1 /* Print values for GNU debugger GDB.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "expression.h"
30 #include "breakpoint.h"
32 #include "gdb-demangle.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
41 #include "target-float.h"
42 #include "observable.h"
44 #include "parser-defs.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
51 #include "common/byte-vector.h"
53 /* Last specified output format. */
55 static char last_format = 0;
57 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
59 static char last_size = 'w';
61 /* Last specified count for the 'x' command. */
63 static int last_count;
65 /* Default address to examine next, and associated architecture. */
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
70 /* Number of delay instructions following current disassembled insn. */
72 static int branch_delay_insns;
74 /* Last address examined. */
76 static CORE_ADDR last_examine_address;
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
81 static value_ref_ptr last_examine_value;
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
86 static unsigned int max_symbolic_offset = UINT_MAX;
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
113 static int current_display_number;
117 /* Chain link to next auto-display item. */
118 struct display *next;
120 /* The expression as the user typed it. */
123 /* Expression to be evaluated and displayed. */
126 /* Item number of this auto-display item. */
129 /* Display format specified. */
130 struct format_data format;
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
138 /* Status of this display (enabled or disabled). */
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
145 static struct display *display_chain;
147 static int display_number;
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
161 /* Prototypes for local functions. */
163 static void do_one_display (struct display *);
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
179 struct format_data val;
180 const char *p = *string_ptr;
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
197 /* Now process size or format letters that follow. */
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
208 else if (*p >= 'a' && *p <= 'z')
214 *string_ptr = skip_spaces (p);
216 /* Set defaults for format and size if not specified. */
217 if (val.format == '?')
221 /* Neither has been specified. */
222 val.format = oformat;
226 /* If a size is specified, any format makes a reasonable
227 default except 'i'. */
228 val.format = oformat == 'i' ? 'x' : oformat;
230 else if (val.size == '?')
234 /* Pick the appropriate size for an address. This is deferred
235 until do_examine when we know the actual architecture to use.
236 A special size value of 'a' is used to indicate this case. */
237 val.size = osize ? 'a' : osize;
240 /* Floating point has to be word or giantword. */
241 if (osize == 'w' || osize == 'g')
244 /* Default it to giantword if the last used size is not
246 val.size = osize ? 'g' : osize;
249 /* Characters default to one byte. */
250 val.size = osize ? 'b' : osize;
253 /* Display strings with byte size chars unless explicitly
259 /* The default is the size most recently specified. */
266 /* Print value VAL on stream according to OPTIONS.
267 Do not end with a newline.
268 SIZE is the letter for the size of datum being printed.
269 This is used to pad hex numbers so they line up. SIZE is 0
270 for print / output and set for examine. */
273 print_formatted (struct value *val, int size,
274 const struct value_print_options *options,
275 struct ui_file *stream)
277 struct type *type = check_typedef (value_type (val));
278 int len = TYPE_LENGTH (type);
280 if (VALUE_LVAL (val) == lval_memory)
281 next_address = value_address (val) + len;
285 switch (options->format)
289 struct type *elttype = value_type (val);
291 next_address = (value_address (val)
292 + val_print_string (elttype, NULL,
293 value_address (val), -1,
294 stream, options) * len);
299 /* We often wrap here if there are long symbolic names. */
301 next_address = (value_address (val)
302 + gdb_print_insn (get_type_arch (type),
303 value_address (val), stream,
304 &branch_delay_insns));
309 if (options->format == 0 || options->format == 's'
310 || TYPE_CODE (type) == TYPE_CODE_REF
311 || TYPE_CODE (type) == TYPE_CODE_ARRAY
312 || TYPE_CODE (type) == TYPE_CODE_STRING
313 || TYPE_CODE (type) == TYPE_CODE_STRUCT
314 || TYPE_CODE (type) == TYPE_CODE_UNION
315 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
316 value_print (val, stream, options);
318 /* User specified format, so don't look to the type to tell us
320 val_print_scalar_formatted (type,
321 value_embedded_offset (val),
323 options, size, stream);
326 /* Return builtin floating point type of same length as TYPE.
327 If no such type is found, return TYPE itself. */
329 float_type_from_length (struct type *type)
331 struct gdbarch *gdbarch = get_type_arch (type);
332 const struct builtin_type *builtin = builtin_type (gdbarch);
334 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
335 type = builtin->builtin_float;
336 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
337 type = builtin->builtin_double;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
339 type = builtin->builtin_long_double;
344 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
345 according to OPTIONS and SIZE on STREAM. Formats s and i are not
346 supported at this level. */
349 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
350 const struct value_print_options *options,
351 int size, struct ui_file *stream)
353 struct gdbarch *gdbarch = get_type_arch (type);
354 unsigned int len = TYPE_LENGTH (type);
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
357 /* String printing should go through val_print_scalar_formatted. */
358 gdb_assert (options->format != 's');
360 /* If the value is a pointer, and pointers and addresses are not the
361 same, then at this point, the value's length (in target bytes) is
362 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
364 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
366 /* If we are printing it as unsigned, truncate it in case it is actually
367 a negative signed value (e.g. "print/u (short)-1" should print 65535
368 (if shorts are 16 bits) instead of 4294967295). */
369 if (options->format != 'c'
370 && (options->format != 'd' || TYPE_UNSIGNED (type)))
372 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
373 valaddr += TYPE_LENGTH (type) - len;
376 if (size != 0 && (options->format == 'x' || options->format == 't'))
378 /* Truncate to fit. */
395 error (_("Undefined output size \"%c\"."), size);
397 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
398 valaddr += len - newlen;
402 /* Historically gdb has printed floats by first casting them to a
403 long, and then printing the long. PR cli/16242 suggests changing
404 this to using C-style hex float format. */
405 gdb::byte_vector converted_float_bytes;
406 if (TYPE_CODE (type) == TYPE_CODE_FLT
407 && (options->format == 'o'
408 || options->format == 'x'
409 || options->format == 't'
410 || options->format == 'z'
411 || options->format == 'd'
412 || options->format == 'u'))
414 LONGEST val_long = unpack_long (type, valaddr);
415 converted_float_bytes.resize (TYPE_LENGTH (type));
416 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
417 byte_order, val_long);
418 valaddr = converted_float_bytes.data ();
421 /* Printing a non-float type as 'f' will interpret the data as if it were
422 of a floating-point type of the same length, if that exists. Otherwise,
423 the data is printed as integer. */
424 char format = options->format;
425 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
427 type = float_type_from_length (type);
428 if (TYPE_CODE (type) != TYPE_CODE_FLT)
435 print_octal_chars (stream, valaddr, len, byte_order);
438 print_decimal_chars (stream, valaddr, len, true, byte_order);
441 print_decimal_chars (stream, valaddr, len, false, byte_order);
444 if (TYPE_CODE (type) != TYPE_CODE_FLT)
446 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
452 print_floating (valaddr, type, stream);
456 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
459 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
462 print_hex_chars (stream, valaddr, len, byte_order, true);
466 struct value_print_options opts = *options;
468 LONGEST val_long = unpack_long (type, valaddr);
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
474 type = builtin_type (gdbarch)->builtin_true_char;
476 value_print (value_from_longest (type, val_long), stream, &opts);
482 CORE_ADDR addr = unpack_pointer (type, valaddr);
484 print_address (gdbarch, addr, stream);
489 error (_("Undefined output format \"%c\"."), format);
493 /* Specify default address for `x' command.
494 The `info lines' command uses this. */
497 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
499 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
501 next_gdbarch = gdbarch;
504 /* Make address available to the user as $_. */
505 set_internalvar (lookup_internalvar ("_"),
506 value_from_pointer (ptr_type, addr));
509 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
510 after LEADIN. Print nothing if no symbolic name is found nearby.
