Update year range in copyright notice of all files owned by the GDB project.
[external/binutils.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3    Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "expression.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "breakpoint.h"
31 #include "demangle.h"
32 #include "gdb-demangle.h"
33 #include "valprint.h"
34 #include "annotate.h"
35 #include "symfile.h"            /* for overlay functions */
36 #include "objfiles.h"           /* ditto */
37 #include "completer.h"          /* for completion functions */
38 #include "ui-out.h"
39 #include "block.h"
40 #include "disasm.h"
41 #include "dfp.h"
42 #include "observer.h"
43 #include "solist.h"
44 #include "parser-defs.h"
45 #include "charset.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "format.h"
49 #include "source.h"
50
51 #ifdef TUI
52 #include "tui/tui.h"            /* For tui_active et al.   */
53 #endif
54
55 struct format_data
56   {
57     int count;
58     char format;
59     char size;
60
61     /* True if the value should be printed raw -- that is, bypassing
62        python-based formatters.  */
63     unsigned char raw;
64   };
65
66 /* Last specified output format.  */
67
68 static char last_format = 0;
69
70 /* Last specified examination size.  'b', 'h', 'w' or `q'.  */
71
72 static char last_size = 'w';
73
74 /* Default address to examine next, and associated architecture.  */
75
76 static struct gdbarch *next_gdbarch;
77 static CORE_ADDR next_address;
78
79 /* Number of delay instructions following current disassembled insn.  */
80
81 static int branch_delay_insns;
82
83 /* Last address examined.  */
84
85 static CORE_ADDR last_examine_address;
86
87 /* Contents of last address examined.
88    This is not valid past the end of the `x' command!  */
89
90 static struct value *last_examine_value;
91
92 /* Largest offset between a symbolic value and an address, that will be
93    printed as `0x1234 <symbol+offset>'.  */
94
95 static unsigned int max_symbolic_offset = UINT_MAX;
96 static void
97 show_max_symbolic_offset (struct ui_file *file, int from_tty,
98                           struct cmd_list_element *c, const char *value)
99 {
100   fprintf_filtered (file,
101                     _("The largest offset that will be "
102                       "printed in <symbol+1234> form is %s.\n"),
103                     value);
104 }
105
106 /* Append the source filename and linenumber of the symbol when
107    printing a symbolic value as `<symbol at filename:linenum>' if set.  */
108 static int print_symbol_filename = 0;
109 static void
110 show_print_symbol_filename (struct ui_file *file, int from_tty,
111                             struct cmd_list_element *c, const char *value)
112 {
113   fprintf_filtered (file, _("Printing of source filename and "
114                             "line number with <symbol> is %s.\n"),
115                     value);
116 }
117
118 /* Number of auto-display expression currently being displayed.
119    So that we can disable it if we get a signal within it.
120    -1 when not doing one.  */
121
122 static int current_display_number;
123
124 struct display
125   {
126     /* Chain link to next auto-display item.  */
127     struct display *next;
128
129     /* The expression as the user typed it.  */
130     char *exp_string;
131
132     /* Expression to be evaluated and displayed.  */
133     struct expression *exp;
134
135     /* Item number of this auto-display item.  */
136     int number;
137
138     /* Display format specified.  */
139     struct format_data format;
140
141     /* Program space associated with `block'.  */
142     struct program_space *pspace;
143
144     /* Innermost block required by this expression when evaluated.  */
145     const struct block *block;
146
147     /* Status of this display (enabled or disabled).  */
148     int enabled_p;
149   };
150
151 /* Chain of expressions whose values should be displayed
152    automatically each time the program stops.  */
153
154 static struct display *display_chain;
155
156 static int display_number;
157
158 /* Walk the following statement or block through all displays.
159    ALL_DISPLAYS_SAFE does so even if the statement deletes the current
160    display.  */
161
162 #define ALL_DISPLAYS(B)                         \
163   for (B = display_chain; B; B = B->next)
164
165 #define ALL_DISPLAYS_SAFE(B,TMP)                \
166   for (B = display_chain;                       \
167        B ? (TMP = B->next, 1): 0;               \
168        B = TMP)
169
170 /* Prototypes for exported functions.  */
171
172 void _initialize_printcmd (void);
173
174 /* Prototypes for local functions.  */
175
176 static void do_one_display (struct display *);
177 \f
178
179 /* Decode a format specification.  *STRING_PTR should point to it.
180    OFORMAT and OSIZE are used as defaults for the format and size
181    if none are given in the format specification.
182    If OSIZE is zero, then the size field of the returned value
183    should be set only if a size is explicitly specified by the
184    user.
185    The structure returned describes all the data
186    found in the specification.  In addition, *STRING_PTR is advanced
187    past the specification and past all whitespace following it.  */
188
189 static struct format_data
190 decode_format (const char **string_ptr, int oformat, int osize)
191 {
192   struct format_data val;
193   const char *p = *string_ptr;
194
195   val.format = '?';
196   val.size = '?';
197   val.count = 1;
198   val.raw = 0;
199
200   if (*p >= '0' && *p <= '9')
201     val.count = atoi (p);
202   while (*p >= '0' && *p <= '9')
203     p++;
204
205   /* Now process size or format letters that follow.  */
206
207   while (1)
208     {
209       if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
210         val.size = *p++;
211       else if (*p == 'r')
212         {
213           val.raw = 1;
214           p++;
215         }
216       else if (*p >= 'a' && *p <= 'z')
217         val.format = *p++;
218       else
219         break;
220     }
221
222   while (*p == ' ' || *p == '\t')
223     p++;
224   *string_ptr = p;
225
226   /* Set defaults for format and size if not specified.  */
227   if (val.format == '?')
228     {
229       if (val.size == '?')
230         {
231           /* Neither has been specified.  */
232           val.format = oformat;
233           val.size = osize;
234         }
235       else
236         /* If a size is specified, any format makes a reasonable
237            default except 'i'.  */
238         val.format = oformat == 'i' ? 'x' : oformat;
239     }
240   else if (val.size == '?')
241     switch (val.format)
242       {
243       case 'a':
244         /* Pick the appropriate size for an address.  This is deferred
245            until do_examine when we know the actual architecture to use.
246            A special size value of 'a' is used to indicate this case.  */
247         val.size = osize ? 'a' : osize;
248         break;
249       case 'f':
250         /* Floating point has to be word or giantword.  */
251         if (osize == 'w' || osize == 'g')
252           val.size = osize;
253         else
254           /* Default it to giantword if the last used size is not
255              appropriate.  */
256           val.size = osize ? 'g' : osize;
257         break;
258       case 'c':
259         /* Characters default to one byte.  */
260         val.size = osize ? 'b' : osize;
261         break;
262       case 's':
263         /* Display strings with byte size chars unless explicitly
264            specified.  */
265         val.size = '\0';
266         break;
267
268       default:
269         /* The default is the size most recently specified.  */
270         val.size = osize;
271       }
272
273   return val;
274 }
275 \f
276 /* Print value VAL on stream according to OPTIONS.
277    Do not end with a newline.
278    SIZE is the letter for the size of datum being printed.
279    This is used to pad hex numbers so they line up.  SIZE is 0
280    for print / output and set for examine.  */
281
282 static void
283 print_formatted (struct value *val, int size,
284                  const struct value_print_options *options,
285                  struct ui_file *stream)
286 {
287   struct type *type = check_typedef (value_type (val));
288   int len = TYPE_LENGTH (type);
289
290   if (VALUE_LVAL (val) == lval_memory)
291     next_address = value_address (val) + len;
292
293   if (size)
294     {
295       switch (options->format)
296         {
297         case 's':
298           {
299             struct type *elttype = value_type (val);
300
301             next_address = (value_address (val)
302                             + val_print_string (elttype, NULL,
303                                                 value_address (val), -1,
304                                                 stream, options) * len);
305           }
306           return;
307
308         case 'i':
309           /* We often wrap here if there are long symbolic names.  */
310           wrap_here ("    ");
311           next_address = (value_address (val)
312                           + gdb_print_insn (get_type_arch (type),
313                                             value_address (val), stream,
314                                             &branch_delay_insns));
315           return;
316         }
317     }
318
319   if (options->format == 0 || options->format == 's'
320       || TYPE_CODE (type) == TYPE_CODE_REF
321       || TYPE_CODE (type) == TYPE_CODE_ARRAY
322       || TYPE_CODE (type) == TYPE_CODE_STRING
323       || TYPE_CODE (type) == TYPE_CODE_STRUCT
324       || TYPE_CODE (type) == TYPE_CODE_UNION
325       || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
326     value_print (val, stream, options);
327   else
328     /* User specified format, so don't look to the type to tell us
329        what to do.  */
330     val_print_scalar_formatted (type,
331                                 value_contents_for_printing (val),
332                                 value_embedded_offset (val),
333                                 val,
334                                 options, size, stream);
335 }
336
337 /* Return builtin floating point type of same length as TYPE.
