1 /* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
4 Copyright (C) 2000-2014 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "gdb_assert.h"
35 /* Check whether FTPYE is a (pointer to) function type that should use
36 the OpenCL vector ABI. */
39 ppc_sysv_use_opencl_abi (struct type *ftype)
41 ftype = check_typedef (ftype);
43 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
44 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
46 return (TYPE_CODE (ftype) == TYPE_CODE_FUNC
47 && TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL);
50 /* Pass the arguments in either registers, or in the stack. Using the
51 ppc sysv ABI, the first eight words of the argument list (that might
52 be less than eight parameters if some parameters occupy more than one
53 word) are passed in r3..r10 registers. float and double parameters are
54 passed in fpr's, in addition to that. Rest of the parameters if any
55 are passed in user stack.
57 If the function is returning a structure, then the return address is passed
58 in r3, then the first 7 words of the parametes can be passed in registers,
62 ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
63 struct regcache *regcache, CORE_ADDR bp_addr,
64 int nargs, struct value **args, CORE_ADDR sp,
65 int struct_return, CORE_ADDR struct_addr)
67 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
68 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
69 int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
71 int argspace = 0; /* 0 is an initial wrong guess. */
74 gdb_assert (tdep->wordsize == 4);
76 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
79 /* Go through the argument list twice.
81 Pass 1: Figure out how much new stack space is required for
82 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
83 ABI doesn't reserve any extra space for parameters which are put
84 in registers, but does always push structures and then pass their
87 Pass 2: Replay the same computation but this time also write the
88 values out to the target. */
90 for (write_pass = 0; write_pass < 2; write_pass++)
93 /* Next available floating point register for float and double
96 /* Next available general register for non-float, non-vector
99 /* Next available vector register for vector arguments. */
101 /* Arguments start above the "LR save word" and "Back chain". */
102 int argoffset = 2 * tdep->wordsize;
103 /* Structures start after the arguments. */
104 int structoffset = argoffset + argspace;
106 /* If the function is returning a `struct', then the first word
107 (which will be passed in r3) is used for struct return
108 address. In that case we should advance one word and start
109 from r4 register to copy parameters. */
113 regcache_cooked_write_signed (regcache,
114 tdep->ppc_gp0_regnum + greg,
119 for (argno = 0; argno < nargs; argno++)
121 struct value *arg = args[argno];
122 struct type *type = check_typedef (value_type (arg));
123 int len = TYPE_LENGTH (type);
124 const bfd_byte *val = value_contents (arg);
126 if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
127 && !tdep->soft_float)
129 /* Floating point value converted to "double" then
130 passed in an FP register, when the registers run out,
131 8 byte aligned stack is used. */
136 /* Always store the floating point value using
137 the register's floating-point format. */
138 gdb_byte regval[MAX_REGISTER_SIZE];
140 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
141 convert_typed_floating (val, type, regval, regtype);
142 regcache_cooked_write (regcache,
143 tdep->ppc_fp0_regnum + freg,
150 /* The SysV ABI tells us to convert floats to
151 doubles before writing them to an 8 byte aligned
152 stack location. Unfortunately GCC does not do
153 that, and stores floats into 4 byte aligned
154 locations without converting them to doubles.
155 Since there is no know compiler that actually
156 follows the ABI here, we implement the GCC
159 /* Align to 4 bytes or 8 bytes depending on the type of
160 the argument (float or double). */
161 argoffset = align_up (argoffset, len);
163 write_memory (sp + argoffset, val, len);
167 else if (TYPE_CODE (type) == TYPE_CODE_FLT
170 && (gdbarch_long_double_format (gdbarch)
171 == floatformats_ibm_long_double))
173 /* IBM long double passed in two FP registers if
174 available, otherwise 8-byte aligned stack. */
179 regcache_cooked_write (regcache,
180 tdep->ppc_fp0_regnum + freg,
182 regcache_cooked_write (regcache,
183 tdep->ppc_fp0_regnum + freg + 1,
190 argoffset = align_up (argoffset, 8);
192 write_memory (sp + argoffset, val, len);
197 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
198 || TYPE_CODE (type) == TYPE_CODE_FLT /* double */
199 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
200 && tdep->soft_float)))
202 /* "long long" or soft-float "double" or "_Decimal64"
203 passed in an odd/even register pair with the low
204 addressed word in the odd register and the high
205 addressed word in the even register, or when the
206 registers run out an 8 byte aligned stack
210 /* Just in case GREG was 10. */
212 argoffset = align_up (argoffset, 8);
214 write_memory (sp + argoffset, val, len);
219 /* Must start on an odd register - r3/r4 etc. */
224 regcache_cooked_write (regcache,
225 tdep->ppc_gp0_regnum + greg + 0,
227 regcache_cooked_write (regcache,
228 tdep->ppc_gp0_regnum + greg + 1,
235 && ((TYPE_CODE (type) == TYPE_CODE_FLT
236 && (gdbarch_long_double_format (gdbarch)
237 == floatformats_ibm_long_double))
238 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
239 && tdep->soft_float)))
241 /* Soft-float IBM long double or _Decimal128 passed in
242 four consecutive registers, or on the stack. The
