1 /* Cache and manage the values of registers for GDB, the GNU debugger.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "reggroups.h"
27 #include "observable.h"
29 #include <forward_list>
34 * Here is the actual register cache.
37 /* Per-architecture object describing the layout of a register cache.
38 Computed once when the architecture is created. */
40 struct gdbarch_data *regcache_descr_handle;
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
50 registers then those registers and not the PC lives in the raw
52 long sizeof_raw_registers;
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
58 both raw registers and memory by the architecture methods
59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
60 int nr_cooked_registers;
61 long sizeof_cooked_registers;
63 /* Offset and size (in 8 bit bytes), of each register in the
64 register cache. All registers (including those in the range
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
67 long *register_offset;
68 long *sizeof_register;
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
75 init_regcache_descr (struct gdbarch *gdbarch)
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
81 /* Create an initial, zero filled, table. */
82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
83 descr->gdbarch = gdbarch;
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
87 either mapped onto raw-registers or memory. */
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
91 /* Fill in a table of register types. */
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
95 for (i = 0; i < descr->nr_cooked_registers; i++)
96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
101 /* Lay out the register cache.
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
124 for (; i < descr->nr_cooked_registers; i++)
126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
130 /* Set the real size of the readonly register cache buffer. */
131 descr->sizeof_cooked_registers = offset;
137 static struct regcache_descr *
138 regcache_descr (struct gdbarch *gdbarch)
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
144 /* Utility functions returning useful register attributes stored in
145 the regcache descr. */
148 register_type (struct gdbarch *gdbarch, int regnum)
150 struct regcache_descr *descr = regcache_descr (gdbarch);
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
160 register_size (struct gdbarch *gdbarch, int regnum)
162 struct regcache_descr *descr = regcache_descr (gdbarch);
165 gdb_assert (regnum >= 0
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
168 size = descr->sizeof_register[regnum];
172 /* See common/common-regcache.h. */
175 regcache_register_size (const struct regcache *regcache, int n)
177 return register_size (regcache->arch (), n);
180 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
188 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
189 m_register_status = XCNEWVEC (signed char,
190 m_descr->nr_cooked_registers);
194 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
195 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
199 regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
200 /* The register buffers. A read/write register cache can only hold
201 [0 .. gdbarch_num_regs). */
202 : detached_regcache (gdbarch, false), m_aspace (aspace_)
204 m_ptid = minus_one_ptid;
207 static enum register_status
208 do_cooked_read (void *src, int regnum, gdb_byte *buf)
210 struct regcache *regcache = (struct regcache *) src;
212 return regcache->cooked_read (regnum, buf);
215 readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
216 : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
221 reg_buffer::arch () const
223 return m_descr->gdbarch;
226 /* Cleanup class for invalidating a register. */
228 class regcache_invalidator
232 regcache_invalidator (struct regcache *regcache, int regnum)
233 : m_regcache (regcache),
238 ~regcache_invalidator ()
240 if (m_regcache != nullptr)
241 m_regcache->invalidate (m_regnum);
244 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
248 m_regcache = nullptr;
253 struct regcache *m_regcache;
257 /* Return a pointer to register REGNUM's buffer cache. */
260 reg_buffer::register_buffer (int regnum) const
262 return m_registers + m_descr->register_offset[regnum];
266 reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
269 struct gdbarch *gdbarch = m_descr->gdbarch;
272 /* It should have pseudo registers. */
273 gdb_assert (m_has_pseudo);
274 /* Clear the dest. */
275 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
276 memset (m_register_status, 0, m_descr->nr_cooked_registers);
277 /* Copy over any registers (identified by their membership in the
278 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
279 gdbarch_num_pseudo_regs) range is checked since some architectures need
280 to save/restore `cooked' registers that live in memory. */
281 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
283 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
285 gdb_byte *dst_buf = register_buffer (regnum);
286 enum register_status status = cooked_read (src, regnum, dst_buf);
288 gdb_assert (status != REG_UNKNOWN);
290 if (status != REG_VALID)
