1 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "ppc64-tdep.h"
27 /* Macros for matching instructions. Note that, since all the
28 operands are masked off before they're or-ed into the instruction,
29 you can use -1 to make masks. */
31 #define insn_d(opcd, rts, ra, d) \
32 ((((opcd) & 0x3f) << 26) \
33 | (((rts) & 0x1f) << 21) \
34 | (((ra) & 0x1f) << 16) \
37 #define insn_ds(opcd, rts, ra, d, xo) \
38 ((((opcd) & 0x3f) << 26) \
39 | (((rts) & 0x1f) << 21) \
40 | (((ra) & 0x1f) << 16) \
44 #define insn_xfx(opcd, rts, spr, xo) \
45 ((((opcd) & 0x3f) << 26) \
46 | (((rts) & 0x1f) << 21) \
47 | (((spr) & 0x1f) << 16) \
48 | (((spr) & 0x3e0) << 6) \
49 | (((xo) & 0x3ff) << 1))
51 /* If DESC is the address of a 64-bit PowerPC FreeBSD function
52 descriptor, return the descriptor's entry point. */
55 ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
57 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
58 /* The first word of the descriptor is the entry point. */
59 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
62 /* Patterns for the standard linkage functions. These are built by
63 build_plt_stub in bfd/elf64-ppc.c. */
65 /* Old PLT call stub. */
67 static struct ppc_insn_pattern ppc64_standard_linkage1[] =
69 /* addis r12, r2, <any> */
70 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
73 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
75 /* ld r11, <any>(r12) */
76 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
78 /* addis r12, r12, 1 <optional> */
79 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
81 /* ld r2, <any>(r12) */
82 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
84 /* addis r12, r12, 1 <optional> */
85 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
88 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
90 /* ld r11, <any>(r12) <optional> */
91 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
94 { -1, 0x4e800420, 0 },
99 /* Current PLT call stub to access PLT entries more than +/- 32k from r2.
100 Also supports older stub with different placement of std 2,40(1),
101 a stub that omits the std 2,40(1), and both versions of power7
102 thread safety read barriers. Note that there are actually two more
103 instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
104 but there isn't any need to match them. */
106 static struct ppc_insn_pattern ppc64_standard_linkage2[] =
108 /* std r2, 40(r1) <optional> */
109 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
111 /* addis r12, r2, <any> */
112 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
114 /* std r2, 40(r1) <optional> */
115 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
117 /* ld r11, <any>(r12) */
118 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
120 /* addi r12, r12, <any> <optional> */
121 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
124 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
126 /* xor r11, r11, r11 <optional> */
127 { -1, 0x7d6b5a78, 1 },
129 /* add r12, r12, r11 <optional> */
130 { -1, 0x7d8c5a14, 1 },
132 /* ld r2, <any>(r12) */
133 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
135 /* ld r11, <any>(r12) <optional> */
136 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
138 /* bctr <optional> */
139 { -1, 0x4e800420, 1 },
141 /* cmpldi r2, 0 <optional> */
142 { -1, 0x28220000, 1 },
147 /* Current PLT call stub to access PLT entries within +/- 32k of r2. */
149 static struct ppc_insn_pattern ppc64_standard_linkage3[] =
151 /* std r2, 40(r1) <optional> */
152 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
154 /* ld r11, <any>(r2) */
155 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
157 /* addi r2, r2, <any> <optional> */
158 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
161 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
163 /* xor r11, r11, r11 <optional> */
164 { -1, 0x7d6b5a78, 1 },
166 /* add r2, r2, r11 <optional> */
167 { -1, 0x7c425a14, 1 },
169 /* ld r11, <any>(r2) <optional> */
170 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
172 /* ld r2, <any>(r2) */
173 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
175 /* bctr <optional> */