511 Optionally also print source file and line number, if available.
512 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
513 or to interpret it as a possible C++ name and convert it back to source
514 form. However note that DO_DEMANGLE can be overridden by the specific
515 settings of the demangle and asm_demangle variables. Returns
516 non-zero if anything was printed; zero otherwise. */
519 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
520 struct ui_file *stream,
521 int do_demangle, const char *leadin)
523 std::string name, filename;
528 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
529 &filename, &line, &unmapped))
532 fputs_filtered (leadin, stream);
534 fputs_filtered ("<*", stream);
536 fputs_filtered ("<", stream);
537 fputs_filtered (name.c_str (), stream);
539 fprintf_filtered (stream, "+%u", (unsigned int) offset);
541 /* Append source filename and line number if desired. Give specific
542 line # of this addr, if we have it; else line # of the nearest symbol. */
543 if (print_symbol_filename && !filename.empty ())
546 fprintf_filtered (stream, " at %s:%d", filename.c_str (), line);
548 fprintf_filtered (stream, " in %s", filename.c_str ());
551 fputs_filtered ("*>", stream);
553 fputs_filtered (">", stream);
558 /* See valprint.h. */
561 build_address_symbolic (struct gdbarch *gdbarch,
562 CORE_ADDR addr, /* IN */
563 int do_demangle, /* IN */
564 std::string *name, /* OUT */
565 int *offset, /* OUT */
566 std::string *filename, /* OUT */
568 int *unmapped) /* OUT */
570 struct bound_minimal_symbol msymbol;
571 struct symbol *symbol;
572 CORE_ADDR name_location = 0;
573 struct obj_section *section = NULL;
574 const char *name_temp = "";
576 /* Let's say it is mapped (not unmapped). */
579 /* Determine if the address is in an overlay, and whether it is
581 if (overlay_debugging)
583 section = find_pc_overlay (addr);
584 if (pc_in_unmapped_range (addr, section))
587 addr = overlay_mapped_address (addr, section);
591 /* First try to find the address in the symbol table, then
592 in the minsyms. Take the closest one. */
594 /* This is defective in the sense that it only finds text symbols. So
595 really this is kind of pointless--we should make sure that the
596 minimal symbols have everything we need (by changing that we could
597 save some memory, but for many debug format--ELF/DWARF or
598 anything/stabs--it would be inconvenient to eliminate those minimal
600 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
601 symbol = find_pc_sect_function (addr, section);
605 /* If this is a function (i.e. a code address), strip out any
606 non-address bits. For instance, display a pointer to the
607 first instruction of a Thumb function as <function>; the
608 second instruction will be <function+2>, even though the
609 pointer is <function+3>. This matches the ISA behavior. */
610 addr = gdbarch_addr_bits_remove (gdbarch, addr);
612 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
613 if (do_demangle || asm_demangle)
614 name_temp = SYMBOL_PRINT_NAME (symbol);
616 name_temp = SYMBOL_LINKAGE_NAME (symbol);
619 if (msymbol.minsym != NULL
620 && MSYMBOL_HAS_SIZE (msymbol.minsym)
621 && MSYMBOL_SIZE (msymbol.minsym) == 0
622 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
623 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
624 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
625 msymbol.minsym = NULL;
627 if (msymbol.minsym != NULL)
629 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
631 /* If this is a function (i.e. a code address), strip out any
632 non-address bits. For instance, display a pointer to the
633 first instruction of a Thumb function as <function>; the
634 second instruction will be <function+2>, even though the
635 pointer is <function+3>. This matches the ISA behavior. */
636 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
637 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
638 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
639 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
640 addr = gdbarch_addr_bits_remove (gdbarch, addr);
642 /* The msymbol is closer to the address than the symbol;
643 use the msymbol instead. */
645 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
646 if (do_demangle || asm_demangle)
647 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
649 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
652 if (symbol == NULL && msymbol.minsym == NULL)
655 /* If the nearest symbol is too far away, don't print anything symbolic. */
657 /* For when CORE_ADDR is larger than unsigned int, we do math in
658 CORE_ADDR. But when we detect unsigned wraparound in the
659 CORE_ADDR math, we ignore this test and print the offset,
660 because addr+max_symbolic_offset has wrapped through the end
661 of the address space back to the beginning, giving bogus comparison. */
662 if (addr > name_location + max_symbolic_offset
663 && name_location + max_symbolic_offset > name_location)
666 *offset = addr - name_location;
670 if (print_symbol_filename)
672 struct symtab_and_line sal;
674 sal = find_pc_sect_line (addr, section, 0);
678 *filename = symtab_to_filename_for_display (sal.symtab);
686 /* Print address ADDR symbolically on STREAM.
687 First print it as a number. Then perhaps print
688 <SYMBOL + OFFSET> after the number. */
691 print_address (struct gdbarch *gdbarch,
692 CORE_ADDR addr, struct ui_file *stream)
694 fputs_filtered (paddress (gdbarch, addr), stream);
695 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
698 /* Return a prefix for instruction address:
699 "=> " for current instruction, else " ". */
702 pc_prefix (CORE_ADDR addr)
704 if (has_stack_frames ())
706 struct frame_info *frame;
709 frame = get_selected_frame (NULL);
710 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
716 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
717 controls whether to print the symbolic name "raw" or demangled.
718 Return non-zero if anything was printed; zero otherwise. */
721 print_address_demangle (const struct value_print_options *opts,
722 struct gdbarch *gdbarch, CORE_ADDR addr,
723 struct ui_file *stream, int do_demangle)
725 if (opts->addressprint)
727 fputs_filtered (paddress (gdbarch, addr), stream);
728 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
732 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
738 /* Find the address of the instruction that is INST_COUNT instructions before
739 the instruction at ADDR.
740 Since some architectures have variable-length instructions, we can't just
741 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
742 number information to locate the nearest known instruction boundary,
743 and disassemble forward from there. If we go out of the symbol range
744 during disassembling, we return the lowest address we've got so far and
745 set the number of instructions read to INST_READ. */
748 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
749 int inst_count, int *inst_read)
751 /* The vector PCS is used to store instruction addresses within
753 CORE_ADDR loop_start, loop_end, p;
754 std::vector<CORE_ADDR> pcs;
755 struct symtab_and_line sal;
758 loop_start = loop_end = addr;
760 /* In each iteration of the outer loop, we get a pc range that ends before
761 LOOP_START, then we count and store every instruction address of the range
762 iterated in the loop.
763 If the number of instructions counted reaches INST_COUNT, return the
764 stored address that is located INST_COUNT instructions back from ADDR.
765 If INST_COUNT is not reached, we subtract the number of counted
766 instructions from INST_COUNT, and go to the next iteration. */
770 sal = find_pc_sect_line (loop_start, NULL, 1);
773 /* We reach here when line info is not available. In this case,
774 we print a message and just exit the loop. The return value
775 is calculated after the loop. */
776 printf_filtered (_("No line number information available "
779 print_address (gdbarch, loop_start - 1, gdb_stdout);
780 printf_filtered ("\n");
784 loop_end = loop_start;
787 /* This loop pushes instruction addresses in the range from
788 LOOP_START to LOOP_END. */
789 for (p = loop_start; p < loop_end;)
792 p += gdb_insn_length (gdbarch, p);
795 inst_count -= pcs.size ();
796 *inst_read += pcs.size ();
798 while (inst_count > 0);
800 /* After the loop, the vector PCS has instruction addresses of the last
801 source line we processed, and INST_COUNT has a negative value.
