1 /* Print values for GNU debugger GDB.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "expression.h"
30 #include "breakpoint.h"
32 #include "gdb-demangle.h"
35 #include "symfile.h" /* for overlay functions */
36 #include "objfiles.h" /* ditto */
37 #include "completer.h" /* for completion functions */
41 #include "target-float.h"
44 #include "parser-defs.h"
46 #include "arch-utils.h"
47 #include "cli/cli-utils.h"
48 #include "cli/cli-script.h"
51 #include "common/byte-vector.h"
54 #include "tui/tui.h" /* For tui_active et al. */
57 /* Last specified output format. */
59 static char last_format = 0;
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
63 static char last_size = 'w';
65 /* Default address to examine next, and associated architecture. */
67 static struct gdbarch *next_gdbarch;
68 static CORE_ADDR next_address;
70 /* Number of delay instructions following current disassembled insn. */
72 static int branch_delay_insns;
74 /* Last address examined. */
76 static CORE_ADDR last_examine_address;
78 /* Contents of last address examined.
79 This is not valid past the end of the `x' command! */
81 static struct value *last_examine_value;
83 /* Largest offset between a symbolic value and an address, that will be
84 printed as `0x1234 <symbol+offset>'. */
86 static unsigned int max_symbolic_offset = UINT_MAX;
88 show_max_symbolic_offset (struct ui_file *file, int from_tty,
89 struct cmd_list_element *c, const char *value)
91 fprintf_filtered (file,
92 _("The largest offset that will be "
93 "printed in <symbol+1234> form is %s.\n"),
97 /* Append the source filename and linenumber of the symbol when
98 printing a symbolic value as `<symbol at filename:linenum>' if set. */
99 static int print_symbol_filename = 0;
101 show_print_symbol_filename (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
104 fprintf_filtered (file, _("Printing of source filename and "
105 "line number with <symbol> is %s.\n"),
109 /* Number of auto-display expression currently being displayed.
110 So that we can disable it if we get a signal within it.
111 -1 when not doing one. */
113 static int current_display_number;
117 /* Chain link to next auto-display item. */
118 struct display *next;
120 /* The expression as the user typed it. */
123 /* Expression to be evaluated and displayed. */
126 /* Item number of this auto-display item. */
129 /* Display format specified. */
130 struct format_data format;
132 /* Program space associated with `block'. */
133 struct program_space *pspace;
135 /* Innermost block required by this expression when evaluated. */
136 const struct block *block;
138 /* Status of this display (enabled or disabled). */
142 /* Chain of expressions whose values should be displayed
143 automatically each time the program stops. */
145 static struct display *display_chain;
147 static int display_number;
149 /* Walk the following statement or block through all displays.
150 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
153 #define ALL_DISPLAYS(B) \
154 for (B = display_chain; B; B = B->next)
156 #define ALL_DISPLAYS_SAFE(B,TMP) \
157 for (B = display_chain; \
158 B ? (TMP = B->next, 1): 0; \
161 /* Prototypes for local functions. */
163 static void do_one_display (struct display *);
166 /* Decode a format specification. *STRING_PTR should point to it.
167 OFORMAT and OSIZE are used as defaults for the format and size
168 if none are given in the format specification.
169 If OSIZE is zero, then the size field of the returned value
170 should be set only if a size is explicitly specified by the
172 The structure returned describes all the data
173 found in the specification. In addition, *STRING_PTR is advanced
174 past the specification and past all whitespace following it. */
176 static struct format_data
177 decode_format (const char **string_ptr, int oformat, int osize)
179 struct format_data val;
180 const char *p = *string_ptr;
192 if (*p >= '0' && *p <= '9')
193 val.count *= atoi (p);
194 while (*p >= '0' && *p <= '9')
197 /* Now process size or format letters that follow. */
201 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
208 else if (*p >= 'a' && *p <= 'z')
214 while (*p == ' ' || *p == '\t')
218 /* Set defaults for format and size if not specified. */
219 if (val.format == '?')
223 /* Neither has been specified. */
224 val.format = oformat;
228 /* If a size is specified, any format makes a reasonable
229 default except 'i'. */
230 val.format = oformat == 'i' ? 'x' : oformat;
232 else if (val.size == '?')
236 /* Pick the appropriate size for an address. This is deferred
237 until do_examine when we know the actual architecture to use.
238 A special size value of 'a' is used to indicate this case. */
239 val.size = osize ? 'a' : osize;
242 /* Floating point has to be word or giantword. */
243 if (osize == 'w' || osize == 'g')
246 /* Default it to giantword if the last used size is not
248 val.size = osize ? 'g' : osize;
251 /* Characters default to one byte. */
252 val.size = osize ? 'b' : osize;
255 /* Display strings with byte size chars unless explicitly
261 /* The default is the size most recently specified. */
268 /* Print value VAL on stream according to OPTIONS.
269 Do not end with a newline.
270 SIZE is the letter for the size of datum being printed.
271 This is used to pad hex numbers so they line up. SIZE is 0
272 for print / output and set for examine. */
275 print_formatted (struct value *val, int size,
276 const struct value_print_options *options,
277 struct ui_file *stream)
279 struct type *type = check_typedef (value_type (val));
280 int len = TYPE_LENGTH (type);
282 if (VALUE_LVAL (val) == lval_memory)
283 next_address = value_address (val) + len;
287 switch (options->format)
291 struct type *elttype = value_type (val);
293 next_address = (value_address (val)
294 + val_print_string (elttype, NULL,
295 value_address (val), -1,
296 stream, options) * len);
301 /* We often wrap here if there are long symbolic names. */
303 next_address = (value_address (val)
304 + gdb_print_insn (get_type_arch (type),
305 value_address (val), stream,
306 &branch_delay_insns));
311 if (options->format == 0 || options->format == 's'
312 || TYPE_CODE (type) == TYPE_CODE_REF
313 || TYPE_CODE (type) == TYPE_CODE_ARRAY
314 || TYPE_CODE (type) == TYPE_CODE_STRING
315 || TYPE_CODE (type) == TYPE_CODE_STRUCT
316 || TYPE_CODE (type) == TYPE_CODE_UNION
317 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
318 value_print (val, stream, options);
320 /* User specified format, so don't look to the type to tell us
322 val_print_scalar_formatted (type,
323 value_embedded_offset (val),
325 options, size, stream);
328 /* Return builtin floating point type of same length as TYPE.