338    If no such type is found, return TYPE itself.  */
339 static struct type *
340 float_type_from_length (struct type *type)
341 {
342   struct gdbarch *gdbarch = get_type_arch (type);
343   const struct builtin_type *builtin = builtin_type (gdbarch);
344
345   if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
346     type = builtin->builtin_float;
347   else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
348     type = builtin->builtin_double;
349   else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
350     type = builtin->builtin_long_double;
351
352   return type;
353 }
354
355 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
356    according to OPTIONS and SIZE on STREAM.  Formats s and i are not
357    supported at this level.  */
358
359 void
360 print_scalar_formatted (const void *valaddr, struct type *type,
361                         const struct value_print_options *options,
362                         int size, struct ui_file *stream)
363 {
364   struct gdbarch *gdbarch = get_type_arch (type);
365   LONGEST val_long = 0;
366   unsigned int len = TYPE_LENGTH (type);
367   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
368
369   /* String printing should go through val_print_scalar_formatted.  */
370   gdb_assert (options->format != 's');
371
372   if (len > sizeof(LONGEST) &&
373       (TYPE_CODE (type) == TYPE_CODE_INT
374        || TYPE_CODE (type) == TYPE_CODE_ENUM))
375     {
376       switch (options->format)
377         {
378         case 'o':
379           print_octal_chars (stream, valaddr, len, byte_order);
380           return;
381         case 'u':
382         case 'd':
383           print_decimal_chars (stream, valaddr, len, byte_order);
384           return;
385         case 't':
386           print_binary_chars (stream, valaddr, len, byte_order);
387           return;
388         case 'x':
389           print_hex_chars (stream, valaddr, len, byte_order);
390           return;
391         case 'c':
392           print_char_chars (stream, type, valaddr, len, byte_order);
393           return;
394         default:
395           break;
396         };
397     }
398
399   if (options->format != 'f')
400     val_long = unpack_long (type, valaddr);
401
402   /* If the value is a pointer, and pointers and addresses are not the
403      same, then at this point, the value's length (in target bytes) is
404      gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type).  */
405   if (TYPE_CODE (type) == TYPE_CODE_PTR)
406     len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
407
408   /* If we are printing it as unsigned, truncate it in case it is actually
409      a negative signed value (e.g. "print/u (short)-1" should print 65535
410      (if shorts are 16 bits) instead of 4294967295).  */
411   if (options->format != 'd' || TYPE_UNSIGNED (type))
412     {
413       if (len < sizeof (LONGEST))
414         val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
415     }
416
417   switch (options->format)
418     {
419     case 'x':
420       if (!size)
421         {
422           /* No size specified, like in print.  Print varying # of digits.  */
423           print_longest (stream, 'x', 1, val_long);
424         }
425       else
426         switch (size)
427           {
428           case 'b':
429           case 'h':
430           case 'w':
431           case 'g':
432             print_longest (stream, size, 1, val_long);
433             break;
434           default:
435             error (_("Undefined output size \"%c\"."), size);
436           }
437       break;
438
439     case 'd':
440       print_longest (stream, 'd', 1, val_long);
441       break;
442
443     case 'u':
444       print_longest (stream, 'u', 0, val_long);
445       break;
446
447     case 'o':
448       if (val_long)
449         print_longest (stream, 'o', 1, val_long);
450       else
451         fprintf_filtered (stream, "0");
452       break;
453
454     case 'a':
455       {
456         CORE_ADDR addr = unpack_pointer (type, valaddr);
457
458         print_address (gdbarch, addr, stream);
459       }
460       break;
461
462     case 'c':
463       {
464         struct value_print_options opts = *options;
465
466         opts.format = 0;
467         if (TYPE_UNSIGNED (type))
468           type = builtin_type (gdbarch)->builtin_true_unsigned_char;
469         else
470           type = builtin_type (gdbarch)->builtin_true_char;
471
472         value_print (value_from_longest (type, val_long), stream, &opts);
473       }
474       break;
475
476     case 'f':
477       type = float_type_from_length (type);
478       print_floating (valaddr, type, stream);
479       break;
480
481     case 0:
482       internal_error (__FILE__, __LINE__,
483                       _("failed internal consistency check"));
484
485     case 't':
486       /* Binary; 't' stands for "two".  */
487       {
488         char bits[8 * (sizeof val_long) + 1];
489         char buf[8 * (sizeof val_long) + 32];
490         char *cp = bits;
491         int width;
492
493         if (!size)
494           width = 8 * (sizeof val_long);
495         else
496           switch (size)
497             {
498             case 'b':
499               width = 8;
500               break;
501             case 'h':
502               width = 16;
503               break;
504             case 'w':
505               width = 32;
506               break;
507             case 'g':
508               width = 64;
509               break;
510             default:
511               error (_("Undefined output size \"%c\"."), size);
512             }
513
514         bits[width] = '\0';
515         while (width-- > 0)
516           {
517             bits[width] = (val_long & 1) ? '1' : '0';
518             val_long >>= 1;
519           }
520         if (!size)
521           {
522             while (*cp && *cp == '0')
523               cp++;
524             if (*cp == '\0')
525               cp--;
526           }
527         strncpy (buf, cp, sizeof (bits));
528         fputs_filtered (buf, stream);
529       }
530       break;
531
532     case 'z':
533       print_hex_chars (stream, valaddr, len, byte_order);
534       break;
535
536     default:
537       error (_("Undefined output format \"%c\"."), options->format);
538     }
539 }
540
541 /* Specify default address for `x' command.
542    The `info lines' command uses this.  */
543
544 void
545 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
546 {
547   struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548
549   next_gdbarch = gdbarch;
550   next_address = addr;
551
552   /* Make address available to the user as $_.  */
553   set_internalvar (lookup_internalvar ("_"),
554                    value_from_pointer (ptr_type, addr));
555 }
556
557 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
558    after LEADIN.  Print nothing if no symbolic name is found nearby.
559    Optionally also print source file and line number, if available.
560    DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
561    or to interpret it as a possible C++ name and convert it back to source
562    form.  However note that DO_DEMANGLE can be overridden by the specific
563    settings of the demangle and asm_demangle variables.  Returns
564    non-zero if anything was printed; zero otherwise.  */
565
566 int
567 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
568                         struct ui_file *stream,
569                         int do_demangle, char *leadin)
570 {
571   char *name = NULL;
572   char *filename = NULL;
573   int unmapped = 0;
574   int offset = 0;
575   int line = 0;
576
577   /* Throw away both name and filename.  */
578   struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
579   make_cleanup (free_current_contents, &filename);
580
581   if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
582                               &filename, &line, &unmapped))
583     {
584       do_cleanups (cleanup_chain);
585       return 0;
586     }
587
588   fputs_filtered (leadin, stream);
589   if (unmapped)
590     fputs_filtered ("<*", stream);
591   else
592     fputs_filtered ("<", stream);
593   fputs_filtered (name, stream);
594   if (offset != 0)
595     fprintf_filtered (stream, "+%u", (unsigned int) offset);
596
597   /* Append source filename and line number if desired.  Give specific
598      line # of this addr, if we have it; else line # of the nearest symbol.  */
599   if (print_symbol_filename && filename != NULL)
600     {
601       if (line != -1)
602         fprintf_filtered (stream, " at %s:%d", filename, line);
603       else
604         fprintf_filtered (stream, " in %s", filename);
605     }
606   if (unmapped)
607     fputs_filtered ("*>", stream);
608   else
609     fputs_filtered (">", stream);
610
611   do_cleanups (cleanup_chain);
612   return 1;
613 }
614
615 /* Given an address ADDR return all the elements needed to print the
616    address in a symbolic form.  NAME can be mangled or not depending
617    on DO_DEMANGLE (and also on the asm_demangle global variable,
618    manipulated via ''set print asm-demangle'').  Return 0 in case of
619    success, when all the info in the OUT paramters is valid.  Return 1
620    otherwise.  */
621 int
622 build_address_symbolic (struct gdbarch *gdbarch,
623                         CORE_ADDR addr,  /* IN */
624                         int do_demangle, /* IN */
625                         char **name,     /* OUT */
626                         int *offset,     /* OUT */
627                         char **filename, /* OUT */
628                         int *line,       /* OUT */
629                         int *unmapped)   /* OUT */
630 {
631   struct bound_minimal_symbol msymbol;
632   struct symbol *symbol;
633   CORE_ADDR name_location = 0;
634   struct obj_section *section = NULL;
635   const char *name_temp = "";
636   
637   /* Let's say it is mapped (not unmapped).  */
638   *unmapped = 0;
639
640   /* Determine if the address is in an overlay, and whether it is
641      mapped.  */
642   if (overlay_debugging)
643     {
644       section = find_pc_overlay (addr);
645       if (pc_in_unmapped_range (addr, section))
646         {
647           *unmapped = 1;
648           addr = overlay_mapped_address (addr, section);
649         }
650     }
651
652   /* First try to find the address in the symbol table, then
653      in the minsyms.  Take the closest one.  */
654
655   /* This is defective in the sense that it only finds text symbols.  So
656      really this is kind of pointless--we should make sure that the
657      minimal symbols have everything we need (by changing that we could
658      save some memory, but for many debug format--ELF/DWARF or
659      anything/stabs--it would be inconvenient to eliminate those minimal
660      symbols anyway).  */
661   msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
662   symbol = find_pc_sect_function (addr, section);
663
664   if (symbol)
665     {
666       /* If this is a function (i.e. a code address), strip out any
667          non-address bits.  For instance, display a pointer to the
668          first instruction of a Thumb function as <function>; the
669          second instruction will be <function+2>, even though the
670          pointer is <function+3>.  This matches the ISA behavior.  */
671       addr = gdbarch_addr_bits_remove (gdbarch, addr);
672
673       name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
674       if (do_demangle || asm_demangle)
675         name_temp = SYMBOL_PRINT_NAME (symbol);
676       else
677         name_temp = SYMBOL_LINKAGE_NAME (symbol);
678     }
679
680   if (msymbol.minsym != NULL
681       && MSYMBOL_HAS_SIZE (msymbol.minsym)
682       && MSYMBOL_SIZE (msymbol.minsym) == 0
683       && MSYMBOL_TYPE (msymbol.minsym) != mst_text
684       && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
685       && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
686     msymbol.minsym = NULL;
687
688   if (msymbol.minsym != NULL)
689     {
690       if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
691         {
692           /* If this is a function (i.e. a code address), strip out any
693              non-address bits.  For instance, display a pointer to the
694              first instruction of a Thumb function as <function>; the
695              second instruction will be <function+2>, even though the
696              pointer is <function+3>.  This matches the ISA behavior.  */
697           if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
698               || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
699               || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
700               || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
701             addr = gdbarch_addr_bits_remove (gdbarch, addr);
702
703           /* The msymbol is closer to the address than the symbol;
704              use the msymbol instead.  */
705           symbol = 0;
706           name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
707           if (do_demangle || asm_demangle)
708             name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
709           else
710             name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
711         }
712     }
713   if (symbol == NULL && msymbol.minsym == NULL)
714     return 1;
715
716   /* If the nearest symbol is too far away, don't print anything symbolic.  */
717
718   /* For when CORE_ADDR is larger than unsigned int, we do math in
719      CORE_ADDR.  But when we detect unsigned wraparound in the
720      CORE_ADDR math, we ignore this test and print the offset,
721      because addr+max_symbolic_offset has wrapped through the end
722      of the address space back to the beginning, giving bogus comparison.  */
723   if (addr > name_location + max_symbolic_offset
724       && name_location + max_symbolic_offset > name_location)
725     return 1;
726
727   *offset = addr - name_location;
728
729   *name = xstrdup (name_temp);
730
731   if (print_symbol_filename)
732     {
733       struct symtab_and_line sal;
734
735       sal = find_pc_sect_line (addr, section, 0);
736
737       if (sal.symtab)
738         {
739           *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
740           *line = sal.line;
741         }
742     }
743   return 0;
744 }
745
746
747 /* Print address ADDR symbolically on STREAM.
