remote_ops.to_rcmd = remote_rcmd;
6322 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6323 remote_ops.to_stratum = process_stratum;
6324 remote_ops.to_has_all_memory = 1;
6325 remote_ops.to_has_memory = 1;
6326 remote_ops.to_has_stack = 1;
6327 remote_ops.to_has_registers = 1;
6328 remote_ops.to_has_execution = 1;
6329 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6330 remote_ops.to_magic = OPS_MAGIC;
6331 remote_ops.to_memory_map = remote_memory_map;
6332 remote_ops.to_flash_erase = remote_flash_erase;
6333 remote_ops.to_flash_done = remote_flash_done;
6334 remote_ops.to_read_description = remote_read_description;
6337 /* Set up the extended remote vector by making a copy of the standard
6338 remote vector and adding to it. */
6341 init_extended_remote_ops (void)
6343 extended_remote_ops = remote_ops;
6345 extended_remote_ops.to_shortname = "extended-remote";
6346 extended_remote_ops.to_longname =
6347 "Extended remote serial target in gdb-specific protocol";
6348 extended_remote_ops.to_doc =
6349 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6350 Specify the serial device it is connected to (e.g. /dev/ttya).",
6351 extended_remote_ops.to_open = extended_remote_open;
6352 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6353 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6357 remote_can_async_p (void)
6359 /* We're async whenever the serial device is. */
6360 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6364 remote_is_async_p (void)
6366 /* We're async whenever the serial device is. */
6367 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6370 /* Pass the SERIAL event on and up to the client. One day this code
6371 will be able to delay notifying the client of an event until the
6372 point where an entire packet has been received. */
6374 static void (*async_client_callback) (enum inferior_event_type event_type,
6376 static void *async_client_context;
6377 static serial_event_ftype remote_async_serial_handler;
6380 remote_async_serial_handler (struct serial *scb, void *context)
6382 /* Don't propogate error information up to the client. Instead let
6383 the client find out about the error by querying the target. */
6384 async_client_callback (INF_REG_EVENT, async_client_context);
6388 remote_async (void (*callback) (enum inferior_event_type event_type,
6389 void *context), void *context)
6391 if (current_target.to_async_mask_value == 0)
6392 internal_error (__FILE__, __LINE__,
6393 _("Calling remote_async when async is masked"));
6395 if (callback != NULL)
6397 serial_async (remote_desc, remote_async_serial_handler, NULL);
6398 async_client_callback = callback;
6399 async_client_context = context;
6402 serial_async (remote_desc, NULL, NULL);
6405 /* Target async and target extended-async.
6407 This are temporary targets, until it is all tested. Eventually
6408 async support will be incorporated int the usual 'remote'
6412 init_remote_async_ops (void)
6414 remote_async_ops.to_shortname = "async";
6415 remote_async_ops.to_longname =
6416 "Remote serial target in async version of the gdb-specific protocol";
6417 remote_async_ops.to_doc =
6418 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6419 Specify the serial device it is connected to (e.g. /dev/ttya).";
6420 remote_async_ops.to_open = remote_async_open;
6421 remote_async_ops.to_close = remote_close;
6422 remote_async_ops.to_detach = remote_detach;
6423 remote_async_ops.to_disconnect = remote_disconnect;
6424 remote_async_ops.to_resume = remote_async_resume;
6425 remote_async_ops.to_wait = remote_async_wait;
6426 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6427 remote_async_ops.to_store_registers = remote_store_registers;
6428 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6429 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6430 remote_async_ops.to_files_info = remote_files_info;
6431 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6432 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6433 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6434 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6435 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6436 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6437 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6438 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6439 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6440 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6441 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6442 remote_async_ops.to_kill = remote_async_kill;
6443 remote_async_ops.to_load = generic_load;
6444 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6445 remote_async_ops.to_thread_alive = remote_thread_alive;
6446 remote_async_ops.to_find_new_threads = remote_threads_info;
6447 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6448 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6449 remote_async_ops.to_stop = remote_stop;
6450 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6451 remote_async_ops.to_rcmd = remote_rcmd;
6452 remote_async_ops.to_stratum = process_stratum;
6453 remote_async_ops.to_has_all_memory = 1;
6454 remote_async_ops.to_has_memory = 1;
6455 remote_async_ops.to_has_stack = 1;