176 { -1, 0x4e800420, 1 },
178 /* cmpldi r2, 0 <optional> */
179 { -1, 0x28220000, 1 },
184 /* When the dynamic linker is doing lazy symbol resolution, the first
185 call to a function in another object will go like this:
187 - The user's function calls the linkage function:
189 100003d4: 4b ff ff ad bl 10000380 <nnnn.plt_call.printf>
190 100003d8: e8 41 00 28 ld r2,40(r1)
192 - The linkage function loads the entry point and toc pointer from
193 the function descriptor in the PLT, and jumps to it:
195 <nnnn.plt_call.printf>:
196 10000380: f8 41 00 28 std r2,40(r1)
197 10000384: e9 62 80 78 ld r11,-32648(r2)
198 10000388: 7d 69 03 a6 mtctr r11
199 1000038c: e8 42 80 80 ld r2,-32640(r2)
200 10000390: 28 22 00 00 cmpldi r2,0
201 10000394: 4c e2 04 20 bnectr+
202 10000398: 48 00 03 a0 b 10000738 <printf@plt>
204 - But since this is the first time that PLT entry has been used, it
205 sends control to its glink entry. That loads the number of the
206 PLT entry and jumps to the common glink0 code:
209 10000738: 38 00 00 01 li r0,1
210 1000073c: 4b ff ff bc b 100006f8 <__glink_PLTresolve>
212 - The common glink0 code then transfers control to the dynamic
215 100006f0: 0000000000010440 .quad plt0 - (. + 16)
216 <__glink_PLTresolve>:
217 100006f8: 7d 88 02 a6 mflr r12
218 100006fc: 42 9f 00 05 bcl 20,4*cr7+so,10000700
219 10000700: 7d 68 02 a6 mflr r11
220 10000704: e8 4b ff f0 ld r2,-16(r11)
221 10000708: 7d 88 03 a6 mtlr r12
222 1000070c: 7d 82 5a 14 add r12,r2,r11
223 10000710: e9 6c 00 00 ld r11,0(r12)
224 10000714: e8 4c 00 08 ld r2,8(r12)
225 10000718: 7d 69 03 a6 mtctr r11
226 1000071c: e9 6c 00 10 ld r11,16(r12)
227 10000720: 4e 80 04 20 bctr
229 Eventually, this code will figure out how to skip all of this,
230 including the dynamic linker. At the moment, we just get through
231 the linkage function. */
233 /* If the current thread is about to execute a series of instructions
234 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
235 from that pattern match, return the code address to which the
236 standard linkage function will send them. (This doesn't deal with
237 dynamic linker lazy symbol resolution stubs.) */
240 ppc64_standard_linkage1_target (struct frame_info *frame,
241 CORE_ADDR pc, unsigned int *insn)
243 struct gdbarch *gdbarch = get_frame_arch (frame);
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246 /* The address of the function descriptor this linkage function
249 = ((CORE_ADDR) get_frame_register_unsigned (frame,
250 tdep->ppc_gp0_regnum + 2)
251 + (ppc_insn_d_field (insn[0]) << 16)
252 + ppc_insn_ds_field (insn[2]));
254 /* The first word of the descriptor is the entry point. Return that. */
255 return ppc64_desc_entry_point (gdbarch, desc);
259 ppc64_standard_linkage2_target (struct frame_info *frame,
260 CORE_ADDR pc, unsigned int *insn)
262 struct gdbarch *gdbarch = get_frame_arch (frame);
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265 /* The address of the function descriptor this linkage function
268 = ((CORE_ADDR) get_frame_register_unsigned (frame,
269 tdep->ppc_gp0_regnum + 2)
270 + (ppc_insn_d_field (insn[1]) << 16)
271 + ppc_insn_ds_field (insn[3]));
273 /* The first word of the descriptor is the entry point. Return that. */
274 return ppc64_desc_entry_point (gdbarch, desc);
278 ppc64_standard_linkage3_target (struct frame_info *frame,
279 CORE_ADDR pc, unsigned int *insn)
281 struct gdbarch *gdbarch = get_frame_arch (frame);
282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
284 /* The address of the function descriptor this linkage function
287 = ((CORE_ADDR) get_frame_register_unsigned (frame,
288 tdep->ppc_gp0_regnum + 2)
289 + ppc_insn_ds_field (insn[1]));
291 /* The first word of the descriptor is the entry point. Return that. */
292 return ppc64_desc_entry_point (gdbarch, desc);
296 /* Given that we've begun executing a call trampoline at PC, return
297 the entry point of the function the trampoline will go to. */
300 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
302 #define MAX(a,b) ((a) > (b) ? (a) : (b))
303 unsigned int insns[MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1),