291 memset (dst_buf, 0, register_size (gdbarch, regnum));
293 m_register_status[regnum] = status;
299 regcache::restore (readonly_detached_regcache *src)
301 struct gdbarch *gdbarch = m_descr->gdbarch;
304 gdb_assert (src != NULL);
305 gdb_assert (src->m_has_pseudo);
307 gdb_assert (gdbarch == src->arch ());
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
317 if (src->m_register_status[regnum] == REG_VALID)
318 cooked_write (regnum, src->register_buffer (regnum));
324 reg_buffer::get_register_status (int regnum) const
326 assert_regnum (regnum);
328 return (enum register_status) m_register_status[regnum];
332 detached_regcache::invalidate (int regnum)
334 assert_regnum (regnum);
335 m_register_status[regnum] = REG_UNKNOWN;
339 reg_buffer::assert_regnum (int regnum) const
341 gdb_assert (regnum >= 0);
343 gdb_assert (regnum < m_descr->nr_cooked_registers);
345 gdb_assert (regnum < gdbarch_num_regs (arch ()));
348 /* Global structure containing the current regcache. */
350 /* NOTE: this is a write-through cache. There is no "dirty" bit for
351 recording if the register values have been changed (eg. by the
352 user). Therefore all registers must be written back to the
353 target when appropriate. */
354 std::forward_list<regcache *> regcache::current_regcache;
357 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
358 struct address_space *aspace)
360 for (const auto ®cache : regcache::current_regcache)
361 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
364 regcache *new_regcache = new regcache (gdbarch, aspace);
366 regcache::current_regcache.push_front (new_regcache);
367 new_regcache->set_ptid (ptid);
373 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
375 address_space *aspace = target_thread_address_space (ptid);
377 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
380 static ptid_t current_thread_ptid;
381 static struct gdbarch *current_thread_arch;
384 get_thread_regcache (ptid_t ptid)
386 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
388 current_thread_ptid = ptid;
389 current_thread_arch = target_thread_architecture (ptid);
392 return get_thread_arch_regcache (ptid, current_thread_arch);
396 get_current_regcache (void)
398 return get_thread_regcache (inferior_ptid);
401 /* See common/common-regcache.h. */
404 get_thread_regcache_for_ptid (ptid_t ptid)
406 return get_thread_regcache (ptid);
409 /* Observer for the target_changed event. */
412 regcache_observer_target_changed (struct target_ops *target)
414 registers_changed ();
417 /* Update global variables old ptids to hold NEW_PTID if they were
420 regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
422 for (auto ®cache : regcache::current_regcache)
424 if (ptid_equal (regcache->ptid (), old_ptid))
425 regcache->set_ptid (new_ptid);
429 /* Low level examining and depositing of registers.
431 The caller is responsible for making sure that the inferior is
432 stopped before calling the fetching routines, or it will get
433 garbage. (a change from GDB version 3, in which the caller got the
434 value from the last stop). */
436 /* REGISTERS_CHANGED ()
438 Indicate that registers may have changed, so invalidate the cache. */
441 registers_changed_ptid (ptid_t ptid)
443 for (auto oit = regcache::current_regcache.before_begin (),
444 it = std::next (oit);
445 it != regcache::current_regcache.end ();
448 if (ptid_match ((*it)->ptid (), ptid))
451 it = regcache::current_regcache.erase_after (oit);
457 if (ptid_match (current_thread_ptid, ptid))
459 current_thread_ptid = null_ptid;
460 current_thread_arch = NULL;
463 if (ptid_match (inferior_ptid, ptid))
465 /* We just deleted the regcache of the current thread. Need to
466 forget about any frames we have cached, too. */
467 reinit_frame_cache ();
472 registers_changed (void)
474 registers_changed_ptid (minus_one_ptid);
476 /* Force cleanup of any alloca areas if using C alloca instead of
477 a builtin alloca. This particular call is used to clean up
478 areas allocated by low level target code which may build up
479 during lengthy interactions between gdb and the target before
480 gdb gives control to the user (ie watchpoints). */
485 regcache::raw_update (int regnum)
487 assert_regnum (regnum);
489 /* Make certain that the register cache is up-to-date with respect
490 to the current thread. This switching shouldn't be necessary
491 only there is still only one target side register cache. Sigh!
492 On the bright side, at least there is a regcache object. */
494 if (get_register_status (regnum) == REG_UNKNOWN)
496 target_fetch_registers (this, regnum);
498 /* A number of targets can't access the whole set of raw
499 registers (because the debug API provides no means to get at
501 if (m_register_status[regnum] == REG_UNKNOWN)
502 m_register_status[regnum] = REG_UNAVAILABLE;
507 readable_regcache::raw_read (int regnum, gdb_byte *buf)
509 gdb_assert (buf != NULL);
512 if (m_register_status[regnum] != REG_VALID)
513 memset (buf, 0, m_descr->sizeof_register[regnum]);
515 memcpy (buf, register_buffer (regnum),
516 m_descr->sizeof_register[regnum]);
518 return (enum register_status) m_register_status[regnum];
522 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
524 gdb_assert (regcache != NULL);
525 return regcache->raw_read (regnum, val);
