1 /* Print values for GNU debugger GDB.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "expression.h"
30 #include "breakpoint.h"
32 #include "gdb-demangle.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
41 #include "target-float.h"
42 #include "observable.h"
44 #include "parser-defs.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
51 #include "common/byte-vector.h"
53 /* Last specified output format. */
55 static char last_format = 0;
57 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
59 static char last_size = 'w';
61 /* Last specified count for the 'x' command. */
63 static int last_count;
65 /* Default address to examine next, and associated architecture. */
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
70 /* Number of delay instructions following current disassembled insn. */
72 static int branch_delay_insns;
74 /* Last address examined. */
76 static CORE_ADDR last_examine_address;
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
81 static value_ref_ptr last_examine_value;
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
86 static unsigned int max_symbolic_offset = UINT_MAX;
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
113 static int current_display_number;
117 /* Chain link to next auto-display item. */
118 struct display *next;
120 /* The expression as the user typed it. */
123 /* Expression to be evaluated and displayed. */
126 /* Item number of this auto-display item. */
129 /* Display format specified. */
130 struct format_data format;
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
138 /* Status of this display (enabled or disabled). */
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
145 static struct display *display_chain;
147 static int display_number;
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
161 /* Prototypes for local functions. */
163 static void do_one_display (struct display *);
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
179 struct format_data val;
180 const char *p = *string_ptr;
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
197 /* Now process size or format letters that follow. */
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
208 else if (*p >= 'a' && *p <= 'z')
214 *string_ptr = skip_spaces (p);
216 /* Set defaults for format and size if not specified. */
217 if (val.format == '?')
221 /* Neither has been specified. */
222 val.format = oformat;
226 /* If a size is specified, any format makes a reasonable
227 default except 'i'. */
228 val.format = oformat == 'i' ? 'x' : oformat;
230 else if (val.size == '?')
234 /* Pick the appropriate size for an address. This is deferred
235 until do_examine when we know the actual architecture to use.
236 A special size value of 'a' is used to indicate this case. */
237 val.size = osize ? 'a' : osize;
240 /* Floating point has to be word or giantword. */
241 if (osize == 'w' || osize == 'g')
244 /* Default it to giantword if the last used size is not
246 val.size = osize ? 'g' : osize;
249 /* Characters default to one byte. */
250 val.size = osize ? 'b' : osize;
253 /* Display strings with byte size chars unless explicitly
259 /* The default is the size most recently specified. */
266 /* Print value VAL on stream according to OPTIONS.
267 Do not end with a newline.
268 SIZE is the letter for the size of datum being printed.
269 This is used to pad hex numbers so they line up. SIZE is 0
270 for print / output and set for examine. */
273 print_formatted (struct value *val, int size,
274 const struct value_print_options *options,
275 struct ui_file *stream)
277 struct type *type = check_typedef (value_type (val));
278 int len = TYPE_LENGTH (type);
280 if (VALUE_LVAL (val) == lval_memory)
281 next_address = value_address (val) + len;
285 switch (options->format)
289 struct type *elttype = value_type (val);
291 next_address = (value_address (val)
292 + val_print_string (elttype, NULL,
293 value_address (val), -1,
294 stream, options) * len);
299 /* We often wrap here if there are long symbolic names. */
301 next_address = (value_address (val)
302 + gdb_print_insn (get_type_arch (type),
303 value_address (val), stream,
304 &branch_delay_insns));
309 if (options->format == 0 || options->format == 's'
310 || TYPE_CODE (type) == TYPE_CODE_REF
311 || TYPE_CODE (type) == TYPE_CODE_ARRAY
312 || TYPE_CODE (type) == TYPE_CODE_STRING
313 || TYPE_CODE (type) == TYPE_CODE_STRUCT
314 || TYPE_CODE (type) == TYPE_CODE_UNION
315 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
316 value_print (val, stream, options);
318 /* User specified format, so don't look to the type to tell us
320 val_print_scalar_formatted (type,
321 value_embedded_offset (val),
323 options, size, stream);
326 /* Return builtin floating point type of same length as TYPE.
327 If no such type is found, return TYPE itself. */
329 float_type_from_length (struct type *type)
331 struct gdbarch *gdbarch = get_type_arch (type);
332 const struct builtin_type *builtin = builtin_type (gdbarch);
334 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
335 type = builtin->builtin_float;
336 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
337 type = builtin->builtin_double;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
339 type = builtin->builtin_long_double;
344 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
345 according to OPTIONS and SIZE on STREAM. Formats s and i are not
346 supported at this level. */
349 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
350 const struct value_print_options *options,
351 int size, struct ui_file *stream)
353 struct gdbarch *gdbarch = get_type_arch (type);
354 unsigned int len = TYPE_LENGTH (type);
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
357 /* String printing should go through val_print_scalar_formatted. */
358 gdb_assert (options->format != 's');
360 /* If the value is a pointer, and pointers and addresses are not the
361 same, then at this point, the value's length (in target bytes) is
362 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
364 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
366 /* If we are printing it as unsigned, truncate it in case it is actually
367 a negative signed value (e.g. "print/u (short)-1" should print 65535
368 (if shorts are 16 bits) instead of 4294967295). */
369 if (options->format != 'c'
370 && (options->format != 'd' || TYPE_UNSIGNED (type)))
372 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
373 valaddr += TYPE_LENGTH (type) - len;
376 if (size != 0 && (options->format == 'x' || options->format == 't'))
378 /* Truncate to fit. */
395 error (_("Undefined output size \"%c\"."), size);
397 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
398 valaddr += len - newlen;
402 /* Historically gdb has printed floats by first casting them to a
403 long, and then printing the long. PR cli/16242 suggests changing
404 this to using C-style hex float format. */
405 gdb::byte_vector converted_float_bytes;
406 if (TYPE_CODE (type) == TYPE_CODE_FLT
407 && (options->format == 'o'
408 || options->format == 'x'
409 || options->format == 't'
410 || options->format == 'z'
411 || options->format == 'd'
412 || options->format == 'u'))
414 LONGEST val_long = unpack_long (type, valaddr);
415 converted_float_bytes.resize (TYPE_LENGTH (type));
416 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
417 byte_order, val_long);
418 valaddr = converted_float_bytes.data ();
421 /* Printing a non-float type as 'f' will interpret the data as if it were
422 of a floating-point type of the same length, if that exists. Otherwise,
423 the data is printed as integer. */
424 char format = options->format;
425 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
427 type = float_type_from_length (type);
428 if (TYPE_CODE (type) != TYPE_CODE_FLT)
435 print_octal_chars (stream, valaddr, len, byte_order);
438 print_decimal_chars (stream, valaddr, len, true, byte_order);
441 print_decimal_chars (stream, valaddr, len, false, byte_order);
444 if (TYPE_CODE (type) != TYPE_CODE_FLT)
446 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
452 print_floating (valaddr, type, stream);
456 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
459 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
462 print_hex_chars (stream, valaddr, len, byte_order, true);
466 struct value_print_options opts = *options;
468 LONGEST val_long = unpack_long (type, valaddr);
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
474 type = builtin_type (gdbarch)->builtin_true_char;
476 value_print (value_from_longest (type, val_long), stream, &opts);
482 CORE_ADDR addr = unpack_pointer (type, valaddr);
484 print_address (gdbarch, addr, stream);
489 error (_("Undefined output format \"%c\"."), format);
493 /* Specify default address for `x' command.
494 The `info lines' command uses this. */
497 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
499 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
501 next_gdbarch = gdbarch;
504 /* Make address available to the user as $_. */
505 set_internalvar (lookup_internalvar ("_"),
506 value_from_pointer (ptr_type, addr));
509 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
510 after LEADIN. Print nothing if no symbolic name is found nearby.