329 If no such type is found, return TYPE itself. */
331 float_type_from_length (struct type *type)
333 struct gdbarch *gdbarch = get_type_arch (type);
334 const struct builtin_type *builtin = builtin_type (gdbarch);
336 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
337 type = builtin->builtin_float;
338 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
339 type = builtin->builtin_double;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
341 type = builtin->builtin_long_double;
346 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
347 according to OPTIONS and SIZE on STREAM. Formats s and i are not
348 supported at this level. */
351 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
352 const struct value_print_options *options,
353 int size, struct ui_file *stream)
355 struct gdbarch *gdbarch = get_type_arch (type);
356 unsigned int len = TYPE_LENGTH (type);
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
359 /* String printing should go through val_print_scalar_formatted. */
360 gdb_assert (options->format != 's');
362 /* If the value is a pointer, and pointers and addresses are not the
363 same, then at this point, the value's length (in target bytes) is
364 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
365 if (TYPE_CODE (type) == TYPE_CODE_PTR)
366 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
368 /* If we are printing it as unsigned, truncate it in case it is actually
369 a negative signed value (e.g. "print/u (short)-1" should print 65535
370 (if shorts are 16 bits) instead of 4294967295). */
371 if (options->format != 'c'
372 && (options->format != 'd' || TYPE_UNSIGNED (type)))
374 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
375 valaddr += TYPE_LENGTH (type) - len;
378 if (size != 0 && (options->format == 'x' || options->format == 't'))
380 /* Truncate to fit. */
397 error (_("Undefined output size \"%c\"."), size);
399 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
400 valaddr += len - newlen;
404 /* Historically gdb has printed floats by first casting them to a
405 long, and then printing the long. PR cli/16242 suggests changing
406 this to using C-style hex float format. */
407 gdb::byte_vector converted_float_bytes;
408 if (TYPE_CODE (type) == TYPE_CODE_FLT
409 && (options->format == 'o'
410 || options->format == 'x'
411 || options->format == 't'
412 || options->format == 'z'
413 || options->format == 'd'
414 || options->format == 'u'))
416 LONGEST val_long = unpack_long (type, valaddr);
417 converted_float_bytes.resize (TYPE_LENGTH (type));
418 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
419 byte_order, val_long);
420 valaddr = converted_float_bytes.data ();
423 /* Printing a non-float type as 'f' will interpret the data as if it were
424 of a floating-point type of the same length, if that exists. Otherwise,
425 the data is printed as integer. */
426 char format = options->format;
427 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
429 type = float_type_from_length (type);
430 if (TYPE_CODE (type) != TYPE_CODE_FLT)
437 print_octal_chars (stream, valaddr, len, byte_order);
440 print_decimal_chars (stream, valaddr, len, true, byte_order);
443 print_decimal_chars (stream, valaddr, len, false, byte_order);
446 if (TYPE_CODE (type) != TYPE_CODE_FLT)
448 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
454 print_floating (valaddr, type, stream);
458 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
461 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
464 print_hex_chars (stream, valaddr, len, byte_order, true);
468 struct value_print_options opts = *options;
470 LONGEST val_long = unpack_long (type, valaddr);
473 if (TYPE_UNSIGNED (type))
474 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
476 type = builtin_type (gdbarch)->builtin_true_char;
478 value_print (value_from_longest (type, val_long), stream, &opts);
484 CORE_ADDR addr = unpack_pointer (type, valaddr);
486 print_address (gdbarch, addr, stream);
491 error (_("Undefined output format \"%c\"."), format);
495 /* Specify default address for `x' command.
496 The `info lines' command uses this. */
499 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
501 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
503 next_gdbarch = gdbarch;
506 /* Make address available to the user as $_. */
507 set_internalvar (lookup_internalvar ("_"),
508 value_from_pointer (ptr_type, addr));
511 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
512 after LEADIN. Print nothing if no symbolic name is found nearby.
513 Optionally also print source file and line number, if available.
514 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
515 or to interpret it as a possible C++ name and convert it back to source
516 form. However note that DO_DEMANGLE can be overridden by the specific
517 settings of the demangle and asm_demangle variables. Returns
518 non-zero if anything was printed; zero otherwise. */
521 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
522 struct ui_file *stream,
523 int do_demangle, const char *leadin)
526 char *filename = NULL;
531 /* Throw away both name and filename. */
532 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
533 make_cleanup (free_current_contents, &filename);
535 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
536 &filename, &line, &unmapped))
538 do_cleanups (cleanup_chain);
542 fputs_filtered (leadin, stream);
544 fputs_filtered ("<*", stream);
546 fputs_filtered ("<", stream);
547 fputs_filtered (name, stream);
549 fprintf_filtered (stream, "+%u", (unsigned int) offset);
551 /* Append source filename and line number if desired. Give specific
552 line # of this addr, if we have it; else line # of the nearest symbol. */
553 if (print_symbol_filename && filename != NULL)
556 fprintf_filtered (stream, " at %s:%d", filename, line);
558 fprintf_filtered (stream, " in %s", filename);
561 fputs_filtered ("*>", stream);
563 fputs_filtered (">", stream);
565 do_cleanups (cleanup_chain);
569 /* Given an address ADDR return all the elements needed to print the
570 address in a symbolic form. NAME can be mangled or not depending
571 on DO_DEMANGLE (and also on the asm_demangle global variable,
572 manipulated via ''set print asm-demangle''). Return 0 in case of
573 success, when all the info in the OUT paramters is valid. Return 1
576 build_address_symbolic (struct gdbarch *gdbarch,
577 CORE_ADDR addr, /* IN */
578 int do_demangle, /* IN */
579 char **name, /* OUT */
580 int *offset, /* OUT */
581 char **filename, /* OUT */
583 int *unmapped) /* OUT */
585 struct bound_minimal_symbol msymbol;
586 struct symbol *symbol;
587 CORE_ADDR name_location = 0;
588 struct obj_section *section = NULL;
589 const char *name_temp = "";
591 /* Let's say it is mapped (not unmapped). */
594 /* Determine if the address is in an overlay, and whether it is
596 if (overlay_debugging)
598 section = find_pc_overlay (addr);
599 if (pc_in_unmapped_range (addr, section))
602 addr = overlay_mapped_address (addr, section);
606 /* First try to find the address in the symbol table, then
607 in the minsyms. Take the closest one. */
609 /* This is defective in the sense that it only finds text symbols. So
610 really this is kind of pointless--we should make sure that the
611 minimal symbols have everything we need (by changing that we could
612 save some memory, but for many debug format--ELF/DWARF or
613 anything/stabs--it would be inconvenient to eliminate those minimal
615 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
616 symbol = find_pc_sect_function (addr, section);
620 /* If this is a function (i.e. a code address), strip out any
621 non-address bits. For instance, display a pointer to the
622 first instruction of a Thumb function as <function>; the
623 second instruction will be <function+2>, even though the
624 pointer is <function+3>. This matches the ISA behavior. */
625 addr = gdbarch_addr_bits_remove (gdbarch, addr);
627 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
628 if (do_demangle || asm_demangle)
629 name_temp = SYMBOL_PRINT_NAME (symbol);
631 name_temp = SYMBOL_LINKAGE_NAME (symbol);
634 if (msymbol.minsym != NULL
635 && MSYMBOL_HAS_SIZE (msymbol.minsym)
636 && MSYMBOL_SIZE (msymbol.minsym) == 0
637 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
638 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
639 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
640 msymbol.minsym = NULL;
642 if (msymbol.minsym != NULL)
644 if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
646 /* If this is a function (i.e. a code address), strip out any
647 non-address bits. For instance, display a pointer to the
648 first instruction of a Thumb function as <function>; the
649 second instruction will be <function+2>, even though the
650 pointer is <function+3>. This matches the ISA behavior. */
651 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
652 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
653 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
654 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
655 addr = gdbarch_addr_bits_remove (gdbarch, addr);
657 /* The msymbol is closer to the address than the symbol;
658 use the msymbol instead. */
660 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
661 if (do_demangle || asm_demangle)
662 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
664 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
667 if (symbol == NULL && msymbol.minsym == NULL)
670 /* If the nearest symbol is too far away, don't print anything symbolic. */
672 /* For when CORE_ADDR is larger than unsigned int, we do math in
673 CORE_ADDR. But when we detect unsigned wraparound in the
674 CORE_ADDR math, we ignore this test and print the offset,
675 because addr+max_symbolic_offset has wrapped through the end
676 of the address space back to the beginning, giving bogus comparison. */
677 if (addr > name_location + max_symbolic_offset
678 && name_location + max_symbolic_offset > name_location)
681 *offset = addr - name_location;
683 *name = xstrdup (name_temp);
685 if (print_symbol_filename)
687 struct symtab_and_line sal;
689 sal = find_pc_sect_line (addr, section, 0);
693 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
701 /* Print address ADDR symbolically on STREAM.
702 First print it as a number. Then perhaps print
703 <SYMBOL + OFFSET> after the number. */
706 print_address (struct gdbarch *gdbarch,
707 CORE_ADDR addr, struct ui_file *stream)
709 fputs_filtered (paddress (gdbarch, addr), stream);
710 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
713 /* Return a prefix for instruction address:
714 "=> " for current instruction, else " ". */
717 pc_prefix (CORE_ADDR addr)
719 if (has_stack_frames ())
721 struct frame_info *frame;
724 frame = get_selected_frame (NULL);
725 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
731 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
732 controls whether to print the symbolic name "raw" or demangled.
733 Return non-zero if anything was printed; zero otherwise. */
736 print_address_demangle (const struct value_print_options *opts,
737 struct gdbarch *gdbarch, CORE_ADDR addr,
738 struct ui_file *stream, int do_demangle)
740 if (opts->addressprint)
742 fputs_filtered (paddress (gdbarch, addr), stream);
743 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
747 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
753 /* Find the address of the instruction that is INST_COUNT instructions before
754 the instruction at ADDR.
