1 /* Print values for GNU debugger GDB.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "expression.h"
31 #include "breakpoint.h"
33 #include "gdb-demangle.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
42 #include "target-float.h"
43 #include "observable.h"
45 #include "parser-defs.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
57 /* Last specified output format. */
59 static char last_format = 0;
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
63 static char last_size = 'w';
65 /* Last specified count for the 'x' command. */
67 static int last_count;
69 /* Default address to examine next, and associated architecture. */
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
74 /* Number of delay instructions following current disassembled insn. */
76 static int branch_delay_insns;
78 /* Last address examined. */
80 static CORE_ADDR last_examine_address;
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
85 static value_ref_ptr last_examine_value;
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
90 static unsigned int max_symbolic_offset = UINT_MAX;
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static int print_symbol_filename = 0;
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
117 static int current_display_number;
121 /* Chain link to next auto-display item. */
122 struct display *next;
124 /* The expression as the user typed it. */
127 /* Expression to be evaluated and displayed. */
130 /* Item number of this auto-display item. */
133 /* Display format specified. */
134 struct format_data format;
136 /* Program space associated with `block'. */
137 struct program_space *pspace;
139 /* Innermost block required by this expression when evaluated. */
140 const struct block *block;
142 /* Status of this display (enabled or disabled). */
146 /* Chain of expressions whose values should be displayed
147 automatically each time the program stops. */
149 static struct display *display_chain;
151 static int display_number;
153 /* Walk the following statement or block through all displays.
154 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
157 #define ALL_DISPLAYS(B) \
158 for (B = display_chain; B; B = B->next)
160 #define ALL_DISPLAYS_SAFE(B,TMP) \
161 for (B = display_chain; \
162 B ? (TMP = B->next, 1): 0; \
165 /* Prototypes for local functions. */
167 static void do_one_display (struct display *);
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
183 struct format_data val;
184 const char *p = *string_ptr;
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
201 /* Now process size or format letters that follow. */
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
212 else if (*p >= 'a' && *p <= 'z')
218 *string_ptr = skip_spaces (p);
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
225 /* Neither has been specified. */
226 val.format = oformat;
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
234 else if (val.size == '?')
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
248 /* Default it to giantword if the last used size is not
250 val.size = osize ? 'g' : osize;
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
257 /* Display strings with byte size chars unless explicitly
263 /* The default is the size most recently specified. */
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
289 switch (options->format)
293 struct type *elttype = value_type (val);
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
303 /* We often wrap here if there are long symbolic names. */
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
313 if (options->format == 0 || options->format == 's'
314 || TYPE_CODE (type) == TYPE_CODE_REF
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
322 /* User specified format, so don't look to the type to tell us
324 val_print_scalar_formatted (type,
325 value_embedded_offset (val),
327 options, size, stream);
330 /* Return builtin floating point type of same length as TYPE.
331 If no such type is found, return TYPE itself. */
333 float_type_from_length (struct type *type)
335 struct gdbarch *gdbarch = get_type_arch (type);
336 const struct builtin_type *builtin = builtin_type (gdbarch);
338 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
339 type = builtin->builtin_float;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
341 type = builtin->builtin_double;
342 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
343 type = builtin->builtin_long_double;
348 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
349 according to OPTIONS and SIZE on STREAM. Formats s and i are not
350 supported at this level. */
353 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
354 const struct value_print_options *options,
355 int size, struct ui_file *stream)
357 struct gdbarch *gdbarch = get_type_arch (type);
358 unsigned int len = TYPE_LENGTH (type);
359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
361 /* String printing should go through val_print_scalar_formatted. */
362 gdb_assert (options->format != 's');
364 /* If the value is a pointer, and pointers and addresses are not the
365 same, then at this point, the value's length (in target bytes) is
366 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
367 if (TYPE_CODE (type) == TYPE_CODE_PTR)
368 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
370 /* If we are printing it as unsigned, truncate it in case it is actually
371 a negative signed value (e.g. "print/u (short)-1" should print 65535
372 (if shorts are 16 bits) instead of 4294967295). */
373 if (options->format != 'c'
374 && (options->format != 'd' || TYPE_UNSIGNED (type)))
376 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
377 valaddr += TYPE_LENGTH (type) - len;
380 if (size != 0 && (options->format == 'x' || options->format == 't'))
382 /* Truncate to fit. */
399 error (_("Undefined output size \"%c\"."), size);
401 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
402 valaddr += len - newlen;
406 /* Historically gdb has printed floats by first casting them to a
407 long, and then printing the long. PR cli/16242 suggests changing
408 this to using C-style hex float format. */
409 gdb::byte_vector converted_float_bytes;
410 if (TYPE_CODE (type) == TYPE_CODE_FLT
411 && (options->format == 'o'
412 || options->format == 'x'
413 || options->format == 't'
414 || options->format == 'z'
415 || options->format == 'd'
416 || options->format == 'u'))
418 LONGEST val_long = unpack_long (type, valaddr);
419 converted_float_bytes.resize (TYPE_LENGTH (type));
420 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
421 byte_order, val_long);
422 valaddr = converted_float_bytes.data ();
425 /* Printing a non-float type as 'f' will interpret the data as if it were
426 of a floating-point type of the same length, if that exists. Otherwise,
427 the data is printed as integer. */
428 char format = options->format;
429 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
431 type = float_type_from_length (type);
432 if (TYPE_CODE (type) != TYPE_CODE_FLT)
439 print_octal_chars (stream, valaddr, len, byte_order);
442 print_decimal_chars (stream, valaddr, len, true, byte_order);
445 print_decimal_chars (stream, valaddr, len, false, byte_order);
448 if (TYPE_CODE (type) != TYPE_CODE_FLT)
450 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
456 print_floating (valaddr, type, stream);
460 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
463 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
466 print_hex_chars (stream, valaddr, len, byte_order, true);
470 struct value_print_options opts = *options;
472 LONGEST val_long = unpack_long (type, valaddr);
475 if (TYPE_UNSIGNED (type))
476 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
478 type = builtin_type (gdbarch)->builtin_true_char;
480 value_print (value_from_longest (type, val_long), stream, &opts);
486 CORE_ADDR addr = unpack_pointer (type, valaddr);
488 print_address (gdbarch, addr, stream);
493 error (_("Undefined output format \"%c\"."), format);
497 /* Specify default address for `x' command.
498 The `info lines' command uses this. */
501 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
503 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
505 next_gdbarch = gdbarch;
508 /* Make address available to the user as $_. */
509 set_internalvar (lookup_internalvar ("_"),
510 value_from_pointer (ptr_type, addr));
513 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
514 after LEADIN. Print nothing if no symbolic name is found nearby.
515 Optionally also print source file and line number, if available.
516 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
517 or to interpret it as a possible C++ name and convert it back to source
518 form. However note that DO_DEMANGLE can be overridden by the specific
519 settings of the demangle and asm_demangle variables. Returns
520 non-zero if anything was printed; zero otherwise. */
523 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
524 struct ui_file *stream,
525 int do_demangle, const char *leadin)
527 std::string name, filename;
532 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
533 &offset, &filename, &line, &unmapped))
536 fputs_filtered (leadin, stream);
538 fputs_filtered ("<*", stream);
540 fputs_filtered ("<", stream);
541 fputs_styled (name.c_str (), function_name_style.style (), stream);
543 fprintf_filtered (stream, "%+d", offset);
545 /* Append source filename and line number if desired. Give specific
546 line # of this addr, if we have it; else line # of the nearest symbol. */
547 if (print_symbol_filename && !filename.empty ())
549 fputs_filtered (line == -1 ? " in " : " at ", stream);
550 fputs_styled (filename.c_str (), file_name_style.style (), stream);
552 fprintf_filtered (stream, ":%d", line);
555 fputs_filtered ("*>", stream);
557 fputs_filtered (">", stream);
562 /* See valprint.h. */
565 build_address_symbolic (struct gdbarch *gdbarch,
566 CORE_ADDR addr, /* IN */
567 bool do_demangle, /* IN */
568 bool prefer_sym_over_minsym, /* IN */
569 std::string *name, /* OUT */
570 int *offset, /* OUT */
571 std::string *filename, /* OUT */
573 int *unmapped) /* OUT */
575 struct bound_minimal_symbol msymbol;
576 struct symbol *symbol;
577 CORE_ADDR name_location = 0;
578 struct obj_section *section = NULL;
579 const char *name_temp = "";
581 /* Let's say it is mapped (not unmapped). */
584 /* Determine if the address is in an overlay, and whether it is
586 if (overlay_debugging)
588 section = find_pc_overlay (addr);
589 if (pc_in_unmapped_range (addr, section))
592 addr = overlay_mapped_address (addr, section);
596 /* Try to find the address in both the symbol table and the minsyms.