511 Optionally also print source file and line number, if available.
512 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
513 or to interpret it as a possible C++ name and convert it back to source
514 form. However note that DO_DEMANGLE can be overridden by the specific
515 settings of the demangle and asm_demangle variables. Returns
516 non-zero if anything was printed; zero otherwise. */
519 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
520 struct ui_file *stream,
521 int do_demangle, const char *leadin)
524 char *filename = NULL;
529 /* Throw away both name and filename. */
530 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
531 make_cleanup (free_current_contents, &filename);
533 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
534 &filename, &line, &unmapped))
536 do_cleanups (cleanup_chain);
540 fputs_filtered (leadin, stream);
542 fputs_filtered ("<*", stream);
544 fputs_filtered ("<", stream);
545 fputs_filtered (name, stream);
547 fprintf_filtered (stream, "+%u", (unsigned int) offset);
549 /* Append source filename and line number if desired. Give specific
550 line # of this addr, if we have it; else line # of the nearest symbol. */
551 if (print_symbol_filename && filename != NULL)
554 fprintf_filtered (stream, " at %s:%d", filename, line);
556 fprintf_filtered (stream, " in %s", filename);
559 fputs_filtered ("*>", stream);
561 fputs_filtered (">", stream);
563 do_cleanups (cleanup_chain);
567 /* Given an address ADDR return all the elements needed to print the
568 address in a symbolic form. NAME can be mangled or not depending
569 on DO_DEMANGLE (and also on the asm_demangle global variable,
570 manipulated via ''set print asm-demangle''). Return 0 in case of
571 success, when all the info in the OUT paramters is valid. Return 1
574 build_address_symbolic (struct gdbarch *gdbarch,
575 CORE_ADDR addr, /* IN */
576 int do_demangle, /* IN */
577 char **name, /* OUT */
578 int *offset, /* OUT */
579 char **filename, /* OUT */
581 int *unmapped) /* OUT */
583 struct bound_minimal_symbol msymbol;
584 struct symbol *symbol;
585 CORE_ADDR name_location = 0;
586 struct obj_section *section = NULL;
587 const char *name_temp = "";
589 /* Let's say it is mapped (not unmapped). */
592 /* Determine if the address is in an overlay, and whether it is
594 if (overlay_debugging)
596 section = find_pc_overlay (addr);
597 if (pc_in_unmapped_range (addr, section))
600 addr = overlay_mapped_address (addr, section);
604 /* First try to find the address in the symbol table, then
605 in the minsyms. Take the closest one. */
607 /* This is defective in the sense that it only finds text symbols. So
608 really this is kind of pointless--we should make sure that the
609 minimal symbols have everything we need (by changing that we could
610 save some memory, but for many debug format--ELF/DWARF or
611 anything/stabs--it would be inconvenient to eliminate those minimal
613 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
614 symbol = find_pc_sect_function (addr, section);
618 /* If this is a function (i.e. a code address), strip out any
619 non-address bits. For instance, display a pointer to the
620 first instruction of a Thumb function as <function>; the
621 second instruction will be <function+2>, even though the
622 pointer is <function+3>. This matches the ISA behavior. */
623 addr = gdbarch_addr_bits_remove (gdbarch, addr);
625 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
626 if (do_demangle || asm_demangle)
627 name_temp = SYMBOL_PRINT_NAME (symbol);
629 name_temp = SYMBOL_LINKAGE_NAME (symbol);
632 if (msymbol.minsym != NULL
633 && MSYMBOL_HAS_SIZE (msymbol.minsym)
634 && MSYMBOL_SIZE (msymbol.minsym) == 0
635 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
636 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
637 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
638 msymbol.minsym = NULL;
640 if (msymbol.minsym != NULL)
642 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
644 /* If this is a function (i.e. a code address), strip out any
645 non-address bits. For instance, display a pointer to the
646 first instruction of a Thumb function as <function>; the
647 second instruction will be <function+2>, even though the
648 pointer is <function+3>. This matches the ISA behavior. */
649 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
650 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
651 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
652 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
653 addr = gdbarch_addr_bits_remove (gdbarch, addr);
655 /* The msymbol is closer to the address than the symbol;
656 use the msymbol instead. */
658 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
659 if (do_demangle || asm_demangle)
660 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
662 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
665 if (symbol == NULL && msymbol.minsym == NULL)
668 /* If the nearest symbol is too far away, don't print anything symbolic. */
670 /* For when CORE_ADDR is larger than unsigned int, we do math in
671 CORE_ADDR. But when we detect unsigned wraparound in the
672 CORE_ADDR math, we ignore this test and print the offset,
673 because addr+max_symbolic_offset has wrapped through the end
674 of the address space back to the beginning, giving bogus comparison. */
675 if (addr > name_location + max_symbolic_offset
676 && name_location + max_symbolic_offset > name_location)
679 *offset = addr - name_location;
681 *name = xstrdup (name_temp);
683 if (print_symbol_filename)
685 struct symtab_and_line sal;
687 sal = find_pc_sect_line (addr, section, 0);
691 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
699 /* Print address ADDR symbolically on STREAM.
700 First print it as a number. Then perhaps print
701 <SYMBOL + OFFSET> after the number. */
704 print_address (struct gdbarch *gdbarch,
705 CORE_ADDR addr, struct ui_file *stream)
707 fputs_filtered (paddress (gdbarch, addr), stream);
708 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
711 /* Return a prefix for instruction address:
712 "=> " for current instruction, else " ". */
715 pc_prefix (CORE_ADDR addr)
717 if (has_stack_frames ())
719 struct frame_info *frame;
722 frame = get_selected_frame (NULL);
723 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
729 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
730 controls whether to print the symbolic name "raw" or demangled.
731 Return non-zero if anything was printed; zero otherwise. */
734 print_address_demangle (const struct value_print_options *opts,
735 struct gdbarch *gdbarch, CORE_ADDR addr,
736 struct ui_file *stream, int do_demangle)
738 if (opts->addressprint)
740 fputs_filtered (paddress (gdbarch, addr), stream);
741 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
745 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
751 /* Find the address of the instruction that is INST_COUNT instructions before
752 the instruction at ADDR.
753 Since some architectures have variable-length instructions, we can't just
754 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
755 number information to locate the nearest known instruction boundary,
756 and disassemble forward from there. If we go out of the symbol range
757 during disassembling, we return the lowest address we've got so far and
758 set the number of instructions read to INST_READ. */
761 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
762 int inst_count, int *inst_read)
764 /* The vector PCS is used to store instruction addresses within
766 CORE_ADDR loop_start, loop_end, p;
767 std::vector<CORE_ADDR> pcs;
768 struct symtab_and_line sal;
771 loop_start = loop_end = addr;
773 /* In each iteration of the outer loop, we get a pc range that ends before
774 LOOP_START, then we count and store every instruction address of the range
775 iterated in the loop.
776 If the number of instructions counted reaches INST_COUNT, return the
777 stored address that is located INST_COUNT instructions back from ADDR.
778 If INST_COUNT is not reached, we subtract the number of counted
779 instructions from INST_COUNT, and go to the next iteration. */
783 sal = find_pc_sect_line (loop_start, NULL, 1);
786 /* We reach here when line info is not available. In this case,
787 we print a message and just exit the loop. The return value
788 is calculated after the loop. */
789 printf_filtered (_("No line number information available "
792 print_address (gdbarch, loop_start - 1, gdb_stdout);
793 printf_filtered ("\n");
797 loop_end = loop_start;
800 /* This loop pushes instruction addresses in the range from
801 LOOP_START to LOOP_END. */
802 for (p = loop_start; p < loop_end;)
805 p += gdb_insn_length (gdbarch, p);
808 inst_count -= pcs.size ();
809 *inst_read += pcs.size ();
811 while (inst_count > 0);
813 /* After the loop, the vector PCS has instruction addresses of the last
814 source line we processed, and INST_COUNT has a negative value.