748    First print it as a number.  Then perhaps print
749    <SYMBOL + OFFSET> after the number.  */
750
751 void
752 print_address (struct gdbarch *gdbarch,
753                CORE_ADDR addr, struct ui_file *stream)
754 {
755   fputs_filtered (paddress (gdbarch, addr), stream);
756   print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
757 }
758
759 /* Return a prefix for instruction address:
760    "=> " for current instruction, else "   ".  */
761
762 const char *
763 pc_prefix (CORE_ADDR addr)
764 {
765   if (has_stack_frames ())
766     {
767       struct frame_info *frame;
768       CORE_ADDR pc;
769
770       frame = get_selected_frame (NULL);
771       if (get_frame_pc_if_available (frame, &pc) && pc == addr)
772         return "=> ";
773     }
774   return "   ";
775 }
776
777 /* Print address ADDR symbolically on STREAM.  Parameter DEMANGLE
778    controls whether to print the symbolic name "raw" or demangled.
779    Return non-zero if anything was printed; zero otherwise.  */
780
781 int
782 print_address_demangle (const struct value_print_options *opts,
783                         struct gdbarch *gdbarch, CORE_ADDR addr,
784                         struct ui_file *stream, int do_demangle)
785 {
786   if (opts->addressprint)
787     {
788       fputs_filtered (paddress (gdbarch, addr), stream);
789       print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
790     }
791   else
792     {
793       return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
794     }
795   return 1;
796 }
797 \f
798
799 /* Examine data at address ADDR in format FMT.
800    Fetch it from memory and print on gdb_stdout.  */
801
802 static void
803 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
804 {
805   char format = 0;
806   char size;
807   int count = 1;
808   struct type *val_type = NULL;
809   int i;
810   int maxelts;
811   struct value_print_options opts;
812
813   format = fmt.format;
814   size = fmt.size;
815   count = fmt.count;
816   next_gdbarch = gdbarch;
817   next_address = addr;
818
819   /* Instruction format implies fetch single bytes
820      regardless of the specified size.
821      The case of strings is handled in decode_format, only explicit
822      size operator are not changed to 'b'.  */
823   if (format == 'i')
824     size = 'b';
825
826   if (size == 'a')
827     {
828       /* Pick the appropriate size for an address.  */
829       if (gdbarch_ptr_bit (next_gdbarch) == 64)
830         size = 'g';
831       else if (gdbarch_ptr_bit (next_gdbarch) == 32)
832         size = 'w';
833       else if (gdbarch_ptr_bit (next_gdbarch) == 16)
834         size = 'h';
835       else
836         /* Bad value for gdbarch_ptr_bit.  */
837         internal_error (__FILE__, __LINE__,
838                         _("failed internal consistency check"));
839     }
840
841   if (size == 'b')
842     val_type = builtin_type (next_gdbarch)->builtin_int8;
843   else if (size == 'h')
844     val_type = builtin_type (next_gdbarch)->builtin_int16;
845   else if (size == 'w')
846     val_type = builtin_type (next_gdbarch)->builtin_int32;
847   else if (size == 'g')
848     val_type = builtin_type (next_gdbarch)->builtin_int64;
849
850   if (format == 's')
851     {
852       struct type *char_type = NULL;
853
854       /* Search for "char16_t"  or "char32_t" types or fall back to 8-bit char
855          if type is not found.  */
856       if (size == 'h')
857         char_type = builtin_type (next_gdbarch)->builtin_char16;
858       else if (size == 'w')
859         char_type = builtin_type (next_gdbarch)->builtin_char32;
860       if (char_type)
861         val_type = char_type;
862       else
863         {
864           if (size != '\0' && size != 'b')
865             warning (_("Unable to display strings with "
866                        "size '%c', using 'b' instead."), size);
867           size = 'b';
868           val_type = builtin_type (next_gdbarch)->builtin_int8;
869         }
870     }
871
872   maxelts = 8;
873   if (size == 'w')
874     maxelts = 4;
875   if (size == 'g')
876     maxelts = 2;
877   if (format == 's' || format == 'i')
878     maxelts = 1;
879
880   get_formatted_print_options (&opts, format);
881
882   /* Print as many objects as specified in COUNT, at most maxelts per line,
883      with the address of the next one at the start of each line.  */
884
885   while (count > 0)
886     {
887       QUIT;
888       if (format == 'i')
889         fputs_filtered (pc_prefix (next_address), gdb_stdout);
890       print_address (next_gdbarch, next_address, gdb_stdout);
891       printf_filtered (":");
892       for (i = maxelts;
893            i > 0 && count > 0;
894            i--, count--)
895         {
896           printf_filtered ("\t");
897           /* Note that print_formatted sets next_address for the next
898              object.  */
899           last_examine_address = next_address;
900
901           if (last_examine_value)
902             value_free (last_examine_value);
903
904           /* The value to be displayed is not fetched greedily.
905              Instead, to avoid the possibility of a fetched value not
906              being used, its retrieval is delayed until the print code
907              uses it.  When examining an instruction stream, the
908              disassembler will perform its own memory fetch using just
909              the address stored in LAST_EXAMINE_VALUE.  FIXME: Should
910              the disassembler be modified so that LAST_EXAMINE_VALUE
911              is left with the byte sequence from the last complete
912              instruction fetched from memory?  */
913           last_examine_value = value_at_lazy (val_type, next_address);
914
915           if (last_examine_value)
916             release_value (last_examine_value);
917
918           print_formatted (last_examine_value, size, &opts, gdb_stdout);
919
920           /* Display any branch delay slots following the final insn.  */
921           if (format == 'i' && count == 1)
922             count += branch_delay_insns;
923         }
924       printf_filtered ("\n");
925       gdb_flush (gdb_stdout);
926     }
927 }
928 \f
929 static void
930 validate_format (struct format_data fmt, char *cmdname)
931 {
932   if (fmt.size != 0)
933     error (_("Size letters are meaningless in \"%s\" command."), cmdname);
934   if (fmt.count != 1)
935     error (_("Item count other than 1 is meaningless in \"%s\" command."),
936            cmdname);
937   if (fmt.format == 'i')
938     error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
939            fmt.format, cmdname);
940 }
941
942 /* Evaluate string EXP as an expression in the current language and
943    print the resulting value.  EXP may contain a format specifier as the
944    first argument ("/x myvar" for example, to print myvar in hex).  */
945
946 static void
947 print_command_1 (const char *exp, int voidprint)
948 {
949   struct expression *expr;
950   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
951   char format = 0;
952   struct value *val;
953   struct format_data fmt;
954
955   if (exp && *exp == '/')
956     {
957       exp++;
958       fmt = decode_format (&exp, last_format, 0);
959       validate_format (fmt, "print");
960       last_format = format = fmt.format;
961     }
962   else
963     {
964       fmt.count = 1;
965       fmt.format = 0;
966       fmt.size = 0;
967       fmt.raw = 0;
968     }
969
970   if (exp && *exp)
971     {
972       expr = parse_expression (exp);
973       make_cleanup (free_current_contents, &expr);
974       val = evaluate_expression (expr);
975     }
976   else
977     val = access_value_history (0);
978
979   if (voidprint || (val && value_type (val) &&
980                     TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
981     {
982       struct value_print_options opts;
983       int histindex = record_latest_value (val);
984
985       annotate_value_history_begin (histindex, value_type (val));
986
987       printf_filtered ("$%d = ", histindex);
988
989       annotate_value_history_value ();
990
991       get_formatted_print_options (&opts, format);
992       opts.raw = fmt.raw;
993
994       print_formatted (val, fmt.size, &opts, gdb_stdout);
995       printf_filtered ("\n");
996
997       annotate_value_history_end ();
998     }
999
1000   do_cleanups (old_chain);
1001 }
1002
1003 static void
1004 print_command (char *exp, int from_tty)
1005 {
1006   print_command_1 (exp, 1);
1007 }
1008
1009 /* Same as print, except it doesn't print void results.  */
1010 static void
1011 call_command (char *exp, int from_tty)
1012 {
1013   print_command_1 (exp, 0);
1014 }
1015
1016 /* Implementation of the "output" command.  */
1017
1018 static void
1019 output_command (char *exp, int from_tty)
1020 {
1021   output_command_const (exp, from_tty);
1022 }
1023
1024 /* Like output_command, but takes a const string as argument.  */
1025
1026 void
1027 output_command_const (const char *exp, int from_tty)
1028 {
1029   struct expression *expr;
1030   struct cleanup *old_chain;
1031   char format = 0;
1032   struct value *val;
1033   struct format_data fmt;
1034   struct value_print_options opts;
1035
1036   fmt.size = 0;
1037   fmt.raw = 0;
1038
1039   if (exp && *exp == '/')
1040     {
1041       exp++;
1042       fmt = decode_format (&exp, 0, 0);
1043       validate_format (fmt, "output");
1044       format = fmt.format;
1045     }
1046
1047   expr = parse_expression (exp);
1048   old_chain = make_cleanup (free_current_contents, &expr);
1049
1050   val = evaluate_expression (expr);
1051
1052   annotate_value_begin (value_type (val));
1053
1054   get_formatted_print_options (&opts, format);
1055   opts.raw = fmt.raw;
1056   print_formatted (val, fmt.size, &opts, gdb_stdout);
1057
1058   annotate_value_end ();
1059
1060   wrap_here ("");
1061   gdb_flush (gdb_stdout);
1062
1063   do_cleanups (old_chain);
1064 }
1065
1066 static void
1067 set_command (char *exp, int from_tty)
1068 {
1069   struct expression *expr = parse_expression (exp);
1070   struct cleanup *old_chain =
1071     make_cleanup (free_current_contents, &expr);
1072
1073   if (expr->nelts >= 1)
1074     switch (expr->elts[0].opcode)
1075       {
1076       case UNOP_PREINCREMENT:
1077       case UNOP_POSTINCREMENT:
1078       case UNOP_PREDECREMENT:
1079       case UNOP_POSTDECREMENT:
1080       case BINOP_ASSIGN:
1081       case BINOP_ASSIGN_MODIFY:
1082       case BINOP_COMMA:
1083         break;
1084       default:
1085         warning
1086           (_("Expression is not an assignment (and might have no effect)"));
1087       }
1088
1089   evaluate_expression (expr);
1090   do_cleanups (old_chain);
1091 }
1092
1093 static void
1094 sym_info (char *arg, int from_tty)
1095 {
1096   struct minimal_symbol *msymbol;
1097   struct objfile *objfile;
1098   struct obj_section *osect;
1099   CORE_ADDR addr, sect_addr;
1100   int matches = 0;
1101   unsigned int offset;
1102
1103   if (!arg)
1104     error_no_arg (_("address"));
1105
1106   addr = parse_and_eval_address (arg);
1107   ALL_OBJSECTIONS (objfile, osect)
1108   {
1109     /* Only process each object file once, even if there's a separate
1110        debug file.  */
1111     if (objfile->separate_debug_objfile_backlink)
1112       continue;
1113
1114     sect_addr = overlay_mapped_address (addr, osect);
1115
1116     if (obj_section_addr (osect) <= sect_addr
1117         && sect_addr < obj_section_endaddr (osect)
1118         && (msymbol
1119             = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1120       {
1121         const char *obj_name, *mapped, *sec_name, *msym_name;
1122         char *loc_string;
1123         struct cleanup *old_chain;
1124
1125         matches = 1;
1126         offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1127         mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1128         sec_name = osect->the_bfd_section->name;
1129         msym_name = MSYMBOL_PRINT_NAME (msymbol);
1130
1131         /* Don't print the offset if it is zero.