597 In most cases, we'll prefer to use the symbol instead of the
598 minsym. However, there are cases (see below) where we'll choose
599 to use the minsym instead. */
601 /* This is defective in the sense that it only finds text symbols. So
602 really this is kind of pointless--we should make sure that the
603 minimal symbols have everything we need (by changing that we could
604 save some memory, but for many debug format--ELF/DWARF or
605 anything/stabs--it would be inconvenient to eliminate those minimal
607 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
608 symbol = find_pc_sect_function (addr, section);
612 /* If this is a function (i.e. a code address), strip out any
613 non-address bits. For instance, display a pointer to the
614 first instruction of a Thumb function as <function>; the
615 second instruction will be <function+2>, even though the
616 pointer is <function+3>. This matches the ISA behavior. */
617 addr = gdbarch_addr_bits_remove (gdbarch, addr);
619 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
620 if (do_demangle || asm_demangle)
621 name_temp = SYMBOL_PRINT_NAME (symbol);
623 name_temp = SYMBOL_LINKAGE_NAME (symbol);
626 if (msymbol.minsym != NULL
627 && MSYMBOL_HAS_SIZE (msymbol.minsym)
628 && MSYMBOL_SIZE (msymbol.minsym) == 0
629 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
630 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
631 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
632 msymbol.minsym = NULL;
634 if (msymbol.minsym != NULL)
636 /* Use the minsym if no symbol is found.
638 Additionally, use the minsym instead of a (found) symbol if
639 the following conditions all hold:
640 1) The prefer_sym_over_minsym flag is false.
641 2) The minsym address is identical to that of the address under
643 3) The symbol address is not identical to that of the address
644 under consideration. */
645 if (symbol == NULL ||
646 (!prefer_sym_over_minsym
647 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
648 && name_location != addr))
650 /* If this is a function (i.e. a code address), strip out any
651 non-address bits. For instance, display a pointer to the
652 first instruction of a Thumb function as <function>; the
653 second instruction will be <function+2>, even though the
654 pointer is <function+3>. This matches the ISA behavior. */
655 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
656 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
657 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
658 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
659 addr = gdbarch_addr_bits_remove (gdbarch, addr);
662 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
663 if (do_demangle || asm_demangle)
664 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
666 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
669 if (symbol == NULL && msymbol.minsym == NULL)
672 /* If the nearest symbol is too far away, don't print anything symbolic. */
674 /* For when CORE_ADDR is larger than unsigned int, we do math in
675 CORE_ADDR. But when we detect unsigned wraparound in the
676 CORE_ADDR math, we ignore this test and print the offset,
677 because addr+max_symbolic_offset has wrapped through the end
678 of the address space back to the beginning, giving bogus comparison. */
679 if (addr > name_location + max_symbolic_offset
680 && name_location + max_symbolic_offset > name_location)
683 *offset = (LONGEST) addr - name_location;
687 if (print_symbol_filename)
689 struct symtab_and_line sal;
691 sal = find_pc_sect_line (addr, section, 0);
695 *filename = symtab_to_filename_for_display (sal.symtab);
703 /* Print address ADDR symbolically on STREAM.
704 First print it as a number. Then perhaps print
705 <SYMBOL + OFFSET> after the number. */
708 print_address (struct gdbarch *gdbarch,
709 CORE_ADDR addr, struct ui_file *stream)
711 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
712 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
715 /* Return a prefix for instruction address:
716 "=> " for current instruction, else " ". */
719 pc_prefix (CORE_ADDR addr)
721 if (has_stack_frames ())
723 struct frame_info *frame;
726 frame = get_selected_frame (NULL);
727 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
733 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
734 controls whether to print the symbolic name "raw" or demangled.
735 Return non-zero if anything was printed; zero otherwise. */
738 print_address_demangle (const struct value_print_options *opts,
739 struct gdbarch *gdbarch, CORE_ADDR addr,
740 struct ui_file *stream, int do_demangle)
742 if (opts->addressprint)
744 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
745 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
749 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
755 /* Find the address of the instruction that is INST_COUNT instructions before
756 the instruction at ADDR.
757 Since some architectures have variable-length instructions, we can't just
758 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
759 number information to locate the nearest known instruction boundary,
760 and disassemble forward from there. If we go out of the symbol range
761 during disassembling, we return the lowest address we've got so far and
762 set the number of instructions read to INST_READ. */
765 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
766 int inst_count, int *inst_read)
768 /* The vector PCS is used to store instruction addresses within
770 CORE_ADDR loop_start, loop_end, p;
771 std::vector<CORE_ADDR> pcs;
772 struct symtab_and_line sal;
775 loop_start = loop_end = addr;
777 /* In each iteration of the outer loop, we get a pc range that ends before
778 LOOP_START, then we count and store every instruction address of the range
779 iterated in the loop.
780 If the number of instructions counted reaches INST_COUNT, return the
781 stored address that is located INST_COUNT instructions back from ADDR.
782 If INST_COUNT is not reached, we subtract the number of counted
783 instructions from INST_COUNT, and go to the next iteration. */
787 sal = find_pc_sect_line (loop_start, NULL, 1);
790 /* We reach here when line info is not available. In this case,
791 we print a message and just exit the loop. The return value
792 is calculated after the loop. */
793 printf_filtered (_("No line number information available "
796 print_address (gdbarch, loop_start - 1, gdb_stdout);
797 printf_filtered ("\n");
801 loop_end = loop_start;
804 /* This loop pushes instruction addresses in the range from
805 LOOP_START to LOOP_END. */
806 for (p = loop_start; p < loop_end;)
809 p += gdb_insn_length (gdbarch, p);
812 inst_count -= pcs.size ();
813 *inst_read += pcs.size ();
815 while (inst_count > 0);
817 /* After the loop, the vector PCS has instruction addresses of the last
818 source line we processed, and INST_COUNT has a negative value.
819 We return the address at the index of -INST_COUNT in the vector for
821 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
831 find_instruction_backward is called with INST_COUNT = 4 and expected to
832 return 0x4001. When we reach here, INST_COUNT is set to -1 because
833 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
834 4001 is located at the index 1 of the last iterated line (= Line X),
835 which is simply calculated by -INST_COUNT.
836 The case when the length of PCS is 0 means that we reached an area for
837 which line info is not available. In such case, we return LOOP_START,
838 which was the lowest instruction address that had line info. */
839 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
841 /* INST_READ includes all instruction addresses in a pc range. Need to
842 exclude the beginning part up to the address we're returning. That
843 is, exclude {0x4000} in the example above. */
845 *inst_read += inst_count;
850 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
851 placing the results in GDB's memory from MYADDR + LEN. Returns
852 a count of the bytes actually read. */
855 read_memory_backward (struct gdbarch *gdbarch,
856 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
859 int nread; /* Number of bytes actually read. */
861 /* First try a complete read. */
862 errcode = target_read_memory (memaddr, myaddr, len);
870 /* Loop, reading one byte at a time until we get as much as we can. */
873 for (nread = 0; nread < len; ++nread)
875 errcode = target_read_memory (--memaddr, --myaddr, 1);
878 /* The read was unsuccessful, so exit the loop. */
879 printf_filtered (_("Cannot access memory at address %s\n"),
880 paddress (gdbarch, memaddr));
888 /* Returns true if X (which is LEN bytes wide) is the number zero. */
891 integer_is_zero (const gdb_byte *x, int len)
895 while (i < len && x[i] == 0)
900 /* Find the start address of a string in which ADDR is included.