243 registers are not necessarily odd/even pairs. */
247 argoffset = align_up (argoffset, 8);
249 write_memory (sp + argoffset, val, len);
256 regcache_cooked_write (regcache,
257 tdep->ppc_gp0_regnum + greg + 0,
259 regcache_cooked_write (regcache,
260 tdep->ppc_gp0_regnum + greg + 1,
262 regcache_cooked_write (regcache,
263 tdep->ppc_gp0_regnum + greg + 2,
265 regcache_cooked_write (regcache,
266 tdep->ppc_gp0_regnum + greg + 3,
272 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
273 && !tdep->soft_float)
275 /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
282 gdb_byte regval[MAX_REGISTER_SIZE];
285 /* 32-bit decimal floats are right aligned in the
287 if (TYPE_LENGTH (type) == 4)
289 memcpy (regval + 4, val, 4);
295 regcache_cooked_write (regcache,
296 tdep->ppc_fp0_regnum + freg, p);
303 argoffset = align_up (argoffset, len);
306 /* Write value in the stack's parameter save area. */
307 write_memory (sp + argoffset, val, len);
312 else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
313 && !tdep->soft_float)
315 /* 128-bit decimal floats go in f2 .. f7, always in even/odd
316 pairs. They can end up in memory, using two doublewords. */
320 /* Make sure freg is even. */
325 regcache_cooked_write (regcache,
326 tdep->ppc_fp0_regnum + freg, val);
327 regcache_cooked_write (regcache,
328 tdep->ppc_fp0_regnum + freg + 1, val + 8);
333 argoffset = align_up (argoffset, 8);
336 write_memory (sp + argoffset, val, 16);
341 /* If a 128-bit decimal float goes to the stack because only f7
342 and f8 are free (thus there's no even/odd register pair
343 available), these registers should be marked as occupied.
344 Hence we increase freg even when writing to memory. */
348 && TYPE_CODE (type) == TYPE_CODE_ARRAY
349 && TYPE_VECTOR (type)
352 /* OpenCL vectors shorter than 16 bytes are passed as if
353 a series of independent scalars. */
354 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
355 int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
357 for (i = 0; i < nelt; i++)
359 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
361 if (TYPE_CODE (eltype) == TYPE_CODE_FLT && !tdep->soft_float)
367 int regnum = tdep->ppc_fp0_regnum + freg;
368 gdb_byte regval[MAX_REGISTER_SIZE];
370 = register_type (gdbarch, regnum);
371 convert_typed_floating (elval, eltype,
373 regcache_cooked_write (regcache, regnum, regval);
379 argoffset = align_up (argoffset, len);
381 write_memory (sp + argoffset, val, len);
385 else if (TYPE_LENGTH (eltype) == 8)
389 /* Just in case GREG was 10. */
391 argoffset = align_up (argoffset, 8);
393 write_memory (sp + argoffset, elval,
394 TYPE_LENGTH (eltype));
399 /* Must start on an odd register - r3/r4 etc. */
404 int regnum = tdep->ppc_gp0_regnum + greg;
405 regcache_cooked_write (regcache,
406 regnum + 0, elval + 0);
407 regcache_cooked_write (regcache,
408 regnum + 1, elval + 4);
415 gdb_byte word[MAX_REGISTER_SIZE];
416 store_unsigned_integer (word, tdep->wordsize, byte_order,
417 unpack_long (eltype, elval));
422 regcache_cooked_write (regcache,
423 tdep->ppc_gp0_regnum + greg,
429 argoffset = align_up (argoffset, tdep->wordsize);
431 write_memory (sp + argoffset, word, tdep->wordsize);
432 argoffset += tdep->wordsize;
438 && TYPE_CODE (type) == TYPE_CODE_ARRAY
439 && TYPE_VECTOR (type)
442 /* OpenCL vectors 16 bytes or longer are passed as if
443 a series of AltiVec vectors. */
446 for (i = 0; i < len / 16; i++)
448 const gdb_byte *elval = val + i * 16;
453 regcache_cooked_write (regcache,
454 tdep->ppc_vr0_regnum + vreg,
460 argoffset = align_up (argoffset, 16);
462 write_memory (sp + argoffset, elval, 16);
468 && TYPE_CODE (type) == TYPE_CODE_ARRAY
469 && TYPE_VECTOR (type)
470 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
472 /* Vector parameter passed in an Altivec register, or
473 when that runs out, 16 byte aligned stack location. */
477 regcache_cooked_write (regcache,
478 tdep->ppc_vr0_regnum + vreg, val);
483 argoffset = align_up (argoffset, 16);
485 write_memory (sp + argoffset, val, 16);
490 && TYPE_CODE (type) == TYPE_CODE_ARRAY
491 && TYPE_VECTOR (type)
492 && tdep->vector_abi == POWERPC_VEC_SPE)
494 /* Vector parameter passed in an e500 register, or when
495 that runs out, 8 byte aligned stack location. Note
496 that since e500 vector and general purpose registers
497 both map onto the same underlying register set, a
498 "greg" and not a "vreg" is consumed here. A cooked
499 write stores the value in the correct locations
500 within the raw register cache. */
504 regcache_cooked_write (regcache,
505 tdep->ppc_ev0_regnum + greg, val);
510 argoffset = align_up (argoffset, 8);
512 write_memory (sp + argoffset, val, 8);
518 /* Reduce the parameter down to something that fits in a
520 gdb_byte word[MAX_REGISTER_SIZE];
521 memset (word, 0, MAX_REGISTER_SIZE);
522 if (len > tdep->wordsize
523 || TYPE_CODE (type) == TYPE_CODE_STRUCT
524 || TYPE_CODE (type) == TYPE_CODE_UNION)
526 /* Structs and large values are put in an
527 aligned stack slot ... */
528 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
529 && TYPE_VECTOR (type)
531 structoffset = align_up (structoffset, 16);
533 structoffset = align_up (structoffset, 8);
536 write_memory (sp + structoffset, val, len);
537 /* ... and then a "word" pointing to that address is
538 passed as the parameter. */
539 store_unsigned_integer (word, tdep->wordsize, byte_order,
543 else if (TYPE_CODE (type) == TYPE_CODE_INT)
544 /* Sign or zero extend the "int" into a "word". */
545 store_unsigned_integer (word, tdep->wordsize, byte_order,
546 unpack_long (type, val));
548 /* Always goes in the low address. */
549 memcpy (word, val, len);
550 /* Store that "word" in a register, or on the stack.