802 We return the address at the index of -INST_COUNT in the vector for
804 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
814 find_instruction_backward is called with INST_COUNT = 4 and expected to
815 return 0x4001. When we reach here, INST_COUNT is set to -1 because
816 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
817 4001 is located at the index 1 of the last iterated line (= Line X),
818 which is simply calculated by -INST_COUNT.
819 The case when the length of PCS is 0 means that we reached an area for
820 which line info is not available. In such case, we return LOOP_START,
821 which was the lowest instruction address that had line info. */
822 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
824 /* INST_READ includes all instruction addresses in a pc range. Need to
825 exclude the beginning part up to the address we're returning. That
826 is, exclude {0x4000} in the example above. */
828 *inst_read += inst_count;
833 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
834 placing the results in GDB's memory from MYADDR + LEN. Returns
835 a count of the bytes actually read. */
838 read_memory_backward (struct gdbarch *gdbarch,
839 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
842 int nread; /* Number of bytes actually read. */
844 /* First try a complete read. */
845 errcode = target_read_memory (memaddr, myaddr, len);
853 /* Loop, reading one byte at a time until we get as much as we can. */
856 for (nread = 0; nread < len; ++nread)
858 errcode = target_read_memory (--memaddr, --myaddr, 1);
861 /* The read was unsuccessful, so exit the loop. */
862 printf_filtered (_("Cannot access memory at address %s\n"),
863 paddress (gdbarch, memaddr));
871 /* Returns true if X (which is LEN bytes wide) is the number zero. */
874 integer_is_zero (const gdb_byte *x, int len)
878 while (i < len && x[i] == 0)
883 /* Find the start address of a string in which ADDR is included.
884 Basically we search for '\0' and return the next address,
885 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
886 we stop searching and return the address to print characters as many as
887 PRINT_MAX from the string. */
890 find_string_backward (struct gdbarch *gdbarch,
891 CORE_ADDR addr, int count, int char_size,
892 const struct value_print_options *options,
893 int *strings_counted)
895 const int chunk_size = 0x20;
898 int chars_to_read = chunk_size;
899 int chars_counted = 0;
900 int count_original = count;
901 CORE_ADDR string_start_addr = addr;
903 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
904 gdb::byte_vector buffer (chars_to_read * char_size);
905 while (count > 0 && read_error == 0)
909 addr -= chars_to_read * char_size;
910 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
911 chars_to_read * char_size);
912 chars_read /= char_size;
913 read_error = (chars_read == chars_to_read) ? 0 : 1;
914 /* Searching for '\0' from the end of buffer in backward direction. */
915 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
917 int offset = (chars_to_read - i - 1) * char_size;
919 if (integer_is_zero (&buffer[offset], char_size)
920 || chars_counted == options->print_max)
922 /* Found '\0' or reached print_max. As OFFSET is the offset to
923 '\0', we add CHAR_SIZE to return the start address of
926 string_start_addr = addr + offset + char_size;
932 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
933 *strings_counted = count_original - count;
937 /* In error case, STRING_START_ADDR is pointing to the string that
938 was last successfully loaded. Rewind the partially loaded string. */
939 string_start_addr -= chars_counted * char_size;
942 return string_start_addr;
945 /* Examine data at address ADDR in format FMT.
946 Fetch it from memory and print on gdb_stdout. */
949 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
954 struct type *val_type = NULL;
957 struct value_print_options opts;
958 int need_to_update_next_address = 0;
959 CORE_ADDR addr_rewound = 0;
964 next_gdbarch = gdbarch;
967 /* Instruction format implies fetch single bytes
968 regardless of the specified size.
969 The case of strings is handled in decode_format, only explicit
970 size operator are not changed to 'b'. */
976 /* Pick the appropriate size for an address. */
977 if (gdbarch_ptr_bit (next_gdbarch) == 64)
979 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
981 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
984 /* Bad value for gdbarch_ptr_bit. */
985 internal_error (__FILE__, __LINE__,
986 _("failed internal consistency check"));
990 val_type = builtin_type (next_gdbarch)->builtin_int8;
991 else if (size == 'h')
992 val_type = builtin_type (next_gdbarch)->builtin_int16;
993 else if (size == 'w')
994 val_type = builtin_type (next_gdbarch)->builtin_int32;
995 else if (size == 'g')
996 val_type = builtin_type (next_gdbarch)->builtin_int64;
1000 struct type *char_type = NULL;
1002 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1003 if type is not found. */
1005 char_type = builtin_type (next_gdbarch)->builtin_char16;
1006 else if (size == 'w')
1007 char_type = builtin_type (next_gdbarch)->builtin_char32;
1009 val_type = char_type;
1012 if (size != '\0' && size != 'b')
1013 warning (_("Unable to display strings with "
1014 "size '%c', using 'b' instead."), size);
1016 val_type = builtin_type (next_gdbarch)->builtin_int8;
1025 if (format == 's' || format == 'i')
1028 get_formatted_print_options (&opts, format);
1032 /* This is the negative repeat count case.
1033 We rewind the address based on the given repeat count and format,
1034 then examine memory from there in forward direction. */
1039 next_address = find_instruction_backward (gdbarch, addr, count,
1042 else if (format == 's')
1044 next_address = find_string_backward (gdbarch, addr, count,
1045 TYPE_LENGTH (val_type),
1050 next_address = addr - count * TYPE_LENGTH (val_type);
1053 /* The following call to print_formatted updates next_address in every
1054 iteration. In backward case, we store the start address here
1055 and update next_address with it before exiting the function. */
1056 addr_rewound = (format == 's'
1057 ? next_address - TYPE_LENGTH (val_type)
1059 need_to_update_next_address = 1;
1062 /* Print as many objects as specified in COUNT, at most maxelts per line,
1063 with the address of the next one at the start of each line. */
1069 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1070 print_address (next_gdbarch, next_address, gdb_stdout);
1071 printf_filtered (":");
1076 printf_filtered ("\t");
1077 /* Note that print_formatted sets next_address for the next
1079 last_examine_address = next_address;
1081 /* The value to be displayed is not fetched greedily.
1082 Instead, to avoid the possibility of a fetched value not
1083 being used, its retrieval is delayed until the print code
1084 uses it. When examining an instruction stream, the
1085 disassembler will perform its own memory fetch using just
1086 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1087 the disassembler be modified so that LAST_EXAMINE_VALUE
1088 is left with the byte sequence from the last complete
1089 instruction fetched from memory? */
1091 = release_value (value_at_lazy (val_type, next_address));
1093 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1095 /* Display any branch delay slots following the final insn. */
1096 if (format == 'i' && count == 1)
1097 count += branch_delay_insns;
1099 printf_filtered ("\n");
1100 gdb_flush (gdb_stdout);
1103 if (need_to_update_next_address)
1104 next_address = addr_rewound;
1108 validate_format (struct format_data fmt, const char *cmdname)
1111 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1113 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1115 if (fmt.format == 'i')
1116 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1117 fmt.format, cmdname);
1120 /* Parse print command format string into *FMTP and update *EXPP.