1132            We assume there's no need to handle i18n of "sym + offset".  */
1133         if (offset)
1134           loc_string = xstrprintf ("%s + %u", msym_name, offset);
1135         else
1136           loc_string = xstrprintf ("%s", msym_name);
1137
1138         /* Use a cleanup to free loc_string in case the user quits
1139            a pagination request inside printf_filtered.  */
1140         old_chain = make_cleanup (xfree, loc_string);
1141
1142         gdb_assert (osect->objfile && objfile_name (osect->objfile));
1143         obj_name = objfile_name (osect->objfile);
1144
1145         if (MULTI_OBJFILE_P ())
1146           if (pc_in_unmapped_range (addr, osect))
1147             if (section_is_overlay (osect))
1148               printf_filtered (_("%s in load address range of "
1149                                  "%s overlay section %s of %s\n"),
1150                                loc_string, mapped, sec_name, obj_name);
1151             else
1152               printf_filtered (_("%s in load address range of "
1153                                  "section %s of %s\n"),
1154                                loc_string, sec_name, obj_name);
1155           else
1156             if (section_is_overlay (osect))
1157               printf_filtered (_("%s in %s overlay section %s of %s\n"),
1158                                loc_string, mapped, sec_name, obj_name);
1159             else
1160               printf_filtered (_("%s in section %s of %s\n"),
1161                                loc_string, sec_name, obj_name);
1162         else
1163           if (pc_in_unmapped_range (addr, osect))
1164             if (section_is_overlay (osect))
1165               printf_filtered (_("%s in load address range of %s overlay "
1166                                  "section %s\n"),
1167                                loc_string, mapped, sec_name);
1168             else
1169               printf_filtered (_("%s in load address range of section %s\n"),
1170                                loc_string, sec_name);
1171           else
1172             if (section_is_overlay (osect))
1173               printf_filtered (_("%s in %s overlay section %s\n"),
1174                                loc_string, mapped, sec_name);
1175             else
1176               printf_filtered (_("%s in section %s\n"),
1177                                loc_string, sec_name);
1178
1179         do_cleanups (old_chain);
1180       }
1181   }
1182   if (matches == 0)
1183     printf_filtered (_("No symbol matches %s.\n"), arg);
1184 }
1185
1186 static void
1187 address_info (char *exp, int from_tty)
1188 {
1189   struct gdbarch *gdbarch;
1190   int regno;
1191   struct symbol *sym;
1192   struct bound_minimal_symbol msymbol;
1193   long val;
1194   struct obj_section *section;
1195   CORE_ADDR load_addr, context_pc = 0;
1196   struct field_of_this_result is_a_field_of_this;
1197
1198   if (exp == 0)
1199     error (_("Argument required."));
1200
1201   sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1202                        &is_a_field_of_this);
1203   if (sym == NULL)
1204     {
1205       if (is_a_field_of_this.type != NULL)
1206         {
1207           printf_filtered ("Symbol \"");
1208           fprintf_symbol_filtered (gdb_stdout, exp,
1209                                    current_language->la_language, DMGL_ANSI);
1210           printf_filtered ("\" is a field of the local class variable ");
1211           if (current_language->la_language == language_objc)
1212             printf_filtered ("`self'\n");       /* ObjC equivalent of "this" */
1213           else
1214             printf_filtered ("`this'\n");
1215           return;
1216         }
1217
1218       msymbol = lookup_bound_minimal_symbol (exp);
1219
1220       if (msymbol.minsym != NULL)
1221         {
1222           struct objfile *objfile = msymbol.objfile;
1223
1224           gdbarch = get_objfile_arch (objfile);
1225           load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1226
1227           printf_filtered ("Symbol \"");
1228           fprintf_symbol_filtered (gdb_stdout, exp,
1229                                    current_language->la_language, DMGL_ANSI);
1230           printf_filtered ("\" is at ");
1231           fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1232           printf_filtered (" in a file compiled without debugging");
1233           section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1234           if (section_is_overlay (section))
1235             {
1236               load_addr = overlay_unmapped_address (load_addr, section);
1237               printf_filtered (",\n -- loaded at ");
1238               fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1239               printf_filtered (" in overlay section %s",
1240                                section->the_bfd_section->name);
1241             }
1242           printf_filtered (".\n");
1243         }
1244       else
1245         error (_("No symbol \"%s\" in current context."), exp);
1246       return;
1247     }
1248
1249   printf_filtered ("Symbol \"");
1250   fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1251                            current_language->la_language, DMGL_ANSI);
1252   printf_filtered ("\" is ");
1253   val = SYMBOL_VALUE (sym);
1254   if (SYMBOL_OBJFILE_OWNED (sym))
1255     section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1256   else
1257     section = NULL;
1258   gdbarch = symbol_arch (sym);
1259
1260   if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1261     {
1262       SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1263                                                     gdb_stdout);
1264       printf_filtered (".\n");
1265       return;
1266     }
1267
1268   switch (SYMBOL_CLASS (sym))
1269     {
1270     case LOC_CONST:
1271     case LOC_CONST_BYTES:
1272       printf_filtered ("constant");
1273       break;
1274
1275     case LOC_LABEL:
1276       printf_filtered ("a label at address ");
1277       load_addr = SYMBOL_VALUE_ADDRESS (sym);
1278       fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1279       if (section_is_overlay (section))
1280         {
1281           load_addr = overlay_unmapped_address (load_addr, section);
1282           printf_filtered (",\n -- loaded at ");
1283           fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1284           printf_filtered (" in overlay section %s",
1285                            section->the_bfd_section->name);
1286         }
1287       break;
1288
1289     case LOC_COMPUTED:
1290       gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1291
1292     case LOC_REGISTER:
1293       /* GDBARCH is the architecture associated with the objfile the symbol
1294          is defined in; the target architecture may be different, and may
1295          provide additional registers.  However, we do not know the target
1296          architecture at this point.  We assume the objfile architecture
1297          will contain all the standard registers that occur in debug info
1298          in that objfile.  */
1299       regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1300
1301       if (SYMBOL_IS_ARGUMENT (sym))
1302         printf_filtered (_("an argument in register %s"),
1303                          gdbarch_register_name (gdbarch, regno));
1304       else
1305         printf_filtered (_("a variable in register %s"),
1306                          gdbarch_register_name (gdbarch, regno));
1307       break;
1308
1309     case LOC_STATIC:
1310       printf_filtered (_("static storage at address "));
1311       load_addr = SYMBOL_VALUE_ADDRESS (sym);
1312       fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1313       if (section_is_overlay (section))
1314         {
1315           load_addr = overlay_unmapped_address (load_addr, section);
1316           printf_filtered (_(",\n -- loaded at "));
1317           fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1318           printf_filtered (_(" in overlay section %s"),
1319                            section->the_bfd_section->name);
1320         }
1321       break;
1322
1323     case LOC_REGPARM_ADDR:
1324       /* Note comment at LOC_REGISTER.  */
1325       regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1326       printf_filtered (_("address of an argument in register %s"),
1327                        gdbarch_register_name (gdbarch, regno));
1328       break;
1329
1330     case LOC_ARG:
1331       printf_filtered (_("an argument at offset %ld"), val);
1332       break;
1333
1334     case LOC_LOCAL:
1335       printf_filtered (_("a local variable at frame offset %ld"), val);
1336       break;
1337
1338     case LOC_REF_ARG:
1339       printf_filtered (_("a reference argument at offset %ld"), val);
1340       break;
1341
1342     case LOC_TYPEDEF:
1343       printf_filtered (_("a typedef"));
1344       break;
1345
1346     case LOC_BLOCK:
1347       printf_filtered (_("a function at address "));
1348       load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1349       fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1350       if (section_is_overlay (section))
1351         {
1352           load_addr = overlay_unmapped_address (load_addr, section);
1353           printf_filtered (_(",\n -- loaded at "));
1354           fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1355           printf_filtered (_(" in overlay section %s"),
1356                            section->the_bfd_section->name);
1357         }
1358       break;
1359
1360     case LOC_UNRESOLVED:
1361       {
1362         struct bound_minimal_symbol msym;
1363
1364         msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1365         if (msym.minsym == NULL)
1366           printf_filtered ("unresolved");