901 Basically we search for '\0' and return the next address,
902 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
903 we stop searching and return the address to print characters as many as
904 PRINT_MAX from the string. */
907 find_string_backward (struct gdbarch *gdbarch,
908 CORE_ADDR addr, int count, int char_size,
909 const struct value_print_options *options,
910 int *strings_counted)
912 const int chunk_size = 0x20;
915 int chars_to_read = chunk_size;
916 int chars_counted = 0;
917 int count_original = count;
918 CORE_ADDR string_start_addr = addr;
920 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
921 gdb::byte_vector buffer (chars_to_read * char_size);
922 while (count > 0 && read_error == 0)
926 addr -= chars_to_read * char_size;
927 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
928 chars_to_read * char_size);
929 chars_read /= char_size;
930 read_error = (chars_read == chars_to_read) ? 0 : 1;
931 /* Searching for '\0' from the end of buffer in backward direction. */
932 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
934 int offset = (chars_to_read - i - 1) * char_size;
936 if (integer_is_zero (&buffer[offset], char_size)
937 || chars_counted == options->print_max)
939 /* Found '\0' or reached print_max. As OFFSET is the offset to
940 '\0', we add CHAR_SIZE to return the start address of
943 string_start_addr = addr + offset + char_size;
949 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
950 *strings_counted = count_original - count;
954 /* In error case, STRING_START_ADDR is pointing to the string that
955 was last successfully loaded. Rewind the partially loaded string. */
956 string_start_addr -= chars_counted * char_size;
959 return string_start_addr;
962 /* Examine data at address ADDR in format FMT.
963 Fetch it from memory and print on gdb_stdout. */
966 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
971 struct type *val_type = NULL;
974 struct value_print_options opts;
975 int need_to_update_next_address = 0;
976 CORE_ADDR addr_rewound = 0;
981 next_gdbarch = gdbarch;
984 /* Instruction format implies fetch single bytes
985 regardless of the specified size.
986 The case of strings is handled in decode_format, only explicit
987 size operator are not changed to 'b'. */
993 /* Pick the appropriate size for an address. */
994 if (gdbarch_ptr_bit (next_gdbarch) == 64)
996 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
998 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
1001 /* Bad value for gdbarch_ptr_bit. */
1002 internal_error (__FILE__, __LINE__,
1003 _("failed internal consistency check"));
1007 val_type = builtin_type (next_gdbarch)->builtin_int8;
1008 else if (size == 'h')
1009 val_type = builtin_type (next_gdbarch)->builtin_int16;
1010 else if (size == 'w')
1011 val_type = builtin_type (next_gdbarch)->builtin_int32;
1012 else if (size == 'g')
1013 val_type = builtin_type (next_gdbarch)->builtin_int64;
1017 struct type *char_type = NULL;
1019 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1020 if type is not found. */
1022 char_type = builtin_type (next_gdbarch)->builtin_char16;
1023 else if (size == 'w')
1024 char_type = builtin_type (next_gdbarch)->builtin_char32;
1026 val_type = char_type;
1029 if (size != '\0' && size != 'b')
1030 warning (_("Unable to display strings with "
1031 "size '%c', using 'b' instead."), size);
1033 val_type = builtin_type (next_gdbarch)->builtin_int8;
1042 if (format == 's' || format == 'i')
1045 get_formatted_print_options (&opts, format);
1049 /* This is the negative repeat count case.
1050 We rewind the address based on the given repeat count and format,
1051 then examine memory from there in forward direction. */
1056 next_address = find_instruction_backward (gdbarch, addr, count,
1059 else if (format == 's')
1061 next_address = find_string_backward (gdbarch, addr, count,
1062 TYPE_LENGTH (val_type),
1067 next_address = addr - count * TYPE_LENGTH (val_type);
1070 /* The following call to print_formatted updates next_address in every
1071 iteration. In backward case, we store the start address here
1072 and update next_address with it before exiting the function. */
1073 addr_rewound = (format == 's'
1074 ? next_address - TYPE_LENGTH (val_type)
1076 need_to_update_next_address = 1;
1079 /* Print as many objects as specified in COUNT, at most maxelts per line,
1080 with the address of the next one at the start of each line. */
1086 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1087 print_address (next_gdbarch, next_address, gdb_stdout);
1088 printf_filtered (":");
1093 printf_filtered ("\t");
1094 /* Note that print_formatted sets next_address for the next
1096 last_examine_address = next_address;
1098 /* The value to be displayed is not fetched greedily.
1099 Instead, to avoid the possibility of a fetched value not
1100 being used, its retrieval is delayed until the print code
1101 uses it. When examining an instruction stream, the
1102 disassembler will perform its own memory fetch using just
1103 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1104 the disassembler be modified so that LAST_EXAMINE_VALUE
1105 is left with the byte sequence from the last complete
1106 instruction fetched from memory? */
1108 = release_value (value_at_lazy (val_type, next_address));
1110 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1112 /* Display any branch delay slots following the final insn. */
1113 if (format == 'i' && count == 1)
1114 count += branch_delay_insns;
1116 printf_filtered ("\n");
1119 if (need_to_update_next_address)
1120 next_address = addr_rewound;
1124 validate_format (struct format_data fmt, const char *cmdname)
1127 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1129 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1131 if (fmt.format == 'i')
1132 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1133 fmt.format, cmdname);
1136 /* Parse print command format string into *OPTS and update *EXPP.
1137 CMDNAME should name the current command. */
1140 print_command_parse_format (const char **expp, const char *cmdname,
1141 value_print_options *opts)
1143 const char *exp = *expp;
1145 if (exp && *exp == '/')
1150 fmt = decode_format (&exp, last_format, 0);
1151 validate_format (fmt, cmdname);
1152 last_format = fmt.format;
1154 opts->format = fmt.format;
1155 opts->raw = fmt.raw;
1166 /* See valprint.h. */
1169 print_value (value *val, const value_print_options &opts)
1171 int histindex = record_latest_value (val);
1173 annotate_value_history_begin (histindex, value_type (val));
1175 printf_filtered ("$%d = ", histindex);
1177 annotate_value_history_value ();
1179 print_formatted (val, 0, &opts, gdb_stdout);
1180 printf_filtered ("\n");
1182 annotate_value_history_end ();
1185 /* Implementation of the "print" and "call" commands. */
1188 print_command_1 (const char *args, int voidprint)
1191 value_print_options print_opts;
1193 get_user_print_options (&print_opts);
1194 /* Override global settings with explicit options, if any. */
1195 auto group = make_value_print_options_def_group (&print_opts);
1196 gdb::option::process_options
1197 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1199 print_command_parse_format (&args, "print", &print_opts);
1201 const char *exp = args;
1203 if (exp != nullptr && *exp)
1205 expression_up expr = parse_expression (exp);
1206 val = evaluate_expression (expr.get ());
1209 val = access_value_history (0);
1211 if (voidprint || (val && value_type (val) &&
1212 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1213 print_value (val, print_opts);
1216 /* See valprint.h. */
1219 print_command_completer (struct cmd_list_element *ignore,
1220 completion_tracker &tracker,
1221 const char *text, const char * /*word*/)
1223 const auto group = make_value_print_options_def_group (nullptr);
1224 if (gdb::option::complete_options
1225 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1228 const char *word = advance_to_expression_complete_word_point (tracker, text);
1229 expression_completer (ignore, tracker, text, word);
1233 print_command (const char *exp, int from_tty)
1235 print_command_1 (exp, 1);
1238 /* Same as print, except it doesn't print void results. */
1240 call_command (const char *exp, int from_tty)
1242 print_command_1 (exp, 0);
1245 /* Implementation of the "output" command. */
1248 output_command (const char *exp, int from_tty)
1252 struct format_data fmt;
1253 struct value_print_options opts;
1258 if (exp && *exp == '/')
1261 fmt = decode_format (&exp, 0, 0);
1262 validate_format (fmt, "output");
1263 format = fmt.format;
1266 expression_up expr = parse_expression (exp);
1268 val = evaluate_expression (expr.get ());
1270 annotate_value_begin (value_type (val));
1272 get_formatted_print_options (&opts, format);
1274 print_formatted (val, fmt.size, &opts, gdb_stdout);
1276 annotate_value_end ();
1279 gdb_flush (gdb_stdout);
1283 set_command (const char *exp, int from_tty)
1285 expression_up expr = parse_expression (exp);
1287 if (expr->nelts >= 1)
1288 switch (expr->elts[0].opcode)
1290 case UNOP_PREINCREMENT:
1291 case UNOP_POSTINCREMENT:
1292 case UNOP_PREDECREMENT:
1293 case UNOP_POSTDECREMENT:
1295 case BINOP_ASSIGN_MODIFY:
1300 (_("Expression is not an assignment (and might have no effect)"));
1303 evaluate_expression (expr.get ());
1307 info_symbol_command (const char *arg, int from_tty)
1309 struct minimal_symbol *msymbol;
1310 struct obj_section *osect;
1311 CORE_ADDR addr, sect_addr;
1313 unsigned int offset;
1316 error_no_arg (_("address"));
1318 addr = parse_and_eval_address (arg);
1319 for (objfile *objfile : current_program_space->objfiles ())
1320 ALL_OBJFILE_OSECTIONS (objfile, osect)
1322 /* Only process each object file once, even if there's a separate
1324 if (objfile->separate_debug_objfile_backlink)
1327 sect_addr = overlay_mapped_address (addr, osect);
1329 if (obj_section_addr (osect) <= sect_addr
1330 && sect_addr < obj_section_endaddr (osect)
1332 = lookup_minimal_symbol_by_pc_section (sect_addr,
1335 const char *obj_name, *mapped, *sec_name, *msym_name;
1336 const char *loc_string;
1339 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1340 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1341 sec_name = osect->the_bfd_section->name;
1342 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1344 /* Don't print the offset if it is zero.