1121 CMDNAME should name the current command. */
1124 print_command_parse_format (const char **expp, const char *cmdname,
1125 struct format_data *fmtp)
1127 const char *exp = *expp;
1129 if (exp && *exp == '/')
1132 *fmtp = decode_format (&exp, last_format, 0);
1133 validate_format (*fmtp, cmdname);
1134 last_format = fmtp->format;
1147 /* Print VAL to console according to *FMTP, including recording it to
1151 print_value (struct value *val, const struct format_data *fmtp)
1153 struct value_print_options opts;
1154 int histindex = record_latest_value (val);
1156 annotate_value_history_begin (histindex, value_type (val));
1158 printf_filtered ("$%d = ", histindex);
1160 annotate_value_history_value ();
1162 get_formatted_print_options (&opts, fmtp->format);
1163 opts.raw = fmtp->raw;
1165 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1166 printf_filtered ("\n");
1168 annotate_value_history_end ();
1171 /* Evaluate string EXP as an expression in the current language and
1172 print the resulting value. EXP may contain a format specifier as the
1173 first argument ("/x myvar" for example, to print myvar in hex). */
1176 print_command_1 (const char *exp, int voidprint)
1179 struct format_data fmt;
1181 print_command_parse_format (&exp, "print", &fmt);
1185 expression_up expr = parse_expression (exp);
1186 val = evaluate_expression (expr.get ());
1189 val = access_value_history (0);
1191 if (voidprint || (val && value_type (val) &&
1192 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1193 print_value (val, &fmt);
1197 print_command (const char *exp, int from_tty)
1199 print_command_1 (exp, 1);
1202 /* Same as print, except it doesn't print void results. */
1204 call_command (const char *exp, int from_tty)
1206 print_command_1 (exp, 0);
1209 /* Implementation of the "output" command. */
1212 output_command (const char *exp, int from_tty)
1216 struct format_data fmt;
1217 struct value_print_options opts;
1222 if (exp && *exp == '/')
1225 fmt = decode_format (&exp, 0, 0);
1226 validate_format (fmt, "output");
1227 format = fmt.format;
1230 expression_up expr = parse_expression (exp);
1232 val = evaluate_expression (expr.get ());
1234 annotate_value_begin (value_type (val));
1236 get_formatted_print_options (&opts, format);
1238 print_formatted (val, fmt.size, &opts, gdb_stdout);
1240 annotate_value_end ();
1243 gdb_flush (gdb_stdout);
1247 set_command (const char *exp, int from_tty)
1249 expression_up expr = parse_expression (exp);
1251 if (expr->nelts >= 1)
1252 switch (expr->elts[0].opcode)
1254 case UNOP_PREINCREMENT:
1255 case UNOP_POSTINCREMENT:
1256 case UNOP_PREDECREMENT:
1257 case UNOP_POSTDECREMENT:
1259 case BINOP_ASSIGN_MODIFY:
1264 (_("Expression is not an assignment (and might have no effect)"));
1267 evaluate_expression (expr.get ());
1271 info_symbol_command (const char *arg, int from_tty)
1273 struct minimal_symbol *msymbol;
1274 struct objfile *objfile;
1275 struct obj_section *osect;
1276 CORE_ADDR addr, sect_addr;
1278 unsigned int offset;
1281 error_no_arg (_("address"));
1283 addr = parse_and_eval_address (arg);
1284 ALL_OBJSECTIONS (objfile, osect)
1286 /* Only process each object file once, even if there's a separate
1288 if (objfile->separate_debug_objfile_backlink)
1291 sect_addr = overlay_mapped_address (addr, osect);
1293 if (obj_section_addr (osect) <= sect_addr
1294 && sect_addr < obj_section_endaddr (osect)
1296 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1298 const char *obj_name, *mapped, *sec_name, *msym_name;
1299 const char *loc_string;
1302 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1303 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1304 sec_name = osect->the_bfd_section->name;
1305 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1307 /* Don't print the offset if it is zero.
1308 We assume there's no need to handle i18n of "sym + offset". */
1309 std::string string_holder;
1312 string_holder = string_printf ("%s + %u", msym_name, offset);
1313 loc_string = string_holder.c_str ();
1316 loc_string = msym_name;
1318 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1319 obj_name = objfile_name (osect->objfile);
1321 if (MULTI_OBJFILE_P ())
1322 if (pc_in_unmapped_range (addr, osect))
1323 if (section_is_overlay (osect))
1324 printf_filtered (_("%s in load address range of "
1325 "%s overlay section %s of %s\n"),
1326 loc_string, mapped, sec_name, obj_name);
1328 printf_filtered (_("%s in load address range of "
1329 "section %s of %s\n"),
1330 loc_string, sec_name, obj_name);
1332 if (section_is_overlay (osect))
1333 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1334 loc_string, mapped, sec_name, obj_name);
1336 printf_filtered (_("%s in section %s of %s\n"),
1337 loc_string, sec_name, obj_name);
1339 if (pc_in_unmapped_range (addr, osect))
1340 if (section_is_overlay (osect))
1341 printf_filtered (_("%s in load address range of %s overlay "
1343 loc_string, mapped, sec_name);
1345 printf_filtered (_("%s in load address range of section %s\n"),
1346 loc_string, sec_name);
1348 if (section_is_overlay (osect))
1349 printf_filtered (_("%s in %s overlay section %s\n"),
1350 loc_string, mapped, sec_name);
1352 printf_filtered (_("%s in section %s\n"),
1353 loc_string, sec_name);
1357 printf_filtered (_("No symbol matches %s.\n"), arg);
1361 info_address_command (const char *exp, int from_tty)
1363 struct gdbarch *gdbarch;
1366 struct bound_minimal_symbol msymbol;
1368 struct obj_section *section;
1369 CORE_ADDR load_addr, context_pc = 0;
1370 struct field_of_this_result is_a_field_of_this;
1373 error (_("Argument required."));
1375 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1376 &is_a_field_of_this).symbol;
1379 if (is_a_field_of_this.type != NULL)
1381 printf_filtered ("Symbol \"");
1382 fprintf_symbol_filtered (gdb_stdout, exp,
1383 current_language->la_language, DMGL_ANSI);
1384 printf_filtered ("\" is a field of the local class variable ");
1385 if (current_language->la_language == language_objc)
1386 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1388 printf_filtered ("`this'\n");
1392 msymbol = lookup_bound_minimal_symbol (exp);
1394 if (msymbol.minsym != NULL)
1396 struct objfile *objfile = msymbol.objfile;
1398 gdbarch = get_objfile_arch (objfile);
1399 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1401 printf_filtered ("Symbol \"");
1402 fprintf_symbol_filtered (gdb_stdout, exp,
1403 current_language->la_language, DMGL_ANSI);
1404 printf_filtered ("\" is at ");
1405 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1406 printf_filtered (" in a file compiled without debugging");
1407 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1408 if (section_is_overlay (section))
1410 load_addr = overlay_unmapped_address (load_addr, section);
1411 printf_filtered (",\n -- loaded at ");
1412 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1413 printf_filtered (" in overlay section %s",
1414 section->the_bfd_section->name);
1416 printf_filtered (".\n");
1419 error (_("No symbol \"%s\" in current context."), exp);
1423 printf_filtered ("Symbol \"");
1424 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1425 current_language->la_language, DMGL_ANSI);
1426 printf_filtered ("\" is ");
1427 val = SYMBOL_VALUE (sym);
1428 if (SYMBOL_OBJFILE_OWNED (sym))
1429 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1432 gdbarch = symbol_arch (sym);
1434 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1436 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1438 printf_filtered (".\n");
1442 switch (SYMBOL_CLASS (sym))
1445 case LOC_CONST_BYTES:
1446 printf_filtered ("constant");
1450 printf_filtered ("a label at address ");
1451 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1452 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1453 if (section_is_overlay (section))
1455 load_addr = overlay_unmapped_address (load_addr, section);
1456 printf_filtered (",\n -- loaded at ");
1457 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1458 printf_filtered (" in overlay section %s",
1459 section->the_bfd_section->name);
1464 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1467 /* GDBARCH is the architecture associated with the objfile the symbol
1468 is defined in; the target architecture may be different, and may