755 Since some architectures have variable-length instructions, we can't just
756 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
757 number information to locate the nearest known instruction boundary,
758 and disassemble forward from there. If we go out of the symbol range
759 during disassembling, we return the lowest address we've got so far and
760 set the number of instructions read to INST_READ. */
763 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
764 int inst_count, int *inst_read)
766 /* The vector PCS is used to store instruction addresses within
768 CORE_ADDR loop_start, loop_end, p;
769 std::vector<CORE_ADDR> pcs;
770 struct symtab_and_line sal;
773 loop_start = loop_end = addr;
775 /* In each iteration of the outer loop, we get a pc range that ends before
776 LOOP_START, then we count and store every instruction address of the range
777 iterated in the loop.
778 If the number of instructions counted reaches INST_COUNT, return the
779 stored address that is located INST_COUNT instructions back from ADDR.
780 If INST_COUNT is not reached, we subtract the number of counted
781 instructions from INST_COUNT, and go to the next iteration. */
785 sal = find_pc_sect_line (loop_start, NULL, 1);
788 /* We reach here when line info is not available. In this case,
789 we print a message and just exit the loop. The return value
790 is calculated after the loop. */
791 printf_filtered (_("No line number information available "
794 print_address (gdbarch, loop_start - 1, gdb_stdout);
795 printf_filtered ("\n");
799 loop_end = loop_start;
802 /* This loop pushes instruction addresses in the range from
803 LOOP_START to LOOP_END. */
804 for (p = loop_start; p < loop_end;)
807 p += gdb_insn_length (gdbarch, p);
810 inst_count -= pcs.size ();
811 *inst_read += pcs.size ();
813 while (inst_count > 0);
815 /* After the loop, the vector PCS has instruction addresses of the last
816 source line we processed, and INST_COUNT has a negative value.
817 We return the address at the index of -INST_COUNT in the vector for
819 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
829 find_instruction_backward is called with INST_COUNT = 4 and expected to
830 return 0x4001. When we reach here, INST_COUNT is set to -1 because
831 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
832 4001 is located at the index 1 of the last iterated line (= Line X),
833 which is simply calculated by -INST_COUNT.
834 The case when the length of PCS is 0 means that we reached an area for
835 which line info is not available. In such case, we return LOOP_START,
836 which was the lowest instruction address that had line info. */
837 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
839 /* INST_READ includes all instruction addresses in a pc range. Need to
840 exclude the beginning part up to the address we're returning. That
841 is, exclude {0x4000} in the example above. */
843 *inst_read += inst_count;
848 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
849 placing the results in GDB's memory from MYADDR + LEN. Returns
850 a count of the bytes actually read. */
853 read_memory_backward (struct gdbarch *gdbarch,
854 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
857 int nread; /* Number of bytes actually read. */
859 /* First try a complete read. */
860 errcode = target_read_memory (memaddr, myaddr, len);
868 /* Loop, reading one byte at a time until we get as much as we can. */
871 for (nread = 0; nread < len; ++nread)
873 errcode = target_read_memory (--memaddr, --myaddr, 1);
876 /* The read was unsuccessful, so exit the loop. */
877 printf_filtered (_("Cannot access memory at address %s\n"),
878 paddress (gdbarch, memaddr));
886 /* Returns true if X (which is LEN bytes wide) is the number zero. */
889 integer_is_zero (const gdb_byte *x, int len)
893 while (i < len && x[i] == 0)
898 /* Find the start address of a string in which ADDR is included.
899 Basically we search for '\0' and return the next address,
900 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
901 we stop searching and return the address to print characters as many as
902 PRINT_MAX from the string. */
905 find_string_backward (struct gdbarch *gdbarch,
906 CORE_ADDR addr, int count, int char_size,
907 const struct value_print_options *options,
908 int *strings_counted)
910 const int chunk_size = 0x20;
913 int chars_to_read = chunk_size;
914 int chars_counted = 0;
915 int count_original = count;
916 CORE_ADDR string_start_addr = addr;
918 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
919 gdb::byte_vector buffer (chars_to_read * char_size);
920 while (count > 0 && read_error == 0)
924 addr -= chars_to_read * char_size;
925 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
926 chars_to_read * char_size);
927 chars_read /= char_size;
928 read_error = (chars_read == chars_to_read) ? 0 : 1;
929 /* Searching for '\0' from the end of buffer in backward direction. */
930 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
932 int offset = (chars_to_read - i - 1) * char_size;
934 if (integer_is_zero (&buffer[offset], char_size)
935 || chars_counted == options->print_max)
937 /* Found '\0' or reached print_max. As OFFSET is the offset to
938 '\0', we add CHAR_SIZE to return the start address of
941 string_start_addr = addr + offset + char_size;
947 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
948 *strings_counted = count_original - count;
952 /* In error case, STRING_START_ADDR is pointing to the string that
953 was last successfully loaded. Rewind the partially loaded string. */
954 string_start_addr -= chars_counted * char_size;
957 return string_start_addr;
960 /* Examine data at address ADDR in format FMT.
961 Fetch it from memory and print on gdb_stdout. */
964 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
969 struct type *val_type = NULL;
972 struct value_print_options opts;
973 int need_to_update_next_address = 0;
974 CORE_ADDR addr_rewound = 0;
979 next_gdbarch = gdbarch;
982 /* Instruction format implies fetch single bytes
983 regardless of the specified size.
984 The case of strings is handled in decode_format, only explicit
985 size operator are not changed to 'b'. */
991 /* Pick the appropriate size for an address. */
992 if (gdbarch_ptr_bit (next_gdbarch) == 64)
994 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
996 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
999 /* Bad value for gdbarch_ptr_bit. */
1000 internal_error (__FILE__, __LINE__,
1001 _("failed internal consistency check"));
1005 val_type = builtin_type (next_gdbarch)->builtin_int8;
1006 else if (size == 'h')
1007 val_type = builtin_type (next_gdbarch)->builtin_int16;
1008 else if (size == 'w')
1009 val_type = builtin_type (next_gdbarch)->builtin_int32;
1010 else if (size == 'g')
1011 val_type = builtin_type (next_gdbarch)->builtin_int64;
1015 struct type *char_type = NULL;
1017 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1018 if type is not found. */
1020 char_type = builtin_type (next_gdbarch)->builtin_char16;
1021 else if (size == 'w')
1022 char_type = builtin_type (next_gdbarch)->builtin_char32;
1024 val_type = char_type;
1027 if (size != '\0' && size != 'b')
1028 warning (_("Unable to display strings with "
1029 "size '%c', using 'b' instead."), size);
1031 val_type = builtin_type (next_gdbarch)->builtin_int8;
1040 if (format == 's' || format == 'i')
1043 get_formatted_print_options (&opts, format);
1047 /* This is the negative repeat count case.
1048 We rewind the address based on the given repeat count and format,
1049 then examine memory from there in forward direction. */
1054 next_address = find_instruction_backward (gdbarch, addr, count,
1057 else if (format == 's')
1059 next_address = find_string_backward (gdbarch, addr, count,
1060 TYPE_LENGTH (val_type),
1065 next_address = addr - count * TYPE_LENGTH (val_type);
1068 /* The following call to print_formatted updates next_address in every
1069 iteration. In backward case, we store the start address here
1070 and update next_address with it before exiting the function. */
1071 addr_rewound = (format == 's'
1072 ? next_address - TYPE_LENGTH (val_type)
1074 need_to_update_next_address = 1;
1077 /* Print as many objects as specified in COUNT, at most maxelts per line,
1078 with the address of the next one at the start of each line. */
1084 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1085 print_address (next_gdbarch, next_address, gdb_stdout);
1086 printf_filtered (":");
1091 printf_filtered ("\t");
1092 /* Note that print_formatted sets next_address for the next
1094 last_examine_address = next_address;
1096 if (last_examine_value)
1097 value_free (last_examine_value);
1099 /* The value to be displayed is not fetched greedily.