1345 We assume there's no need to handle i18n of "sym + offset". */
1346 std::string string_holder;
1349 string_holder = string_printf ("%s + %u", msym_name, offset);
1350 loc_string = string_holder.c_str ();
1353 loc_string = msym_name;
1355 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1356 obj_name = objfile_name (osect->objfile);
1358 if (MULTI_OBJFILE_P ())
1359 if (pc_in_unmapped_range (addr, osect))
1360 if (section_is_overlay (osect))
1361 printf_filtered (_("%s in load address range of "
1362 "%s overlay section %s of %s\n"),
1363 loc_string, mapped, sec_name, obj_name);
1365 printf_filtered (_("%s in load address range of "
1366 "section %s of %s\n"),
1367 loc_string, sec_name, obj_name);
1369 if (section_is_overlay (osect))
1370 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1371 loc_string, mapped, sec_name, obj_name);
1373 printf_filtered (_("%s in section %s of %s\n"),
1374 loc_string, sec_name, obj_name);
1376 if (pc_in_unmapped_range (addr, osect))
1377 if (section_is_overlay (osect))
1378 printf_filtered (_("%s in load address range of %s overlay "
1380 loc_string, mapped, sec_name);
1383 (_("%s in load address range of section %s\n"),
1384 loc_string, sec_name);
1386 if (section_is_overlay (osect))
1387 printf_filtered (_("%s in %s overlay section %s\n"),
1388 loc_string, mapped, sec_name);
1390 printf_filtered (_("%s in section %s\n"),
1391 loc_string, sec_name);
1395 printf_filtered (_("No symbol matches %s.\n"), arg);
1399 info_address_command (const char *exp, int from_tty)
1401 struct gdbarch *gdbarch;
1404 struct bound_minimal_symbol msymbol;
1406 struct obj_section *section;
1407 CORE_ADDR load_addr, context_pc = 0;
1408 struct field_of_this_result is_a_field_of_this;
1411 error (_("Argument required."));
1413 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1414 &is_a_field_of_this).symbol;
1417 if (is_a_field_of_this.type != NULL)
1419 printf_filtered ("Symbol \"");
1420 fprintf_symbol_filtered (gdb_stdout, exp,
1421 current_language->la_language, DMGL_ANSI);
1422 printf_filtered ("\" is a field of the local class variable ");
1423 if (current_language->la_language == language_objc)
1424 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1426 printf_filtered ("`this'\n");
1430 msymbol = lookup_bound_minimal_symbol (exp);
1432 if (msymbol.minsym != NULL)
1434 struct objfile *objfile = msymbol.objfile;
1436 gdbarch = get_objfile_arch (objfile);
1437 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1439 printf_filtered ("Symbol \"");
1440 fprintf_symbol_filtered (gdb_stdout, exp,
1441 current_language->la_language, DMGL_ANSI);
1442 printf_filtered ("\" is at ");
1443 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1445 printf_filtered (" in a file compiled without debugging");
1446 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1447 if (section_is_overlay (section))
1449 load_addr = overlay_unmapped_address (load_addr, section);
1450 printf_filtered (",\n -- loaded at ");
1451 fputs_styled (paddress (gdbarch, load_addr),
1452 address_style.style (),
1454 printf_filtered (" in overlay section %s",
1455 section->the_bfd_section->name);
1457 printf_filtered (".\n");
1460 error (_("No symbol \"%s\" in current context."), exp);
1464 printf_filtered ("Symbol \"");
1465 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1466 current_language->la_language, DMGL_ANSI);
1467 printf_filtered ("\" is ");
1468 val = SYMBOL_VALUE (sym);
1469 if (SYMBOL_OBJFILE_OWNED (sym))
1470 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1473 gdbarch = symbol_arch (sym);
1475 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1477 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1479 printf_filtered (".\n");
1483 switch (SYMBOL_CLASS (sym))
1486 case LOC_CONST_BYTES:
1487 printf_filtered ("constant");
1491 printf_filtered ("a label at address ");
1492 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1493 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1495 if (section_is_overlay (section))
1497 load_addr = overlay_unmapped_address (load_addr, section);
1498 printf_filtered (",\n -- loaded at ");
1499 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1501 printf_filtered (" in overlay section %s",
1502 section->the_bfd_section->name);
1507 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1510 /* GDBARCH is the architecture associated with the objfile the symbol
1511 is defined in; the target architecture may be different, and may
1512 provide additional registers. However, we do not know the target
1513 architecture at this point. We assume the objfile architecture
1514 will contain all the standard registers that occur in debug info
1516 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1518 if (SYMBOL_IS_ARGUMENT (sym))
1519 printf_filtered (_("an argument in register %s"),
1520 gdbarch_register_name (gdbarch, regno));
1522 printf_filtered (_("a variable in register %s"),
1523 gdbarch_register_name (gdbarch, regno));
1527 printf_filtered (_("static storage at address "));
1528 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1529 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1531 if (section_is_overlay (section))
1533 load_addr = overlay_unmapped_address (load_addr, section);
1534 printf_filtered (_(",\n -- loaded at "));
1535 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1537 printf_filtered (_(" in overlay section %s"),
1538 section->the_bfd_section->name);
1542 case LOC_REGPARM_ADDR:
1543 /* Note comment at LOC_REGISTER. */
1544 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1545 printf_filtered (_("address of an argument in register %s"),
1546 gdbarch_register_name (gdbarch, regno));
1550 printf_filtered (_("an argument at offset %ld"), val);
1554 printf_filtered (_("a local variable at frame offset %ld"), val);
1558 printf_filtered (_("a reference argument at offset %ld"), val);
1562 printf_filtered (_("a typedef"));
1566 printf_filtered (_("a function at address "));
1567 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1568 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1570 if (section_is_overlay (section))
1572 load_addr = overlay_unmapped_address (load_addr, section);
1573 printf_filtered (_(",\n -- loaded at "));
1574 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1576 printf_filtered (_(" in overlay section %s"),
1577 section->the_bfd_section->name);
1581 case LOC_UNRESOLVED:
1583 struct bound_minimal_symbol msym;
1585 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1586 if (msym.minsym == NULL)