1469 provide additional registers. However, we do not know the target
1470 architecture at this point. We assume the objfile architecture
1471 will contain all the standard registers that occur in debug info
1473 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1475 if (SYMBOL_IS_ARGUMENT (sym))
1476 printf_filtered (_("an argument in register %s"),
1477 gdbarch_register_name (gdbarch, regno));
1479 printf_filtered (_("a variable in register %s"),
1480 gdbarch_register_name (gdbarch, regno));
1484 printf_filtered (_("static storage at address "));
1485 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1486 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1487 if (section_is_overlay (section))
1489 load_addr = overlay_unmapped_address (load_addr, section);
1490 printf_filtered (_(",\n -- loaded at "));
1491 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1492 printf_filtered (_(" in overlay section %s"),
1493 section->the_bfd_section->name);
1497 case LOC_REGPARM_ADDR:
1498 /* Note comment at LOC_REGISTER. */
1499 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1500 printf_filtered (_("address of an argument in register %s"),
1501 gdbarch_register_name (gdbarch, regno));
1505 printf_filtered (_("an argument at offset %ld"), val);
1509 printf_filtered (_("a local variable at frame offset %ld"), val);
1513 printf_filtered (_("a reference argument at offset %ld"), val);
1517 printf_filtered (_("a typedef"));
1521 printf_filtered (_("a function at address "));
1522 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1523 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1524 if (section_is_overlay (section))
1526 load_addr = overlay_unmapped_address (load_addr, section);
1527 printf_filtered (_(",\n -- loaded at "));
1528 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1529 printf_filtered (_(" in overlay section %s"),
1530 section->the_bfd_section->name);
1534 case LOC_UNRESOLVED:
1536 struct bound_minimal_symbol msym;
1538 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1539 if (msym.minsym == NULL)
1540 printf_filtered ("unresolved");
1543 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1546 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1548 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1549 printf_filtered (_("a thread-local variable at offset %s "
1550 "in the thread-local storage for `%s'"),
1551 paddress (gdbarch, load_addr),
1552 objfile_name (section->objfile));
1556 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1557 printf_filtered (_("static storage at address "));
1558 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1559 if (section_is_overlay (section))
1561 load_addr = overlay_unmapped_address (load_addr, section);
1562 printf_filtered (_(",\n -- loaded at "));
1563 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1564 printf_filtered (_(" in overlay section %s"),
1565 section->the_bfd_section->name);
1572 case LOC_OPTIMIZED_OUT:
1573 printf_filtered (_("optimized out"));
1577 printf_filtered (_("of unknown (botched) type"));
1580 printf_filtered (".\n");
1585 x_command (const char *exp, int from_tty)
1587 struct format_data fmt;
1590 fmt.format = last_format ? last_format : 'x';
1591 fmt.size = last_size;
1595 /* If there is no expression and no format, use the most recent
1597 if (exp == nullptr && last_count > 0)
1598 fmt.count = last_count;
1600 if (exp && *exp == '/')
1602 const char *tmp = exp + 1;
1604 fmt = decode_format (&tmp, last_format, last_size);
1608 last_count = fmt.count;
1610 /* If we have an expression, evaluate it and use it as the address. */
1612 if (exp != 0 && *exp != 0)
1614 expression_up expr = parse_expression (exp);
1615 /* Cause expression not to be there any more if this command is
1616 repeated with Newline. But don't clobber a user-defined
1617 command's definition. */
1619 set_repeat_arguments ("");
1620 val = evaluate_expression (expr.get ());
1621 if (TYPE_IS_REFERENCE (value_type (val)))
1622 val = coerce_ref (val);
1623 /* In rvalue contexts, such as this, functions are coerced into
1624 pointers to functions. This makes "x/i main" work. */
1625 if (/* last_format == 'i' && */
1626 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1627 && VALUE_LVAL (val) == lval_memory)
1628 next_address = value_address (val);
1630 next_address = value_as_address (val);
1632 next_gdbarch = expr->gdbarch;
1636 error_no_arg (_("starting display address"));
1638 do_examine (fmt, next_gdbarch, next_address);
1640 /* If the examine succeeds, we remember its size and format for next
1641 time. Set last_size to 'b' for strings. */
1642 if (fmt.format == 's')
1645 last_size = fmt.size;
1646 last_format = fmt.format;
1648 /* Set a couple of internal variables if appropriate. */
1649 if (last_examine_value != nullptr)
1651 /* Make last address examined available to the user as $_. Use
1652 the correct pointer type. */
1653 struct type *pointer_type
1654 = lookup_pointer_type (value_type (last_examine_value.get ()));
1655 set_internalvar (lookup_internalvar ("_"),
1656 value_from_pointer (pointer_type,
1657 last_examine_address));
1659 /* Make contents of last address examined available to the user
1660 as $__. If the last value has not been fetched from memory
1661 then don't fetch it now; instead mark it by voiding the $__
1663 if (value_lazy (last_examine_value.get ()))
1664 clear_internalvar (lookup_internalvar ("__"));
1666 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1671 /* Add an expression to the auto-display chain.
1672 Specify the expression. */
1675 display_command (const char *arg, int from_tty)
1677 struct format_data fmt;
1678 struct display *newobj;
1679 const char *exp = arg;
1690 fmt = decode_format (&exp, 0, 0);
1691 if (fmt.size && fmt.format == 0)
1693 if (fmt.format == 'i' || fmt.format == 's')
1704 innermost_block.reset ();
1705 expression_up expr = parse_expression (exp);
1707 newobj = new display ();
1709 newobj->exp_string = xstrdup (exp);
1710 newobj->exp = std::move (expr);
1711 newobj->block = innermost_block.block ();
1712 newobj->pspace = current_program_space;
1713 newobj->number = ++display_number;
1714 newobj->format = fmt;
1715 newobj->enabled_p = 1;
1716 newobj->next = NULL;
1718 if (display_chain == NULL)
1719 display_chain = newobj;
1722 struct display *last;
1724 for (last = display_chain; last->next != NULL; last = last->next)
1726 last->next = newobj;
1730 do_one_display (newobj);
1736 free_display (struct display *d)
1738 xfree (d->exp_string);
1742 /* Clear out the display_chain. Done when new symtabs are loaded,
1743 since this invalidates the types stored in many expressions. */
1746 clear_displays (void)
1750 while ((d = display_chain) != NULL)
1752 display_chain = d->next;
1757 /* Delete the auto-display DISPLAY. */
1760 delete_display (struct display *display)
1764 gdb_assert (display != NULL);
1766 if (display_chain == display)
1767 display_chain = display->next;
1770 if (d->next == display)
1772 d->next = display->next;
1776 free_display (display);
1779 /* Call FUNCTION on each of the displays whose numbers are given in
1780 ARGS. DATA is passed unmodified to FUNCTION. */
1783 map_display_numbers (const char *args,
1784 void (*function) (struct display *,
1791 error_no_arg (_("one or more display numbers"));
1793 number_or_range_parser parser (args);
1795 while (!parser.finished ())
1797 const char *p = parser.cur_tok ();
1799 num = parser.get_number ();
1801 warning (_("bad display number at or near '%s'"), p);
1804 struct display *d, *tmp;
1806 ALL_DISPLAYS_SAFE (d, tmp)
1807 if (d->number == num)
1810 printf_unfiltered (_("No display number %d.\n"), num);
1817 /* Callback for map_display_numbers, that deletes a display. */
1820 do_delete_display (struct display *d, void *data)
1825 /* "undisplay" command. */
1828 undisplay_command (const char *args, int from_tty)
1832 if (query (_("Delete all auto-display expressions? ")))
1838 map_display_numbers (args, do_delete_display, NULL);
1842 /* Display a single auto-display.
1843 Do nothing if the display cannot be printed in the current context,
1844 or if the display is disabled. */
1847 do_one_display (struct display *d)
1849 int within_current_scope;
1851 if (d->enabled_p == 0)
1854 /* The expression carries the architecture that was used at parse time.