815 We return the address at the index of -INST_COUNT in the vector for
817 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
827 find_instruction_backward is called with INST_COUNT = 4 and expected to
828 return 0x4001. When we reach here, INST_COUNT is set to -1 because
829 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
830 4001 is located at the index 1 of the last iterated line (= Line X),
831 which is simply calculated by -INST_COUNT.
832 The case when the length of PCS is 0 means that we reached an area for
833 which line info is not available. In such case, we return LOOP_START,
834 which was the lowest instruction address that had line info. */
835 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
837 /* INST_READ includes all instruction addresses in a pc range. Need to
838 exclude the beginning part up to the address we're returning. That
839 is, exclude {0x4000} in the example above. */
841 *inst_read += inst_count;
846 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
847 placing the results in GDB's memory from MYADDR + LEN. Returns
848 a count of the bytes actually read. */
851 read_memory_backward (struct gdbarch *gdbarch,
852 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
855 int nread; /* Number of bytes actually read. */
857 /* First try a complete read. */
858 errcode = target_read_memory (memaddr, myaddr, len);
866 /* Loop, reading one byte at a time until we get as much as we can. */
869 for (nread = 0; nread < len; ++nread)
871 errcode = target_read_memory (--memaddr, --myaddr, 1);
874 /* The read was unsuccessful, so exit the loop. */
875 printf_filtered (_("Cannot access memory at address %s\n"),
876 paddress (gdbarch, memaddr));
884 /* Returns true if X (which is LEN bytes wide) is the number zero. */
887 integer_is_zero (const gdb_byte *x, int len)
891 while (i < len && x[i] == 0)
896 /* Find the start address of a string in which ADDR is included.
897 Basically we search for '\0' and return the next address,
898 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
899 we stop searching and return the address to print characters as many as
900 PRINT_MAX from the string. */
903 find_string_backward (struct gdbarch *gdbarch,
904 CORE_ADDR addr, int count, int char_size,
905 const struct value_print_options *options,
906 int *strings_counted)
908 const int chunk_size = 0x20;
911 int chars_to_read = chunk_size;
912 int chars_counted = 0;
913 int count_original = count;
914 CORE_ADDR string_start_addr = addr;
916 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
917 gdb::byte_vector buffer (chars_to_read * char_size);
918 while (count > 0 && read_error == 0)
922 addr -= chars_to_read * char_size;
923 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
924 chars_to_read * char_size);
925 chars_read /= char_size;
926 read_error = (chars_read == chars_to_read) ? 0 : 1;
927 /* Searching for '\0' from the end of buffer in backward direction. */
928 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
930 int offset = (chars_to_read - i - 1) * char_size;
932 if (integer_is_zero (&buffer[offset], char_size)
933 || chars_counted == options->print_max)
935 /* Found '\0' or reached print_max. As OFFSET is the offset to
936 '\0', we add CHAR_SIZE to return the start address of
939 string_start_addr = addr + offset + char_size;
945 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
946 *strings_counted = count_original - count;
950 /* In error case, STRING_START_ADDR is pointing to the string that
951 was last successfully loaded. Rewind the partially loaded string. */
952 string_start_addr -= chars_counted * char_size;
955 return string_start_addr;
958 /* Examine data at address ADDR in format FMT.
959 Fetch it from memory and print on gdb_stdout. */
962 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
967 struct type *val_type = NULL;
970 struct value_print_options opts;
971 int need_to_update_next_address = 0;
972 CORE_ADDR addr_rewound = 0;
977 next_gdbarch = gdbarch;
980 /* Instruction format implies fetch single bytes
981 regardless of the specified size.
982 The case of strings is handled in decode_format, only explicit
983 size operator are not changed to 'b'. */
989 /* Pick the appropriate size for an address. */
990 if (gdbarch_ptr_bit (next_gdbarch) == 64)
992 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
994 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
997 /* Bad value for gdbarch_ptr_bit. */
998 internal_error (__FILE__, __LINE__,
999 _("failed internal consistency check"));
1003 val_type = builtin_type (next_gdbarch)->builtin_int8;
1004 else if (size == 'h')
1005 val_type = builtin_type (next_gdbarch)->builtin_int16;
1006 else if (size == 'w')
1007 val_type = builtin_type (next_gdbarch)->builtin_int32;
1008 else if (size == 'g')
1009 val_type = builtin_type (next_gdbarch)->builtin_int64;
1013 struct type *char_type = NULL;
1015 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1016 if type is not found. */
1018 char_type = builtin_type (next_gdbarch)->builtin_char16;
1019 else if (size == 'w')
1020 char_type = builtin_type (next_gdbarch)->builtin_char32;
1022 val_type = char_type;
1025 if (size != '\0' && size != 'b')
1026 warning (_("Unable to display strings with "
1027 "size '%c', using 'b' instead."), size);
1029 val_type = builtin_type (next_gdbarch)->builtin_int8;
1038 if (format == 's' || format == 'i')
1041 get_formatted_print_options (&opts, format);
1045 /* This is the negative repeat count case.
1046 We rewind the address based on the given repeat count and format,
1047 then examine memory from there in forward direction. */
1052 next_address = find_instruction_backward (gdbarch, addr, count,
1055 else if (format == 's')
1057 next_address = find_string_backward (gdbarch, addr, count,
1058 TYPE_LENGTH (val_type),
1063 next_address = addr - count * TYPE_LENGTH (val_type);
1066 /* The following call to print_formatted updates next_address in every
1067 iteration. In backward case, we store the start address here
1068 and update next_address with it before exiting the function. */
1069 addr_rewound = (format == 's'
1070 ? next_address - TYPE_LENGTH (val_type)
1072 need_to_update_next_address = 1;
1075 /* Print as many objects as specified in COUNT, at most maxelts per line,
1076 with the address of the next one at the start of each line. */
1082 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1083 print_address (next_gdbarch, next_address, gdb_stdout);
1084 printf_filtered (":");
1089 printf_filtered ("\t");
1090 /* Note that print_formatted sets next_address for the next
1092 last_examine_address = next_address;
1094 /* The value to be displayed is not fetched greedily.
1095 Instead, to avoid the possibility of a fetched value not
1096 being used, its retrieval is delayed until the print code
1097 uses it. When examining an instruction stream, the
1098 disassembler will perform its own memory fetch using just
1099 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1100 the disassembler be modified so that LAST_EXAMINE_VALUE
1101 is left with the byte sequence from the last complete
1102 instruction fetched from memory? */
1104 = release_value (value_at_lazy (val_type, next_address));
1106 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1108 /* Display any branch delay slots following the final insn. */
1109 if (format == 'i' && count == 1)
1110 count += branch_delay_insns;
1112 printf_filtered ("\n");
1113 gdb_flush (gdb_stdout);
1116 if (need_to_update_next_address)
1117 next_address = addr_rewound;
1121 validate_format (struct format_data fmt, const char *cmdname)
1124 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1126 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1128 if (fmt.format == 'i')
1129 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1130 fmt.format, cmdname);
1133 /* Parse print command format string into *FMTP and update *EXPP.