1587 printf_filtered ("unresolved");
1590 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1593 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1595 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1596 printf_filtered (_("a thread-local variable at offset %s "
1597 "in the thread-local storage for `%s'"),
1598 paddress (gdbarch, load_addr),
1599 objfile_name (section->objfile));
1603 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1604 printf_filtered (_("static storage at address "));
1605 fputs_styled (paddress (gdbarch, load_addr),
1606 address_style.style (), gdb_stdout);
1607 if (section_is_overlay (section))
1609 load_addr = overlay_unmapped_address (load_addr, section);
1610 printf_filtered (_(",\n -- loaded at "));
1611 fputs_styled (paddress (gdbarch, load_addr),
1612 address_style.style (),
1614 printf_filtered (_(" in overlay section %s"),
1615 section->the_bfd_section->name);
1622 case LOC_OPTIMIZED_OUT:
1623 printf_filtered (_("optimized out"));
1627 printf_filtered (_("of unknown (botched) type"));
1630 printf_filtered (".\n");
1635 x_command (const char *exp, int from_tty)
1637 struct format_data fmt;
1640 fmt.format = last_format ? last_format : 'x';
1641 fmt.size = last_size;
1645 /* If there is no expression and no format, use the most recent
1647 if (exp == nullptr && last_count > 0)
1648 fmt.count = last_count;
1650 if (exp && *exp == '/')
1652 const char *tmp = exp + 1;
1654 fmt = decode_format (&tmp, last_format, last_size);
1658 last_count = fmt.count;
1660 /* If we have an expression, evaluate it and use it as the address. */
1662 if (exp != 0 && *exp != 0)
1664 expression_up expr = parse_expression (exp);
1665 /* Cause expression not to be there any more if this command is
1666 repeated with Newline. But don't clobber a user-defined
1667 command's definition. */
1669 set_repeat_arguments ("");
1670 val = evaluate_expression (expr.get ());
1671 if (TYPE_IS_REFERENCE (value_type (val)))
1672 val = coerce_ref (val);
1673 /* In rvalue contexts, such as this, functions are coerced into
1674 pointers to functions. This makes "x/i main" work. */
1675 if (/* last_format == 'i' && */
1676 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1677 && VALUE_LVAL (val) == lval_memory)
1678 next_address = value_address (val);
1680 next_address = value_as_address (val);
1682 next_gdbarch = expr->gdbarch;
1686 error_no_arg (_("starting display address"));
1688 do_examine (fmt, next_gdbarch, next_address);
1690 /* If the examine succeeds, we remember its size and format for next
1691 time. Set last_size to 'b' for strings. */
1692 if (fmt.format == 's')
1695 last_size = fmt.size;
1696 last_format = fmt.format;
1698 /* Set a couple of internal variables if appropriate. */
1699 if (last_examine_value != nullptr)
1701 /* Make last address examined available to the user as $_. Use
1702 the correct pointer type. */
1703 struct type *pointer_type
1704 = lookup_pointer_type (value_type (last_examine_value.get ()));
1705 set_internalvar (lookup_internalvar ("_"),
1706 value_from_pointer (pointer_type,
1707 last_examine_address));
1709 /* Make contents of last address examined available to the user
1710 as $__. If the last value has not been fetched from memory
1711 then don't fetch it now; instead mark it by voiding the $__
1713 if (value_lazy (last_examine_value.get ()))
1714 clear_internalvar (lookup_internalvar ("__"));
1716 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1721 /* Add an expression to the auto-display chain.
1722 Specify the expression. */
1725 display_command (const char *arg, int from_tty)
1727 struct format_data fmt;
1728 struct display *newobj;
1729 const char *exp = arg;
1740 fmt = decode_format (&exp, 0, 0);
1741 if (fmt.size && fmt.format == 0)
1743 if (fmt.format == 'i' || fmt.format == 's')
1754 innermost_block_tracker tracker;
1755 expression_up expr = parse_expression (exp, &tracker);
1757 newobj = new display ();
1759 newobj->exp_string = xstrdup (exp);
1760 newobj->exp = std::move (expr);
1761 newobj->block = tracker.block ();
1762 newobj->pspace = current_program_space;
1763 newobj->number = ++display_number;
1764 newobj->format = fmt;
1765 newobj->enabled_p = 1;
1766 newobj->next = NULL;
1768 if (display_chain == NULL)
1769 display_chain = newobj;
1772 struct display *last;
1774 for (last = display_chain; last->next != NULL; last = last->next)
1776 last->next = newobj;
1780 do_one_display (newobj);
1786 free_display (struct display *d)
1788 xfree (d->exp_string);
1792 /* Clear out the display_chain. Done when new symtabs are loaded,
1793 since this invalidates the types stored in many expressions. */
1796 clear_displays (void)
1800 while ((d = display_chain) != NULL)
1802 display_chain = d->next;
1807 /* Delete the auto-display DISPLAY. */
1810 delete_display (struct display *display)
1814 gdb_assert (display != NULL);
1816 if (display_chain == display)
1817 display_chain = display->next;
1820 if (d->next == display)
1822 d->next = display->next;
1826 free_display (display);
1829 /* Call FUNCTION on each of the displays whose numbers are given in
1830 ARGS. DATA is passed unmodified to FUNCTION. */
1833 map_display_numbers (const char *args,
1834 void (*function) (struct display *,
1841 error_no_arg (_("one or more display numbers"));
1843 number_or_range_parser parser (args);
1845 while (!parser.finished ())
1847 const char *p = parser.cur_tok ();
1849 num = parser.get_number ();
1851 warning (_("bad display number at or near '%s'"), p);
1854 struct display *d, *tmp;
1856 ALL_DISPLAYS_SAFE (d, tmp)
1857 if (d->number == num)
1860 printf_unfiltered (_("No display number %d.\n"), num);
1867 /* Callback for map_display_numbers, that deletes a display. */
1870 do_delete_display (struct display *d, void *data)
1875 /* "undisplay" command. */
1878 undisplay_command (const char *args, int from_tty)
1882 if (query (_("Delete all auto-display expressions? ")))
1888 map_display_numbers (args, do_delete_display, NULL);
1892 /* Display a single auto-display.
1893 Do nothing if the display cannot be printed in the current context,
1894 or if the display is disabled. */
1897 do_one_display (struct display *d)
1899 int within_current_scope;
1901 if (d->enabled_p == 0)
1904 /* The expression carries the architecture that was used at parse time.
1905 This is a problem if the expression depends on architecture features
1906 (e.g. register numbers), and the current architecture is now different.