1855 This is a problem if the expression depends on architecture features
1856 (e.g. register numbers), and the current architecture is now different.
1857 For example, a display statement like "display/i $pc" is expected to
1858 display the PC register of the current architecture, not the arch at
1859 the time the display command was given. Therefore, we re-parse the
1860 expression if the current architecture has changed. */
1861 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1872 innermost_block.reset ();
1873 d->exp = parse_expression (d->exp_string);
1874 d->block = innermost_block.block ();
1876 CATCH (ex, RETURN_MASK_ALL)
1878 /* Can't re-parse the expression. Disable this display item. */
1880 warning (_("Unable to display \"%s\": %s"),
1881 d->exp_string, ex.message);
1889 if (d->pspace == current_program_space)
1890 within_current_scope = contained_in (get_selected_block (0), d->block);
1892 within_current_scope = 0;
1895 within_current_scope = 1;
1896 if (!within_current_scope)
1899 scoped_restore save_display_number
1900 = make_scoped_restore (¤t_display_number, d->number);
1902 annotate_display_begin ();
1903 printf_filtered ("%d", d->number);
1904 annotate_display_number_end ();
1905 printf_filtered (": ");
1909 annotate_display_format ();
1911 printf_filtered ("x/");
1912 if (d->format.count != 1)
1913 printf_filtered ("%d", d->format.count);
1914 printf_filtered ("%c", d->format.format);
1915 if (d->format.format != 'i' && d->format.format != 's')
1916 printf_filtered ("%c", d->format.size);
1917 printf_filtered (" ");
1919 annotate_display_expression ();
1921 puts_filtered (d->exp_string);
1922 annotate_display_expression_end ();
1924 if (d->format.count != 1 || d->format.format == 'i')
1925 printf_filtered ("\n");
1927 printf_filtered (" ");
1929 annotate_display_value ();
1936 val = evaluate_expression (d->exp.get ());
1937 addr = value_as_address (val);
1938 if (d->format.format == 'i')
1939 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1940 do_examine (d->format, d->exp->gdbarch, addr);
1942 CATCH (ex, RETURN_MASK_ERROR)
1944 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1950 struct value_print_options opts;
1952 annotate_display_format ();
1954 if (d->format.format)
1955 printf_filtered ("/%c ", d->format.format);
1957 annotate_display_expression ();
1959 puts_filtered (d->exp_string);
1960 annotate_display_expression_end ();
1962 printf_filtered (" = ");
1964 annotate_display_expression ();
1966 get_formatted_print_options (&opts, d->format.format);
1967 opts.raw = d->format.raw;
1973 val = evaluate_expression (d->exp.get ());
1974 print_formatted (val, d->format.size, &opts, gdb_stdout);
1976 CATCH (ex, RETURN_MASK_ERROR)
1978 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1982 printf_filtered ("\n");
1985 annotate_display_end ();
1987 gdb_flush (gdb_stdout);
1990 /* Display all of the values on the auto-display chain which can be
1991 evaluated in the current scope. */
1998 for (d = display_chain; d; d = d->next)
2002 /* Delete the auto-display which we were in the process of displaying.
2003 This is done when there is an error or a signal. */
2006 disable_display (int num)
2010 for (d = display_chain; d; d = d->next)
2011 if (d->number == num)
2016 printf_unfiltered (_("No display number %d.\n"), num);
2020 disable_current_display (void)
2022 if (current_display_number >= 0)
2024 disable_display (current_display_number);
2025 fprintf_unfiltered (gdb_stderr,
2026 _("Disabling display %d to "
2027 "avoid infinite recursion.\n"),
2028 current_display_number);
2030 current_display_number = -1;
2034 info_display_command (const char *ignore, int from_tty)
2039 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2041 printf_filtered (_("Auto-display expressions now in effect:\n\
2042 Num Enb Expression\n"));
2044 for (d = display_chain; d; d = d->next)
2046 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2048 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2050 else if (d->format.format)
2051 printf_filtered ("/%c ", d->format.format);
2052 puts_filtered (d->exp_string);
2053 if (d->block && !contained_in (get_selected_block (0), d->block))
2054 printf_filtered (_(" (cannot be evaluated in the current context)"));
2055 printf_filtered ("\n");
2056 gdb_flush (gdb_stdout);
2060 /* Callback fo map_display_numbers, that enables or disables the
2061 passed in display D. */
2064 do_enable_disable_display (struct display *d, void *data)
2066 d->enabled_p = *(int *) data;
2069 /* Implamentation of both the "disable display" and "enable display"
2070 commands. ENABLE decides what to do. */
2073 enable_disable_display_command (const char *args, int from_tty, int enable)
2080 d->enabled_p = enable;
2084 map_display_numbers (args, do_enable_disable_display, &enable);
2087 /* The "enable display" command. */
2090 enable_display_command (const char *args, int from_tty)
2092 enable_disable_display_command (args, from_tty, 1);
2095 /* The "disable display" command. */
2098 disable_display_command (const char *args, int from_tty)
2100 enable_disable_display_command (args, from_tty, 0);
2103 /* display_chain items point to blocks and expressions. Some expressions in
2104 turn may point to symbols.
2105 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2106 obstack_free'd when a shared library is unloaded.
2107 Clear pointers that are about to become dangling.
2108 Both .exp and .block fields will be restored next time we need to display
2109 an item by re-parsing .exp_string field in the new execution context. */
2112 clear_dangling_display_expressions (struct objfile *objfile)
2115 struct program_space *pspace;
2117 /* With no symbol file we cannot have a block or expression from it. */
2118 if (objfile == NULL)
2120 pspace = objfile->pspace;
2121 if (objfile->separate_debug_objfile_backlink)
2123 objfile = objfile->separate_debug_objfile_backlink;
2124 gdb_assert (objfile->pspace == pspace);
2127 for (d = display_chain; d != NULL; d = d->next)
2129 if (d->pspace != pspace)
2132 if (lookup_objfile_from_block (d->block) == objfile
2133 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2142 /* Print the value in stack frame FRAME of a variable specified by a
2143 struct symbol. NAME is the name to print; if NULL then VAR's print
2144 name will be used. STREAM is the ui_file on which to print the
2145 value. INDENT specifies the number of indent levels to print
2146 before printing the variable name.
2148 This function invalidates FRAME. */
2151 print_variable_and_value (const char *name, struct symbol *var,
2152 struct frame_info *frame,
2153 struct ui_file *stream, int indent)
2157 name = SYMBOL_PRINT_NAME (var);
2159 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2163 struct value_print_options opts;
2165 /* READ_VAR_VALUE needs a block in order to deal with non-local
2166 references (i.e. to handle nested functions). In this context, we
2167 print variables that are local to this frame, so we can avoid passing
2169 val = read_var_value (var, NULL, frame);
2170 get_user_print_options (&opts);
2172 common_val_print (val, stream, indent, &opts, current_language);
2174 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2178 CATCH (except, RETURN_MASK_ERROR)
2180 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2185 fprintf_filtered (stream, "\n");
2188 /* Subroutine of ui_printf to simplify it.
2189 Print VALUE to STREAM using FORMAT.
2190 VALUE is a C-style string on the target. */
2193 printf_c_string (struct ui_file *stream, const char *format,
2194 struct value *value)
2200 tem = value_as_address (value);
2204 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2205 fprintf_filtered (stream, format, "(null)");
2210 /* This is a %s argument. Find the length of the string. */
2216 read_memory (tem + j, &c, 1);
2221 /* Copy the string contents into a string inside GDB. */
2222 str = (gdb_byte *) alloca (j + 1);
2224 read_memory (tem, str, j);
2228 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2229 fprintf_filtered (stream, format, (char *) str);
2233 /* Subroutine of ui_printf to simplify it.