1100 Instead, to avoid the possibility of a fetched value not
1101 being used, its retrieval is delayed until the print code
1102 uses it. When examining an instruction stream, the
1103 disassembler will perform its own memory fetch using just
1104 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1105 the disassembler be modified so that LAST_EXAMINE_VALUE
1106 is left with the byte sequence from the last complete
1107 instruction fetched from memory? */
1108 last_examine_value = value_at_lazy (val_type, next_address);
1110 if (last_examine_value)
1111 release_value (last_examine_value);
1113 print_formatted (last_examine_value, size, &opts, gdb_stdout);
1115 /* Display any branch delay slots following the final insn. */
1116 if (format == 'i' && count == 1)
1117 count += branch_delay_insns;
1119 printf_filtered ("\n");
1120 gdb_flush (gdb_stdout);
1123 if (need_to_update_next_address)
1124 next_address = addr_rewound;
1128 validate_format (struct format_data fmt, const char *cmdname)
1131 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1133 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1135 if (fmt.format == 'i')
1136 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1137 fmt.format, cmdname);
1140 /* Parse print command format string into *FMTP and update *EXPP.
1141 CMDNAME should name the current command. */
1144 print_command_parse_format (const char **expp, const char *cmdname,
1145 struct format_data *fmtp)
1147 const char *exp = *expp;
1149 if (exp && *exp == '/')
1152 *fmtp = decode_format (&exp, last_format, 0);
1153 validate_format (*fmtp, cmdname);
1154 last_format = fmtp->format;
1167 /* Print VAL to console according to *FMTP, including recording it to
1171 print_value (struct value *val, const struct format_data *fmtp)
1173 struct value_print_options opts;
1174 int histindex = record_latest_value (val);
1176 annotate_value_history_begin (histindex, value_type (val));
1178 printf_filtered ("$%d = ", histindex);
1180 annotate_value_history_value ();
1182 get_formatted_print_options (&opts, fmtp->format);
1183 opts.raw = fmtp->raw;
1185 print_formatted (val, fmtp->size, &opts, gdb_stdout);
1186 printf_filtered ("\n");
1188 annotate_value_history_end ();
1191 /* Evaluate string EXP as an expression in the current language and
1192 print the resulting value. EXP may contain a format specifier as the
1193 first argument ("/x myvar" for example, to print myvar in hex). */
1196 print_command_1 (const char *exp, int voidprint)
1199 struct format_data fmt;
1201 print_command_parse_format (&exp, "print", &fmt);
1205 expression_up expr = parse_expression (exp);
1206 val = evaluate_expression (expr.get ());
1209 val = access_value_history (0);
1211 if (voidprint || (val && value_type (val) &&
1212 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1213 print_value (val, &fmt);
1217 print_command (const char *exp, int from_tty)
1219 print_command_1 (exp, 1);
1222 /* Same as print, except it doesn't print void results. */
1224 call_command (const char *exp, int from_tty)
1226 print_command_1 (exp, 0);
1229 /* Implementation of the "output" command. */
1232 output_command (const char *exp, int from_tty)
1234 output_command_const (exp, from_tty);
1237 /* Like output_command, but takes a const string as argument. */
1240 output_command_const (const char *exp, int from_tty)
1244 struct format_data fmt;
1245 struct value_print_options opts;
1250 if (exp && *exp == '/')
1253 fmt = decode_format (&exp, 0, 0);
1254 validate_format (fmt, "output");
1255 format = fmt.format;
1258 expression_up expr = parse_expression (exp);
1260 val = evaluate_expression (expr.get ());
1262 annotate_value_begin (value_type (val));
1264 get_formatted_print_options (&opts, format);
1266 print_formatted (val, fmt.size, &opts, gdb_stdout);
1268 annotate_value_end ();
1271 gdb_flush (gdb_stdout);
1275 set_command (const char *exp, int from_tty)
1277 expression_up expr = parse_expression (exp);
1279 if (expr->nelts >= 1)
1280 switch (expr->elts[0].opcode)
1282 case UNOP_PREINCREMENT:
1283 case UNOP_POSTINCREMENT:
1284 case UNOP_PREDECREMENT:
1285 case UNOP_POSTDECREMENT:
1287 case BINOP_ASSIGN_MODIFY:
1292 (_("Expression is not an assignment (and might have no effect)"));
1295 evaluate_expression (expr.get ());
1299 info_symbol_command (const char *arg, int from_tty)
1301 struct minimal_symbol *msymbol;
1302 struct objfile *objfile;
1303 struct obj_section *osect;
1304 CORE_ADDR addr, sect_addr;
1306 unsigned int offset;
1309 error_no_arg (_("address"));
1311 addr = parse_and_eval_address (arg);
1312 ALL_OBJSECTIONS (objfile, osect)
1314 /* Only process each object file once, even if there's a separate
1316 if (objfile->separate_debug_objfile_backlink)
1319 sect_addr = overlay_mapped_address (addr, osect);
1321 if (obj_section_addr (osect) <= sect_addr
1322 && sect_addr < obj_section_endaddr (osect)
1324 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1326 const char *obj_name, *mapped, *sec_name, *msym_name;
1327 const char *loc_string;
1328 struct cleanup *old_chain;
1331 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1332 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1333 sec_name = osect->the_bfd_section->name;
1334 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1336 /* Don't print the offset if it is zero.
1337 We assume there's no need to handle i18n of "sym + offset". */
1338 std::string string_holder;
1341 string_holder = string_printf ("%s + %u", msym_name, offset);
1342 loc_string = string_holder.c_str ();
1345 loc_string = msym_name;
1347 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1348 obj_name = objfile_name (osect->objfile);
1350 if (MULTI_OBJFILE_P ())
1351 if (pc_in_unmapped_range (addr, osect))
1352 if (section_is_overlay (osect))
1353 printf_filtered (_("%s in load address range of "
1354 "%s overlay section %s of %s\n"),
1355 loc_string, mapped, sec_name, obj_name);
1357 printf_filtered (_("%s in load address range of "
1358 "section %s of %s\n"),
1359 loc_string, sec_name, obj_name);
1361 if (section_is_overlay (osect))
1362 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1363 loc_string, mapped, sec_name, obj_name);
1365 printf_filtered (_("%s in section %s of %s\n"),
1366 loc_string, sec_name, obj_name);
1368 if (pc_in_unmapped_range (addr, osect))
1369 if (section_is_overlay (osect))
1370 printf_filtered (_("%s in load address range of %s overlay "
1372 loc_string, mapped, sec_name);
1374 printf_filtered (_("%s in load address range of section %s\n"),
1375 loc_string, sec_name);
1377 if (section_is_overlay (osect))
1378 printf_filtered (_("%s in %s overlay section %s\n"),
1379 loc_string, mapped, sec_name);
1381 printf_filtered (_("%s in section %s\n"),
1382 loc_string, sec_name);
1386 printf_filtered (_("No symbol matches %s.\n"), arg);
1390 info_address_command (const char *exp, int from_tty)
1392 struct gdbarch *gdbarch;
1395 struct bound_minimal_symbol msymbol;
1397 struct obj_section *section;
1398 CORE_ADDR load_addr, context_pc = 0;
1399 struct field_of_this_result is_a_field_of_this;
1402 error (_("Argument required."));
1404 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1405 &is_a_field_of_this).symbol;
1408 if (is_a_field_of_this.type != NULL)
1410 printf_filtered ("Symbol \"");
1411 fprintf_symbol_filtered (gdb_stdout, exp,
1412 current_language->la_language, DMGL_ANSI);
1413 printf_filtered ("\" is a field of the local class variable ");
1414 if (current_language->la_language == language_objc)
1415 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1417 printf_filtered ("`this'\n");
1421 msymbol = lookup_bound_minimal_symbol (exp);
1423 if (msymbol.minsym != NULL)
1425 struct objfile *objfile = msymbol.objfile;
1427 gdbarch = get_objfile_arch (objfile);
1428 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1430 printf_filtered ("Symbol \"");
1431 fprintf_symbol_filtered (gdb_stdout, exp,
1432 current_language->la_language, DMGL_ANSI);
1433 printf_filtered ("\" is at ");
1434 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1435 printf_filtered (" in a file compiled without debugging");
1436 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1437 if (section_is_overlay (section))
1439 load_addr = overlay_unmapped_address (load_addr, section);
1440 printf_filtered (",\n -- loaded at ");
1441 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1442 printf_filtered (" in overlay section %s",
1443 section->the_bfd_section->name);
1445 printf_filtered (".\n");
1448 error (_("No symbol \"%s\" in current context."), exp);
1452 printf_filtered ("Symbol \"");
1453 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1454 current_language->la_language, DMGL_ANSI);
1455 printf_filtered ("\" is ");
1456 val = SYMBOL_VALUE (sym);
1457 if (SYMBOL_OBJFILE_OWNED (sym))