1907 For example, a display statement like "display/i $pc" is expected to
1908 display the PC register of the current architecture, not the arch at
1909 the time the display command was given. Therefore, we re-parse the
1910 expression if the current architecture has changed. */
1911 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1922 innermost_block_tracker tracker;
1923 d->exp = parse_expression (d->exp_string, &tracker);
1924 d->block = tracker.block ();
1926 catch (const gdb_exception &ex)
1928 /* Can't re-parse the expression. Disable this display item. */
1930 warning (_("Unable to display \"%s\": %s"),
1931 d->exp_string, ex.what ());
1938 if (d->pspace == current_program_space)
1939 within_current_scope = contained_in (get_selected_block (0), d->block);
1941 within_current_scope = 0;
1944 within_current_scope = 1;
1945 if (!within_current_scope)
1948 scoped_restore save_display_number
1949 = make_scoped_restore (¤t_display_number, d->number);
1951 annotate_display_begin ();
1952 printf_filtered ("%d", d->number);
1953 annotate_display_number_end ();
1954 printf_filtered (": ");
1958 annotate_display_format ();
1960 printf_filtered ("x/");
1961 if (d->format.count != 1)
1962 printf_filtered ("%d", d->format.count);
1963 printf_filtered ("%c", d->format.format);
1964 if (d->format.format != 'i' && d->format.format != 's')
1965 printf_filtered ("%c", d->format.size);
1966 printf_filtered (" ");
1968 annotate_display_expression ();
1970 puts_filtered (d->exp_string);
1971 annotate_display_expression_end ();
1973 if (d->format.count != 1 || d->format.format == 'i')
1974 printf_filtered ("\n");
1976 printf_filtered (" ");
1978 annotate_display_value ();
1985 val = evaluate_expression (d->exp.get ());
1986 addr = value_as_address (val);
1987 if (d->format.format == 'i')
1988 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1989 do_examine (d->format, d->exp->gdbarch, addr);
1991 catch (const gdb_exception_error &ex)
1993 fprintf_filtered (gdb_stdout, _("<error: %s>\n"),
1999 struct value_print_options opts;
2001 annotate_display_format ();
2003 if (d->format.format)
2004 printf_filtered ("/%c ", d->format.format);
2006 annotate_display_expression ();
2008 puts_filtered (d->exp_string);
2009 annotate_display_expression_end ();
2011 printf_filtered (" = ");
2013 annotate_display_expression ();
2015 get_formatted_print_options (&opts, d->format.format);
2016 opts.raw = d->format.raw;
2022 val = evaluate_expression (d->exp.get ());
2023 print_formatted (val, d->format.size, &opts, gdb_stdout);
2025 catch (const gdb_exception_error &ex)
2027 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.what ());
2030 printf_filtered ("\n");
2033 annotate_display_end ();
2035 gdb_flush (gdb_stdout);
2038 /* Display all of the values on the auto-display chain which can be
2039 evaluated in the current scope. */
2046 for (d = display_chain; d; d = d->next)
2050 /* Delete the auto-display which we were in the process of displaying.
2051 This is done when there is an error or a signal. */
2054 disable_display (int num)
2058 for (d = display_chain; d; d = d->next)
2059 if (d->number == num)
2064 printf_unfiltered (_("No display number %d.\n"), num);
2068 disable_current_display (void)
2070 if (current_display_number >= 0)
2072 disable_display (current_display_number);
2073 fprintf_unfiltered (gdb_stderr,
2074 _("Disabling display %d to "
2075 "avoid infinite recursion.\n"),
2076 current_display_number);
2078 current_display_number = -1;
2082 info_display_command (const char *ignore, int from_tty)
2087 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2089 printf_filtered (_("Auto-display expressions now in effect:\n\
2090 Num Enb Expression\n"));
2092 for (d = display_chain; d; d = d->next)
2094 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2096 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2098 else if (d->format.format)
2099 printf_filtered ("/%c ", d->format.format);
2100 puts_filtered (d->exp_string);
2101 if (d->block && !contained_in (get_selected_block (0), d->block))
2102 printf_filtered (_(" (cannot be evaluated in the current context)"));
2103 printf_filtered ("\n");
2107 /* Callback fo map_display_numbers, that enables or disables the
2108 passed in display D. */
2111 do_enable_disable_display (struct display *d, void *data)
2113 d->enabled_p = *(int *) data;
2116 /* Implamentation of both the "disable display" and "enable display"
2117 commands. ENABLE decides what to do. */
2120 enable_disable_display_command (const char *args, int from_tty, int enable)
2127 d->enabled_p = enable;
2131 map_display_numbers (args, do_enable_disable_display, &enable);
2134 /* The "enable display" command. */
2137 enable_display_command (const char *args, int from_tty)
2139 enable_disable_display_command (args, from_tty, 1);
2142 /* The "disable display" command. */
2145 disable_display_command (const char *args, int from_tty)
2147 enable_disable_display_command (args, from_tty, 0);
2150 /* display_chain items point to blocks and expressions. Some expressions in
2151 turn may point to symbols.
2152 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2153 obstack_free'd when a shared library is unloaded.
2154 Clear pointers that are about to become dangling.
2155 Both .exp and .block fields will be restored next time we need to display
2156 an item by re-parsing .exp_string field in the new execution context. */
2159 clear_dangling_display_expressions (struct objfile *objfile)
2162 struct program_space *pspace;
2164 /* With no symbol file we cannot have a block or expression from it. */
2165 if (objfile == NULL)
2167 pspace = objfile->pspace;
2168 if (objfile->separate_debug_objfile_backlink)
2170 objfile = objfile->separate_debug_objfile_backlink;
2171 gdb_assert (objfile->pspace == pspace);
2174 for (d = display_chain; d != NULL; d = d->next)
2176 if (d->pspace != pspace)
2179 if (lookup_objfile_from_block (d->block) == objfile
2180 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2189 /* Print the value in stack frame FRAME of a variable specified by a
2190 struct symbol. NAME is the name to print; if NULL then VAR's print
2191 name will be used. STREAM is the ui_file on which to print the
2192 value. INDENT specifies the number of indent levels to print
2193 before printing the variable name.
2195 This function invalidates FRAME. */
2198 print_variable_and_value (const char *name, struct symbol *var,
2199 struct frame_info *frame,
2200 struct ui_file *stream, int indent)
2204 name = SYMBOL_PRINT_NAME (var);
2206 fputs_filtered (n_spaces (2 * indent), stream);
2207 fputs_styled (name, variable_name_style.style (), stream);
2208 fputs_filtered (" = ", stream);
2213 struct value_print_options opts;
2215 /* READ_VAR_VALUE needs a block in order to deal with non-local
2216 references (i.e. to handle nested functions). In this context, we
2217 print variables that are local to this frame, so we can avoid passing
2219 val = read_var_value (var, NULL, frame);
2220 get_user_print_options (&opts);
2222 common_val_print (val, stream, indent, &opts, current_language);
2224 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2228 catch (const gdb_exception_error &except)
2230 fprintf_filtered (stream, "<error reading variable %s (%s)>", name,
2234 fprintf_filtered (stream, "\n");
2237 /* Subroutine of ui_printf to simplify it.
2238 Print VALUE to STREAM using FORMAT.
2239 VALUE is a C-style string either on the target or
2240 in a GDB internal variable. */
2243 printf_c_string (struct ui_file *stream, const char *format,
2244 struct value *value)
2246 const gdb_byte *str;
2248 if (VALUE_LVAL (value) == lval_internalvar
2249 && c_is_string_type_p (value_type (value)))
2251 size_t len = TYPE_LENGTH (value_type (value));
2253 /* Copy the internal var value to TEM_STR and append a terminating null
2254 character. This protects against corrupted C-style strings that lack
2255 the terminating null char. It also allows Ada-style strings (not
2256 null terminated) to be printed without problems. */
2257 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2259 memcpy (tem_str, value_contents (value), len);
2265 CORE_ADDR tem = value_as_address (value);;
2270 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2271 fprintf_filtered (stream, format, "(null)");
2276 /* This is a %s argument. Find the length of the string. */
2279 for (len = 0;; len++)
2284 read_memory (tem + len, &c, 1);
2289 /* Copy the string contents into a string inside GDB. */
2290 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2293 read_memory (tem, tem_str, len);
2299 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2300 fprintf_filtered (stream, format, (char *) str);
2304 /* Subroutine of ui_printf to simplify it.
2305 Print VALUE to STREAM using FORMAT.
2306 VALUE is a wide C-style string on the target or
2307 in a GDB internal variable. */
2310 printf_wide_c_string (struct ui_file *stream, const char *format,
2311 struct value *value)
2313 const gdb_byte *str;
2315 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2316 struct type *wctype = lookup_typename (current_language, gdbarch,
2317 "wchar_t", NULL, 0);
2318 int wcwidth = TYPE_LENGTH (wctype);
2320 if (VALUE_LVAL (value) == lval_internalvar
2321 && c_is_string_type_p (value_type (value)))
2323 str = value_contents (value);
2324 len = TYPE_LENGTH (value_type (value));
2328 CORE_ADDR tem = value_as_address (value);
2333 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2334 fprintf_filtered (stream, format, "(null)");
2339 /* This is a %s argument. Find the length of the string. */
2340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2341 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2343 for (len = 0;; len += wcwidth)
2346 read_memory (tem + len, buf, wcwidth);
2347 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2351 /* Copy the string contents into a string inside GDB. */
2352 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2355 read_memory (tem, tem_str, len);
2356 memset (&tem_str[len], 0, wcwidth);
2360 auto_obstack output;
2362 convert_between_encodings (target_wide_charset (gdbarch),
2365 &output, translit_char);
2366 obstack_grow_str0 (&output, "");
2369 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2370 fprintf_filtered (stream, format, obstack_base (&output));
2374 /* Subroutine of ui_printf to simplify it.