6456 remote_async_ops.to_has_registers = 1;
6457 remote_async_ops.to_has_execution = 1;
6458 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6459 remote_async_ops.to_can_async_p = remote_can_async_p;
6460 remote_async_ops.to_is_async_p = remote_is_async_p;
6461 remote_async_ops.to_async = remote_async;
6462 remote_async_ops.to_async_mask_value = 1;
6463 remote_async_ops.to_magic = OPS_MAGIC;
6464 remote_async_ops.to_memory_map = remote_memory_map;
6465 remote_async_ops.to_flash_erase = remote_flash_erase;
6466 remote_async_ops.to_flash_done = remote_flash_done;
6467 remote_async_ops.to_read_description = remote_read_description;
6470 /* Set up the async extended remote vector by making a copy of the standard
6471 remote vector and adding to it. */
6474 init_extended_async_remote_ops (void)
6476 extended_async_remote_ops = remote_async_ops;
6478 extended_async_remote_ops.to_shortname = "extended-async";
6479 extended_async_remote_ops.to_longname =
6480 "Extended remote serial target in async gdb-specific protocol";
6481 extended_async_remote_ops.to_doc =
6482 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6483 Specify the serial device it is connected to (e.g. /dev/ttya).",
6484 extended_async_remote_ops.to_open = extended_remote_async_open;
6485 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6486 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6490 set_remote_cmd (char *args, int from_tty)
6492 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6496 show_remote_cmd (char *args, int from_tty)
6498 /* We can't just use cmd_show_list here, because we want to skip
6499 the redundant "show remote Z-packet" and the legacy aliases. */
6500 struct cleanup *showlist_chain;
6501 struct cmd_list_element *list = remote_show_cmdlist;
6503 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6504 for (; list != NULL; list = list->next)
6505 if (strcmp (list->name, "Z-packet") == 0)
6507 else if (list->type == not_set_cmd)
6508 /* Alias commands are exactly like the original, except they
6509 don't have the normal type. */
6513 struct cleanup *option_chain
6514 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6515 ui_out_field_string (uiout, "name", list->name);
6516 ui_out_text (uiout, ": ");
6517 if (list->type == show_cmd)
6518 do_setshow_command ((char *) NULL, from_tty, list);
6520 cmd_func (list, NULL, from_tty);
6521 /* Close the tuple. */
6522 do_cleanups (option_chain);
6525 /* Close the tuple. */
6526 do_cleanups (showlist_chain);
6530 /* Function to be called whenever a new objfile (shlib) is detected. */
6532 remote_new_objfile (struct objfile *objfile)
6534 if (remote_desc != 0) /* Have a remote connection. */
6535 remote_check_symbols (objfile);
6539 _initialize_remote (void)
6541 struct remote_state *rs;
6543 /* architecture specific data */
6544 remote_gdbarch_data_handle =
6545 gdbarch_data_register_post_init (init_remote_state);
6546 remote_g_packet_data_handle =
6547 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6549 /* Initialize the per-target state. At the moment there is only one
6550 of these, not one per target. Only one target is active at a
6551 time. The default buffer size is unimportant; it will be expanded
6552 whenever a larger buffer is needed. */
6553 rs = get_remote_state_raw ();
6555 rs->buf = xmalloc (rs->buf_size);
6558 add_target (&remote_ops);
6560 init_extended_remote_ops ();
6561 add_target (&extended_remote_ops);
6563 init_remote_async_ops ();
6564 add_target (&remote_async_ops);
6566 init_extended_async_remote_ops ();
6567 add_target (&extended_async_remote_ops);
6569 /* Hook into new objfile notification. */
6570 observer_attach_new_objfile (remote_new_objfile);
6573 init_remote_threadtests ();
6576 /* set/show remote ... */
6578 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6579 Remote protocol specific variables\n\
6580 Configure various remote-protocol specific variables such as\n\
6581 the packets being used"),
6582 &remote_set_cmdlist, "set remote ",
6583 0 /* allow-unknown */, &setlist);
6584 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6585 Remote protocol specific variables\n\
6586 Configure various remote-protocol specific variables such as\n\
6587 the packets being used"),
6588 &remote_show_cmdlist, "show remote ",
6589 0 /* allow-unknown */, &showlist);
6591 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6592 Compare section data on target to the exec file.\n\
6593 Argument is a single section name (default: all loaded sections)."),
6596 add_cmd ("packet", class_maintenance, packet_command, _("\
6597 Send an arbitrary packet to a remote target.\n\
6598 maintenance packet TEXT\n\
6599 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6600 this command sends the string TEXT to the inferior, and displays the\n\
6601 response packet. GDB supplies the initial `$' character, and the\n\
6602 terminating `#' character and checksum."),
6605 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6606 Set whether to send break if interrupted."), _("\
6607 Show whether to send break if interrupted."), _("\
6608 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6609 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6610 &setlist, &showlist);