551 The words have "4" byte alignment. */
555 regcache_cooked_write (regcache,
556 tdep->ppc_gp0_regnum + greg, word);
561 argoffset = align_up (argoffset, tdep->wordsize);
563 write_memory (sp + argoffset, word, tdep->wordsize);
564 argoffset += tdep->wordsize;
569 /* Compute the actual stack space requirements. */
572 /* Remember the amount of space needed by the arguments. */
573 argspace = argoffset;
574 /* Allocate space for both the arguments and the structures. */
575 sp -= (argoffset + structoffset);
576 /* Ensure that the stack is still 16 byte aligned. */
577 sp = align_down (sp, 16);
580 /* The psABI says that "A caller of a function that takes a
581 variable argument list shall set condition register bit 6 to
582 1 if it passes one or more arguments in the floating-point
583 registers. It is strongly recommended that the caller set the
584 bit to 0 otherwise..." Doing this for normal functions too
590 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
595 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
600 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
602 /* Write the backchain (it occupies WORDSIZED bytes). */
603 write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
605 /* Point the inferior function call's return address at the dummy's
607 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
612 /* Handle the return-value conventions for Decimal Floating Point values. */
614 get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
615 struct regcache *regcache, gdb_byte *readbuf,
616 const gdb_byte *writebuf)
618 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
620 gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
622 /* 32-bit and 64-bit decimal floats in f1. */
623 if (TYPE_LENGTH (valtype) <= 8)
625 if (writebuf != NULL)
627 gdb_byte regval[MAX_REGISTER_SIZE];
630 /* 32-bit decimal float is right aligned in the doubleword. */
631 if (TYPE_LENGTH (valtype) == 4)
633 memcpy (regval + 4, writebuf, 4);
639 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
643 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
645 /* Left align 32-bit decimal float. */
646 if (TYPE_LENGTH (valtype) == 4)
647 memcpy (readbuf, readbuf + 4, 4);
650 /* 128-bit decimal floats in f2,f3. */
651 else if (TYPE_LENGTH (valtype) == 16)
653 if (writebuf != NULL || readbuf != NULL)
657 for (i = 0; i < 2; i++)
659 if (writebuf != NULL)
660 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
663 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
670 internal_error (__FILE__, __LINE__, _("Unknown decimal float size."));
672 return RETURN_VALUE_REGISTER_CONVENTION;
675 /* Handle the return-value conventions specified by the SysV 32-bit
676 PowerPC ABI (including all the supplements):
678 no floating-point: floating-point values returned using 32-bit
679 general-purpose registers.
681 Altivec: 128-bit vectors returned using vector registers.
683 e500: 64-bit vectors returned using the full full 64 bit EV
684 register, floating-point values returned using 32-bit
685 general-purpose registers.