528 template<typename T, typename>
530 readable_regcache::raw_read (int regnum, T *val)
533 enum register_status status;
535 assert_regnum (regnum);
536 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
537 status = raw_read (regnum, buf);
538 if (status == REG_VALID)
539 *val = extract_integer<T> (buf,
540 m_descr->sizeof_register[regnum],
541 gdbarch_byte_order (m_descr->gdbarch));
548 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
551 gdb_assert (regcache != NULL);
552 return regcache->raw_read (regnum, val);
556 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
558 gdb_assert (regcache != NULL);
559 regcache->raw_write (regnum, val);
562 template<typename T, typename>
564 regcache::raw_write (int regnum, T val)
568 assert_regnum (regnum);
569 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
570 store_integer (buf, m_descr->sizeof_register[regnum],
571 gdbarch_byte_order (m_descr->gdbarch), val);
572 raw_write (regnum, buf);
576 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
579 gdb_assert (regcache != NULL);
580 regcache->raw_write (regnum, val);
584 regcache_raw_get_signed (struct regcache *regcache, int regnum)
587 enum register_status status;
589 status = regcache_raw_read_signed (regcache, regnum, &value);
590 if (status == REG_UNAVAILABLE)
591 throw_error (NOT_AVAILABLE_ERROR,
592 _("Register %d is not available"), regnum);
597 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
599 gdb_assert (regnum >= 0);
600 gdb_assert (regnum < m_descr->nr_cooked_registers);
601 if (regnum < num_raw_registers ())
602 return raw_read (regnum, buf);
603 else if (m_has_pseudo
604 && m_register_status[regnum] != REG_UNKNOWN)
606 if (m_register_status[regnum] == REG_VALID)
607 memcpy (buf, register_buffer (regnum),
608 m_descr->sizeof_register[regnum]);
610 memset (buf, 0, m_descr->sizeof_register[regnum]);
612 return (enum register_status) m_register_status[regnum];
614 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
616 struct value *mark, *computed;
617 enum register_status result = REG_VALID;
619 mark = value_mark ();
621 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
623 if (value_entirely_available (computed))
624 memcpy (buf, value_contents_raw (computed),
625 m_descr->sizeof_register[regnum]);
628 memset (buf, 0, m_descr->sizeof_register[regnum]);
629 result = REG_UNAVAILABLE;
632 value_free_to_mark (mark);
637 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
642 regcache_cooked_read_value (struct regcache *regcache, int regnum)
644 return regcache->cooked_read_value (regnum);
648 readable_regcache::cooked_read_value (int regnum)
650 gdb_assert (regnum >= 0);
651 gdb_assert (regnum < m_descr->nr_cooked_registers);
653 if (regnum < num_raw_registers ()
654 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
655 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
657 struct value *result;
659 result = allocate_value (register_type (m_descr->gdbarch, regnum));
660 VALUE_LVAL (result) = lval_register;
661 VALUE_REGNUM (result) = regnum;
663 /* It is more efficient in general to do this delegation in this
664 direction than in the other one, even though the value-based
666 if (cooked_read (regnum,
667 value_contents_raw (result)) == REG_UNAVAILABLE)
668 mark_value_bytes_unavailable (result, 0,
669 TYPE_LENGTH (value_type (result)));
674 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
679 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
682 gdb_assert (regcache != NULL);
683 return regcache->cooked_read (regnum, val);
686 template<typename T, typename>
688 readable_regcache::cooked_read (int regnum, T *val)
690 enum register_status status;
693 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
694 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
695 status = cooked_read (regnum, buf);
696 if (status == REG_VALID)
697 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
698 gdbarch_byte_order (m_descr->gdbarch));
705 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
708 gdb_assert (regcache != NULL);
709 return regcache->cooked_read (regnum, val);
713 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
716 gdb_assert (regcache != NULL);
717 regcache->cooked_write (regnum, val);
720 template<typename T, typename>
722 regcache::cooked_write (int regnum, T val)
726 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
727 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
728 store_integer (buf, m_descr->sizeof_register[regnum],
729 gdbarch_byte_order (m_descr->gdbarch), val);
730 cooked_write (regnum, buf);
734 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
737 gdb_assert (regcache != NULL);
738 regcache->cooked_write (regnum, val);
742 regcache::raw_write (int regnum, const gdb_byte *buf)
745 gdb_assert (buf != NULL);
746 assert_regnum (regnum);
748 /* On the sparc, writing %g0 is a no-op, so we don't even want to
749 change the registers array if something writes to this register. */
750 if (gdbarch_cannot_store_register (arch (), regnum))
753 /* If we have a valid copy of the register, and new value == old
754 value, then don't bother doing the actual store. */
755 if (get_register_status (regnum) == REG_VALID