2234 Print VALUE to STREAM using FORMAT.
2235 VALUE is a wide C-style string on the target. */
2238 printf_wide_c_string (struct ui_file *stream, const char *format,
2239 struct value *value)
2244 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2246 struct type *wctype = lookup_typename (current_language, gdbarch,
2247 "wchar_t", NULL, 0);
2248 int wcwidth = TYPE_LENGTH (wctype);
2249 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2251 tem = value_as_address (value);
2255 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2256 fprintf_filtered (stream, format, "(null)");
2261 /* This is a %s argument. Find the length of the string. */
2262 for (j = 0;; j += wcwidth)
2265 read_memory (tem + j, buf, wcwidth);
2266 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2270 /* Copy the string contents into a string inside GDB. */
2271 str = (gdb_byte *) alloca (j + wcwidth);
2273 read_memory (tem, str, j);
2274 memset (&str[j], 0, wcwidth);
2276 auto_obstack output;
2278 convert_between_encodings (target_wide_charset (gdbarch),
2281 &output, translit_char);
2282 obstack_grow_str0 (&output, "");
2285 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2286 fprintf_filtered (stream, format, obstack_base (&output));
2290 /* Subroutine of ui_printf to simplify it.
2291 Print VALUE, a floating point value, to STREAM using FORMAT. */
2294 printf_floating (struct ui_file *stream, const char *format,
2295 struct value *value, enum argclass argclass)
2297 /* Parameter data. */
2298 struct type *param_type = value_type (value);
2299 struct gdbarch *gdbarch = get_type_arch (param_type);
2301 /* Determine target type corresponding to the format string. */
2302 struct type *fmt_type;
2306 fmt_type = builtin_type (gdbarch)->builtin_double;
2308 case long_double_arg:
2309 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2311 case dec32float_arg:
2312 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2314 case dec64float_arg:
2315 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2317 case dec128float_arg:
2318 fmt_type = builtin_type (gdbarch)->builtin_declong;
2321 gdb_assert_not_reached ("unexpected argument class");
2324 /* To match the traditional GDB behavior, the conversion is
2325 done differently depending on the type of the parameter:
2327 - if the parameter has floating-point type, it's value
2328 is converted to the target type;
2330 - otherwise, if the parameter has a type that is of the
2331 same size as a built-in floating-point type, the value
2332 bytes are interpreted as if they were of that type, and
2333 then converted to the target type (this is not done for
2334 decimal floating-point argument classes);
2336 - otherwise, if the source value has an integer value,
2337 it's value is converted to the target type;
2339 - otherwise, an error is raised.
2341 In either case, the result of the conversion is a byte buffer
2342 formatted in the target format for the target type. */
2344 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2346 param_type = float_type_from_length (param_type);
2347 if (param_type != value_type (value))
2348 value = value_from_contents (param_type, value_contents (value));
2351 value = value_cast (fmt_type, value);
2353 /* Convert the value to a string and print it. */
2355 = target_float_to_string (value_contents (value), fmt_type, format);
2356 fputs_filtered (str.c_str (), stream);
2359 /* Subroutine of ui_printf to simplify it.
2360 Print VALUE, a target pointer, to STREAM using FORMAT. */
2363 printf_pointer (struct ui_file *stream, const char *format,
2364 struct value *value)
2366 /* We avoid the host's %p because pointers are too
2367 likely to be the wrong size. The only interesting
2368 modifier for %p is a width; extract that, and then
2369 handle %p as glibc would: %#x or a literal "(nil)". */
2373 #ifdef PRINTF_HAS_LONG_LONG
2374 long long val = value_as_long (value);
2376 long val = value_as_long (value);
2379 fmt = (char *) alloca (strlen (format) + 5);
2381 /* Copy up to the leading %. */
2386 int is_percent = (*p == '%');
2401 /* Copy any width or flags. Only the "-" flag is valid for pointers
2402 -- see the format_pieces constructor. */
2403 while (*p == '-' || (*p >= '0' && *p < '9'))
2406 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2409 #ifdef PRINTF_HAS_LONG_LONG
2416 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2417 fprintf_filtered (stream, fmt, val);
2425 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2426 fprintf_filtered (stream, fmt, "(nil)");
2431 /* printf "printf format string" ARG to STREAM. */
2434 ui_printf (const char *arg, struct ui_file *stream)
2436 const char *s = arg;
2437 std::vector<struct value *> val_args;
2440 error_no_arg (_("format-control string and values to print"));
2442 s = skip_spaces (s);
2444 /* A format string should follow, enveloped in double quotes. */
2446 error (_("Bad format string, missing '\"'."));
2448 format_pieces fpieces (&s);
2451 error (_("Bad format string, non-terminated '\"'."));
2453 s = skip_spaces (s);
2455 if (*s != ',' && *s != 0)
2456 error (_("Invalid argument syntax"));
2460 s = skip_spaces (s);
2465 const char *current_substring;
2468 for (auto &&piece : fpieces)
2469 if (piece.argclass != literal_piece)
2472 /* Now, parse all arguments and evaluate them.
2473 Store the VALUEs in VAL_ARGS. */
2480 val_args.push_back (parse_to_comma_and_eval (&s1));
2487 if (val_args.size () != nargs_wanted)
2488 error (_("Wrong number of arguments for specified format-string"));
2490 /* Now actually print them. */
2492 for (auto &&piece : fpieces)
2494 current_substring = piece.string;
2495 switch (piece.argclass)
2498 printf_c_string (stream, current_substring, val_args[i]);
2500 case wide_string_arg:
2501 printf_wide_c_string (stream, current_substring, val_args[i]);
2505 struct gdbarch *gdbarch
2506 = get_type_arch (value_type (val_args[i]));
2507 struct type *wctype = lookup_typename (current_language, gdbarch,
2508 "wchar_t", NULL, 0);
2509 struct type *valtype;
2510 const gdb_byte *bytes;
2512 valtype = value_type (val_args[i]);
2513 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2514 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2515 error (_("expected wchar_t argument for %%lc"));
2517 bytes = value_contents (val_args[i]);
2519 auto_obstack output;
2521 convert_between_encodings (target_wide_charset (gdbarch),
2523 bytes, TYPE_LENGTH (valtype),
2524 TYPE_LENGTH (valtype),
2525 &output, translit_char);
2526 obstack_grow_str0 (&output, "");
2529 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2530 fprintf_filtered (stream, current_substring,
2531 obstack_base (&output));
2536 #ifdef PRINTF_HAS_LONG_LONG
2538 long long val = value_as_long (val_args[i]);
2541 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2542 fprintf_filtered (stream, current_substring, val);
2547 error (_("long long not supported in printf"));
2551 int val = value_as_long (val_args[i]);
2554 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2555 fprintf_filtered (stream, current_substring, val);
2561 long val = value_as_long (val_args[i]);
2564 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2565 fprintf_filtered (stream, current_substring, val);
2569 /* Handles floating-point values. */
2571 case long_double_arg:
2572 case dec32float_arg:
2573 case dec64float_arg:
2574 case dec128float_arg:
2575 printf_floating (stream, current_substring, val_args[i],
2579 printf_pointer (stream, current_substring, val_args[i]);
2582 /* Print a portion of the format string that has no
2583 directives. Note that this will not include any
2584 ordinary %-specs, but it might include "%%". That is
2585 why we use printf_filtered and not puts_filtered here.