1458 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1461 gdbarch = symbol_arch (sym);
1463 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1465 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1467 printf_filtered (".\n");
1471 switch (SYMBOL_CLASS (sym))
1474 case LOC_CONST_BYTES:
1475 printf_filtered ("constant");
1479 printf_filtered ("a label at address ");
1480 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1481 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1482 if (section_is_overlay (section))
1484 load_addr = overlay_unmapped_address (load_addr, section);
1485 printf_filtered (",\n -- loaded at ");
1486 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1487 printf_filtered (" in overlay section %s",
1488 section->the_bfd_section->name);
1493 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1496 /* GDBARCH is the architecture associated with the objfile the symbol
1497 is defined in; the target architecture may be different, and may
1498 provide additional registers. However, we do not know the target
1499 architecture at this point. We assume the objfile architecture
1500 will contain all the standard registers that occur in debug info
1502 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1504 if (SYMBOL_IS_ARGUMENT (sym))
1505 printf_filtered (_("an argument in register %s"),
1506 gdbarch_register_name (gdbarch, regno));
1508 printf_filtered (_("a variable in register %s"),
1509 gdbarch_register_name (gdbarch, regno));
1513 printf_filtered (_("static storage at address "));
1514 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1515 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1516 if (section_is_overlay (section))
1518 load_addr = overlay_unmapped_address (load_addr, section);
1519 printf_filtered (_(",\n -- loaded at "));
1520 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1521 printf_filtered (_(" in overlay section %s"),
1522 section->the_bfd_section->name);
1526 case LOC_REGPARM_ADDR:
1527 /* Note comment at LOC_REGISTER. */
1528 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1529 printf_filtered (_("address of an argument in register %s"),
1530 gdbarch_register_name (gdbarch, regno));
1534 printf_filtered (_("an argument at offset %ld"), val);
1538 printf_filtered (_("a local variable at frame offset %ld"), val);
1542 printf_filtered (_("a reference argument at offset %ld"), val);
1546 printf_filtered (_("a typedef"));
1550 printf_filtered (_("a function at address "));
1551 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1552 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1553 if (section_is_overlay (section))
1555 load_addr = overlay_unmapped_address (load_addr, section);
1556 printf_filtered (_(",\n -- loaded at "));
1557 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1558 printf_filtered (_(" in overlay section %s"),
1559 section->the_bfd_section->name);
1563 case LOC_UNRESOLVED:
1565 struct bound_minimal_symbol msym;
1567 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1568 if (msym.minsym == NULL)
1569 printf_filtered ("unresolved");
1572 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1575 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1577 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1578 printf_filtered (_("a thread-local variable at offset %s "
1579 "in the thread-local storage for `%s'"),
1580 paddress (gdbarch, load_addr),
1581 objfile_name (section->objfile));
1585 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1586 printf_filtered (_("static storage at address "));
1587 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1588 if (section_is_overlay (section))
1590 load_addr = overlay_unmapped_address (load_addr, section);
1591 printf_filtered (_(",\n -- loaded at "));
1592 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1593 printf_filtered (_(" in overlay section %s"),
1594 section->the_bfd_section->name);
1601 case LOC_OPTIMIZED_OUT:
1602 printf_filtered (_("optimized out"));
1606 printf_filtered (_("of unknown (botched) type"));
1609 printf_filtered (".\n");
1614 x_command (const char *exp, int from_tty)
1616 struct format_data fmt;
1619 fmt.format = last_format ? last_format : 'x';
1620 fmt.size = last_size;
1624 if (exp && *exp == '/')
1626 const char *tmp = exp + 1;
1628 fmt = decode_format (&tmp, last_format, last_size);
1632 /* If we have an expression, evaluate it and use it as the address. */
1634 if (exp != 0 && *exp != 0)
1636 expression_up expr = parse_expression (exp);
1637 /* Cause expression not to be there any more if this command is
1638 repeated with Newline. But don't clobber a user-defined
1639 command's definition. */
1641 set_repeat_arguments ("");
1642 val = evaluate_expression (expr.get ());
1643 if (TYPE_IS_REFERENCE (value_type (val)))
1644 val = coerce_ref (val);
1645 /* In rvalue contexts, such as this, functions are coerced into
1646 pointers to functions. This makes "x/i main" work. */
1647 if (/* last_format == 'i' && */
1648 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1649 && VALUE_LVAL (val) == lval_memory)
1650 next_address = value_address (val);
1652 next_address = value_as_address (val);
1654 next_gdbarch = expr->gdbarch;
1658 error_no_arg (_("starting display address"));
1660 do_examine (fmt, next_gdbarch, next_address);
1662 /* If the examine succeeds, we remember its size and format for next
1663 time. Set last_size to 'b' for strings. */
1664 if (fmt.format == 's')
1667 last_size = fmt.size;
1668 last_format = fmt.format;
1670 /* Set a couple of internal variables if appropriate. */
1671 if (last_examine_value)
1673 /* Make last address examined available to the user as $_. Use
1674 the correct pointer type. */
1675 struct type *pointer_type
1676 = lookup_pointer_type (value_type (last_examine_value));
1677 set_internalvar (lookup_internalvar ("_"),
1678 value_from_pointer (pointer_type,
1679 last_examine_address));
1681 /* Make contents of last address examined available to the user
1682 as $__. If the last value has not been fetched from memory
1683 then don't fetch it now; instead mark it by voiding the $__
1685 if (value_lazy (last_examine_value))
1686 clear_internalvar (lookup_internalvar ("__"));
1688 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1693 /* Add an expression to the auto-display chain.
1694 Specify the expression. */
1697 display_command (const char *arg, int from_tty)
1699 struct format_data fmt;
1700 struct display *newobj;
1701 const char *exp = arg;
1712 fmt = decode_format (&exp, 0, 0);
1713 if (fmt.size && fmt.format == 0)
1715 if (fmt.format == 'i' || fmt.format == 's')
1726 innermost_block = NULL;
1727 expression_up expr = parse_expression (exp);
1729 newobj = new display ();
1731 newobj->exp_string = xstrdup (exp);
1732 newobj->exp = std::move (expr);
1733 newobj->block = innermost_block;
1734 newobj->pspace = current_program_space;
1735 newobj->number = ++display_number;
1736 newobj->format = fmt;
1737 newobj->enabled_p = 1;
1738 newobj->next = NULL;
1740 if (display_chain == NULL)
1741 display_chain = newobj;
1744 struct display *last;
1746 for (last = display_chain; last->next != NULL; last = last->next)
1748 last->next = newobj;
1752 do_one_display (newobj);
1758 free_display (struct display *d)
1760 xfree (d->exp_string);
1764 /* Clear out the display_chain. Done when new symtabs are loaded,
1765 since this invalidates the types stored in many expressions. */
1768 clear_displays (void)
1772 while ((d = display_chain) != NULL)
1774 display_chain = d->next;
1779 /* Delete the auto-display DISPLAY. */
1782 delete_display (struct display *display)
1786 gdb_assert (display != NULL);
1788 if (display_chain == display)
1789 display_chain = display->next;
1792 if (d->next == display)
1794 d->next = display->next;
1798 free_display (display);
1801 /* Call FUNCTION on each of the displays whose numbers are given in
1802 ARGS. DATA is passed unmodified to FUNCTION. */
1805 map_display_numbers (const char *args,
1806 void (*function) (struct display *,
1813 error_no_arg (_("one or more display numbers"));
1815 number_or_range_parser parser (args);
1817 while (!parser.finished ())
1819 const char *p = parser.cur_tok ();
1821 num = parser.get_number ();
1823 warning (_("bad display number at or near '%s'"), p);
1826 struct display *d, *tmp;
1828 ALL_DISPLAYS_SAFE (d, tmp)
1829 if (d->number == num)
1832 printf_unfiltered (_("No display number %d.\n"), num);
1839 /* Callback for map_display_numbers, that deletes a display. */
1842 do_delete_display (struct display *d, void *data)
1847 /* "undisplay" command. */
1850 undisplay_command (const char *args, int from_tty)
1854 if (query (_("Delete all auto-display expressions? ")))
1860 map_display_numbers (args, do_delete_display, NULL);
1864 /* Display a single auto-display.