6612 /* Install commands for configuring memory read/write packets. */
6614 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6615 Set the maximum number of bytes per memory write packet (deprecated)."),
6617 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6618 Show the maximum number of bytes per memory write packet (deprecated)."),
6620 add_cmd ("memory-write-packet-size", no_class,
6621 set_memory_write_packet_size, _("\
6622 Set the maximum number of bytes per memory-write packet.\n\
6623 Specify the number of bytes in a packet or 0 (zero) for the\n\
6624 default packet size. The actual limit is further reduced\n\
6625 dependent on the target. Specify ``fixed'' to disable the\n\
6626 further restriction and ``limit'' to enable that restriction."),
6627 &remote_set_cmdlist);
6628 add_cmd ("memory-read-packet-size", no_class,
6629 set_memory_read_packet_size, _("\
6630 Set the maximum number of bytes per memory-read packet.\n\
6631 Specify the number of bytes in a packet or 0 (zero) for the\n\
6632 default packet size. The actual limit is further reduced\n\
6633 dependent on the target. Specify ``fixed'' to disable the\n\
6634 further restriction and ``limit'' to enable that restriction."),
6635 &remote_set_cmdlist);
6636 add_cmd ("memory-write-packet-size", no_class,
6637 show_memory_write_packet_size,
6638 _("Show the maximum number of bytes per memory-write packet."),
6639 &remote_show_cmdlist);
6640 add_cmd ("memory-read-packet-size", no_class,
6641 show_memory_read_packet_size,
6642 _("Show the maximum number of bytes per memory-read packet."),
6643 &remote_show_cmdlist);
6645 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6646 &remote_hw_watchpoint_limit, _("\
6647 Set the maximum number of target hardware watchpoints."), _("\
6648 Show the maximum number of target hardware watchpoints."), _("\
6649 Specify a negative limit for unlimited."),
6650 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6651 &remote_set_cmdlist, &remote_show_cmdlist);
6652 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6653 &remote_hw_breakpoint_limit, _("\
6654 Set the maximum number of target hardware breakpoints."), _("\
6655 Show the maximum number of target hardware breakpoints."), _("\
6656 Specify a negative limit for unlimited."),
6657 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6658 &remote_set_cmdlist, &remote_show_cmdlist);
6660 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6661 &remote_address_size, _("\
6662 Set the maximum size of the address (in bits) in a memory packet."), _("\
6663 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6665 NULL, /* FIXME: i18n: */
6666 &setlist, &showlist);
6668 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6669 "X", "binary-download", 1);
6671 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6672 "vCont", "verbose-resume", 0);
6674 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6675 "QPassSignals", "pass-signals", 0);
6677 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6678 "qSymbol", "symbol-lookup", 0);
6680 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6681 "P", "set-register", 1);
6683 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6684 "p", "fetch-register", 1);
6686 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6687 "Z0", "software-breakpoint", 0);
6689 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6690 "Z1", "hardware-breakpoint", 0);
6692 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6693 "Z2", "write-watchpoint", 0);
6695 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6696 "Z3", "read-watchpoint", 0);
6698 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6699 "Z4", "access-watchpoint", 0);
6701 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6702 "qXfer:auxv:read", "read-aux-vector", 0);
6704 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6705 "qXfer:features:read", "target-features", 0);
6707 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6708 "qXfer:libraries:read", "library-info", 0);
6710 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6711 "qXfer:memory-map:read", "memory-map", 0);
6713 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6714 "qXfer:spu:read", "read-spu-object", 0);
6716 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6717 "qXfer:spu:write", "write-spu-object", 0);
6719 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6720 "qGetTLSAddr", "get-thread-local-storage-address",
6723 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6724 "qSupported", "supported-packets", 0);
6726 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6727 Z sub-packet has its own set and show commands, but users may
6728 have sets to this variable in their .gdbinit files (or in their
6730 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6731 &remote_Z_packet_detect, _("\
6732 Set use of remote protocol `Z' packets"), _("\
6733 Show use of remote protocol `Z' packets "), _("\
6734 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6736 set_remote_protocol_Z_packet_cmd,
6737 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6738 &remote_set_cmdlist, &remote_show_cmdlist);
6740 /* Eventually initialize fileio. See fileio.c */
6741 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);