756 && (memcmp (register_buffer (regnum), buf,
757 m_descr->sizeof_register[regnum]) == 0))
760 target_prepare_to_store (this);
761 raw_supply (regnum, buf);
763 /* Invalidate the register after it is written, in case of a
765 regcache_invalidator invalidator (this, regnum);
767 target_store_registers (this, regnum);
769 /* The target did not throw an error so we can discard invalidating
771 invalidator.release ();
775 regcache_cooked_write (struct regcache *regcache, int regnum,
778 regcache->cooked_write (regnum, buf);
782 regcache::cooked_write (int regnum, const gdb_byte *buf)
784 gdb_assert (regnum >= 0);
785 gdb_assert (regnum < m_descr->nr_cooked_registers);
786 if (regnum < num_raw_registers ())
787 raw_write (regnum, buf);
789 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
793 /* Perform a partial register transfer using a read, modify, write
797 readable_regcache::read_part (int regnum, int offset, int len, void *in,
800 struct gdbarch *gdbarch = arch ();
801 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
803 gdb_assert (in != NULL);
804 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
805 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
806 /* Something to do? */
807 if (offset + len == 0)
809 /* Read (when needed) ... */
810 enum register_status status;
813 status = raw_read (regnum, reg);
815 status = cooked_read (regnum, reg);
816 if (status != REG_VALID)
820 memcpy (in, reg + offset, len);
826 regcache::write_part (int regnum, int offset, int len,
827 const void *out, bool is_raw)
829 struct gdbarch *gdbarch = arch ();
830 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
832 gdb_assert (out != NULL);
833 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
834 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
835 /* Something to do? */
836 if (offset + len == 0)
838 /* Read (when needed) ... */
840 || offset + len < m_descr->sizeof_register[regnum])
842 enum register_status status;
845 status = raw_read (regnum, reg);
847 status = cooked_read (regnum, reg);
848 if (status != REG_VALID)
852 memcpy (reg + offset, out, len);
853 /* ... write (when needed). */
855 raw_write (regnum, reg);
857 cooked_write (regnum, reg);
863 readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
865 assert_regnum (regnum);
866 return read_part (regnum, offset, len, buf, true);
869 /* See regcache.h. */
872 regcache::raw_write_part (int regnum, int offset, int len,
875 assert_regnum (regnum);
876 write_part (regnum, offset, len, buf, true);
880 regcache_cooked_read_part (struct regcache *regcache, int regnum,
881 int offset, int len, gdb_byte *buf)
883 return regcache->cooked_read_part (regnum, offset, len, buf);
888 readable_regcache::cooked_read_part (int regnum, int offset, int len,
891 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
892 return read_part (regnum, offset, len, buf, false);
896 regcache_cooked_write_part (struct regcache *regcache, int regnum,
897 int offset, int len, const gdb_byte *buf)
899 regcache->cooked_write_part (regnum, offset, len, buf);
903 regcache::cooked_write_part (int regnum, int offset, int len,
906 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
907 write_part (regnum, offset, len, buf, false);
910 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
913 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
915 gdb_assert (regcache != NULL);
916 regcache->raw_supply (regnum, buf);
920 detached_regcache::raw_supply (int regnum, const void *buf)
925 assert_regnum (regnum);
927 regbuf = register_buffer (regnum);
928 size = m_descr->sizeof_register[regnum];
932 memcpy (regbuf, buf, size);
933 m_register_status[regnum] = REG_VALID;
937 /* This memset not strictly necessary, but better than garbage
938 in case the register value manages to escape somewhere (due
939 to a bug, no less). */
940 memset (regbuf, 0, size);
941 m_register_status[regnum] = REG_UNAVAILABLE;
945 /* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
946 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
947 the register size is greater than ADDR_LEN, then the integer will be sign or
948 zero extended. If the register size is smaller than the integer, then the
949 most significant bytes of the integer will be truncated. */
952 detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
953 int addr_len, bool is_signed)
955 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
959 assert_regnum (regnum);
961 regbuf = register_buffer (regnum);
962 regsize = m_descr->sizeof_register[regnum];
964 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
966 m_register_status[regnum] = REG_VALID;
969 /* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
970 as calling raw_supply with NULL (which will set the state to
974 detached_regcache::raw_supply_zeroed (int regnum)
979 assert_regnum (regnum);
981 regbuf = register_buffer (regnum);
982 size = m_descr->sizeof_register[regnum];
984 memset (regbuf, 0, size);
985 m_register_status[regnum] = REG_VALID;
988 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
991 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
993 gdb_assert (regcache != NULL && buf != NULL);
994 regcache->raw_collect (regnum, buf);
998 regcache::raw_collect (int regnum, void *buf) const