1367         else
1368           {
1369             section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1370             load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1371
1372             if (section
1373                 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1374               printf_filtered (_("a thread-local variable at offset %s "
1375                                  "in the thread-local storage for `%s'"),
1376                                paddress (gdbarch, load_addr),
1377                                objfile_name (section->objfile));
1378             else
1379               {
1380                 printf_filtered (_("static storage at address "));
1381                 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1382                 if (section_is_overlay (section))
1383                   {
1384                     load_addr = overlay_unmapped_address (load_addr, section);
1385                     printf_filtered (_(",\n -- loaded at "));
1386                     fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1387                     printf_filtered (_(" in overlay section %s"),
1388                                      section->the_bfd_section->name);
1389                   }
1390               }
1391           }
1392       }
1393       break;
1394
1395     case LOC_OPTIMIZED_OUT:
1396       printf_filtered (_("optimized out"));
1397       break;
1398
1399     default:
1400       printf_filtered (_("of unknown (botched) type"));
1401       break;
1402     }
1403   printf_filtered (".\n");
1404 }
1405 \f
1406
1407 static void
1408 x_command (char *exp, int from_tty)
1409 {
1410   struct expression *expr;
1411   struct format_data fmt;
1412   struct cleanup *old_chain;
1413   struct value *val;
1414
1415   fmt.format = last_format ? last_format : 'x';
1416   fmt.size = last_size;
1417   fmt.count = 1;
1418   fmt.raw = 0;
1419
1420   if (exp && *exp == '/')
1421     {
1422       const char *tmp = exp + 1;
1423
1424       fmt = decode_format (&tmp, last_format, last_size);
1425       exp = (char *) tmp;
1426     }
1427
1428   /* If we have an expression, evaluate it and use it as the address.  */
1429
1430   if (exp != 0 && *exp != 0)
1431     {
1432       expr = parse_expression (exp);
1433       /* Cause expression not to be there any more if this command is
1434          repeated with Newline.  But don't clobber a user-defined
1435          command's definition.  */
1436       if (from_tty)
1437         *exp = 0;
1438       old_chain = make_cleanup (free_current_contents, &expr);
1439       val = evaluate_expression (expr);
1440       if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1441         val = coerce_ref (val);
1442       /* In rvalue contexts, such as this, functions are coerced into
1443          pointers to functions.  This makes "x/i main" work.  */
1444       if (/* last_format == 'i'  && */ 
1445           TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1446            && VALUE_LVAL (val) == lval_memory)
1447         next_address = value_address (val);
1448       else
1449         next_address = value_as_address (val);
1450
1451       next_gdbarch = expr->gdbarch;
1452       do_cleanups (old_chain);
1453     }
1454
1455   if (!next_gdbarch)
1456     error_no_arg (_("starting display address"));
1457
1458   do_examine (fmt, next_gdbarch, next_address);
1459
1460   /* If the examine succeeds, we remember its size and format for next
1461      time.  Set last_size to 'b' for strings.  */
1462   if (fmt.format == 's')
1463     last_size = 'b';
1464   else
1465     last_size = fmt.size;
1466   last_format = fmt.format;
1467
1468   /* Set a couple of internal variables if appropriate.  */
1469   if (last_examine_value)
1470     {
1471       /* Make last address examined available to the user as $_.  Use
1472          the correct pointer type.  */
1473       struct type *pointer_type
1474         = lookup_pointer_type (value_type (last_examine_value));
1475       set_internalvar (lookup_internalvar ("_"),
1476                        value_from_pointer (pointer_type,
1477                                            last_examine_address));
1478
1479       /* Make contents of last address examined available to the user
1480          as $__.  If the last value has not been fetched from memory
1481          then don't fetch it now; instead mark it by voiding the $__
1482          variable.  */
1483       if (value_lazy (last_examine_value))
1484         clear_internalvar (lookup_internalvar ("__"));
1485       else
1486         set_internalvar (lookup_internalvar ("__"), last_examine_value);
1487     }
1488 }
1489 \f
1490
1491 /* Add an expression to the auto-display chain.
1492    Specify the expression.  */
1493
1494 static void
1495 display_command (char *arg, int from_tty)
1496 {
1497   struct format_data fmt;
1498   struct expression *expr;
1499   struct display *new;
1500   int display_it = 1;
1501   const char *exp = arg;
1502
1503 #if defined(TUI)
1504   /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1505      `tui_version'.  */
1506   if (tui_active && exp != NULL && *exp == '$')
1507     display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1508 #endif
1509
1510   if (display_it)
1511     {
1512       if (exp == 0)
1513         {
1514           do_displays ();
1515           return;
1516         }
1517
1518       if (*exp == '/')
1519         {
1520           exp++;
1521           fmt = decode_format (&exp, 0, 0);
1522           if (fmt.size && fmt.format == 0)
1523             fmt.format = 'x';
1524           if (fmt.format == 'i' || fmt.format == 's')
1525             fmt.size = 'b';
1526         }
1527       else
1528         {
1529           fmt.format = 0;
1530           fmt.size = 0;
1531           fmt.count = 0;
1532           fmt.raw = 0;
1533         }
1534
1535       innermost_block = NULL;
1536       expr = parse_expression (exp);
1537
1538       new = (struct display *) xmalloc (sizeof (struct display));
1539
1540       new->exp_string = xstrdup (exp);
1541       new->exp = expr;
1542       new->block = innermost_block;
1543       new->pspace = current_program_space;
1544       new->next = display_chain;
1545       new->number = ++display_number;
1546       new->format = fmt;
1547       new->enabled_p = 1;
1548       display_chain = new;
1549
1550       if (from_tty)
1551         do_one_display (new);
1552
1553       dont_repeat ();
1554     }
1555 }
1556
1557 static void
1558 free_display (struct display *d)
1559 {
1560   xfree (d->exp_string);
1561   xfree (d->exp);
1562   xfree (d);
1563 }
1564
1565 /* Clear out the display_chain.  Done when new symtabs are loaded,
1566    since this invalidates the types stored in many expressions.  */
1567
1568 void
1569 clear_displays (void)
1570 {
1571   struct display *d;
1572
1573   while ((d = display_chain) != NULL)
1574     {
1575       display_chain = d->next;
1576       free_display (d);
1577     }
1578 }
1579
1580 /* Delete the auto-display DISPLAY.  */
1581
1582 static void
1583 delete_display (struct display *display)
1584 {
1585   struct display *d;
1586
1587   gdb_assert (display != NULL);
1588
1589   if (display_chain == display)
1590     display_chain = display->next;
1591
1592   ALL_DISPLAYS (d)
1593     if (d->next == display)
1594       {
1595         d->next = display->next;
1596         break;
1597       }
1598
1599   free_display (display);
1600 }
1601
1602 /* Call FUNCTION on each of the displays whose numbers are given in
1603    ARGS.  DATA is passed unmodified to FUNCTION.  */
1604
1605 static void
1606 map_display_numbers (char *args,
1607                      void (*function) (struct display *,
1608                                        void *),
1609                      void *data)
1610 {
1611   struct get_number_or_range_state state;
1612   int num;
1613
1614   if (args == NULL)
1615     error_no_arg (_("one or more display numbers"));
1616
1617   init_number_or_range (&state, args);
1618
1619   while (!state.finished)
1620     {
1621       const char *p = state.string;
1622
1623       num = get_number_or_range (&state);
1624       if (num == 0)
1625         warning (_("bad display number at or near '%s'"), p);
1626       else
1627         {
1628           struct display *d, *tmp;
1629
1630           ALL_DISPLAYS_SAFE (d, tmp)
1631             if (d->number == num)
1632               break;
1633           if (d == NULL)
1634             printf_unfiltered (_("No display number %d.\n"), num);
1635           else
1636             function (d, data);
1637         }
1638     }
1639 }
1640
1641 /* Callback for map_display_numbers, that deletes a display.  */
1642
1643 static void
1644 do_delete_display (struct display *d, void *data)
1645 {
1646   delete_display (d);
1647 }
1648
1649 /* "undisplay" command.  */
1650
1651 static void
1652 undisplay_command (char *args, int from_tty)
1653 {
1654   if (args == NULL)
1655     {
1656       if (query (_("Delete all auto-display expressions? ")))
1657         clear_displays ();
1658       dont_repeat ();
1659       return;
1660     }
1661
1662   map_display_numbers (args, do_delete_display, NULL);
1663   dont_repeat ();
1664 }
1665
1666 /* Display a single auto-display.  
1667    Do nothing if the display cannot be printed in the current context,
1668    or if the display is disabled.  */
1669
1670 static void
1671 do_one_display (struct display *d)
1672 {
1673   struct cleanup *old_chain;
1674   int within_current_scope;
1675
1676   if (d->enabled_p == 0)
1677     return;
1678
1679   /* The expression carries the architecture that was used at parse time.
1680      This is a problem if the expression depends on architecture features
1681      (e.g. register numbers), and the current architecture is now different.