1865 Do nothing if the display cannot be printed in the current context,
1866 or if the display is disabled. */
1869 do_one_display (struct display *d)
1871 int within_current_scope;
1873 if (d->enabled_p == 0)
1876 /* The expression carries the architecture that was used at parse time.
1877 This is a problem if the expression depends on architecture features
1878 (e.g. register numbers), and the current architecture is now different.
1879 For example, a display statement like "display/i $pc" is expected to
1880 display the PC register of the current architecture, not the arch at
1881 the time the display command was given. Therefore, we re-parse the
1882 expression if the current architecture has changed. */
1883 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1894 innermost_block = NULL;
1895 d->exp = parse_expression (d->exp_string);
1896 d->block = innermost_block;
1898 CATCH (ex, RETURN_MASK_ALL)
1900 /* Can't re-parse the expression. Disable this display item. */
1902 warning (_("Unable to display \"%s\": %s"),
1903 d->exp_string, ex.message);
1911 if (d->pspace == current_program_space)
1912 within_current_scope = contained_in (get_selected_block (0), d->block);
1914 within_current_scope = 0;
1917 within_current_scope = 1;
1918 if (!within_current_scope)
1921 scoped_restore save_display_number
1922 = make_scoped_restore (¤t_display_number, d->number);
1924 annotate_display_begin ();
1925 printf_filtered ("%d", d->number);
1926 annotate_display_number_end ();
1927 printf_filtered (": ");
1931 annotate_display_format ();
1933 printf_filtered ("x/");
1934 if (d->format.count != 1)
1935 printf_filtered ("%d", d->format.count);
1936 printf_filtered ("%c", d->format.format);
1937 if (d->format.format != 'i' && d->format.format != 's')
1938 printf_filtered ("%c", d->format.size);
1939 printf_filtered (" ");
1941 annotate_display_expression ();
1943 puts_filtered (d->exp_string);
1944 annotate_display_expression_end ();
1946 if (d->format.count != 1 || d->format.format == 'i')
1947 printf_filtered ("\n");
1949 printf_filtered (" ");
1951 annotate_display_value ();
1958 val = evaluate_expression (d->exp.get ());
1959 addr = value_as_address (val);
1960 if (d->format.format == 'i')
1961 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1962 do_examine (d->format, d->exp->gdbarch, addr);
1964 CATCH (ex, RETURN_MASK_ERROR)
1966 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1972 struct value_print_options opts;
1974 annotate_display_format ();
1976 if (d->format.format)
1977 printf_filtered ("/%c ", d->format.format);
1979 annotate_display_expression ();
1981 puts_filtered (d->exp_string);
1982 annotate_display_expression_end ();
1984 printf_filtered (" = ");
1986 annotate_display_expression ();
1988 get_formatted_print_options (&opts, d->format.format);
1989 opts.raw = d->format.raw;
1995 val = evaluate_expression (d->exp.get ());
1996 print_formatted (val, d->format.size, &opts, gdb_stdout);
1998 CATCH (ex, RETURN_MASK_ERROR)
2000 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2004 printf_filtered ("\n");
2007 annotate_display_end ();
2009 gdb_flush (gdb_stdout);
2012 /* Display all of the values on the auto-display chain which can be
2013 evaluated in the current scope. */
2020 for (d = display_chain; d; d = d->next)
2024 /* Delete the auto-display which we were in the process of displaying.
2025 This is done when there is an error or a signal. */
2028 disable_display (int num)
2032 for (d = display_chain; d; d = d->next)
2033 if (d->number == num)
2038 printf_unfiltered (_("No display number %d.\n"), num);
2042 disable_current_display (void)
2044 if (current_display_number >= 0)
2046 disable_display (current_display_number);
2047 fprintf_unfiltered (gdb_stderr,
2048 _("Disabling display %d to "
2049 "avoid infinite recursion.\n"),
2050 current_display_number);
2052 current_display_number = -1;
2056 info_display_command (const char *ignore, int from_tty)
2061 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2063 printf_filtered (_("Auto-display expressions now in effect:\n\
2064 Num Enb Expression\n"));
2066 for (d = display_chain; d; d = d->next)
2068 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2070 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2072 else if (d->format.format)
2073 printf_filtered ("/%c ", d->format.format);
2074 puts_filtered (d->exp_string);
2075 if (d->block && !contained_in (get_selected_block (0), d->block))
2076 printf_filtered (_(" (cannot be evaluated in the current context)"));
2077 printf_filtered ("\n");
2078 gdb_flush (gdb_stdout);
2082 /* Callback fo map_display_numbers, that enables or disables the
2083 passed in display D. */
2086 do_enable_disable_display (struct display *d, void *data)
2088 d->enabled_p = *(int *) data;
2091 /* Implamentation of both the "disable display" and "enable display"
2092 commands. ENABLE decides what to do. */
2095 enable_disable_display_command (const char *args, int from_tty, int enable)
2102 d->enabled_p = enable;
2106 map_display_numbers (args, do_enable_disable_display, &enable);
2109 /* The "enable display" command. */
2112 enable_display_command (const char *args, int from_tty)
2114 enable_disable_display_command (args, from_tty, 1);
2117 /* The "disable display" command. */
2120 disable_display_command (const char *args, int from_tty)
2122 enable_disable_display_command (args, from_tty, 0);
2125 /* display_chain items point to blocks and expressions. Some expressions in
2126 turn may point to symbols.
2127 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2128 obstack_free'd when a shared library is unloaded.
2129 Clear pointers that are about to become dangling.
2130 Both .exp and .block fields will be restored next time we need to display
2131 an item by re-parsing .exp_string field in the new execution context. */
2134 clear_dangling_display_expressions (struct objfile *objfile)
2137 struct program_space *pspace;
2139 /* With no symbol file we cannot have a block or expression from it. */
2140 if (objfile == NULL)
2142 pspace = objfile->pspace;
2143 if (objfile->separate_debug_objfile_backlink)
2145 objfile = objfile->separate_debug_objfile_backlink;
2146 gdb_assert (objfile->pspace == pspace);
2149 for (d = display_chain; d != NULL; d = d->next)
2151 if (d->pspace != pspace)
2154 if (lookup_objfile_from_block (d->block) == objfile
2155 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2164 /* Print the value in stack frame FRAME of a variable specified by a
2165 struct symbol. NAME is the name to print; if NULL then VAR's print
2166 name will be used. STREAM is the ui_file on which to print the
2167 value. INDENT specifies the number of indent levels to print
2168 before printing the variable name.
2170 This function invalidates FRAME. */
2173 print_variable_and_value (const char *name, struct symbol *var,
2174 struct frame_info *frame,
2175 struct ui_file *stream, int indent)
2179 name = SYMBOL_PRINT_NAME (var);
2181 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
2185 struct value_print_options opts;
2187 /* READ_VAR_VALUE needs a block in order to deal with non-local
2188 references (i.e. to handle nested functions). In this context, we
2189 print variables that are local to this frame, so we can avoid passing
2191 val = read_var_value (var, NULL, frame);
2192 get_user_print_options (&opts);
2194 common_val_print (val, stream, indent, &opts, current_language);
2196 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2200 CATCH (except, RETURN_MASK_ERROR)
2202 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
2207 fprintf_filtered (stream, "\n");
2210 /* Subroutine of ui_printf to simplify it.