1003 gdb_assert (buf != NULL);
1004 assert_regnum (regnum);
1006 regbuf = register_buffer (regnum);
1007 size = m_descr->sizeof_register[regnum];
1008 memcpy (buf, regbuf, size);
1011 /* Transfer a single or all registers belonging to a certain register
1012 set to or from a buffer. This is the main worker function for
1013 regcache_supply_regset and regcache_collect_regset. */
1015 /* Collect register REGNUM from REGCACHE. Store collected value as an integer
1016 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
1017 If ADDR_LEN is greater than the register size, then the integer will be sign
1018 or zero extended. If ADDR_LEN is smaller than the register size, then the
1019 most significant bytes of the integer will be truncated. */
1022 regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1023 bool is_signed) const
1025 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1026 const gdb_byte *regbuf;
1029 assert_regnum (regnum);
1031 regbuf = register_buffer (regnum);
1032 regsize = m_descr->sizeof_register[regnum];
1034 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1039 regcache::transfer_regset (const struct regset *regset,
1040 struct regcache *out_regcache,
1041 int regnum, const void *in_buf,
1042 void *out_buf, size_t size) const
1044 const struct regcache_map_entry *map;
1045 int offs = 0, count;
1047 for (map = (const struct regcache_map_entry *) regset->regmap;
1048 (count = map->count) != 0;
1051 int regno = map->regno;
1052 int slot_size = map->size;
1054 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1055 slot_size = m_descr->sizeof_register[regno];
1057 if (regno == REGCACHE_MAP_SKIP
1059 && (regnum < regno || regnum >= regno + count)))
1060 offs += count * slot_size;
1062 else if (regnum == -1)
1063 for (; count--; regno++, offs += slot_size)
1065 if (offs + slot_size > size)
1069 raw_collect (regno, (gdb_byte *) out_buf + offs);
1071 out_regcache->raw_supply (regno, in_buf
1072 ? (const gdb_byte *) in_buf + offs
1077 /* Transfer a single register and return. */
1078 offs += (regnum - regno) * slot_size;
1079 if (offs + slot_size > size)
1083 raw_collect (regnum, (gdb_byte *) out_buf + offs);
1085 out_regcache->raw_supply (regnum, in_buf
1086 ? (const gdb_byte *) in_buf + offs
1093 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1094 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1095 If BUF is NULL, set the register(s) to "unavailable" status. */
1098 regcache_supply_regset (const struct regset *regset,
1099 struct regcache *regcache,
1100 int regnum, const void *buf, size_t size)
1102 regcache->supply_regset (regset, regnum, buf, size);
1106 regcache::supply_regset (const struct regset *regset,
1107 int regnum, const void *buf, size_t size)
1109 transfer_regset (regset, this, regnum, buf, NULL, size);
1112 /* Collect register REGNUM from REGCACHE to BUF, using the register
1113 map in REGSET. If REGNUM is -1, do this for all registers in
1117 regcache_collect_regset (const struct regset *regset,
1118 const struct regcache *regcache,
1119 int regnum, void *buf, size_t size)
1121 regcache->collect_regset (regset, regnum, buf, size);
1125 regcache::collect_regset (const struct regset *regset,
1126 int regnum, void *buf, size_t size) const
1128 transfer_regset (regset, NULL, regnum, NULL, buf, size);
1132 /* Special handling for register PC. */
1135 regcache_read_pc (struct regcache *regcache)
1137 struct gdbarch *gdbarch = regcache->arch ();
1141 if (gdbarch_read_pc_p (gdbarch))
1142 pc_val = gdbarch_read_pc (gdbarch, regcache);
1143 /* Else use per-frame method on get_current_frame. */
1144 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1148 if (regcache_cooked_read_unsigned (regcache,
1149 gdbarch_pc_regnum (gdbarch),
1150 &raw_val) == REG_UNAVAILABLE)
1151 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1153 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1156 internal_error (__FILE__, __LINE__,
1157 _("regcache_read_pc: Unable to find PC"));
1162 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1164 struct gdbarch *gdbarch = regcache->arch ();
1166 if (gdbarch_write_pc_p (gdbarch))
1167 gdbarch_write_pc (gdbarch, regcache, pc);
1168 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1169 regcache_cooked_write_unsigned (regcache,
1170 gdbarch_pc_regnum (gdbarch), pc);
1172 internal_error (__FILE__, __LINE__,
1173 _("regcache_write_pc: Unable to update PC"));
1175 /* Writing the PC (for instance, from "load") invalidates the
1177 reinit_frame_cache ();
1181 reg_buffer::num_raw_registers () const
1183 return gdbarch_num_regs (arch ());
1187 regcache::debug_print_register (const char *func, int regno)
1189 struct gdbarch *gdbarch = arch ();
1191 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1192 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1193 && gdbarch_register_name (gdbarch, regno) != NULL
1194 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1195 fprintf_unfiltered (gdb_stdlog, "(%s)",
1196 gdbarch_register_name (gdbarch, regno));
1198 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1199 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1201 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1202 int size = register_size (gdbarch, regno);