687 GCC (broken): Small struct values right (instead of left) aligned
688 when returned in general-purpose registers. */
690 static enum return_value_convention
691 do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type,
692 struct type *type, struct regcache *regcache,
693 gdb_byte *readbuf, const gdb_byte *writebuf,
696 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
697 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
698 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
700 gdb_assert (tdep->wordsize == 4);
702 if (TYPE_CODE (type) == TYPE_CODE_FLT
703 && TYPE_LENGTH (type) <= 8
704 && !tdep->soft_float)
708 /* Floats and doubles stored in "f1". Convert the value to
709 the required type. */
710 gdb_byte regval[MAX_REGISTER_SIZE];
711 struct type *regtype = register_type (gdbarch,
712 tdep->ppc_fp0_regnum + 1);
713 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
714 convert_typed_floating (regval, regtype, readbuf, type);
718 /* Floats and doubles stored in "f1". Convert the value to
719 the register's "double" type. */
720 gdb_byte regval[MAX_REGISTER_SIZE];
721 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
722 convert_typed_floating (writebuf, type, regval, regtype);
723 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
725 return RETURN_VALUE_REGISTER_CONVENTION;
727 if (TYPE_CODE (type) == TYPE_CODE_FLT
728 && TYPE_LENGTH (type) == 16
730 && (gdbarch_long_double_format (gdbarch)
731 == floatformats_ibm_long_double))
733 /* IBM long double stored in f1 and f2. */
736 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
737 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
742 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
743 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
746 return RETURN_VALUE_REGISTER_CONVENTION;
748 if (TYPE_LENGTH (type) == 16
749 && ((TYPE_CODE (type) == TYPE_CODE_FLT
750 && (gdbarch_long_double_format (gdbarch)
751 == floatformats_ibm_long_double))
752 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
754 /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
758 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
759 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
761 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
763 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
768 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
769 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
771 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
773 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
776 return RETURN_VALUE_REGISTER_CONVENTION;
778 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
779 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
780 || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
781 && tdep->soft_float))
785 /* A long long, double or _Decimal64 stored in the 32 bit
787 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
789 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
794 /* A long long, double or _Decimal64 stored in the 32 bit
796 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
798 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
801 return RETURN_VALUE_REGISTER_CONVENTION;
803 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
804 return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
806 else if ((TYPE_CODE (type) == TYPE_CODE_INT
807 || TYPE_CODE (type) == TYPE_CODE_CHAR
808 || TYPE_CODE (type) == TYPE_CODE_BOOL
809 || TYPE_CODE (type) == TYPE_CODE_PTR
810 || TYPE_CODE (type) == TYPE_CODE_REF
811 || TYPE_CODE (type) == TYPE_CODE_ENUM)
812 && TYPE_LENGTH (type) <= tdep->wordsize)
816 /* Some sort of integer stored in r3. Since TYPE isn't
817 bigger than the register, sign extension isn't a problem
818 - just do everything unsigned. */
820 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
822 store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
827 /* Some sort of integer stored in r3. Use unpack_long since
828 that should handle any required sign extension. */
829 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
830 unpack_long (type, writebuf));
832 return RETURN_VALUE_REGISTER_CONVENTION;
834 /* OpenCL vectors < 16 bytes are returned as distinct
835 scalars in f1..f2 or r3..r10. */
836 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
837 && TYPE_VECTOR (type)
838 && TYPE_LENGTH (type) < 16
841 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
842 int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
844 for (i = 0; i < nelt; i++)
846 int offset = i * TYPE_LENGTH (eltype);
848 if (TYPE_CODE (eltype) == TYPE_CODE_FLT)
850 int regnum = tdep->ppc_fp0_regnum + 1 + i;
851 gdb_byte regval[MAX_REGISTER_SIZE];
852 struct type *regtype = register_type (gdbarch, regnum);
854 if (writebuf != NULL)
856 convert_typed_floating (writebuf + offset, eltype,
858 regcache_cooked_write (regcache, regnum, regval);
862 regcache_cooked_read (regcache, regnum, regval);
863 convert_typed_floating (regval, regtype,
864 readbuf + offset, eltype);
869 int regnum = tdep->ppc_gp0_regnum + 3 + i;
872 if (writebuf != NULL)
874 regval = unpack_long (eltype, writebuf + offset);
875 regcache_cooked_write_unsigned (regcache, regnum, regval);
879 regcache_cooked_read_unsigned (regcache, regnum, ®val);
880 store_unsigned_integer (readbuf + offset,
881 TYPE_LENGTH (eltype), byte_order,
887 return RETURN_VALUE_REGISTER_CONVENTION;
889 /* OpenCL vectors >= 16 bytes are returned in v2..v9. */
890 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
891 && TYPE_VECTOR (type)
892 && TYPE_LENGTH (type) >= 16
895 int n_regs = TYPE_LENGTH (type) / 16;
898 for (i = 0; i < n_regs; i++)
901 int regnum = tdep->ppc_vr0_regnum + 2 + i;
903 if (writebuf != NULL)
904 regcache_cooked_write (regcache, regnum, writebuf + offset);
906 regcache_cooked_read (regcache, regnum, readbuf + offset);
909 return RETURN_VALUE_REGISTER_CONVENTION;
911 if (TYPE_LENGTH (type) == 16
912 && TYPE_CODE (type) == TYPE_CODE_ARRAY
913 && TYPE_VECTOR (type)
914 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
918 /* Altivec places the return value in "v2". */
919 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