304 ARRAY_SIZE (ppc64_standard_linkage2)),
305 ARRAY_SIZE (ppc64_standard_linkage3)) - 1];
308 if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage3, insns)
309 && (insns[8] != 0 || insns[9] != 0))
310 pc = ppc64_standard_linkage3_target (frame, pc, insns);
311 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage2, insns)
312 && (insns[10] != 0 || insns[11] != 0))
313 pc = ppc64_standard_linkage2_target (frame, pc, insns);
314 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage1, insns))
315 pc = ppc64_standard_linkage1_target (frame, pc, insns);
319 /* The PLT descriptor will either point to the already resolved target
320 address, or else to a glink stub. As the latter carry synthetic @plt
321 symbols, find_solib_trampoline_target should be able to resolve them. */
322 target = find_solib_trampoline_target (frame, pc);
323 return target ? target : pc;
326 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
329 Usually a function pointer's representation is simply the address
330 of the function. On GNU/Linux on the PowerPC however, a function
331 pointer may be a pointer to a function descriptor.
333 For PPC64, a function descriptor is a TOC entry, in a data section,
334 which contains three words: the first word is the address of the
335 function, the second word is the TOC pointer (r2), and the third word
336 is the static chain value.
338 Throughout GDB it is currently assumed that a function pointer contains
339 the address of the function, which is not easy to fix. In addition, the
340 conversion of a function address to a function pointer would
341 require allocation of a TOC entry in the inferior's memory space,
342 with all its drawbacks. To be able to call C++ virtual methods in
343 the inferior (which are called via function pointers),
344 find_function_addr uses this function to get the function address
345 from a function pointer.
347 If ADDR points at what is clearly a function descriptor, transform
348 it into the address of the corresponding function, if needed. Be
349 conservative, otherwise GDB will do the transformation on any
350 random addresses such as occur when there is no symbol table. */
353 ppc64_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
355 struct target_ops *targ)
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358 struct target_section *s = target_section_by_addr (targ, addr);
360 /* Check if ADDR points to a function descriptor. */
361 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
363 /* There may be relocations that need to be applied to the .opd
364 section. Unfortunately, this function may be called at a time
365 where these relocations have not yet been performed -- this can
366 happen for example shortly after a library has been loaded with
367 dlopen, but ld.so has not yet applied the relocations.
369 To cope with both the case where the relocation has been applied,
370 and the case where it has not yet been applied, we do *not* read
371 the (maybe) relocated value from target memory, but we instead
372 read the non-relocated value from the BFD, and apply the relocation
375 This makes the assumption that all .opd entries are always relocated
376 by the same offset the section itself was relocated. This should
377 always be the case for GNU/Linux executables and shared libraries.
378 Note that other kind of object files (e.g. those added via
379 add-symbol-files) will currently never end up here anyway, as this
380 function accesses *target* sections only; only the main exec and
381 shared libraries are ever added to the target. */
386 res = bfd_get_section_contents (s->the_bfd_section->owner,
388 &buf, addr - s->addr, 8);
390 return extract_unsigned_integer (buf, 8, byte_order)
391 - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
397 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
398 back to the original ELF symbol it was derived from. Get the size
402 ppc64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
404 if ((sym->flags & BSF_SYNTHETIC) != 0 && sym->udata.p != NULL)
406 elf_symbol_type *elf_sym = (elf_symbol_type *) sym->udata.p;
407 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);