1682      For example, a display statement like "display/i $pc" is expected to
1683      display the PC register of the current architecture, not the arch at
1684      the time the display command was given.  Therefore, we re-parse the
1685      expression if the current architecture has changed.  */
1686   if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1687     {
1688       xfree (d->exp);
1689       d->exp = NULL;
1690       d->block = NULL;
1691     }
1692
1693   if (d->exp == NULL)
1694     {
1695       volatile struct gdb_exception ex;
1696
1697       TRY_CATCH (ex, RETURN_MASK_ALL)
1698         {
1699           innermost_block = NULL;
1700           d->exp = parse_expression (d->exp_string);
1701           d->block = innermost_block;
1702         }
1703       if (ex.reason < 0)
1704         {
1705           /* Can't re-parse the expression.  Disable this display item.  */
1706           d->enabled_p = 0;
1707           warning (_("Unable to display \"%s\": %s"),
1708                    d->exp_string, ex.message);
1709           return;
1710         }
1711     }
1712
1713   if (d->block)
1714     {
1715       if (d->pspace == current_program_space)
1716         within_current_scope = contained_in (get_selected_block (0), d->block);
1717       else
1718         within_current_scope = 0;
1719     }
1720   else
1721     within_current_scope = 1;
1722   if (!within_current_scope)
1723     return;
1724
1725   old_chain = make_cleanup_restore_integer (&current_display_number);
1726   current_display_number = d->number;
1727
1728   annotate_display_begin ();
1729   printf_filtered ("%d", d->number);
1730   annotate_display_number_end ();
1731   printf_filtered (": ");
1732   if (d->format.size)
1733     {
1734       volatile struct gdb_exception ex;
1735
1736       annotate_display_format ();
1737
1738       printf_filtered ("x/");
1739       if (d->format.count != 1)
1740         printf_filtered ("%d", d->format.count);
1741       printf_filtered ("%c", d->format.format);
1742       if (d->format.format != 'i' && d->format.format != 's')
1743         printf_filtered ("%c", d->format.size);
1744       printf_filtered (" ");
1745
1746       annotate_display_expression ();
1747
1748       puts_filtered (d->exp_string);
1749       annotate_display_expression_end ();
1750
1751       if (d->format.count != 1 || d->format.format == 'i')
1752         printf_filtered ("\n");
1753       else
1754         printf_filtered ("  ");
1755
1756       annotate_display_value ();
1757
1758       TRY_CATCH (ex, RETURN_MASK_ERROR)
1759         {
1760           struct value *val;
1761           CORE_ADDR addr;
1762
1763           val = evaluate_expression (d->exp);
1764           addr = value_as_address (val);
1765           if (d->format.format == 'i')
1766             addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1767           do_examine (d->format, d->exp->gdbarch, addr);
1768         }
1769       if (ex.reason < 0)
1770         fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1771     }
1772   else
1773     {
1774       struct value_print_options opts;
1775       volatile struct gdb_exception ex;
1776
1777       annotate_display_format ();
1778
1779       if (d->format.format)
1780         printf_filtered ("/%c ", d->format.format);
1781
1782       annotate_display_expression ();
1783
1784       puts_filtered (d->exp_string);
1785       annotate_display_expression_end ();
1786
1787       printf_filtered (" = ");
1788
1789       annotate_display_expression ();
1790
1791       get_formatted_print_options (&opts, d->format.format);
1792       opts.raw = d->format.raw;
1793
1794       TRY_CATCH (ex, RETURN_MASK_ERROR)
1795         {
1796           struct value *val;
1797
1798           val = evaluate_expression (d->exp);
1799           print_formatted (val, d->format.size, &opts, gdb_stdout);
1800         }
1801       if (ex.reason < 0)
1802         fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1803       printf_filtered ("\n");
1804     }
1805
1806   annotate_display_end ();
1807
1808   gdb_flush (gdb_stdout);
1809   do_cleanups (old_chain);
1810 }
1811
1812 /* Display all of the values on the auto-display chain which can be
1813    evaluated in the current scope.  */
1814
1815 void
1816 do_displays (void)
1817 {
1818   struct display *d;
1819
1820   for (d = display_chain; d; d = d->next)
1821     do_one_display (d);
1822 }
1823
1824 /* Delete the auto-display which we were in the process of displaying.
1825    This is done when there is an error or a signal.  */
1826
1827 void
1828 disable_display (int num)
1829 {
1830   struct display *d;
1831
1832   for (d = display_chain; d; d = d->next)
1833     if (d->number == num)
1834       {
1835         d->enabled_p = 0;
1836         return;
1837       }
1838   printf_unfiltered (_("No display number %d.\n"), num);
1839 }
1840
1841 void
1842 disable_current_display (void)
1843 {
1844   if (current_display_number >= 0)
1845     {
1846       disable_display (current_display_number);
1847       fprintf_unfiltered (gdb_stderr,
1848                           _("Disabling display %d to "
1849                             "avoid infinite recursion.\n"),
1850                           current_display_number);
1851     }
1852   current_display_number = -1;
1853 }
1854
1855 static void
1856 display_info (char *ignore, int from_tty)
1857 {
1858   struct display *d;
1859
1860   if (!display_chain)
1861     printf_unfiltered (_("There are no auto-display expressions now.\n"));
1862   else
1863     printf_filtered (_("Auto-display expressions now in effect:\n\
1864 Num Enb Expression\n"));
1865
1866   for (d = display_chain; d; d = d->next)
1867     {
1868       printf_filtered ("%d:   %c  ", d->number, "ny"[(int) d->enabled_p]);
1869       if (d->format.size)
1870         printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1871                          d->format.format);
1872       else if (d->format.format)
1873         printf_filtered ("/%c ", d->format.format);
1874       puts_filtered (d->exp_string);
1875       if (d->block && !contained_in (get_selected_block (0), d->block))
1876         printf_filtered (_(" (cannot be evaluated in the current context)"));
1877       printf_filtered ("\n");
1878       gdb_flush (gdb_stdout);
1879     }
1880 }
1881
1882 /* Callback fo map_display_numbers, that enables or disables the
1883    passed in display D.  */
1884
1885 static void
1886 do_enable_disable_display (struct display *d, void *data)
1887 {
1888   d->enabled_p = *(int *) data;
1889 }
1890
1891 /* Implamentation of both the "disable display" and "enable display"
1892    commands.  ENABLE decides what to do.  */
1893
1894 static void
1895 enable_disable_display_command (char *args, int from_tty, int enable)
1896 {
1897   if (args == NULL)
1898     {
1899       struct display *d;
1900
1901       ALL_DISPLAYS (d)
1902         d->enabled_p = enable;
1903       return;
1904     }
1905
1906   map_display_numbers (args, do_enable_disable_display, &enable);
1907 }
1908
1909 /* The "enable display" command.  */
1910
1911 static void
1912 enable_display_command (char *args, int from_tty)
1913 {
1914   enable_disable_display_command (args, from_tty, 1);
1915 }
1916
1917 /* The "disable display" command.  */
1918
1919 static void
1920 disable_display_command (char *args, int from_tty)
1921 {
1922   enable_disable_display_command (args, from_tty, 0);
1923 }
1924
1925 /* display_chain items point to blocks and expressions.  Some expressions in
1926    turn may point to symbols.
1927    Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
1928    obstack_free'd when a shared library is unloaded.
1929    Clear pointers that are about to become dangling.
1930    Both .exp and .block fields will be restored next time we need to display
1931    an item by re-parsing .exp_string field in the new execution context.  */
1932
1933 static void
1934 clear_dangling_display_expressions (struct objfile *objfile)
1935 {
1936   struct display *d;
1937   struct program_space *pspace;
1938
1939   /* With no symbol file we cannot have a block or expression from it.  */
1940   if (objfile == NULL)
1941     return;
1942   pspace = objfile->pspace;
1943   if (objfile->separate_debug_objfile_backlink)
1944     {
1945       objfile = objfile->separate_debug_objfile_backlink;
1946       gdb_assert (objfile->pspace == pspace);
1947     }
1948
1949   for (d = display_chain; d != NULL; d = d->next)
1950     {
1951       if (d->pspace != pspace)
1952         continue;
1953
1954       if (lookup_objfile_from_block (d->block) == objfile
1955           || (d->exp && exp_uses_objfile (d->exp, objfile)))
1956       {
1957         xfree (d->exp);
1958         d->exp = NULL;
1959         d->block = NULL;
1960       }
1961     }
1962 }
1963 \f
1964
1965 /* Print the value in stack frame FRAME of a variable specified by a
1966    struct symbol.  NAME is the name to print; if NULL then VAR's print
1967    name will be used.  STREAM is the ui_file on which to print the
1968    value.  INDENT specifies the number of indent levels to print
1969    before printing the variable name.
1970
1971    This function invalidates FRAME.  */
1972
1973 void
1974 print_variable_and_value (const char *name, struct symbol *var,
1975                           struct frame_info *frame,
1976                           struct ui_file *stream, int indent)
1977 {
1978   volatile struct gdb_exception except;
1979
1980   if (!name)
1981     name = SYMBOL_PRINT_NAME (var);
1982
1983   fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
1984   TRY_CATCH (except, RETURN_MASK_ERROR)
1985     {
1986       struct value *val;
1987       struct value_print_options opts;
1988
1989       val = read_var_value (var, frame);
1990       get_user_print_options (&opts);
1991       opts.deref_ref = 1;
1992       common_val_print (val, stream, indent, &opts, current_language);
1993
1994       /* common_val_print invalidates FRAME when a pretty printer calls inferior
1995          function.  */
1996       frame = NULL;
1997     }
1998   if (except.reason < 0)
1999     fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2000                      except.message);
2001   fprintf_filtered (stream, "\n");
2002 }
2003
2004 /* Subroutine of ui_printf to simplify it.
2005    Print VALUE to STREAM using FORMAT.
2006    VALUE is a C-style string on the target.  */
2007
2008 static void
2009 printf_c_string (struct ui_file *stream, const char *format,
2010                  struct value *value)
2011 {
2012   gdb_byte *str;
2013   CORE_ADDR tem;
2014   int j;
2015
2016   tem = value_as_address (value);
2017
2018   /* This is a %s argument.  Find the length of the string.  */
2019   for (j = 0;; j++)
2020     {
2021       gdb_byte c;
2022
2023       QUIT;
2024       read_memory (tem + j, &c, 1);
2025       if (c == 0)
2026         break;
2027     }
2028
2029   /* Copy the string contents into a string inside GDB.  */
2030   str = (gdb_byte *) alloca (j + 1);
2031   if (j != 0)
2032     read_memory (tem, str, j);
2033   str[j] = 0;
2034
2035   fprintf_filtered (stream, format, (char *) str);
2036 }
2037
2038 /* Subroutine of ui_printf to simplify it.
2039    Print VALUE to STREAM using FORMAT.
2040    VALUE is a wide C-style string on the target.  */
2041
2042 static void
2043 printf_wide_c_string (struct ui_file *stream, const char *format,
2044                       struct value *value)
2045 {
2046   gdb_byte *str;
2047   CORE_ADDR tem;
2048   int j;
2049   struct gdbarch *gdbarch = get_type_arch (value_type (value));
2050   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2051   struct type *wctype = lookup_typename (current_language, gdbarch,
2052                                          "wchar_t", NULL, 0);
2053   int wcwidth = TYPE_LENGTH (wctype);
2054   gdb_byte *buf = alloca (wcwidth);
2055   struct obstack output;
2056   struct cleanup *inner_cleanup;
2057
2058   tem = value_as_address (value);
2059
2060   /* This is a %s argument.  Find the length of the string.  */
2061   for (j = 0;; j += wcwidth)
2062     {
2063       QUIT;
2064       read_memory (tem + j, buf, wcwidth);
2065       if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2066         break;
2067     }
2068
2069   /* Copy the string contents into a string inside GDB.  */
2070   str = (gdb_byte *) alloca (j + wcwidth);
2071   if (j != 0)
2072     read_memory (tem, str, j);
2073   memset (&str[j], 0, wcwidth);
2074
2075   obstack_init (&output);
2076   inner_cleanup = make_cleanup_obstack_free (&output);
2077
2078   convert_between_encodings (target_wide_charset (gdbarch),
2079                              host_charset (),
2080                              str, j, wcwidth,
2081                              &output, translit_char);
2082   obstack_grow_str0 (&output, "");
2083
2084   fprintf_filtered (stream, format, obstack_base (&output));
2085   do_cleanups (inner_cleanup);
2086 }
2087
2088 /* Subroutine of ui_printf to simplify it.