1134 CMDNAME should name the current command. */
1137 print_command_parse_format (const char **expp, const char *cmdname,
1138 struct format_data *fmtp)
1140 const char *exp = *expp;
1142 if (exp && *exp == '/')
1145 *fmtp = decode_format (&exp, last_format, 0);
1146 validate_format (*fmtp, cmdname);
1147 last_format = fmtp->format;
1160 /* Print VAL to console according to *FMTP, including recording it to
1164 print_value (struct value *val, const struct format_data *fmtp)
1166 struct value_print_options opts;
1167 int histindex = record_latest_value (val);
1169 annotate_value_history_begin (histindex, value_type (val));
1171 printf_filtered ("$%d = ", histindex);
1173 annotate_value_history_value ();
1175 get_formatted_print_options (&opts, fmtp->format);
1176 opts.raw = fmtp->raw;
1178 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1179 printf_filtered ("\n");
1181 annotate_value_history_end ();
1184 /* Evaluate string EXP as an expression in the current language and
1185 print the resulting value. EXP may contain a format specifier as the
1186 first argument ("/x myvar" for example, to print myvar in hex). */
1189 print_command_1 (const char *exp, int voidprint)
1192 struct format_data fmt;
1194 print_command_parse_format (&exp, "print", &fmt);
1198 expression_up expr = parse_expression (exp);
1199 val = evaluate_expression (expr.get ());
1202 val = access_value_history (0);
1204 if (voidprint || (val && value_type (val) &&
1205 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1206 print_value (val, &fmt);
1210 print_command (const char *exp, int from_tty)
1212 print_command_1 (exp, 1);
1215 /* Same as print, except it doesn't print void results. */
1217 call_command (const char *exp, int from_tty)
1219 print_command_1 (exp, 0);
1222 /* Implementation of the "output" command. */
1225 output_command (const char *exp, int from_tty)
1227 output_command_const (exp, from_tty);
1230 /* Like output_command, but takes a const string as argument. */
1233 output_command_const (const char *exp, int from_tty)
1237 struct format_data fmt;
1238 struct value_print_options opts;
1243 if (exp && *exp == '/')
1246 fmt = decode_format (&exp, 0, 0);
1247 validate_format (fmt, "output");
1248 format = fmt.format;
1251 expression_up expr = parse_expression (exp);
1253 val = evaluate_expression (expr.get ());
1255 annotate_value_begin (value_type (val));
1257 get_formatted_print_options (&opts, format);
1259 print_formatted (val, fmt.size, &opts, gdb_stdout);
1261 annotate_value_end ();
1264 gdb_flush (gdb_stdout);
1268 set_command (const char *exp, int from_tty)
1270 expression_up expr = parse_expression (exp);
1272 if (expr->nelts >= 1)
1273 switch (expr->elts[0].opcode)
1275 case UNOP_PREINCREMENT:
1276 case UNOP_POSTINCREMENT:
1277 case UNOP_PREDECREMENT:
1278 case UNOP_POSTDECREMENT:
1280 case BINOP_ASSIGN_MODIFY:
1285 (_("Expression is not an assignment (and might have no effect)"));
1288 evaluate_expression (expr.get ());
1292 info_symbol_command (const char *arg, int from_tty)
1294 struct minimal_symbol *msymbol;
1295 struct objfile *objfile;
1296 struct obj_section *osect;
1297 CORE_ADDR addr, sect_addr;
1299 unsigned int offset;
1302 error_no_arg (_("address"));
1304 addr = parse_and_eval_address (arg);
1305 ALL_OBJSECTIONS (objfile, osect)
1307 /* Only process each object file once, even if there's a separate
1309 if (objfile->separate_debug_objfile_backlink)
1312 sect_addr = overlay_mapped_address (addr, osect);
1314 if (obj_section_addr (osect) <= sect_addr
1315 && sect_addr < obj_section_endaddr (osect)
1317 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1319 const char *obj_name, *mapped, *sec_name, *msym_name;
1320 const char *loc_string;
1321 struct cleanup *old_chain;
1324 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1325 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1326 sec_name = osect->the_bfd_section->name;
1327 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1329 /* Don't print the offset if it is zero.
1330 We assume there's no need to handle i18n of "sym + offset". */
1331 std::string string_holder;
1334 string_holder = string_printf ("%s + %u", msym_name, offset);
1335 loc_string = string_holder.c_str ();
1338 loc_string = msym_name;
1340 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1341 obj_name = objfile_name (osect->objfile);
1343 if (MULTI_OBJFILE_P ())
1344 if (pc_in_unmapped_range (addr, osect))
1345 if (section_is_overlay (osect))
1346 printf_filtered (_("%s in load address range of "
1347 "%s overlay section %s of %s\n"),
1348 loc_string, mapped, sec_name, obj_name);
1350 printf_filtered (_("%s in load address range of "
1351 "section %s of %s\n"),
1352 loc_string, sec_name, obj_name);
1354 if (section_is_overlay (osect))
1355 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1356 loc_string, mapped, sec_name, obj_name);
1358 printf_filtered (_("%s in section %s of %s\n"),
1359 loc_string, sec_name, obj_name);
1361 if (pc_in_unmapped_range (addr, osect))
1362 if (section_is_overlay (osect))
1363 printf_filtered (_("%s in load address range of %s overlay "
1365 loc_string, mapped, sec_name);
1367 printf_filtered (_("%s in load address range of section %s\n"),
1368 loc_string, sec_name);
1370 if (section_is_overlay (osect))
1371 printf_filtered (_("%s in %s overlay section %s\n"),
1372 loc_string, mapped, sec_name);
1374 printf_filtered (_("%s in section %s\n"),
1375 loc_string, sec_name);
1379 printf_filtered (_("No symbol matches %s.\n"), arg);
1383 info_address_command (const char *exp, int from_tty)
1385 struct gdbarch *gdbarch;
1388 struct bound_minimal_symbol msymbol;
1390 struct obj_section *section;
1391 CORE_ADDR load_addr, context_pc = 0;
1392 struct field_of_this_result is_a_field_of_this;
1395 error (_("Argument required."));
1397 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1398 &is_a_field_of_this).symbol;
1401 if (is_a_field_of_this.type != NULL)
1403 printf_filtered ("Symbol \"");
1404 fprintf_symbol_filtered (gdb_stdout, exp,
1405 current_language->la_language, DMGL_ANSI);
1406 printf_filtered ("\" is a field of the local class variable ");
1407 if (current_language->la_language == language_objc)
1408 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1410 printf_filtered ("`this'\n");
1414 msymbol = lookup_bound_minimal_symbol (exp);
1416 if (msymbol.minsym != NULL)
1418 struct objfile *objfile = msymbol.objfile;
1420 gdbarch = get_objfile_arch (objfile);
1421 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1423 printf_filtered ("Symbol \"");
1424 fprintf_symbol_filtered (gdb_stdout, exp,
1425 current_language->la_language, DMGL_ANSI);
1426 printf_filtered ("\" is at ");
1427 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1428 printf_filtered (" in a file compiled without debugging");
1429 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1430 if (section_is_overlay (section))
1432 load_addr = overlay_unmapped_address (load_addr, section);
1433 printf_filtered (",\n -- loaded at ");
1434 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1435 printf_filtered (" in overlay section %s",
1436 section->the_bfd_section->name);
1438 printf_filtered (".\n");
1441 error (_("No symbol \"%s\" in current context."), exp);
1445 printf_filtered ("Symbol \"");
1446 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1447 current_language->la_language, DMGL_ANSI);
1448 printf_filtered ("\" is ");
1449 val = SYMBOL_VALUE (sym);
1450 if (SYMBOL_OBJFILE_OWNED (sym))
1451 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1454 gdbarch = symbol_arch (sym);
1456 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1458 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1460 printf_filtered (".\n");
1464 switch (SYMBOL_CLASS (sym))
1467 case LOC_CONST_BYTES:
1468 printf_filtered ("constant");
1472 printf_filtered ("a label at address ");
1473 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1474 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1475 if (section_is_overlay (section))
1477 load_addr = overlay_unmapped_address (load_addr, section);
1478 printf_filtered (",\n -- loaded at ");
1479 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1480 printf_filtered (" in overlay section %s",