2586 Also, we pass a dummy argument because some platforms
2587 have modified GCC to include -Wformat-security by
2588 default, which will warn here if there is no
2591 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2592 fprintf_filtered (stream, current_substring, 0);
2596 internal_error (__FILE__, __LINE__,
2597 _("failed internal consistency check"));
2599 /* Maybe advance to the next argument. */
2600 if (piece.argclass != literal_piece)
2606 /* Implement the "printf" command. */
2609 printf_command (const char *arg, int from_tty)
2611 ui_printf (arg, gdb_stdout);
2612 gdb_flush (gdb_stdout);
2615 /* Implement the "eval" command. */
2618 eval_command (const char *arg, int from_tty)
2622 ui_printf (arg, &stb);
2624 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2626 execute_command (expanded.c_str (), from_tty);
2630 _initialize_printcmd (void)
2632 struct cmd_list_element *c;
2634 current_display_number = -1;
2636 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2638 add_info ("address", info_address_command,
2639 _("Describe where symbol SYM is stored."));
2641 add_info ("symbol", info_symbol_command, _("\
2642 Describe what symbol is at location ADDR.\n\
2643 Only for symbols with fixed locations (global or static scope)."));
2645 add_com ("x", class_vars, x_command, _("\
2646 Examine memory: x/FMT ADDRESS.\n\
2647 ADDRESS is an expression for the memory address to examine.\n\
2648 FMT is a repeat count followed by a format letter and a size letter.\n\
2649 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2650 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2651 and z(hex, zero padded on the left).\n\
2652 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2653 The specified number of objects of the specified size are printed\n\
2654 according to the format. If a negative number is specified, memory is\n\
2655 examined backward from the address.\n\n\
2656 Defaults for format and size letters are those previously used.\n\
2657 Default count is 1. Default address is following last thing printed\n\
2658 with this command or \"print\"."));
2661 add_com ("whereis", class_vars, whereis_command,
2662 _("Print line number and file of definition of variable."));
2665 add_info ("display", info_display_command, _("\
2666 Expressions to display when program stops, with code numbers."));
2668 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2669 Cancel some expressions to be displayed when program stops.\n\
2670 Arguments are the code numbers of the expressions to stop displaying.\n\
2671 No argument means cancel all automatic-display expressions.\n\
2672 \"delete display\" has the same effect as this command.\n\
2673 Do \"info display\" to see current list of code numbers."),
2676 add_com ("display", class_vars, display_command, _("\
2677 Print value of expression EXP each time the program stops.\n\
2678 /FMT may be used before EXP as in the \"print\" command.\n\
2679 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2680 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2681 and examining is done as in the \"x\" command.\n\n\
2682 With no argument, display all currently requested auto-display expressions.\n\
2683 Use \"undisplay\" to cancel display requests previously made."));
2685 add_cmd ("display", class_vars, enable_display_command, _("\
2686 Enable some expressions to be displayed when program stops.\n\
2687 Arguments are the code numbers of the expressions to resume displaying.\n\
2688 No argument means enable all automatic-display expressions.\n\
2689 Do \"info display\" to see current list of code numbers."), &enablelist);
2691 add_cmd ("display", class_vars, disable_display_command, _("\
2692 Disable some expressions to be displayed when program stops.\n\
2693 Arguments are the code numbers of the expressions to stop displaying.\n\
2694 No argument means disable all automatic-display expressions.\n\
2695 Do \"info display\" to see current list of code numbers."), &disablelist);
2697 add_cmd ("display", class_vars, undisplay_command, _("\
2698 Cancel some expressions to be displayed when program stops.\n\
2699 Arguments are the code numbers of the expressions to stop displaying.\n\
2700 No argument means cancel all automatic-display expressions.\n\
2701 Do \"info display\" to see current list of code numbers."), &deletelist);
2703 add_com ("printf", class_vars, printf_command, _("\
2704 Formatted printing, like the C \"printf\" function.\n\
2705 Usage: printf \"format string\", arg1, arg2, arg3, ..., argn\n\
2706 This supports most C printf format specifications, like %s, %d, etc."));
2708 add_com ("output", class_vars, output_command, _("\
2709 Like \"print\" but don't put in value history and don't print newline.\n\
2710 This is useful in user-defined commands."));
2712 add_prefix_cmd ("set", class_vars, set_command, _("\
2713 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2714 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2715 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2716 with $), a register (a few standard names starting with $), or an actual\n\
2717 variable in the program being debugged. EXP is any valid expression.\n\
2718 Use \"set variable\" for variables with names identical to set subcommands.\n\
2720 With a subcommand, this command modifies parts of the gdb environment.\n\
2721 You can see these environment settings with the \"show\" command."),
2722 &setlist, "set ", 1, &cmdlist);
2724 add_com ("assign", class_vars, set_command, _("\
2725 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2726 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2727 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2728 with $), a register (a few standard names starting with $), or an actual\n\
2729 variable in the program being debugged. EXP is any valid expression.\n\
2730 Use \"set variable\" for variables with names identical to set subcommands.\n\
2731 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2732 You can see these environment settings with the \"show\" command."));
2734 /* "call" is the same as "set", but handy for dbx users to call fns. */
2735 c = add_com ("call", class_vars, call_command, _("\
2736 Call a function in the program.\n\
2737 The argument is the function name and arguments, in the notation of the\n\
2738 current working language. The result is printed and saved in the value\n\
2739 history, if it is not void."));
2740 set_cmd_completer (c, expression_completer);
2742 add_cmd ("variable", class_vars, set_command, _("\
2743 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2744 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2745 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2746 with $), a register (a few standard names starting with $), or an actual\n\
2747 variable in the program being debugged. EXP is any valid expression.\n\
2748 This may usually be abbreviated to simply \"set\"."),
2750 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2752 c = add_com ("print", class_vars, print_command, _("\
2753 Print value of expression EXP.\n\
2754 Variables accessible are those of the lexical environment of the selected\n\
2755 stack frame, plus all those whose scope is global or an entire file.\n\
2757 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2758 $$NUM refers to NUM'th value back from the last one.\n\
2759 Names starting with $ refer to registers (with the values they would have\n\
2760 if the program were to return to the stack frame now selected, restoring\n\
2761 all registers saved by frames farther in) or else to debugger\n\
2762 \"convenience\" variables (any such name not a known register).\n\
2763 Use assignment expressions to give values to convenience variables.\n\
2765 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2766 @ is a binary operator for treating consecutive data objects\n\
2767 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2768 element is FOO, whose second element is stored in the space following\n\
2769 where FOO is stored, etc. FOO must be an expression whose value\n\
2770 resides in memory.\n\
2772 EXP may be preceded with /FMT, where FMT is a format letter\n\
2773 but no count or size letter (see \"x\" command)."));
2774 set_cmd_completer (c, expression_completer);
2775 add_com_alias ("p", "print", class_vars, 1);
2776 add_com_alias ("inspect", "print", class_vars, 1);
2778 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2779 &max_symbolic_offset, _("\
2780 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2781 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2782 Tell GDB to only display the symbolic form of an address if the\n\
2783 offset between the closest earlier symbol and the address is less than\n\
2784 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2785 to always print the symbolic form of an address if any symbol precedes\n\
2786 it. Zero is equivalent to \"unlimited\"."),
2788 show_max_symbolic_offset,
2789 &setprintlist, &showprintlist);
2790 add_setshow_boolean_cmd ("symbol-filename", no_class,
2791 &print_symbol_filename, _("\
2792 Set printing of source filename and line number with <symbol>."), _("\
2793 Show printing of source filename and line number with <symbol>."), NULL,
2795 show_print_symbol_filename,
2796 &setprintlist, &showprintlist);
2798 add_com ("eval", no_class, eval_command, _("\
2799 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2800 a command line, and call it."));