2089    Print VALUE, a decimal floating point value, to STREAM using FORMAT.  */
2090
2091 static void
2092 printf_decfloat (struct ui_file *stream, const char *format,
2093                  struct value *value)
2094 {
2095   const gdb_byte *param_ptr = value_contents (value);
2096
2097 #if defined (PRINTF_HAS_DECFLOAT)
2098   /* If we have native support for Decimal floating
2099      printing, handle it here.  */
2100   fprintf_filtered (stream, format, param_ptr);
2101 #else
2102   /* As a workaround until vasprintf has native support for DFP
2103      we convert the DFP values to string and print them using
2104      the %s format specifier.  */
2105   const char *p;
2106
2107   /* Parameter data.  */
2108   struct type *param_type = value_type (value);
2109   struct gdbarch *gdbarch = get_type_arch (param_type);
2110   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2111
2112   /* DFP output data.  */
2113   struct value *dfp_value = NULL;
2114   gdb_byte *dfp_ptr;
2115   int dfp_len = 16;
2116   gdb_byte dec[16];
2117   struct type *dfp_type = NULL;
2118   char decstr[MAX_DECIMAL_STRING];
2119
2120   /* Points to the end of the string so that we can go back
2121      and check for DFP length modifiers.  */
2122   p = format + strlen (format);
2123
2124   /* Look for the float/double format specifier.  */
2125   while (*p != 'f' && *p != 'e' && *p != 'E'
2126          && *p != 'g' && *p != 'G')
2127     p--;
2128
2129   /* Search for the '%' char and extract the size and type of
2130      the output decimal value based on its modifiers
2131      (%Hf, %Df, %DDf).  */
2132   while (*--p != '%')
2133     {
2134       if (*p == 'H')
2135         {
2136           dfp_len = 4;
2137           dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2138         }
2139       else if (*p == 'D' && *(p - 1) == 'D')
2140         {
2141           dfp_len = 16;
2142           dfp_type = builtin_type (gdbarch)->builtin_declong;
2143           p--;
2144         }
2145       else
2146         {
2147           dfp_len = 8;
2148           dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2149         }
2150     }
2151
2152   /* Conversion between different DFP types.  */
2153   if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2154     decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2155                      byte_order, dec, dfp_len, byte_order);
2156   else
2157     /* If this is a non-trivial conversion, just output 0.
2158        A correct converted value can be displayed by explicitly
2159        casting to a DFP type.  */
2160     decimal_from_string (dec, dfp_len, byte_order, "0");
2161
2162   dfp_value = value_from_decfloat (dfp_type, dec);
2163
2164   dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2165
2166   decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2167
2168   /* Print the DFP value.  */
2169   fprintf_filtered (stream, "%s", decstr);
2170 #endif
2171 }
2172
2173 /* Subroutine of ui_printf to simplify it.
2174    Print VALUE, a target pointer, to STREAM using FORMAT.  */
2175
2176 static void
2177 printf_pointer (struct ui_file *stream, const char *format,
2178                 struct value *value)
2179 {
2180   /* We avoid the host's %p because pointers are too
2181      likely to be the wrong size.  The only interesting
2182      modifier for %p is a width; extract that, and then
2183      handle %p as glibc would: %#x or a literal "(nil)".  */
2184
2185   const char *p;
2186   char *fmt, *fmt_p;
2187 #ifdef PRINTF_HAS_LONG_LONG
2188   long long val = value_as_long (value);
2189 #else
2190   long val = value_as_long (value);
2191 #endif
2192
2193   fmt = alloca (strlen (format) + 5);
2194
2195   /* Copy up to the leading %.  */
2196   p = format;
2197   fmt_p = fmt;
2198   while (*p)
2199     {
2200       int is_percent = (*p == '%');
2201
2202       *fmt_p++ = *p++;
2203       if (is_percent)
2204         {
2205           if (*p == '%')
2206             *fmt_p++ = *p++;
2207           else
2208             break;
2209         }
2210     }
2211
2212   if (val != 0)
2213     *fmt_p++ = '#';
2214
2215   /* Copy any width.  */
2216   while (*p >= '0' && *p < '9')
2217     *fmt_p++ = *p++;
2218
2219   gdb_assert (*p == 'p' && *(p + 1) == '\0');
2220   if (val != 0)
2221     {
2222 #ifdef PRINTF_HAS_LONG_LONG
2223       *fmt_p++ = 'l';
2224 #endif
2225       *fmt_p++ = 'l';
2226       *fmt_p++ = 'x';
2227       *fmt_p++ = '\0';
2228       fprintf_filtered (stream, fmt, val);
2229     }
2230   else
2231     {
2232       *fmt_p++ = 's';
2233       *fmt_p++ = '\0';
2234       fprintf_filtered (stream, fmt, "(nil)");
2235     }
2236 }
2237
2238 /* printf "printf format string" ARG to STREAM.  */
2239
2240 static void
2241 ui_printf (const char *arg, struct ui_file *stream)
2242 {
2243   struct format_piece *fpieces;
2244   const char *s = arg;
2245   struct value **val_args;
2246   int allocated_args = 20;
2247   struct cleanup *old_cleanups;
2248
2249   val_args = xmalloc (allocated_args * sizeof (struct value *));
2250   old_cleanups = make_cleanup (free_current_contents, &val_args);
2251
2252   if (s == 0)
2253     error_no_arg (_("format-control string and values to print"));
2254
2255   s = skip_spaces_const (s);
2256
2257   /* A format string should follow, enveloped in double quotes.  */
2258   if (*s++ != '"')
2259     error (_("Bad format string, missing '\"'."));
2260
2261   fpieces = parse_format_string (&s);
2262
2263   make_cleanup (free_format_pieces_cleanup, &fpieces);
2264
2265   if (*s++ != '"')
2266     error (_("Bad format string, non-terminated '\"'."));
2267   
2268   s = skip_spaces_const (s);
2269
2270   if (*s != ',' && *s != 0)
2271     error (_("Invalid argument syntax"));
2272
2273   if (*s == ',')
2274     s++;
2275   s = skip_spaces_const (s);
2276
2277   {
2278     int nargs = 0;
2279     int nargs_wanted;
2280     int i, fr;
2281     char *current_substring;
2282
2283     nargs_wanted = 0;
2284     for (fr = 0; fpieces[fr].string != NULL; fr++)
2285       if (fpieces[fr].argclass != literal_piece)
2286         ++nargs_wanted;
2287
2288     /* Now, parse all arguments and evaluate them.
2289        Store the VALUEs in VAL_ARGS.  */
2290
2291     while (*s != '\0')
2292       {
2293         const char *s1;
2294
2295         if (nargs == allocated_args)
2296           val_args = (struct value **) xrealloc ((char *) val_args,
2297                                                  (allocated_args *= 2)
2298                                                  * sizeof (struct value *));
2299         s1 = s;
2300         val_args[nargs] = parse_to_comma_and_eval (&s1);
2301
2302         nargs++;
2303         s = s1;
2304         if (*s == ',')
2305           s++;
2306       }
2307
2308     if (nargs != nargs_wanted)
2309       error (_("Wrong number of arguments for specified format-string"));
2310
2311     /* Now actually print them.  */
2312     i = 0;
2313     for (fr = 0; fpieces[fr].string != NULL; fr++)
2314       {
2315         current_substring = fpieces[fr].string;
2316         switch (fpieces[fr].argclass)
2317           {
2318           case string_arg:
2319             printf_c_string (stream, current_substring, val_args[i]);
2320             break;
2321           case wide_string_arg:
2322             printf_wide_c_string (stream, current_substring, val_args[i]);
2323             break;
2324           case wide_char_arg:
2325             {
2326               struct gdbarch *gdbarch
2327                 = get_type_arch (value_type (val_args[i]));
2328               struct type *wctype = lookup_typename (current_language, gdbarch,
2329                                                      "wchar_t", NULL, 0);
2330               struct type *valtype;
2331               struct obstack output;
2332               struct cleanup *inner_cleanup;
2333               const gdb_byte *bytes;
2334
2335               valtype = value_type (val_args[i]);
2336               if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2337                   || TYPE_CODE (valtype) != TYPE_CODE_INT)
2338                 error (_("expected wchar_t argument for %%lc"));
2339
2340               bytes = value_contents (val_args[i]);
2341
2342               obstack_init (&output);
2343               inner_cleanup = make_cleanup_obstack_free (&output);
2344
2345               convert_between_encodings (target_wide_charset (gdbarch),
2346                                          host_charset (),
2347                                          bytes, TYPE_LENGTH (valtype),
2348                                          TYPE_LENGTH (valtype),
2349                                          &output, translit_char);
2350               obstack_grow_str0 (&output, "");
2351
2352               fprintf_filtered (stream, current_substring,
2353                                 obstack_base (&output));
2354               do_cleanups (inner_cleanup);
2355             }
2356             break;
2357           case double_arg:
2358             {
2359               struct type *type = value_type (val_args[i]);
2360               DOUBLEST val;
2361               int inv;
2362
2363               /* If format string wants a float, unchecked-convert the value
2364                  to floating point of the same size.  */
2365               type = float_type_from_length (type);
2366               val = unpack_double (type, value_contents (val_args[i]), &inv);
2367               if (inv)
2368                 error (_("Invalid floating value found in program."));
2369
2370               fprintf_filtered (stream, current_substring, (double) val);
2371               break;
2372             }
2373           case long_double_arg:
2374 #ifdef HAVE_LONG_DOUBLE
2375             {
2376               struct type *type = value_type (val_args[i]);
2377               DOUBLEST val;
2378               int inv;
2379
2380               /* If format string wants a float, unchecked-convert the value
2381                  to floating point of the same size.  */
2382               type = float_type_from_length (type);
2383               val = unpack_double (type, value_contents (val_args[i]), &inv);
2384               if (inv)
2385                 error (_("Invalid floating value found in program."));
2386
2387               fprintf_filtered (stream, current_substring,
2388                                 (long double) val);
2389               break;
2390             }
2391 #else
2392             error (_("long double not supported in printf"));
2393 #endif
2394           case long_long_arg:
2395 #ifdef PRINTF_HAS_LONG_LONG
2396             {
2397               long long val = value_as_long (val_args[i]);
2398
2399               fprintf_filtered (stream, current_substring, val);
2400               break;
2401             }
2402 #else
2403             error (_("long long not supported in printf"));
2404 #endif
2405           case int_arg:
2406             {
2407               int val = value_as_long (val_args[i]);
2408
2409               fprintf_filtered (stream, current_substring, val);
2410               break;
2411             }
2412           case long_arg:
2413             {
2414               long val = value_as_long (val_args[i]);
2415
2416               fprintf_filtered (stream, current_substring, val);
2417               break;
2418             }
2419           /* Handles decimal floating values.  */
2420           case decfloat_arg:
2421             printf_decfloat (stream, current_substring, val_args[i]);
2422             break;
2423           case ptr_arg:
2424             printf_pointer (stream, current_substring, val_args[i]);
2425             break;
2426           case literal_piece:
2427             /* Print a portion of the format string that has no
2428                directives.  Note that this will not include any
2429                ordinary %-specs, but it might include "%%".  That is
2430                why we use printf_filtered and not puts_filtered here.