923 /* Altivec places the return value in "v2". */
924 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
926 return RETURN_VALUE_REGISTER_CONVENTION;
928 if (TYPE_LENGTH (type) == 16
929 && TYPE_CODE (type) == TYPE_CODE_ARRAY
930 && TYPE_VECTOR (type)
931 && tdep->vector_abi == POWERPC_VEC_GENERIC)
933 /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
934 GCC without AltiVec returns them in memory, but it warns about
935 ABI risks in that case; we don't try to support it. */
938 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
940 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
942 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
944 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
949 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
951 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
953 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
955 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
958 return RETURN_VALUE_REGISTER_CONVENTION;
960 if (TYPE_LENGTH (type) == 8
961 && TYPE_CODE (type) == TYPE_CODE_ARRAY
962 && TYPE_VECTOR (type)
963 && tdep->vector_abi == POWERPC_VEC_SPE)
965 /* The e500 ABI places return values for the 64-bit DSP types
966 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
967 corresponds to the entire r3 value for e500, whereas GDB's r3
968 only corresponds to the least significant 32-bits. So place
969 the 64-bit DSP type's value in ev3. */
971 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
973 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
974 return RETURN_VALUE_REGISTER_CONVENTION;
976 if (broken_gcc && TYPE_LENGTH (type) <= 8)
978 /* GCC screwed up for structures or unions whose size is less
979 than or equal to 8 bytes.. Instead of left-aligning, it
980 right-aligns the data into the buffer formed by r3, r4. */
981 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
982 int len = TYPE_LENGTH (type);
983 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
987 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
988 regvals + 0 * tdep->wordsize);
989 if (len > tdep->wordsize)
990 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
991 regvals + 1 * tdep->wordsize);
992 memcpy (readbuf, regvals + offset, len);
996 memset (regvals, 0, sizeof regvals);
997 memcpy (regvals + offset, writebuf, len);
998 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
999 regvals + 0 * tdep->wordsize);
1000 if (len > tdep->wordsize)
1001 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1002 regvals + 1 * tdep->wordsize);
1005 return RETURN_VALUE_REGISTER_CONVENTION;
1007 if (TYPE_LENGTH (type) <= 8)
1011 /* This matches SVr4 PPC, it does not match GCC. */
1012 /* The value is right-padded to 8 bytes and then loaded, as
1013 two "words", into r3/r4. */
1014 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
1015 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
1016 regvals + 0 * tdep->wordsize);
1017 if (TYPE_LENGTH (type) > tdep->wordsize)
1018 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1019 regvals + 1 * tdep->wordsize);
1020 memcpy (readbuf, regvals, TYPE_LENGTH (type));
1024 /* This matches SVr4 PPC, it does not match GCC. */
1025 /* The value is padded out to 8 bytes and then loaded, as
1026 two "words" into r3/r4. */
1027 gdb_byte regvals[MAX_REGISTER_SIZE * 2];
1028 memset (regvals, 0, sizeof regvals);
1029 memcpy (regvals, writebuf, TYPE_LENGTH (type));
1030 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
1031 regvals + 0 * tdep->wordsize);
1032 if (TYPE_LENGTH (type) > tdep->wordsize)
1033 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1034 regvals + 1 * tdep->wordsize);
1036 return RETURN_VALUE_REGISTER_CONVENTION;
1038 return RETURN_VALUE_STRUCT_CONVENTION;
1041 enum return_value_convention
1042 ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
1043 struct type *valtype, struct regcache *regcache,
1044 gdb_byte *readbuf, const gdb_byte *writebuf)
1046 return do_ppc_sysv_return_value (gdbarch,
1047 function ? value_type (function) : NULL,
1048 valtype, regcache, readbuf, writebuf, 0);
1051 enum return_value_convention
1052 ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
1053 struct value *function,
1054 struct type *valtype,
1055 struct regcache *regcache,
1056 gdb_byte *readbuf, const gdb_byte *writebuf)
1058 return do_ppc_sysv_return_value (gdbarch,
1059 function ? value_type (function) : NULL,
1060 valtype, regcache, readbuf, writebuf, 1);
1063 /* The helper function for 64-bit SYSV push_dummy_call. Converts the
1064 function's code address back into the function's descriptor
1067 Find a value for the TOC register. Every symbol should have both
1068 ".FN" and "FN" in the minimal symbol table. "FN" points at the
1069 FN's descriptor, while ".FN" points at the entry point (which
1070 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
1071 FN's descriptor address (while at the same time being careful to
1072 find "FN" in the same object file as ".FN"). */
1075 convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
1077 struct obj_section *dot_fn_section;
1078 struct bound_minimal_symbol dot_fn;
1079 struct bound_minimal_symbol fn;
1081 /* Find the minimal symbol that corresponds to CODE_ADDR (should
1082 have a name of the form ".FN"). */
1083 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
1084 if (dot_fn.minsym == NULL || MSYMBOL_LINKAGE_NAME (dot_fn.minsym)[0] != '.')
1086 /* Get the section that contains CODE_ADDR. Need this for the
1087 "objfile" that it contains. */
1088 dot_fn_section = find_pc_section (code_addr);
1089 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
1091 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
1092 address. Only look for the minimal symbol in ".FN"'s object file
1093 - avoids problems when two object files (i.e., shared libraries)
1094 contain a minimal symbol with the same name. */
1095 fn = lookup_minimal_symbol (MSYMBOL_LINKAGE_NAME (dot_fn.minsym) + 1, NULL,
1096 dot_fn_section->objfile);
1097 if (fn.minsym == NULL)
1099 /* Found a descriptor. */
1100 (*desc_addr) = BMSYMBOL_VALUE_ADDRESS (fn);
1104 /* Walk down the type tree of TYPE counting consecutive base elements.