2211 Print VALUE to STREAM using FORMAT.
2212 VALUE is a C-style string on the target. */
2215 printf_c_string (struct ui_file *stream, const char *format,
2216 struct value *value)
2222 tem = value_as_address (value);
2224 /* This is a %s argument. Find the length of the string. */
2230 read_memory (tem + j, &c, 1);
2235 /* Copy the string contents into a string inside GDB. */
2236 str = (gdb_byte *) alloca (j + 1);
2238 read_memory (tem, str, j);
2241 fprintf_filtered (stream, format, (char *) str);
2244 /* Subroutine of ui_printf to simplify it.
2245 Print VALUE to STREAM using FORMAT.
2246 VALUE is a wide C-style string on the target. */
2249 printf_wide_c_string (struct ui_file *stream, const char *format,
2250 struct value *value)
2255 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2257 struct type *wctype = lookup_typename (current_language, gdbarch,
2258 "wchar_t", NULL, 0);
2259 int wcwidth = TYPE_LENGTH (wctype);
2260 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2262 tem = value_as_address (value);
2264 /* This is a %s argument. Find the length of the string. */
2265 for (j = 0;; j += wcwidth)
2268 read_memory (tem + j, buf, wcwidth);
2269 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2273 /* Copy the string contents into a string inside GDB. */
2274 str = (gdb_byte *) alloca (j + wcwidth);
2276 read_memory (tem, str, j);
2277 memset (&str[j], 0, wcwidth);
2279 auto_obstack output;
2281 convert_between_encodings (target_wide_charset (gdbarch),
2284 &output, translit_char);
2285 obstack_grow_str0 (&output, "");
2287 fprintf_filtered (stream, format, obstack_base (&output));
2290 /* Subroutine of ui_printf to simplify it.
2291 Print VALUE, a floating point value, to STREAM using FORMAT. */
2294 printf_floating (struct ui_file *stream, const char *format,
2295 struct value *value, enum argclass argclass)
2297 /* Parameter data. */
2298 struct type *param_type = value_type (value);
2299 struct gdbarch *gdbarch = get_type_arch (param_type);
2300 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2302 /* Determine target type corresponding to the format string. */
2303 struct type *fmt_type;
2307 fmt_type = builtin_type (gdbarch)->builtin_double;
2309 case long_double_arg:
2310 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2312 case dec32float_arg:
2313 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2315 case dec64float_arg:
2316 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2318 case dec128float_arg:
2319 fmt_type = builtin_type (gdbarch)->builtin_declong;
2322 gdb_assert_not_reached ("unexpected argument class");
2325 /* To match the traditional GDB behavior, the conversion is
2326 done differently depending on the type of the parameter:
2328 - if the parameter has floating-point type, it's value
2329 is converted to the target type;
2331 - otherwise, if the parameter has a type that is of the
2332 same size as a built-in floating-point type, the value
2333 bytes are interpreted as if they were of that type, and
2334 then converted to the target type (this is not done for
2335 decimal floating-point argument classes);
2337 - otherwise, if the source value has an integer value,
2338 it's value is converted to the target type;
2340 - otherwise, an error is raised.
2342 In either case, the result of the conversion is a byte buffer
2343 formatted in the target format for the target type. */
2345 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2347 param_type = float_type_from_length (param_type);
2348 if (param_type != value_type (value))
2349 value = value_from_contents (param_type, value_contents (value));
2352 value = value_cast (fmt_type, value);
2354 /* Convert the value to a string and print it. */
2356 = target_float_to_string (value_contents (value), fmt_type, format);
2357 fputs_filtered (str.c_str (), stream);
2360 /* Subroutine of ui_printf to simplify it.
2361 Print VALUE, a target pointer, to STREAM using FORMAT. */
2364 printf_pointer (struct ui_file *stream, const char *format,
2365 struct value *value)
2367 /* We avoid the host's %p because pointers are too
2368 likely to be the wrong size. The only interesting
2369 modifier for %p is a width; extract that, and then
2370 handle %p as glibc would: %#x or a literal "(nil)". */
2374 #ifdef PRINTF_HAS_LONG_LONG
2375 long long val = value_as_long (value);
2377 long val = value_as_long (value);
2380 fmt = (char *) alloca (strlen (format) + 5);
2382 /* Copy up to the leading %. */
2387 int is_percent = (*p == '%');
2402 /* Copy any width. */
2403 while (*p >= '0' && *p < '9')
2406 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2409 #ifdef PRINTF_HAS_LONG_LONG
2415 fprintf_filtered (stream, fmt, val);
2421 fprintf_filtered (stream, fmt, "(nil)");
2425 /* printf "printf format string" ARG to STREAM. */
2428 ui_printf (const char *arg, struct ui_file *stream)
2430 struct format_piece *fpieces;
2431 const char *s = arg;
2432 struct value **val_args;
2433 int allocated_args = 20;
2434 struct cleanup *old_cleanups;
2436 val_args = XNEWVEC (struct value *, allocated_args);
2437 old_cleanups = make_cleanup (free_current_contents, &val_args);
2440 error_no_arg (_("format-control string and values to print"));
2442 s = skip_spaces (s);
2444 /* A format string should follow, enveloped in double quotes. */
2446 error (_("Bad format string, missing '\"'."));
2448 fpieces = parse_format_string (&s);
2450 make_cleanup (free_format_pieces_cleanup, &fpieces);
2453 error (_("Bad format string, non-terminated '\"'."));
2455 s = skip_spaces (s);
2457 if (*s != ',' && *s != 0)
2458 error (_("Invalid argument syntax"));
2462 s = skip_spaces (s);
2468 char *current_substring;
2471 for (fr = 0; fpieces[fr].string != NULL; fr++)
2472 if (fpieces[fr].argclass != literal_piece)
2475 /* Now, parse all arguments and evaluate them.
2476 Store the VALUEs in VAL_ARGS. */
2482 if (nargs == allocated_args)
2483 val_args = (struct value **) xrealloc ((char *) val_args,
2484 (allocated_args *= 2)
2485 * sizeof (struct value *));
2487 val_args[nargs] = parse_to_comma_and_eval (&s1);
2495 if (nargs != nargs_wanted)
2496 error (_("Wrong number of arguments for specified format-string"));
2498 /* Now actually print them. */
2500 for (fr = 0; fpieces[fr].string != NULL; fr++)
2502 current_substring = fpieces[fr].string;
2503 switch (fpieces[fr].argclass)
2506 printf_c_string (stream, current_substring, val_args[i]);
2508 case wide_string_arg:
2509 printf_wide_c_string (stream, current_substring, val_args[i]);
2513 struct gdbarch *gdbarch
2514 = get_type_arch (value_type (val_args[i]));
2515 struct type *wctype = lookup_typename (current_language, gdbarch,
2516 "wchar_t", NULL, 0);
2517 struct type *valtype;
2518 const gdb_byte *bytes;
2520 valtype = value_type (val_args[i]);
2521 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2522 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2523 error (_("expected wchar_t argument for %%lc"));
2525 bytes = value_contents (val_args[i]);
2527 auto_obstack output;
2529 convert_between_encodings (target_wide_charset (gdbarch),
2531 bytes, TYPE_LENGTH (valtype),
2532 TYPE_LENGTH (valtype),
2533 &output, translit_char);
2534 obstack_grow_str0 (&output, "");
2536 fprintf_filtered (stream, current_substring,
2537 obstack_base (&output));
2541 #ifdef PRINTF_HAS_LONG_LONG
2543 long long val = value_as_long (val_args[i]);
2545 fprintf_filtered (stream, current_substring, val);
2549 error (_("long long not supported in printf"));
2553 int val = value_as_long (val_args[i]);
2555 fprintf_filtered (stream, current_substring, val);
2560 long val = value_as_long (val_args[i]);
2562 fprintf_filtered (stream, current_substring, val);
2565 /* Handles floating-point values. */
2567 case long_double_arg:
2568 case dec32float_arg:
2569 case dec64float_arg:
2570 case dec128float_arg:
2571 printf_floating (stream, current_substring, val_args[i],
2572 fpieces[fr].argclass);
2575 printf_pointer (stream, current_substring, val_args[i]);
2578 /* Print a portion of the format string that has no
2579 directives. Note that this will not include any
2580 ordinary %-specs, but it might include "%%". That is
2581 why we use printf_filtered and not puts_filtered here.