2375 Print VALUE, a floating point value, to STREAM using FORMAT. */
2378 printf_floating (struct ui_file *stream, const char *format,
2379 struct value *value, enum argclass argclass)
2381 /* Parameter data. */
2382 struct type *param_type = value_type (value);
2383 struct gdbarch *gdbarch = get_type_arch (param_type);
2385 /* Determine target type corresponding to the format string. */
2386 struct type *fmt_type;
2390 fmt_type = builtin_type (gdbarch)->builtin_double;
2392 case long_double_arg:
2393 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2395 case dec32float_arg:
2396 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2398 case dec64float_arg:
2399 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2401 case dec128float_arg:
2402 fmt_type = builtin_type (gdbarch)->builtin_declong;
2405 gdb_assert_not_reached ("unexpected argument class");
2408 /* To match the traditional GDB behavior, the conversion is
2409 done differently depending on the type of the parameter:
2411 - if the parameter has floating-point type, it's value
2412 is converted to the target type;
2414 - otherwise, if the parameter has a type that is of the
2415 same size as a built-in floating-point type, the value
2416 bytes are interpreted as if they were of that type, and
2417 then converted to the target type (this is not done for
2418 decimal floating-point argument classes);
2420 - otherwise, if the source value has an integer value,
2421 it's value is converted to the target type;
2423 - otherwise, an error is raised.
2425 In either case, the result of the conversion is a byte buffer
2426 formatted in the target format for the target type. */
2428 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2430 param_type = float_type_from_length (param_type);
2431 if (param_type != value_type (value))
2432 value = value_from_contents (param_type, value_contents (value));
2435 value = value_cast (fmt_type, value);
2437 /* Convert the value to a string and print it. */
2439 = target_float_to_string (value_contents (value), fmt_type, format);
2440 fputs_filtered (str.c_str (), stream);
2443 /* Subroutine of ui_printf to simplify it.
2444 Print VALUE, a target pointer, to STREAM using FORMAT. */
2447 printf_pointer (struct ui_file *stream, const char *format,
2448 struct value *value)
2450 /* We avoid the host's %p because pointers are too
2451 likely to be the wrong size. The only interesting
2452 modifier for %p is a width; extract that, and then
2453 handle %p as glibc would: %#x or a literal "(nil)". */
2457 #ifdef PRINTF_HAS_LONG_LONG
2458 long long val = value_as_long (value);
2460 long val = value_as_long (value);
2463 fmt = (char *) alloca (strlen (format) + 5);
2465 /* Copy up to the leading %. */
2470 int is_percent = (*p == '%');
2485 /* Copy any width or flags. Only the "-" flag is valid for pointers
2486 -- see the format_pieces constructor. */
2487 while (*p == '-' || (*p >= '0' && *p < '9'))
2490 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2493 #ifdef PRINTF_HAS_LONG_LONG
2500 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2501 fprintf_filtered (stream, fmt, val);
2509 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2510 fprintf_filtered (stream, fmt, "(nil)");
2515 /* printf "printf format string" ARG to STREAM. */
2518 ui_printf (const char *arg, struct ui_file *stream)
2520 const char *s = arg;
2521 std::vector<struct value *> val_args;
2524 error_no_arg (_("format-control string and values to print"));
2526 s = skip_spaces (s);
2528 /* A format string should follow, enveloped in double quotes. */
2530 error (_("Bad format string, missing '\"'."));
2532 format_pieces fpieces (&s);
2535 error (_("Bad format string, non-terminated '\"'."));
2537 s = skip_spaces (s);
2539 if (*s != ',' && *s != 0)
2540 error (_("Invalid argument syntax"));
2544 s = skip_spaces (s);
2549 const char *current_substring;
2552 for (auto &&piece : fpieces)
2553 if (piece.argclass != literal_piece)
2556 /* Now, parse all arguments and evaluate them.
2557 Store the VALUEs in VAL_ARGS. */
2564 val_args.push_back (parse_to_comma_and_eval (&s1));
2571 if (val_args.size () != nargs_wanted)
2572 error (_("Wrong number of arguments for specified format-string"));
2574 /* Now actually print them. */
2576 for (auto &&piece : fpieces)
2578 current_substring = piece.string;
2579 switch (piece.argclass)
2582 printf_c_string (stream, current_substring, val_args[i]);
2584 case wide_string_arg:
2585 printf_wide_c_string (stream, current_substring, val_args[i]);
2589 struct gdbarch *gdbarch
2590 = get_type_arch (value_type (val_args[i]));
2591 struct type *wctype = lookup_typename (current_language, gdbarch,
2592 "wchar_t", NULL, 0);
2593 struct type *valtype;
2594 const gdb_byte *bytes;
2596 valtype = value_type (val_args[i]);
2597 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2598 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2599 error (_("expected wchar_t argument for %%lc"));
2601 bytes = value_contents (val_args[i]);
2603 auto_obstack output;
2605 convert_between_encodings (target_wide_charset (gdbarch),
2607 bytes, TYPE_LENGTH (valtype),
2608 TYPE_LENGTH (valtype),
2609 &output, translit_char);
2610 obstack_grow_str0 (&output, "");
2613 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2614 fprintf_filtered (stream, current_substring,
2615 obstack_base (&output));
2620 #ifdef PRINTF_HAS_LONG_LONG
2622 long long val = value_as_long (val_args[i]);
2625 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2626 fprintf_filtered (stream, current_substring, val);
2631 error (_("long long not supported in printf"));
2635 int val = value_as_long (val_args[i]);
2638 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2639 fprintf_filtered (stream, current_substring, val);
2645 long val = value_as_long (val_args[i]);
2648 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2649 fprintf_filtered (stream, current_substring, val);
2653 /* Handles floating-point values. */
2655 case long_double_arg:
2656 case dec32float_arg:
2657 case dec64float_arg:
2658 case dec128float_arg:
2659 printf_floating (stream, current_substring, val_args[i],
2663 printf_pointer (stream, current_substring, val_args[i]);
2666 /* Print a portion of the format string that has no
2667 directives. Note that this will not include any
2668 ordinary %-specs, but it might include "%%". That is
2669 why we use printf_filtered and not puts_filtered here.