1105 If *FIELD_TYPE is NULL, then set it to the first valid floating point
1106 or vector type. If a non-floating point or vector type is found, or
1107 if a floating point or vector type that doesn't match a non-NULL
1108 *FIELD_TYPE is found, then return -1, otherwise return the count in the
1112 ppc64_aggregate_candidate (struct type *type,
1113 struct type **field_type)
1115 type = check_typedef (type);
1117 switch (TYPE_CODE (type))
1120 case TYPE_CODE_DECFLOAT:
1123 if (TYPE_CODE (*field_type) == TYPE_CODE (type)
1124 && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
1128 case TYPE_CODE_COMPLEX:
1129 type = TYPE_TARGET_TYPE (type);
1130 if (TYPE_CODE (type) == TYPE_CODE_FLT
1131 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1135 if (TYPE_CODE (*field_type) == TYPE_CODE (type)
1136 && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
1141 case TYPE_CODE_ARRAY:
1142 if (TYPE_VECTOR (type))
1146 if (TYPE_CODE (*field_type) == TYPE_CODE (type)
1147 && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
1152 LONGEST count, low_bound, high_bound;
1154 count = ppc64_aggregate_candidate
1155 (TYPE_TARGET_TYPE (type), field_type);
1159 if (!get_array_bounds (type, &low_bound, &high_bound))
1161 count *= high_bound - low_bound;
1163 /* There must be no padding. */
1165 return TYPE_LENGTH (type) == 0 ? 0 : -1;
1166 else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
1173 case TYPE_CODE_STRUCT:
1174 case TYPE_CODE_UNION:
1179 for (i = 0; i < TYPE_NFIELDS (type); i++)
1183 if (field_is_static (&TYPE_FIELD (type, i)))
1186 sub_count = ppc64_aggregate_candidate
1187 (TYPE_FIELD_TYPE (type, i), field_type);
1188 if (sub_count == -1)
1191 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1194 count = max (count, sub_count);
1197 /* There must be no padding. */
1199 return TYPE_LENGTH (type) == 0 ? 0 : -1;
1200 else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
1214 /* If an argument of type TYPE is a homogeneous float or vector aggregate
1215 that shall be passed in FP/vector registers according to the ELFv2 ABI,
1216 return the homogeneous element type in *ELT_TYPE and the number of
1217 elements in *N_ELTS, and return non-zero. Otherwise, return zero. */
1220 ppc64_elfv2_abi_homogeneous_aggregate (struct type *type,
1221 struct type **elt_type, int *n_elts)
1223 /* Complex types at the top level are treated separately. However,
1224 complex types can be elements of homogeneous aggregates. */
1225 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1226 || TYPE_CODE (type) == TYPE_CODE_UNION
1227 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && !TYPE_VECTOR (type)))
1229 struct type *field_type = NULL;
1230 LONGEST field_count = ppc64_aggregate_candidate (type, &field_type);
1232 if (field_count > 0)
1234 int n_regs = ((TYPE_CODE (field_type) == TYPE_CODE_FLT
1235 || TYPE_CODE (field_type) == TYPE_CODE_DECFLOAT)?
1236 (TYPE_LENGTH (field_type) + 7) >> 3 : 1);
1238 /* The ELFv2 ABI allows homogeneous aggregates to occupy
1239 up to 8 registers. */
1240 if (field_count * n_regs <= 8)
1243 *elt_type = field_type;
1245 *n_elts = (int) field_count;
1246 /* Note that field_count is LONGEST since it may hold the size
1247 of an array, while *n_elts is int since its value is bounded
1248 by the number of registers used for argument passing. The
1249 cast cannot overflow due to the bounds checking above. */
1258 /* Structure holding the next argument position. */
1259 struct ppc64_sysv_argpos
1261 /* Register cache holding argument registers. If this is NULL,
1262 we only simulate argument processing without actually updating
1263 any registers or memory. */
1264 struct regcache *regcache;
1265 /* Next available general-purpose argument register. */
1267 /* Next available floating-point argument register. */
1269 /* Next available vector argument register. */
1271 /* The address, at which the next general purpose parameter
1272 (integer, struct, float, vector, ...) should be saved. */
1274 /* The address, at which the next by-reference parameter
1275 (non-Altivec vector, variably-sized type) should be saved. */
1279 /* VAL is a value of length LEN. Store it into the argument area on the
1280 stack and load it into the corresponding general-purpose registers
1281 required by the ABI, and update ARGPOS.
1283 If ALIGN is nonzero, it specifies the minimum alignment required
1284 for the on-stack copy of the argument. */
1287 ppc64_sysv_abi_push_val (struct gdbarch *gdbarch,
1288 const bfd_byte *val, int len, int align,
1289 struct ppc64_sysv_argpos *argpos)
1291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1294 /* Enforce alignment of stack location, if requested. */
1295 if (align > tdep->wordsize)
1297 CORE_ADDR aligned_gparam = align_up (argpos->gparam, align);
1299 argpos->greg += (aligned_gparam - argpos->gparam) / tdep->wordsize;
1300 argpos->gparam = aligned_gparam;
1303 /* The ABI (version 1.9) specifies that values smaller than one
1304 doubleword are right-aligned and those larger are left-aligned.