2582 Also, we pass a dummy argument because some platforms
2583 have modified GCC to include -Wformat-security by
2584 default, which will warn here if there is no
2586 fprintf_filtered (stream, current_substring, 0);
2589 internal_error (__FILE__, __LINE__,
2590 _("failed internal consistency check"));
2592 /* Maybe advance to the next argument. */
2593 if (fpieces[fr].argclass != literal_piece)
2597 do_cleanups (old_cleanups);
2600 /* Implement the "printf" command. */
2603 printf_command (const char *arg, int from_tty)
2605 ui_printf (arg, gdb_stdout);
2606 gdb_flush (gdb_stdout);
2609 /* Implement the "eval" command. */
2612 eval_command (const char *arg, int from_tty)
2616 ui_printf (arg, &stb);
2618 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2620 execute_command (expanded.c_str (), from_tty);
2624 _initialize_printcmd (void)
2626 struct cmd_list_element *c;
2628 current_display_number = -1;
2630 observer_attach_free_objfile (clear_dangling_display_expressions);
2632 add_info ("address", info_address_command,
2633 _("Describe where symbol SYM is stored."));
2635 add_info ("symbol", info_symbol_command, _("\
2636 Describe what symbol is at location ADDR.\n\
2637 Only for symbols with fixed locations (global or static scope)."));
2639 add_com ("x", class_vars, x_command, _("\
2640 Examine memory: x/FMT ADDRESS.\n\
2641 ADDRESS is an expression for the memory address to examine.\n\
2642 FMT is a repeat count followed by a format letter and a size letter.\n\
2643 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2644 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2645 and z(hex, zero padded on the left).\n\
2646 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2647 The specified number of objects of the specified size are printed\n\
2648 according to the format. If a negative number is specified, memory is\n\
2649 examined backward from the address.\n\n\
2650 Defaults for format and size letters are those previously used.\n\
2651 Default count is 1. Default address is following last thing printed\n\
2652 with this command or \"print\"."));
2655 add_com ("whereis", class_vars, whereis_command,
2656 _("Print line number and file of definition of variable."));
2659 add_info ("display", info_display_command, _("\
2660 Expressions to display when program stops, with code numbers."));
2662 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2663 Cancel some expressions to be displayed when program stops.\n\
2664 Arguments are the code numbers of the expressions to stop displaying.\n\
2665 No argument means cancel all automatic-display expressions.\n\
2666 \"delete display\" has the same effect as this command.\n\
2667 Do \"info display\" to see current list of code numbers."),
2670 add_com ("display", class_vars, display_command, _("\
2671 Print value of expression EXP each time the program stops.\n\
2672 /FMT may be used before EXP as in the \"print\" command.\n\
2673 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2674 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2675 and examining is done as in the \"x\" command.\n\n\
2676 With no argument, display all currently requested auto-display expressions.\n\
2677 Use \"undisplay\" to cancel display requests previously made."));
2679 add_cmd ("display", class_vars, enable_display_command, _("\
2680 Enable some expressions to be displayed when program stops.\n\
2681 Arguments are the code numbers of the expressions to resume displaying.\n\
2682 No argument means enable all automatic-display expressions.\n\
2683 Do \"info display\" to see current list of code numbers."), &enablelist);
2685 add_cmd ("display", class_vars, disable_display_command, _("\
2686 Disable some expressions to be displayed when program stops.\n\
2687 Arguments are the code numbers of the expressions to stop displaying.\n\
2688 No argument means disable all automatic-display expressions.\n\
2689 Do \"info display\" to see current list of code numbers."), &disablelist);
2691 add_cmd ("display", class_vars, undisplay_command, _("\
2692 Cancel some expressions to be displayed when program stops.\n\
2693 Arguments are the code numbers of the expressions to stop displaying.\n\
2694 No argument means cancel all automatic-display expressions.\n\
2695 Do \"info display\" to see current list of code numbers."), &deletelist);
2697 add_com ("printf", class_vars, printf_command, _("\
2698 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2699 This is useful for formatted output in user-defined commands."));
2701 add_com ("output", class_vars, output_command, _("\
2702 Like \"print\" but don't put in value history and don't print newline.\n\
2703 This is useful in user-defined commands."));
2705 add_prefix_cmd ("set", class_vars, set_command, _("\
2706 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2707 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2708 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2709 with $), a register (a few standard names starting with $), or an actual\n\
2710 variable in the program being debugged. EXP is any valid expression.\n\
2711 Use \"set variable\" for variables with names identical to set subcommands.\n\
2713 With a subcommand, this command modifies parts of the gdb environment.\n\
2714 You can see these environment settings with the \"show\" command."),
2715 &setlist, "set ", 1, &cmdlist);
2717 add_com ("assign", class_vars, set_command, _("\
2718 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2719 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2720 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2721 with $), a register (a few standard names starting with $), or an actual\n\
2722 variable in the program being debugged. EXP is any valid expression.\n\
2723 Use \"set variable\" for variables with names identical to set subcommands.\n\
2724 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2725 You can see these environment settings with the \"show\" command."));
2727 /* "call" is the same as "set", but handy for dbx users to call fns. */
2728 c = add_com ("call", class_vars, call_command, _("\
2729 Call a function in the program.\n\
2730 The argument is the function name and arguments, in the notation of the\n\
2731 current working language. The result is printed and saved in the value\n\
2732 history, if it is not void."));
2733 set_cmd_completer (c, expression_completer);
2735 add_cmd ("variable", class_vars, set_command, _("\
2736 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2737 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2738 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2739 with $), a register (a few standard names starting with $), or an actual\n\
2740 variable in the program being debugged. EXP is any valid expression.\n\
2741 This may usually be abbreviated to simply \"set\"."),
2744 c = add_com ("print", class_vars, print_command, _("\
2745 Print value of expression EXP.\n\
2746 Variables accessible are those of the lexical environment of the selected\n\
2747 stack frame, plus all those whose scope is global or an entire file.\n\
2749 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2750 $$NUM refers to NUM'th value back from the last one.\n\
2751 Names starting with $ refer to registers (with the values they would have\n\
2752 if the program were to return to the stack frame now selected, restoring\n\
2753 all registers saved by frames farther in) or else to debugger\n\
2754 \"convenience\" variables (any such name not a known register).\n\
2755 Use assignment expressions to give values to convenience variables.\n\
2757 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2758 @ is a binary operator for treating consecutive data objects\n\
2759 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2760 element is FOO, whose second element is stored in the space following\n\
2761 where FOO is stored, etc. FOO must be an expression whose value\n\
2762 resides in memory.\n\
2764 EXP may be preceded with /FMT, where FMT is a format letter\n\
2765 but no count or size letter (see \"x\" command)."));
2766 set_cmd_completer (c, expression_completer);
2767 add_com_alias ("p", "print", class_vars, 1);
2768 add_com_alias ("inspect", "print", class_vars, 1);
2770 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2771 &max_symbolic_offset, _("\
2772 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2773 Show the largest offset that will be printed in <symbol+1234> form."), _("\
2774 Tell GDB to only display the symbolic form of an address if the\n\
2775 offset between the closest earlier symbol and the address is less than\n\
2776 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2777 to always print the symbolic form of an address if any symbol precedes\n\
2778 it. Zero is equivalent to \"unlimited\"."),
2780 show_max_symbolic_offset,
2781 &setprintlist, &showprintlist);
2782 add_setshow_boolean_cmd ("symbol-filename", no_class,
2783 &print_symbol_filename, _("\
2784 Set printing of source filename and line number with <symbol>."), _("\
2785 Show printing of source filename and line number with <symbol>."), NULL,
2787 show_print_symbol_filename,
2788 &setprintlist, &showprintlist);
2790 add_com ("eval", no_class, eval_command, _("\
2791 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2792 a command line, and call it."));