1203 gdb_byte *buf = register_buffer (regno);
1205 fprintf_unfiltered (gdb_stdlog, " = ");
1206 for (int i = 0; i < size; i++)
1208 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1210 if (size <= sizeof (LONGEST))
1212 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1214 fprintf_unfiltered (gdb_stdlog, " %s %s",
1215 core_addr_to_string_nz (val), plongest (val));
1218 fprintf_unfiltered (gdb_stdlog, "\n");
1222 reg_flush_command (const char *command, int from_tty)
1224 /* Force-flush the register cache. */
1225 registers_changed ();
1227 printf_filtered (_("Register cache flushed.\n"));
1231 register_dump::dump (ui_file *file)
1233 auto descr = regcache_descr (m_gdbarch);
1235 int footnote_nr = 0;
1236 int footnote_register_offset = 0;
1237 int footnote_register_type_name_null = 0;
1238 long register_offset = 0;
1240 gdb_assert (descr->nr_cooked_registers
1241 == (gdbarch_num_regs (m_gdbarch)
1242 + gdbarch_num_pseudo_regs (m_gdbarch)));
1244 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1248 fprintf_unfiltered (file, " %-10s", "Name");
1251 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1255 else if (p[0] == '\0')
1257 fprintf_unfiltered (file, " %-10s", p);
1262 fprintf_unfiltered (file, " %4s", "Nr");
1264 fprintf_unfiltered (file, " %4d", regnum);
1266 /* Relative number. */
1268 fprintf_unfiltered (file, " %4s", "Rel");
1269 else if (regnum < gdbarch_num_regs (m_gdbarch))
1270 fprintf_unfiltered (file, " %4d", regnum);
1272 fprintf_unfiltered (file, " %4d",
1273 (regnum - gdbarch_num_regs (m_gdbarch)));
1277 fprintf_unfiltered (file, " %6s ", "Offset");
1280 fprintf_unfiltered (file, " %6ld",
1281 descr->register_offset[regnum]);
1282 if (register_offset != descr->register_offset[regnum]
1284 && (descr->register_offset[regnum]
1285 != (descr->register_offset[regnum - 1]
1286 + descr->sizeof_register[regnum - 1])))
1289 if (!footnote_register_offset)
1290 footnote_register_offset = ++footnote_nr;
1291 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1294 fprintf_unfiltered (file, " ");
1295 register_offset = (descr->register_offset[regnum]
1296 + descr->sizeof_register[regnum]);
1301 fprintf_unfiltered (file, " %5s ", "Size");
1303 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
1308 std::string name_holder;
1314 static const char blt[] = "builtin_type";
1316 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1319 if (!footnote_register_type_name_null)
1320 footnote_register_type_name_null = ++footnote_nr;
1321 name_holder = string_printf ("*%d",
1322 footnote_register_type_name_null);
1323 t = name_holder.c_str ();
1325 /* Chop a leading builtin_type. */
1326 if (startswith (t, blt))
1329 fprintf_unfiltered (file, " %-15s", t);
1332 /* Leading space always present. */
1333 fprintf_unfiltered (file, " ");
1335 dump_reg (file, regnum);
1337 fprintf_unfiltered (file, "\n");
1340 if (footnote_register_offset)
1341 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1342 footnote_register_offset);
1343 if (footnote_register_type_name_null)
1344 fprintf_unfiltered (file,
1345 "*%d: Register type's name NULL.\n",
1346 footnote_register_type_name_null);
1350 #include "selftest.h"
1351 #include "selftest-arch.h"
1352 #include "gdbthread.h"
1353 #include "target-float.h"
1355 namespace selftests {
1357 class regcache_access : public regcache
1361 /* Return the number of elements in current_regcache. */
1364 current_regcache_size ()
1366 return std::distance (regcache::current_regcache.begin (),
1367 regcache::current_regcache.end ());
1372 current_regcache_test (void)
1374 /* It is empty at the start. */
1375 SELF_CHECK (regcache_access::current_regcache_size () == 0);
1377 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1379 /* Get regcache from ptid1, a new regcache is added to
1380 current_regcache. */
1381 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1385 SELF_CHECK (regcache != NULL);
1386 SELF_CHECK (regcache->ptid () == ptid1);
1387 SELF_CHECK (regcache_access::current_regcache_size () == 1);
1389 /* Get regcache from ptid2, a new regcache is added to
1390 current_regcache. */
1391 regcache = get_thread_arch_aspace_regcache (ptid2,
1394 SELF_CHECK (regcache != NULL);
1395 SELF_CHECK (regcache->ptid () == ptid2);
1396 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1398 /* Get regcache from ptid3, a new regcache is added to
1399 current_regcache. */
1400 regcache = get_thread_arch_aspace_regcache (ptid3,
1403 SELF_CHECK (regcache != NULL);
1404 SELF_CHECK (regcache->ptid () == ptid3);
1405 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1407 /* Get regcache from ptid2 again, nothing is added to
1408 current_regcache. */
1409 regcache = get_thread_arch_aspace_regcache (ptid2,
1412 SELF_CHECK (regcache != NULL);
1413 SELF_CHECK (regcache->ptid () == ptid2);
1414 SELF_CHECK (regcache_access::current_regcache_size () == 3);
1416 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1417 current_regcache. */
1418 registers_changed_ptid (ptid2);
1419 SELF_CHECK (regcache_access::current_regcache_size () == 2);
1422 class target_ops_no_register : public test_target_ops
1425 target_ops_no_register ()
1426 : test_target_ops {}
1431 fetch_registers_called = 0;