1305 GCC versions before 3.4 implemented this incorrectly; see
1306 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
1307 if (len < tdep->wordsize
1308 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1309 offset = tdep->wordsize - len;
1311 if (argpos->regcache)
1312 write_memory (argpos->gparam + offset, val, len);
1313 argpos->gparam = align_up (argpos->gparam + len, tdep->wordsize);
1315 while (len >= tdep->wordsize)
1317 if (argpos->regcache && argpos->greg <= 10)
1318 regcache_cooked_write (argpos->regcache,
1319 tdep->ppc_gp0_regnum + argpos->greg, val);
1321 len -= tdep->wordsize;
1322 val += tdep->wordsize;
1327 if (argpos->regcache && argpos->greg <= 10)
1328 regcache_cooked_write_part (argpos->regcache,
1329 tdep->ppc_gp0_regnum + argpos->greg,
1335 /* The same as ppc64_sysv_abi_push_val, but using a single-word integer
1336 value VAL as argument. */
1339 ppc64_sysv_abi_push_integer (struct gdbarch *gdbarch, ULONGEST val,
1340 struct ppc64_sysv_argpos *argpos)
1342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1344 gdb_byte buf[MAX_REGISTER_SIZE];
1346 if (argpos->regcache)
1347 store_unsigned_integer (buf, tdep->wordsize, byte_order, val);
1348 ppc64_sysv_abi_push_val (gdbarch, buf, tdep->wordsize, 0, argpos);
1351 /* VAL is a value of TYPE, a (binary or decimal) floating-point type.
1352 Load it into a floating-point register if required by the ABI,
1353 and update ARGPOS. */
1356 ppc64_sysv_abi_push_freg (struct gdbarch *gdbarch,
1357 struct type *type, const bfd_byte *val,
1358 struct ppc64_sysv_argpos *argpos)
1360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1361 if (tdep->soft_float)
1364 if (TYPE_LENGTH (type) <= 8
1365 && TYPE_CODE (type) == TYPE_CODE_FLT)
1367 /* Floats and doubles go in f1 .. f13. 32-bit floats are converted
1369 if (argpos->regcache && argpos->freg <= 13)
1371 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1372 struct type *regtype = register_type (gdbarch, regnum);
1373 gdb_byte regval[MAX_REGISTER_SIZE];
1375 convert_typed_floating (val, type, regval, regtype);
1376 regcache_cooked_write (argpos->regcache, regnum, regval);
1381 else if (TYPE_LENGTH (type) <= 8
1382 && TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1384 /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
1385 placed in the least significant word. */
1386 if (argpos->regcache && argpos->freg <= 13)
1388 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1391 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1392 offset = 8 - TYPE_LENGTH (type);
1394 regcache_cooked_write_part (argpos->regcache, regnum,
1395 offset, TYPE_LENGTH (type), val);
1400 else if (TYPE_LENGTH (type) == 16
1401 && TYPE_CODE (type) == TYPE_CODE_FLT
1402 && (gdbarch_long_double_format (gdbarch)
1403 == floatformats_ibm_long_double))
1405 /* IBM long double stored in two consecutive FPRs. */
1406 if (argpos->regcache && argpos->freg <= 13)
1408 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1410 regcache_cooked_write (argpos->regcache, regnum, val);
1411 if (argpos->freg <= 12)
1412 regcache_cooked_write (argpos->regcache, regnum + 1, val + 8);
1417 else if (TYPE_LENGTH (type) == 16
1418 && TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1420 /* 128-bit decimal floating-point values are stored in and even/odd
1421 pair of FPRs, with the even FPR holding the most significant half. */
1422 argpos->freg += argpos->freg & 1;
1424 if (argpos->regcache && argpos->freg <= 12)
1426 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1427 int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
1428 int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
1430 regcache_cooked_write (argpos->regcache, regnum, val + hipart);
1431 regcache_cooked_write (argpos->regcache, regnum + 1, val + lopart);
1438 /* VAL is a value of AltiVec vector type. Load it into a vector register
1439 if required by the ABI, and update ARGPOS. */
1442 ppc64_sysv_abi_push_vreg (struct gdbarch *gdbarch, const bfd_byte *val,
1443 struct ppc64_sysv_argpos *argpos)
1445 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1447 if (argpos->regcache && argpos->vreg <= 13)
1448 regcache_cooked_write (argpos->regcache,
1449 tdep->ppc_vr0_regnum + argpos->vreg, val);
1454 /* VAL is a value of TYPE. Load it into memory and/or registers
1455 as required by the ABI, and update ARGPOS. */
1458 ppc64_sysv_abi_push_param (struct gdbarch *gdbarch,
1459 struct type *type, const bfd_byte *val,
1460 struct ppc64_sysv_argpos *argpos)
1462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1464 if (TYPE_CODE (type) == TYPE_CODE_FLT
1465 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1467 /* Floating-point scalars are passed in floating-point registers. */
1468 ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
1469 ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
1471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1472 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
1473 && TYPE_LENGTH (type) == 16)
1475 /* AltiVec vectors are passed aligned, and in vector registers. */
1476 ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 16, argpos);