1481 section->the_bfd_section->name);
1486 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1489 /* GDBARCH is the architecture associated with the objfile the symbol
1490 is defined in; the target architecture may be different, and may
1491 provide additional registers. However, we do not know the target
1492 architecture at this point. We assume the objfile architecture
1493 will contain all the standard registers that occur in debug info
1495 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1497 if (SYMBOL_IS_ARGUMENT (sym))
1498 printf_filtered (_("an argument in register %s"),
1499 gdbarch_register_name (gdbarch, regno));
1501 printf_filtered (_("a variable in register %s"),
1502 gdbarch_register_name (gdbarch, regno));
1506 printf_filtered (_("static storage at address "));
1507 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1508 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1509 if (section_is_overlay (section))
1511 load_addr = overlay_unmapped_address (load_addr, section);
1512 printf_filtered (_(",\n -- loaded at "));
1513 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1514 printf_filtered (_(" in overlay section %s"),
1515 section->the_bfd_section->name);
1519 case LOC_REGPARM_ADDR:
1520 /* Note comment at LOC_REGISTER. */
1521 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1522 printf_filtered (_("address of an argument in register %s"),
1523 gdbarch_register_name (gdbarch, regno));
1527 printf_filtered (_("an argument at offset %ld"), val);
1531 printf_filtered (_("a local variable at frame offset %ld"), val);
1535 printf_filtered (_("a reference argument at offset %ld"), val);
1539 printf_filtered (_("a typedef"));
1543 printf_filtered (_("a function at address "));
1544 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1545 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1546 if (section_is_overlay (section))
1548 load_addr = overlay_unmapped_address (load_addr, section);
1549 printf_filtered (_(",\n -- loaded at "));
1550 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1551 printf_filtered (_(" in overlay section %s"),
1552 section->the_bfd_section->name);
1556 case LOC_UNRESOLVED:
1558 struct bound_minimal_symbol msym;
1560 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1561 if (msym.minsym == NULL)
1562 printf_filtered ("unresolved");
1565 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1568 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1570 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1571 printf_filtered (_("a thread-local variable at offset %s "
1572 "in the thread-local storage for `%s'"),
1573 paddress (gdbarch, load_addr),
1574 objfile_name (section->objfile));
1578 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1579 printf_filtered (_("static storage at address "));
1580 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1581 if (section_is_overlay (section))
1583 load_addr = overlay_unmapped_address (load_addr, section);
1584 printf_filtered (_(",\n -- loaded at "));
1585 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1586 printf_filtered (_(" in overlay section %s"),
1587 section->the_bfd_section->name);
1594 case LOC_OPTIMIZED_OUT:
1595 printf_filtered (_("optimized out"));
1599 printf_filtered (_("of unknown (botched) type"));
1602 printf_filtered (".\n");
1607 x_command (const char *exp, int from_tty)
1609 struct format_data fmt;
1612 fmt.format = last_format ? last_format : 'x';
1613 fmt.size = last_size;
1617 /* If there is no expression and no format, use the most recent
1619 if (exp == nullptr && last_count > 0)
1620 fmt.count = last_count;
1622 if (exp && *exp == '/')
1624 const char *tmp = exp + 1;
1626 fmt = decode_format (&tmp, last_format, last_size);
1630 last_count = fmt.count;
1632 /* If we have an expression, evaluate it and use it as the address. */
1634 if (exp != 0 && *exp != 0)
1636 expression_up expr = parse_expression (exp);
1637 /* Cause expression not to be there any more if this command is
1638 repeated with Newline. But don't clobber a user-defined
1639 command's definition. */
1641 set_repeat_arguments ("");
1642 val = evaluate_expression (expr.get ());
1643 if (TYPE_IS_REFERENCE (value_type (val)))
1644 val = coerce_ref (val);
1645 /* In rvalue contexts, such as this, functions are coerced into
1646 pointers to functions. This makes "x/i main" work. */
1647 if (/* last_format == 'i' && */
1648 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1649 && VALUE_LVAL (val) == lval_memory)
1650 next_address = value_address (val);
1652 next_address = value_as_address (val);
1654 next_gdbarch = expr->gdbarch;
1658 error_no_arg (_("starting display address"));
1660 do_examine (fmt, next_gdbarch, next_address);
1662 /* If the examine succeeds, we remember its size and format for next
1663 time. Set last_size to 'b' for strings. */
1664 if (fmt.format == 's')
1667 last_size = fmt.size;
1668 last_format = fmt.format;
1670 /* Set a couple of internal variables if appropriate. */
1671 if (last_examine_value != nullptr)
1673 /* Make last address examined available to the user as $_. Use
1674 the correct pointer type. */
1675 struct type *pointer_type
1676 = lookup_pointer_type (value_type (last_examine_value.get ()));
1677 set_internalvar (lookup_internalvar ("_"),
1678 value_from_pointer (pointer_type,
1679 last_examine_address));
1681 /* Make contents of last address examined available to the user
1682 as $__. If the last value has not been fetched from memory
1683 then don't fetch it now; instead mark it by voiding the $__
1685 if (value_lazy (last_examine_value.get ()))
1686 clear_internalvar (lookup_internalvar ("__"));
1688 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1693 /* Add an expression to the auto-display chain.
1694 Specify the expression. */
1697 display_command (const char *arg, int from_tty)
1699 struct format_data fmt;
1700 struct display *newobj;
1701 const char *exp = arg;
1712 fmt = decode_format (&exp, 0, 0);
1713 if (fmt.size && fmt.format == 0)
1715 if (fmt.format == 'i' || fmt.format == 's')
1726 innermost_block.reset ();
1727 expression_up expr = parse_expression (exp);
1729 newobj = new display ();
1731 newobj->exp_string = xstrdup (exp);
1732 newobj->exp = std::move (expr);
1733 newobj->block = innermost_block.block ();
1734 newobj->pspace = current_program_space;
1735 newobj->number = ++display_number;
1736 newobj->format = fmt;
1737 newobj->enabled_p = 1;
1738 newobj->next = NULL;
1740 if (display_chain == NULL)
1741 display_chain = newobj;
1744 struct display *last;
1746 for (last = display_chain; last->next != NULL; last = last->next)
1748 last->next = newobj;
1752 do_one_display (newobj);
1758 free_display (struct display *d)
1760 xfree (d->exp_string);
1764 /* Clear out the display_chain. Done when new symtabs are loaded,
1765 since this invalidates the types stored in many expressions. */
1768 clear_displays (void)
1772 while ((d = display_chain) != NULL)
1774 display_chain = d->next;
1779 /* Delete the auto-display DISPLAY. */
1782 delete_display (struct display *display)
1786 gdb_assert (display != NULL);
1788 if (display_chain == display)
1789 display_chain = display->next;
1792 if (d->next == display)
1794 d->next = display->next;
1798 free_display (display);
1801 /* Call FUNCTION on each of the displays whose numbers are given in
1802 ARGS. DATA is passed unmodified to FUNCTION. */
1805 map_display_numbers (const char *args,
1806 void (*function) (struct display *,
1813 error_no_arg (_("one or more display numbers"));
1815 number_or_range_parser parser (args);
1817 while (!parser.finished ())
1819 const char *p = parser.cur_tok ();
1821 num = parser.get_number ();
1823 warning (_("bad display number at or near '%s'"), p);
1826 struct display *d, *tmp;
1828 ALL_DISPLAYS_SAFE (d, tmp)
1829 if (d->number == num)
1832 printf_unfiltered (_("No display number %d.\n"), num);
1839 /* Callback for map_display_numbers, that deletes a display. */
1842 do_delete_display (struct display *d, void *data)
1847 /* "undisplay" command. */
1850 undisplay_command (const char *args, int from_tty)
1854 if (query (_("Delete all auto-display expressions? ")))
1860 map_display_numbers (args, do_delete_display, NULL);
1864 /* Display a single auto-display.