1432 store_registers_called = 0;
1433 xfer_partial_called = 0;
1436 void fetch_registers (regcache *regs, int regno) override;
1437 void store_registers (regcache *regs, int regno) override;
1439 enum target_xfer_status xfer_partial (enum target_object object,
1440 const char *annex, gdb_byte *readbuf,
1441 const gdb_byte *writebuf,
1442 ULONGEST offset, ULONGEST len,
1443 ULONGEST *xfered_len) override;
1445 unsigned int fetch_registers_called = 0;
1446 unsigned int store_registers_called = 0;
1447 unsigned int xfer_partial_called = 0;
1451 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1453 /* Mark register available. */
1454 regs->raw_supply_zeroed (regno);
1455 this->fetch_registers_called++;
1459 target_ops_no_register::store_registers (regcache *regs, int regno)
1461 this->store_registers_called++;
1464 enum target_xfer_status
1465 target_ops_no_register::xfer_partial (enum target_object object,
1466 const char *annex, gdb_byte *readbuf,
1467 const gdb_byte *writebuf,
1468 ULONGEST offset, ULONGEST len,
1469 ULONGEST *xfered_len)
1471 this->xfer_partial_called++;
1474 return TARGET_XFER_OK;
1477 class readwrite_regcache : public regcache
1480 readwrite_regcache (struct gdbarch *gdbarch)
1481 : regcache (gdbarch, nullptr)
1485 /* Test regcache::cooked_read gets registers from raw registers and
1486 memory instead of target to_{fetch,store}_registers. */
1489 cooked_read_test (struct gdbarch *gdbarch)
1491 /* Error out if debugging something, because we're going to push the
1492 test target, which would pop any existing target. */
1493 if (target_stack->to_stratum >= process_stratum)
1494 error (_("target already pushed"));
1496 /* Create a mock environment. An inferior with a thread, with a
1497 process_stratum target pushed. */
1499 target_ops_no_register mock_target;
1500 ptid_t mock_ptid (1, 1);
1501 inferior mock_inferior (mock_ptid.pid ());
1502 address_space mock_aspace {};
1503 mock_inferior.gdbarch = gdbarch;
1504 mock_inferior.aspace = &mock_aspace;
1505 thread_info mock_thread (&mock_inferior, mock_ptid);
1507 scoped_restore restore_thread_list
1508 = make_scoped_restore (&thread_list, &mock_thread);
1510 /* Add the mock inferior to the inferior list so that look ups by
1511 target+ptid can find it. */
1512 scoped_restore restore_inferior_list
1513 = make_scoped_restore (&inferior_list);
1514 inferior_list = &mock_inferior;
1516 /* Switch to the mock inferior. */
1517 scoped_restore_current_inferior restore_current_inferior;
1518 set_current_inferior (&mock_inferior);
1520 /* Push the process_stratum target so we can mock accessing
1522 push_target (&mock_target);
1524 /* Pop it again on exit (return/exception). */
1529 pop_all_targets_at_and_above (process_stratum);
1533 /* Switch to the mock thread. */
1534 scoped_restore restore_inferior_ptid
1535 = make_scoped_restore (&inferior_ptid, mock_ptid);
1537 /* Test that read one raw register from regcache_no_target will go
1538 to the target layer. */
1541 /* Find a raw register which size isn't zero. */
1542 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1544 if (register_size (gdbarch, regnum) != 0)
1548 readwrite_regcache readwrite (gdbarch);
1549 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1551 readwrite.raw_read (regnum, buf.data ());
1553 /* raw_read calls target_fetch_registers. */
1554 SELF_CHECK (mock_target.fetch_registers_called > 0);
1555 mock_target.reset ();
1557 /* Mark all raw registers valid, so the following raw registers
1558 accesses won't go to target. */
1559 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1560 readwrite.raw_update (i);
1562 mock_target.reset ();
1563 /* Then, read all raw and pseudo registers, and don't expect calling
1564 to_{fetch,store}_registers. */
1565 for (int regnum = 0;
1566 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1569 if (register_size (gdbarch, regnum) == 0)
1572 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1574 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1576 SELF_CHECK (mock_target.fetch_registers_called == 0);
1577 SELF_CHECK (mock_target.store_registers_called == 0);
1579 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1580 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1581 SELF_CHECK (mock_target.xfer_partial_called == 0);
1583 mock_target.reset ();
1586 readonly_detached_regcache readonly (readwrite);
1588 /* GDB may go to target layer to fetch all registers and memory for
1589 readonly regcache. */
1590 mock_target.reset ();
1592 for (int regnum = 0;
1593 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1596 if (register_size (gdbarch, regnum) == 0)
1599 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1600 enum register_status status = readonly.cooked_read (regnum,
1603 if (regnum < gdbarch_num_regs (gdbarch))
1605 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1607 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1608 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1609 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1610 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1611 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1612 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1613 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1614 || bfd_arch == bfd_arch_riscv)