2431                Also, we pass a dummy argument because some platforms
2432                have modified GCC to include -Wformat-security by
2433                default, which will warn here if there is no
2434                argument.  */
2435             fprintf_filtered (stream, current_substring, 0);
2436             break;
2437           default:
2438             internal_error (__FILE__, __LINE__,
2439                             _("failed internal consistency check"));
2440           }
2441         /* Maybe advance to the next argument.  */
2442         if (fpieces[fr].argclass != literal_piece)
2443           ++i;
2444       }
2445   }
2446   do_cleanups (old_cleanups);
2447 }
2448
2449 /* Implement the "printf" command.  */
2450
2451 static void
2452 printf_command (char *arg, int from_tty)
2453 {
2454   ui_printf (arg, gdb_stdout);
2455   gdb_flush (gdb_stdout);
2456 }
2457
2458 /* Implement the "eval" command.  */
2459
2460 static void
2461 eval_command (char *arg, int from_tty)
2462 {
2463   struct ui_file *ui_out = mem_fileopen ();
2464   struct cleanup *cleanups = make_cleanup_ui_file_delete (ui_out);
2465   char *expanded;
2466
2467   ui_printf (arg, ui_out);
2468
2469   expanded = ui_file_xstrdup (ui_out, NULL);
2470   make_cleanup (xfree, expanded);
2471
2472   execute_command (expanded, from_tty);
2473
2474   do_cleanups (cleanups);
2475 }
2476
2477 void
2478 _initialize_printcmd (void)
2479 {
2480   struct cmd_list_element *c;
2481
2482   current_display_number = -1;
2483
2484   observer_attach_free_objfile (clear_dangling_display_expressions);
2485
2486   add_info ("address", address_info,
2487             _("Describe where symbol SYM is stored."));
2488
2489   add_info ("symbol", sym_info, _("\
2490 Describe what symbol is at location ADDR.\n\
2491 Only for symbols with fixed locations (global or static scope)."));
2492
2493   add_com ("x", class_vars, x_command, _("\
2494 Examine memory: x/FMT ADDRESS.\n\
2495 ADDRESS is an expression for the memory address to examine.\n\
2496 FMT is a repeat count followed by a format letter and a size letter.\n\
2497 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2498   t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2499   and z(hex, zero padded on the left).\n\
2500 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2501 The specified number of objects of the specified size are printed\n\
2502 according to the format.\n\n\
2503 Defaults for format and size letters are those previously used.\n\
2504 Default count is 1.  Default address is following last thing printed\n\
2505 with this command or \"print\"."));
2506
2507 #if 0
2508   add_com ("whereis", class_vars, whereis_command,
2509            _("Print line number and file of definition of variable."));
2510 #endif
2511
2512   add_info ("display", display_info, _("\
2513 Expressions to display when program stops, with code numbers."));
2514
2515   add_cmd ("undisplay", class_vars, undisplay_command, _("\
2516 Cancel some expressions to be displayed when program stops.\n\
2517 Arguments are the code numbers of the expressions to stop displaying.\n\
2518 No argument means cancel all automatic-display expressions.\n\
2519 \"delete display\" has the same effect as this command.\n\
2520 Do \"info display\" to see current list of code numbers."),
2521            &cmdlist);
2522
2523   add_com ("display", class_vars, display_command, _("\
2524 Print value of expression EXP each time the program stops.\n\
2525 /FMT may be used before EXP as in the \"print\" command.\n\
2526 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2527 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2528 and examining is done as in the \"x\" command.\n\n\
2529 With no argument, display all currently requested auto-display expressions.\n\
2530 Use \"undisplay\" to cancel display requests previously made."));
2531
2532   add_cmd ("display", class_vars, enable_display_command, _("\
2533 Enable some expressions to be displayed when program stops.\n\
2534 Arguments are the code numbers of the expressions to resume displaying.\n\
2535 No argument means enable all automatic-display expressions.\n\
2536 Do \"info display\" to see current list of code numbers."), &enablelist);
2537
2538   add_cmd ("display", class_vars, disable_display_command, _("\
2539 Disable some expressions to be displayed when program stops.\n\
2540 Arguments are the code numbers of the expressions to stop displaying.\n\
2541 No argument means disable all automatic-display expressions.\n\
2542 Do \"info display\" to see current list of code numbers."), &disablelist);
2543
2544   add_cmd ("display", class_vars, undisplay_command, _("\
2545 Cancel some expressions to be displayed when program stops.\n\
2546 Arguments are the code numbers of the expressions to stop displaying.\n\
2547 No argument means cancel all automatic-display expressions.\n\
2548 Do \"info display\" to see current list of code numbers."), &deletelist);
2549
2550   add_com ("printf", class_vars, printf_command, _("\
2551 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2552 This is useful for formatted output in user-defined commands."));
2553
2554   add_com ("output", class_vars, output_command, _("\
2555 Like \"print\" but don't put in value history and don't print newline.\n\
2556 This is useful in user-defined commands."));
2557
2558   add_prefix_cmd ("set", class_vars, set_command, _("\
2559 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2560 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2561 example).  VAR may be a debugger \"convenience\" variable (names starting\n\
2562 with $), a register (a few standard names starting with $), or an actual\n\
2563 variable in the program being debugged.  EXP is any valid expression.\n\
2564 Use \"set variable\" for variables with names identical to set subcommands.\n\
2565 \n\
2566 With a subcommand, this command modifies parts of the gdb environment.\n\
2567 You can see these environment settings with the \"show\" command."),
2568                   &setlist, "set ", 1, &cmdlist);
2569   if (dbx_commands)
2570     add_com ("assign", class_vars, set_command, _("\
2571 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2572 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2573 example).  VAR may be a debugger \"convenience\" variable (names starting\n\
2574 with $), a register (a few standard names starting with $), or an actual\n\
2575 variable in the program being debugged.  EXP is any valid expression.\n\
2576 Use \"set variable\" for variables with names identical to set subcommands.\n\
2577 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2578 You can see these environment settings with the \"show\" command."));
2579
2580   /* "call" is the same as "set", but handy for dbx users to call fns.  */
2581   c = add_com ("call", class_vars, call_command, _("\
2582 Call a function in the program.\n\
2583 The argument is the function name and arguments, in the notation of the\n\
2584 current working language.  The result is printed and saved in the value\n\
2585 history, if it is not void."));
2586   set_cmd_completer (c, expression_completer);
2587
2588   add_cmd ("variable", class_vars, set_command, _("\
2589 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2590 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2591 example).  VAR may be a debugger \"convenience\" variable (names starting\n\
2592 with $), a register (a few standard names starting with $), or an actual\n\
2593 variable in the program being debugged.  EXP is any valid expression.\n\
2594 This may usually be abbreviated to simply \"set\"."),
2595            &setlist);
2596
2597   c = add_com ("print", class_vars, print_command, _("\
2598 Print value of expression EXP.\n\
2599 Variables accessible are those of the lexical environment of the selected\n\
2600 stack frame, plus all those whose scope is global or an entire file.\n\
2601 \n\
2602 $NUM gets previous value number NUM.  $ and $$ are the last two values.\n\
2603 $$NUM refers to NUM'th value back from the last one.\n\
2604 Names starting with $ refer to registers (with the values they would have\n\
2605 if the program were to return to the stack frame now selected, restoring\n\
2606 all registers saved by frames farther in) or else to debugger\n\
2607 \"convenience\" variables (any such name not a known register).\n\
2608 Use assignment expressions to give values to convenience variables.\n\
2609 \n\
2610 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2611 @ is a binary operator for treating consecutive data objects\n\
2612 anywhere in memory as an array.  FOO@NUM gives an array whose first\n\
2613 element is FOO, whose second element is stored in the space following\n\
2614 where FOO is stored, etc.  FOO must be an expression whose value\n\
2615 resides in memory.\n\
2616 \n\
2617 EXP may be preceded with /FMT, where FMT is a format letter\n\
2618 but no count or size letter (see \"x\" command)."));
2619   set_cmd_completer (c, expression_completer);
2620   add_com_alias ("p", "print", class_vars, 1);
2621   add_com_alias ("inspect", "print", class_vars, 1);
2622
2623   add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2624                             &max_symbolic_offset, _("\
2625 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2626 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2627 Tell GDB to only display the symbolic form of an address if the\n\
2628 offset between the closest earlier symbol and the address is less than\n\
2629 the specified maximum offset.  The default is \"unlimited\", which tells GDB\n\
2630 to always print the symbolic form of an address if any symbol precedes\n\
2631 it.  Zero is equivalent to \"unlimited\"."),
2632                             NULL,
2633                             show_max_symbolic_offset,
2634                             &setprintlist, &showprintlist);
2635   add_setshow_boolean_cmd ("symbol-filename", no_class,
2636                            &print_symbol_filename, _("\
2637 Set printing of source filename and line number with <symbol>."), _("\
2638 Show printing of source filename and line number with <symbol>."), NULL,
2639                            NULL,
2640                            show_print_symbol_filename,
2641                            &setprintlist, &showprintlist);
2642
2643   add_com ("eval", no_class, eval_command, _("\
2644 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2645 a command line, and call it."));
2646 }