1865 Do nothing if the display cannot be printed in the current context,
1866 or if the display is disabled. */
1869 do_one_display (struct display *d)
1871 int within_current_scope;
1873 if (d->enabled_p == 0)
1876 /* The expression carries the architecture that was used at parse time.
1877 This is a problem if the expression depends on architecture features
1878 (e.g. register numbers), and the current architecture is now different.
1879 For example, a display statement like "display/i $pc" is expected to
1880 display the PC register of the current architecture, not the arch at
1881 the time the display command was given. Therefore, we re-parse the
1882 expression if the current architecture has changed. */
1883 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1894 innermost_block.reset ();
1895 d->exp = parse_expression (d->exp_string);
1896 d->block = innermost_block.block ();
1898 CATCH (ex, RETURN_MASK_ALL)
1900 /* Can't re-parse the expression. Disable this display item. */
1902 warning (_("Unable to display \"%s\": %s"),
1903 d->exp_string, ex.message);
1911 if (d->pspace == current_program_space)
1912 within_current_scope = contained_in (get_selected_block (0), d->block);
1914 within_current_scope = 0;
1917 within_current_scope = 1;
1918 if (!within_current_scope)
1921 scoped_restore save_display_number
1922 = make_scoped_restore (¤t_display_number, d->number);
1924 annotate_display_begin ();
1925 printf_filtered ("%d", d->number);
1926 annotate_display_number_end ();
1927 printf_filtered (": ");
1931 annotate_display_format ();
1933 printf_filtered ("x/");
1934 if (d->format.count != 1)
1935 printf_filtered ("%d", d->format.count);
1936 printf_filtered ("%c", d->format.format);
1937 if (d->format.format != 'i' && d->format.format != 's')
1938 printf_filtered ("%c", d->format.size);
1939 printf_filtered (" ");
1941 annotate_display_expression ();
1943 puts_filtered (d->exp_string);
1944 annotate_display_expression_end ();
1946 if (d->format.count != 1 || d->format.format == 'i')
1947 printf_filtered ("\n");
1949 printf_filtered (" ");
1951 annotate_display_value ();
1958 val = evaluate_expression (d->exp.get ());
1959 addr = value_as_address (val);
1960 if (d->format.format == 'i')
1961 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1962 do_examine (d->format, d->exp->gdbarch, addr);
1964 CATCH (ex, RETURN_MASK_ERROR)
1966 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1972 struct value_print_options opts;
1974 annotate_display_format ();
1976 if (d->format.format)
1977 printf_filtered ("/%c ", d->format.format);
1979 annotate_display_expression ();
1981 puts_filtered (d->exp_string);
1982 annotate_display_expression_end ();
1984 printf_filtered (" = ");
1986 annotate_display_expression ();
1988 get_formatted_print_options (&opts, d->format.format);
1989 opts.raw = d->format.raw;
1995 val = evaluate_expression (d->exp.get ());
1996 print_formatted (val, d->format.size, &opts, gdb_stdout);
1998 CATCH (ex, RETURN_MASK_ERROR)
2000 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2004 printf_filtered ("\n");
2007 annotate_display_end ();
2009 gdb_flush (gdb_stdout);
2012 /* Display all of the values on the auto-display chain which can be
2013 evaluated in the current scope. */
2020 for (d = display_chain; d; d = d->next)
2024 /* Delete the auto-display which we were in the process of displaying.
2025 This is done when there is an error or a signal. */
2028 disable_display (int num)
2032 for (d = display_chain; d; d = d->next)
2033 if (d->number == num)
2038 printf_unfiltered (_("No display number %d.\n"), num);
2042 disable_current_display (void)
2044 if (current_display_number >= 0)
2046 disable_display (current_display_number);
2047 fprintf_unfiltered (gdb_stderr,
2048 _("Disabling display %d to "
2049 "avoid infinite recursion.\n"),
2050 current_display_number);
2052 current_display_number = -1;
2056 info_display_command (const char *ignore, int from_tty)
2061 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2063 printf_filtered (_("Auto-display expressions now in effect:\n\
2064 Num Enb Expression\n"));
2066 for (d = display_chain; d; d = d->next)
2068 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2070 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2072 else if (d->format.format)
2073 printf_filtered ("/%c ", d->format.format);
2074 puts_filtered (d->exp_string);
2075 if (d->block && !contained_in (get_selected_block (0), d->block))
2076 printf_filtered (_(" (cannot be evaluated in the current context)"));
2077 printf_filtered ("\n");
2078 gdb_flush (gdb_stdout);
2082 /* Callback fo map_display_numbers, that enables or disables the
2083 passed in display D. */
2086 do_enable_disable_display (struct display *d, void *data)
2088 d->enabled_p = *(int *) data;
2091 /* Implamentation of both the "disable display" and "enable display"
2092 commands. ENABLE decides what to do. */
2095 enable_disable_display_command (const char *args, int from_tty, int enable)
2102 d->enabled_p = enable;
2106 map_display_numbers (args, do_enable_disable_display, &enable);
2109 /* The "enable display" command. */
2112 enable_display_command (const char *args, int from_tty)
2114 enable_disable_display_command (args, from_tty, 1);
2117 /* The "disable display" command. */
2120 disable_display_command (const char *args, int from_tty)
2122 enable_disable_display_command (args, from_tty, 0);
2125 /* display_chain items point to blocks and expressions. Some expressions in
2126 turn may point to symbols.
2127 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2128 obstack_free'd when a shared library is unloaded.
2129 Clear pointers that are about to become dangling.
2130 Both .exp and .block fields will be restored next time we need to display
2131 an item by re-parsing .exp_string field in the new execution context. */
2134 clear_dangling_display_expressions (struct objfile *objfile)
2137 struct program_space *pspace;
2139 /* With no symbol file we cannot have a block or expression from it. */
2140 if (objfile == NULL)
2142 pspace = objfile->pspace;
2143 if (objfile->separate_debug_objfile_backlink)
2145 objfile = objfile->separate_debug_objfile_backlink;
2146 gdb_assert (objfile->pspace == pspace);
2149 for (d = display_chain; d != NULL; d = d->next)
2151 if (d->pspace != pspace)
2154 if (lookup_objfile_from_block (d->block) == objfile
2155 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2164 /* Print the value in stack frame FRAME of a variable specified by a
2165 struct symbol. NAME is the name to print; if NULL then VAR's print
2166 name will be used. STREAM is the ui_file on which to print the
2167 value. INDENT specifies the number of indent levels to print
2168 before printing the variable name.
2170 This function invalidates FRAME. */
2173 print_variable_and_value (const char *name, struct symbol *var,
2174 struct frame_info *frame,
2175 struct ui_file *stream, int indent)
2179 name = SYMBOL_PRINT_NAME (var);
2181 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2185 struct value_print_options opts;
2187 /* READ_VAR_VALUE needs a block in order to deal with non-local
2188 references (i.e. to handle nested functions). In this context, we
2189 print variables that are local to this frame, so we can avoid passing
2191 val = read_var_value (var, NULL, frame);
2192 get_user_print_options (&opts);
2194 common_val_print (val, stream, indent, &opts, current_language);
2196 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2200 CATCH (except, RETURN_MASK_ERROR)
2202 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2207 fprintf_filtered (stream, "\n");
2210 /* Subroutine of ui_printf to simplify it.