2670 Also, we pass a dummy argument because some platforms
2671 have modified GCC to include -Wformat-security by
2672 default, which will warn here if there is no
2675 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2676 fprintf_filtered (stream, current_substring, 0);
2680 internal_error (__FILE__, __LINE__,
2681 _("failed internal consistency check"));
2683 /* Maybe advance to the next argument. */
2684 if (piece.argclass != literal_piece)
2690 /* Implement the "printf" command. */
2693 printf_command (const char *arg, int from_tty)
2695 ui_printf (arg, gdb_stdout);
2696 reset_terminal_style (gdb_stdout);
2698 gdb_flush (gdb_stdout);
2701 /* Implement the "eval" command. */
2704 eval_command (const char *arg, int from_tty)
2708 ui_printf (arg, &stb);
2710 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2712 execute_command (expanded.c_str (), from_tty);
2716 _initialize_printcmd (void)
2718 struct cmd_list_element *c;
2720 current_display_number = -1;
2722 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2724 add_info ("address", info_address_command,
2725 _("Describe where symbol SYM is stored.\n\
2726 Usage: info address SYM"));
2728 add_info ("symbol", info_symbol_command, _("\
2729 Describe what symbol is at location ADDR.\n\
2730 Usage: info symbol ADDR\n\
2731 Only for symbols with fixed locations (global or static scope)."));
2733 add_com ("x", class_vars, x_command, _("\
2734 Examine memory: x/FMT ADDRESS.\n\
2735 ADDRESS is an expression for the memory address to examine.\n\
2736 FMT is a repeat count followed by a format letter and a size letter.\n\
2737 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2738 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2739 and z(hex, zero padded on the left).\n\
2740 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2741 The specified number of objects of the specified size are printed\n\
2742 according to the format. If a negative number is specified, memory is\n\
2743 examined backward from the address.\n\n\
2744 Defaults for format and size letters are those previously used.\n\
2745 Default count is 1. Default address is following last thing printed\n\
2746 with this command or \"print\"."));
2748 add_info ("display", info_display_command, _("\
2749 Expressions to display when program stops, with code numbers.\n\
2750 Usage: info display"));
2752 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2753 Cancel some expressions to be displayed when program stops.\n\
2754 Usage: undisplay [NUM]...\n\
2755 Arguments are the code numbers of the expressions to stop displaying.\n\
2756 No argument means cancel all automatic-display expressions.\n\
2757 \"delete display\" has the same effect as this command.\n\
2758 Do \"info display\" to see current list of code numbers."),
2761 add_com ("display", class_vars, display_command, _("\
2762 Print value of expression EXP each time the program stops.\n\
2763 Usage: display[/FMT] EXP\n\
2764 /FMT may be used before EXP as in the \"print\" command.\n\
2765 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2766 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2767 and examining is done as in the \"x\" command.\n\n\
2768 With no argument, display all currently requested auto-display expressions.\n\
2769 Use \"undisplay\" to cancel display requests previously made."));
2771 add_cmd ("display", class_vars, enable_display_command, _("\
2772 Enable some expressions to be displayed when program stops.\n\
2773 Usage: enable display [NUM]...\n\
2774 Arguments are the code numbers of the expressions to resume displaying.\n\
2775 No argument means enable all automatic-display expressions.\n\
2776 Do \"info display\" to see current list of code numbers."), &enablelist);
2778 add_cmd ("display", class_vars, disable_display_command, _("\
2779 Disable some expressions to be displayed when program stops.\n\
2780 Usage: disable display [NUM]...\n\
2781 Arguments are the code numbers of the expressions to stop displaying.\n\
2782 No argument means disable all automatic-display expressions.\n\
2783 Do \"info display\" to see current list of code numbers."), &disablelist);
2785 add_cmd ("display", class_vars, undisplay_command, _("\
2786 Cancel some expressions to be displayed when program stops.\n\
2787 Usage: delete display [NUM]...\n\
2788 Arguments are the code numbers of the expressions to stop displaying.\n\
2789 No argument means cancel all automatic-display expressions.\n\
2790 Do \"info display\" to see current list of code numbers."), &deletelist);
2792 add_com ("printf", class_vars, printf_command, _("\
2793 Formatted printing, like the C \"printf\" function.\n\
2794 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2795 This supports most C printf format specifications, like %s, %d, etc."));
2797 add_com ("output", class_vars, output_command, _("\
2798 Like \"print\" but don't put in value history and don't print newline.\n\
2799 Usage: output EXP\n\
2800 This is useful in user-defined commands."));
2802 add_prefix_cmd ("set", class_vars, set_command, _("\
2803 Evaluate expression EXP and assign result to variable VAR.\n\
2804 Usage: set VAR = EXP\n\
2805 This uses assignment syntax appropriate for the current language\n\
2806 (VAR = EXP or VAR := EXP for example).\n\
2807 VAR may be a debugger \"convenience\" variable (names starting\n\
2808 with $), a register (a few standard names starting with $), or an actual\n\
2809 variable in the program being debugged. EXP is any valid expression.\n\
2810 Use \"set variable\" for variables with names identical to set subcommands.\n\
2812 With a subcommand, this command modifies parts of the gdb environment.\n\
2813 You can see these environment settings with the \"show\" command."),
2814 &setlist, "set ", 1, &cmdlist);
2816 add_com ("assign", class_vars, set_command, _("\
2817 Evaluate expression EXP and assign result to variable VAR.\n\
2818 Usage: assign VAR = EXP\n\
2819 This uses assignment syntax appropriate for the current language\n\
2820 (VAR = EXP or VAR := EXP for example).\n\
2821 VAR may be a debugger \"convenience\" variable (names starting\n\
2822 with $), a register (a few standard names starting with $), or an actual\n\
2823 variable in the program being debugged. EXP is any valid expression.\n\
2824 Use \"set variable\" for variables with names identical to set subcommands.\n\
2825 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2826 You can see these environment settings with the \"show\" command."));
2828 /* "call" is the same as "set", but handy for dbx users to call fns. */
2829 c = add_com ("call", class_vars, call_command, _("\
2830 Call a function in the program.\n\
2832 The argument is the function name and arguments, in the notation of the\n\
2833 current working language. The result is printed and saved in the value\n\
2834 history, if it is not void."));
2835 set_cmd_completer_handle_brkchars (c, print_command_completer);
2837 add_cmd ("variable", class_vars, set_command, _("\
2838 Evaluate expression EXP and assign result to variable VAR.\n\
2839 Usage: set variable VAR = EXP\n\
2840 This uses assignment syntax appropriate for the current language\n\
2841 (VAR = EXP or VAR := EXP for example).\n\
2842 VAR may be a debugger \"convenience\" variable (names starting\n\
2843 with $), a register (a few standard names starting with $), or an actual\n\
2844 variable in the program being debugged. EXP is any valid expression.\n\
2845 This may usually be abbreviated to simply \"set\"."),
2847 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2849 const auto print_opts = make_value_print_options_def_group (nullptr);
2851 static const std::string print_help = gdb::option::build_help (_("\
2852 Print value of expression EXP.\n\
2853 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2858 Note: because this command accepts arbitrary expressions, if you\n\
2859 specify any command option, you must use a double dash (\"--\")\n\
2860 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2862 Variables accessible are those of the lexical environment of the selected\n\
2863 stack frame, plus all those whose scope is global or an entire file.\n\
2865 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2866 $$NUM refers to NUM'th value back from the last one.\n\
2867 Names starting with $ refer to registers (with the values they would have\n\
2868 if the program were to return to the stack frame now selected, restoring\n\
2869 all registers saved by frames farther in) or else to debugger\n\
2870 \"convenience\" variables (any such name not a known register).\n\
2871 Use assignment expressions to give values to convenience variables.\n\
2873 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2874 @ is a binary operator for treating consecutive data objects\n\
2875 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2876 element is FOO, whose second element is stored in the space following\n\
2877 where FOO is stored, etc. FOO must be an expression whose value\n\
2878 resides in memory.\n\
2880 EXP may be preceded with /FMT, where FMT is a format letter\n\
2881 but no count or size letter (see \"x\" command)."),
2884 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2885 set_cmd_completer_handle_brkchars (c, print_command_completer);
2886 add_com_alias ("p", "print", class_vars, 1);
2887 add_com_alias ("inspect", "print", class_vars, 1);
2889 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2890 &max_symbolic_offset, _("\
2891 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2892 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2893 Tell GDB to only display the symbolic form of an address if the\n\
2894 offset between the closest earlier symbol and the address is less than\n\
2895 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2896 to always print the symbolic form of an address if any symbol precedes\n\
2897 it. Zero is equivalent to \"unlimited\"."),
2899 show_max_symbolic_offset,
2900 &setprintlist, &showprintlist);
2901 add_setshow_boolean_cmd ("symbol-filename", no_class,
2902 &print_symbol_filename, _("\
2903 Set printing of source filename and line number with <SYMBOL>."), _("\
2904 Show printing of source filename and line number with <SYMBOL>."), NULL,
2906 show_print_symbol_filename,
2907 &setprintlist, &showprintlist);
2909 add_com ("eval", no_class, eval_command, _("\
2910 Construct a GDB command and then evaluate it.\n\
2911 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2912 Convert the arguments to a string as \"printf\" would, but then\n\
2913 treat this string as a command line, and evaluate it."));