1616 /* Raw registers. If raw registers are not in save_reggroup,
1617 their status are unknown. */
1618 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1619 SELF_CHECK (status == REG_VALID);
1621 SELF_CHECK (status == REG_UNKNOWN);
1624 SELF_CHECK (status == REG_VALID);
1628 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1629 SELF_CHECK (status == REG_VALID);
1632 /* If pseudo registers are not in save_reggroup, some of
1633 them can be computed from saved raw registers, but some
1634 of them are unknown. */
1635 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1637 if (bfd_arch == bfd_arch_frv
1638 || bfd_arch == bfd_arch_m32c
1639 || bfd_arch == bfd_arch_mep
1640 || bfd_arch == bfd_arch_sh)
1641 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1642 else if (bfd_arch == bfd_arch_mips
1643 || bfd_arch == bfd_arch_h8300)
1644 SELF_CHECK (status == REG_UNKNOWN);
1646 SELF_CHECK (status == REG_VALID);
1650 SELF_CHECK (mock_target.fetch_registers_called == 0);
1651 SELF_CHECK (mock_target.store_registers_called == 0);
1652 SELF_CHECK (mock_target.xfer_partial_called == 0);
1654 mock_target.reset ();
1658 /* Test regcache::cooked_write by writing some expected contents to
1659 registers, and checking that contents read from registers and the
1660 expected contents are the same. */
1663 cooked_write_test (struct gdbarch *gdbarch)
1665 /* Error out if debugging something, because we're going to push the
1666 test target, which would pop any existing target. */
1667 if (target_stack->to_stratum >= process_stratum)
1668 error (_("target already pushed"));
1670 /* Create a mock environment. A process_stratum target pushed. */
1672 target_ops_no_register mock_target;
1674 /* Push the process_stratum target so we can mock accessing
1676 push_target (&mock_target);
1678 /* Pop it again on exit (return/exception). */
1683 pop_all_targets_at_and_above (process_stratum);
1687 readwrite_regcache readwrite (gdbarch);
1689 const int num_regs = (gdbarch_num_regs (gdbarch)
1690 + gdbarch_num_pseudo_regs (gdbarch));
1692 for (auto regnum = 0; regnum < num_regs; regnum++)
1694 if (register_size (gdbarch, regnum) == 0
1695 || gdbarch_cannot_store_register (gdbarch, regnum))
1698 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1700 if ((bfd_arch == bfd_arch_sparc
1701 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1702 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1703 && gdbarch_ptr_bit (gdbarch) == 64
1704 && (regnum >= gdbarch_num_regs (gdbarch)
1705 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1706 || (bfd_arch == bfd_arch_spu
1707 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1708 TARGET_OBJECT_SPU. */
1709 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1712 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1713 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1714 const auto type = register_type (gdbarch, regnum);
1716 if (TYPE_CODE (type) == TYPE_CODE_FLT
1717 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1719 /* Generate valid float format. */
1720 target_float_from_string (expected.data (), type, "1.25");
1722 else if (TYPE_CODE (type) == TYPE_CODE_INT
1723 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1724 || TYPE_CODE (type) == TYPE_CODE_PTR
1725 || TYPE_CODE (type) == TYPE_CODE_UNION
1726 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1728 if (bfd_arch == bfd_arch_ia64
1729 || (regnum >= gdbarch_num_regs (gdbarch)
1730 && (bfd_arch == bfd_arch_xtensa
1731 || bfd_arch == bfd_arch_bfin
1732 || bfd_arch == bfd_arch_m32c
1733 /* m68hc11 pseudo registers are in memory. */
1734 || bfd_arch == bfd_arch_m68hc11
1735 || bfd_arch == bfd_arch_m68hc12
1736 || bfd_arch == bfd_arch_s390))
1737 || (bfd_arch == bfd_arch_frv
1738 /* FRV pseudo registers except iacc0. */
1739 && regnum > gdbarch_num_regs (gdbarch)))
1741 /* Skip setting the expected values for some architecture
1744 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1746 /* RL78_PC_REGNUM */
1747 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1752 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1756 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1758 /* No idea how to test flags. */
1763 /* If we don't know how to create the expected value for the
1764 this type, make it fail. */
1768 readwrite.cooked_write (regnum, expected.data ());
1770 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1771 SELF_CHECK (expected == buf);
1775 } // namespace selftests
1776 #endif /* GDB_SELF_TEST */
1779 _initialize_regcache (void)
1781 regcache_descr_handle
1782 = gdbarch_data_register_post_init (init_regcache_descr);
1784 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1785 gdb::observers::thread_ptid_changed.attach
1786 (regcache::regcache_thread_ptid_changed);
1788 add_com ("flushregs", class_maintenance, reg_flush_command,
1789 _("Force gdb to flush its register cache (maintainer command)"));
1792 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1794 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1795 selftests::cooked_read_test);
1796 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1797 selftests::cooked_write_test);