2211 Print VALUE to STREAM using FORMAT.
2212 VALUE is a C-style string on the target. */
2215 printf_c_string (struct ui_file *stream, const char *format,
2216 struct value *value)
2222 tem = value_as_address (value);
2225 fprintf_filtered (stream, format, "(null)");
2229 /* This is a %s argument. Find the length of the string. */
2235 read_memory (tem + j, &c, 1);
2240 /* Copy the string contents into a string inside GDB. */
2241 str = (gdb_byte *) alloca (j + 1);
2243 read_memory (tem, str, j);
2246 fprintf_filtered (stream, format, (char *) str);
2249 /* Subroutine of ui_printf to simplify it.
2250 Print VALUE to STREAM using FORMAT.
2251 VALUE is a wide C-style string on the target. */
2254 printf_wide_c_string (struct ui_file *stream, const char *format,
2255 struct value *value)
2260 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2262 struct type *wctype = lookup_typename (current_language, gdbarch,
2263 "wchar_t", NULL, 0);
2264 int wcwidth = TYPE_LENGTH (wctype);
2265 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2267 tem = value_as_address (value);
2270 fprintf_filtered (stream, format, "(null)");
2274 /* This is a %s argument. Find the length of the string. */
2275 for (j = 0;; j += wcwidth)
2278 read_memory (tem + j, buf, wcwidth);
2279 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2283 /* Copy the string contents into a string inside GDB. */
2284 str = (gdb_byte *) alloca (j + wcwidth);
2286 read_memory (tem, str, j);
2287 memset (&str[j], 0, wcwidth);
2289 auto_obstack output;
2291 convert_between_encodings (target_wide_charset (gdbarch),
2294 &output, translit_char);
2295 obstack_grow_str0 (&output, "");
2297 fprintf_filtered (stream, format, obstack_base (&output));
2300 /* Subroutine of ui_printf to simplify it.
2301 Print VALUE, a floating point value, to STREAM using FORMAT. */
2304 printf_floating (struct ui_file *stream, const char *format,
2305 struct value *value, enum argclass argclass)
2307 /* Parameter data. */
2308 struct type *param_type = value_type (value);
2309 struct gdbarch *gdbarch = get_type_arch (param_type);
2310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2312 /* Determine target type corresponding to the format string. */
2313 struct type *fmt_type;
2317 fmt_type = builtin_type (gdbarch)->builtin_double;
2319 case long_double_arg:
2320 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2322 case dec32float_arg:
2323 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2325 case dec64float_arg:
2326 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2328 case dec128float_arg:
2329 fmt_type = builtin_type (gdbarch)->builtin_declong;
2332 gdb_assert_not_reached ("unexpected argument class");
2335 /* To match the traditional GDB behavior, the conversion is
2336 done differently depending on the type of the parameter:
2338 - if the parameter has floating-point type, it's value
2339 is converted to the target type;
2341 - otherwise, if the parameter has a type that is of the
2342 same size as a built-in floating-point type, the value
2343 bytes are interpreted as if they were of that type, and
2344 then converted to the target type (this is not done for
2345 decimal floating-point argument classes);
2347 - otherwise, if the source value has an integer value,
2348 it's value is converted to the target type;
2350 - otherwise, an error is raised.
2352 In either case, the result of the conversion is a byte buffer
2353 formatted in the target format for the target type. */
2355 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2357 param_type = float_type_from_length (param_type);
2358 if (param_type != value_type (value))
2359 value = value_from_contents (param_type, value_contents (value));
2362 value = value_cast (fmt_type, value);
2364 /* Convert the value to a string and print it. */
2366 = target_float_to_string (value_contents (value), fmt_type, format);
2367 fputs_filtered (str.c_str (), stream);
2370 /* Subroutine of ui_printf to simplify it.
2371 Print VALUE, a target pointer, to STREAM using FORMAT. */
2374 printf_pointer (struct ui_file *stream, const char *format,
2375 struct value *value)
2377 /* We avoid the host's %p because pointers are too
2378 likely to be the wrong size. The only interesting
2379 modifier for %p is a width; extract that, and then
2380 handle %p as glibc would: %#x or a literal "(nil)". */
2384 #ifdef PRINTF_HAS_LONG_LONG
2385 long long val = value_as_long (value);
2387 long val = value_as_long (value);
2390 fmt = (char *) alloca (strlen (format) + 5);
2392 /* Copy up to the leading %. */
2397 int is_percent = (*p == '%');
2412 /* Copy any width or flags. Only the "-" flag is valid for pointers
2413 -- see the format_pieces constructor. */
2414 while (*p == '-' || (*p >= '0' && *p < '9'))
2417 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2420 #ifdef PRINTF_HAS_LONG_LONG
2426 fprintf_filtered (stream, fmt, val);
2432 fprintf_filtered (stream, fmt, "(nil)");
2436 /* printf "printf format string" ARG to STREAM. */
2439 ui_printf (const char *arg, struct ui_file *stream)
2441 const char *s = arg;
2442 std::vector<struct value *> val_args;
2445 error_no_arg (_("format-control string and values to print"));
2447 s = skip_spaces (s);
2449 /* A format string should follow, enveloped in double quotes. */
2451 error (_("Bad format string, missing '\"'."));
2453 format_pieces fpieces (&s);
2456 error (_("Bad format string, non-terminated '\"'."));
2458 s = skip_spaces (s);
2460 if (*s != ',' && *s != 0)
2461 error (_("Invalid argument syntax"));
2465 s = skip_spaces (s);
2470 const char *current_substring;
2473 for (auto &&piece : fpieces)
2474 if (piece.argclass != literal_piece)
2477 /* Now, parse all arguments and evaluate them.
2478 Store the VALUEs in VAL_ARGS. */
2485 val_args.push_back (parse_to_comma_and_eval (&s1));
2492 if (val_args.size () != nargs_wanted)
2493 error (_("Wrong number of arguments for specified format-string"));
2495 /* Now actually print them. */
2497 for (auto &&piece : fpieces)
2499 current_substring = piece.string;
2500 switch (piece.argclass)
2503 printf_c_string (stream, current_substring, val_args[i]);
2505 case wide_string_arg:
2506 printf_wide_c_string (stream, current_substring, val_args[i]);
2510 struct gdbarch *gdbarch
2511 = get_type_arch (value_type (val_args[i]));
2512 struct type *wctype = lookup_typename (current_language, gdbarch,
2513 "wchar_t", NULL, 0);
2514 struct type *valtype;
2515 const gdb_byte *bytes;
2517 valtype = value_type (val_args[i]);
2518 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2519 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2520 error (_("expected wchar_t argument for %%lc"));
2522 bytes = value_contents (val_args[i]);
2524 auto_obstack output;
2526 convert_between_encodings (target_wide_charset (gdbarch),
2528 bytes, TYPE_LENGTH (valtype),
2529 TYPE_LENGTH (valtype),
2530 &output, translit_char);
2531 obstack_grow_str0 (&output, "");
2533 fprintf_filtered (stream, current_substring,
2534 obstack_base (&output));
2538 #ifdef PRINTF_HAS_LONG_LONG
2540 long long val = value_as_long (val_args[i]);
2542 fprintf_filtered (stream, current_substring, val);
2546 error (_("long long not supported in printf"));
2550 int val = value_as_long (val_args[i]);
2552 fprintf_filtered (stream, current_substring, val);
2557 long val = value_as_long (val_args[i]);
2559 fprintf_filtered (stream, current_substring, val);
2562 /* Handles floating-point values. */
2564 case long_double_arg:
2565 case dec32float_arg:
2566 case dec64float_arg:
2567 case dec128float_arg:
2568 printf_floating (stream, current_substring, val_args[i],
2572 printf_pointer (stream, current_substring, val_args[i]);
2575 /* Print a portion of the format string that has no
2576 directives. Note that this will not include any
2577 ordinary %-specs, but it might include "%%". That is
2578 why we use printf_filtered and not puts_filtered here.
2579 Also, we pass a dummy argument because some platforms
2580 have modified GCC to include -Wformat-security by
2581 default, which will warn here if there is no
2583 fprintf_filtered (stream, current_substring, 0);
2586 internal_error (__FILE__, __LINE__,
2587 _("failed internal consistency check"));
2589 /* Maybe advance to the next argument. */
2590 if (piece.argclass != literal_piece)
2596 /* Implement the "printf" command. */
2599 printf_command (const char *arg, int from_tty)
2601 ui_printf (arg, gdb_stdout);
2602 gdb_flush (gdb_stdout);
2605 /* Implement the "eval" command. */
2608 eval_command (const char *arg, int from_tty)
2612 ui_printf (arg, &stb);
2614 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2616 execute_command (expanded.c_str (), from_tty);
2620 _initialize_printcmd (void)
2622 struct cmd_list_element *c;
2624 current_display_number = -1;
2626 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2628 add_info ("address", info_address_command,
2629 _("Describe where symbol SYM is stored."));
2631 add_info ("symbol", info_symbol_command, _("\
2632 Describe what symbol is at location ADDR.\n\
2633 Only for symbols with fixed locations (global or static scope)."));
2635 add_com ("x", class_vars, x_command, _("\
2636 Examine memory: x/FMT ADDRESS.\n\
2637 ADDRESS is an expression for the memory address to examine.\n\
2638 FMT is a repeat count followed by a format letter and a size letter.\n\
2639 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2640 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2641 and z(hex, zero padded on the left).\n\
2642 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2643 The specified number of objects of the specified size are printed\n\
2644 according to the format. If a negative number is specified, memory is\n\
2645 examined backward from the address.\n\n\
2646 Defaults for format and size letters are those previously used.\n\
2647 Default count is 1. Default address is following last thing printed\n\
2648 with this command or \"print\"."));
2651 add_com ("whereis", class_vars, whereis_command,
2652 _("Print line number and file of definition of variable."));
2655 add_info ("display", info_display_command, _("\
2656 Expressions to display when program stops, with code numbers."));
2658 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2659 Cancel some expressions to be displayed when program stops.\n\
2660 Arguments are the code numbers of the expressions to stop displaying.\n\
2661 No argument means cancel all automatic-display expressions.\n\
2662 \"delete display\" has the same effect as this command.\n\
2663 Do \"info display\" to see current list of code numbers."),
2666 add_com ("display", class_vars, display_command, _("\
2667 Print value of expression EXP each time the program stops.\n\
2668 /FMT may be used before EXP as in the \"print\" command.\n\
2669 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2670 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2671 and examining is done as in the \"x\" command.\n\n\
2672 With no argument, display all currently requested auto-display expressions.\n\
2673 Use \"undisplay\" to cancel display requests previously made."));
2675 add_cmd ("display", class_vars, enable_display_command, _("\
2676 Enable some expressions to be displayed when program stops.\n\
2677 Arguments are the code numbers of the expressions to resume displaying.\n\
2678 No argument means enable all automatic-display expressions.\n\
2679 Do \"info display\" to see current list of code numbers."), &enablelist);
2681 add_cmd ("display", class_vars, disable_display_command, _("\
2682 Disable some expressions to be displayed when program stops.\n\
2683 Arguments are the code numbers of the expressions to stop displaying.\n\
2684 No argument means disable all automatic-display expressions.\n\
2685 Do \"info display\" to see current list of code numbers."), &disablelist);
2687 add_cmd ("display", class_vars, undisplay_command, _("\
2688 Cancel some expressions to be displayed when program stops.\n\
2689 Arguments are the code numbers of the expressions to stop displaying.\n\
2690 No argument means cancel all automatic-display expressions.\n\
2691 Do \"info display\" to see current list of code numbers."), &deletelist);
2693 add_com ("printf", class_vars, printf_command, _("\
2694 Formatted printing, like the C \"printf\" function.\n\
2695 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2696 This supports most C printf format specifications, like %s, %d, etc."));
2698 add_com ("output", class_vars, output_command, _("\
2699 Like \"print\" but don't put in value history and don't print newline.\n\
2700 This is useful in user-defined commands."));
2702 add_prefix_cmd ("set", class_vars, set_command, _("\
2703 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2704 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2705 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2706 with $), a register (a few standard names starting with $), or an actual\n\
2707 variable in the program being debugged. EXP is any valid expression.\n\
2708 Use \"set variable\" for variables with names identical to set subcommands.\n\
2710 With a subcommand, this command modifies parts of the gdb environment.\n\
2711 You can see these environment settings with the \"show\" command."),
2712 &setlist, "set ", 1, &cmdlist);
2714 add_com ("assign", class_vars, set_command, _("\
2715 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2716 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2717 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2718 with $), a register (a few standard names starting with $), or an actual\n\
2719 variable in the program being debugged. EXP is any valid expression.\n\
2720 Use \"set variable\" for variables with names identical to set subcommands.\n\
2721 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2722 You can see these environment settings with the \"show\" command."));
2724 /* "call" is the same as "set", but handy for dbx users to call fns. */
2725 c = add_com ("call", class_vars, call_command, _("\
2726 Call a function in the program.\n\
2727 The argument is the function name and arguments, in the notation of the\n\
2728 current working language. The result is printed and saved in the value\n\
2729 history, if it is not void."));
2730 set_cmd_completer (c, expression_completer);
2732 add_cmd ("variable", class_vars, set_command, _("\
2733 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2734 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2735 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2736 with $), a register (a few standard names starting with $), or an actual\n\
2737 variable in the program being debugged. EXP is any valid expression.\n\
2738 This may usually be abbreviated to simply \"set\"."),
2740 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2742 c = add_com ("print", class_vars, print_command, _("\
2743 Print value of expression EXP.\n\
2744 Variables accessible are those of the lexical environment of the selected\n\
2745 stack frame, plus all those whose scope is global or an entire file.\n\
2747 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2748 $$NUM refers to NUM'th value back from the last one.\n\
2749 Names starting with $ refer to registers (with the values they would have\n\
2750 if the program were to return to the stack frame now selected, restoring\n\
2751 all registers saved by frames farther in) or else to debugger\n\
2752 \"convenience\" variables (any such name not a known register).\n\
2753 Use assignment expressions to give values to convenience variables.\n\
2755 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2756 @ is a binary operator for treating consecutive data objects\n\
2757 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2758 element is FOO, whose second element is stored in the space following\n\
2759 where FOO is stored, etc. FOO must be an expression whose value\n\
2760 resides in memory.\n\
2762 EXP may be preceded with /FMT, where FMT is a format letter\n\
2763 but no count or size letter (see \"x\" command)."));
2764 set_cmd_completer (c, expression_completer);
2765 add_com_alias ("p", "print", class_vars, 1);
2766 add_com_alias ("inspect", "print", class_vars, 1);
2768 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2769 &max_symbolic_offset, _("\
2770 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2771 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2772 Tell GDB to only display the symbolic form of an address if the\n\
2773 offset between the closest earlier symbol and the address is less than\n\
2774 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2775 to always print the symbolic form of an address if any symbol precedes\n\
2776 it. Zero is equivalent to \"unlimited\"."),
2778 show_max_symbolic_offset,
2779 &setprintlist, &showprintlist);
2780 add_setshow_boolean_cmd ("symbol-filename", no_class,
2781 &print_symbol_filename, _("\
2782 Set printing of source filename and line number with <symbol>."), _("\
2783 Show printing of source filename and line number with <symbol>."), NULL,
2785 show_print_symbol_filename,
2786 &setprintlist, &showprintlist);
2788 add_com ("eval", no_class, eval_command, _("\
2789 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2790 a command line, and call it."));