1477 ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
1479 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1480 && TYPE_LENGTH (type) >= 16)
1482 /* Non-Altivec vectors are passed by reference. */
1484 /* Copy value onto the stack ... */
1485 CORE_ADDR addr = align_up (argpos->refparam, 16);
1486 if (argpos->regcache)
1487 write_memory (addr, val, TYPE_LENGTH (type));
1488 argpos->refparam = align_up (addr + TYPE_LENGTH (type), tdep->wordsize);
1490 /* ... and pass a pointer to the copy as parameter. */
1491 ppc64_sysv_abi_push_integer (gdbarch, addr, argpos);
1493 else if ((TYPE_CODE (type) == TYPE_CODE_INT
1494 || TYPE_CODE (type) == TYPE_CODE_ENUM
1495 || TYPE_CODE (type) == TYPE_CODE_BOOL
1496 || TYPE_CODE (type) == TYPE_CODE_CHAR
1497 || TYPE_CODE (type) == TYPE_CODE_PTR
1498 || TYPE_CODE (type) == TYPE_CODE_REF)
1499 && TYPE_LENGTH (type) <= tdep->wordsize)
1503 if (argpos->regcache)
1505 /* Sign extend the value, then store it unsigned. */
1506 word = unpack_long (type, val);
1508 /* Convert any function code addresses into descriptors. */
1509 if (tdep->elf_abi == POWERPC_ELF_V1
1510 && (TYPE_CODE (type) == TYPE_CODE_PTR
1511 || TYPE_CODE (type) == TYPE_CODE_REF))
1513 struct type *target_type
1514 = check_typedef (TYPE_TARGET_TYPE (type));
1516 if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
1517 || TYPE_CODE (target_type) == TYPE_CODE_METHOD)
1519 CORE_ADDR desc = word;
1521 convert_code_addr_to_desc_addr (word, &desc);
1527 ppc64_sysv_abi_push_integer (gdbarch, word, argpos);
1531 ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
1533 /* The ABI (version 1.9) specifies that structs containing a
1534 single floating-point value, at any level of nesting of
1535 single-member structs, are passed in floating-point registers. */
1536 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1537 && TYPE_NFIELDS (type) == 1)
1539 while (TYPE_CODE (type) == TYPE_CODE_STRUCT
1540 && TYPE_NFIELDS (type) == 1)
1541 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1543 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1544 ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
1547 /* In the ELFv2 ABI, homogeneous floating-point or vector
1548 aggregates are passed in a series of registers. */
1549 if (tdep->elf_abi == POWERPC_ELF_V2)
1551 struct type *eltype;
1554 if (ppc64_elfv2_abi_homogeneous_aggregate (type, &eltype, &nelt))
1555 for (i = 0; i < nelt; i++)
1557 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
1559 if (TYPE_CODE (eltype) == TYPE_CODE_FLT
1560 || TYPE_CODE (eltype) == TYPE_CODE_DECFLOAT)
1561 ppc64_sysv_abi_push_freg (gdbarch, eltype, elval, argpos);
1562 else if (TYPE_CODE (eltype) == TYPE_CODE_ARRAY
1563 && TYPE_VECTOR (eltype)
1564 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
1565 && TYPE_LENGTH (eltype) == 16)
1566 ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos);
1572 /* Pass the arguments in either registers, or in the stack. Using the
1573 ppc 64 bit SysV ABI.
1575 This implements a dumbed down version of the ABI. It always writes
1576 values to memory, GPR and FPR, even when not necessary. Doing this
1577 greatly simplifies the logic. */
1580 ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
1581 struct value *function,
1582 struct regcache *regcache, CORE_ADDR bp_addr,
1583 int nargs, struct value **args, CORE_ADDR sp,
1584 int struct_return, CORE_ADDR struct_addr)
1586 CORE_ADDR func_addr = find_function_addr (function, NULL);
1587 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1589 int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
1590 ULONGEST back_chain;
1591 /* See for-loop comment below. */
1593 /* Size of the by-reference parameter copy region, the final value is
1594 computed in the for-loop below. */
1595 LONGEST refparam_size = 0;
1596 /* Size of the general parameter region, the final value is computed
1597 in the for-loop below. */
1598 LONGEST gparam_size = 0;
1599 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
1600 calls to align_up(), align_down(), etc. because this makes it
1601 easier to reuse this code (in a copy/paste sense) in the future,
1602 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
1603 at some point makes it easier to verify that this function is
1604 correct without having to do a non-local analysis to figure out
1605 the possible values of tdep->wordsize. */
1606 gdb_assert (tdep->wordsize == 8);
1608 /* This function exists to support a calling convention that
1609 requires floating-point registers. It shouldn't be used on
1610 processors that lack them. */
1611 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1613 /* By this stage in the proceedings, SP has been decremented by "red
1614 zone size" + "struct return size". Fetch the stack-pointer from
1615 before this and use that as the BACK_CHAIN. */
1616 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
1619 /* Go through the argument list twice.
1621 Pass 1: Compute the function call's stack space and register
1624 Pass 2: Replay the same computation but this time also write the
1625 values out to the target. */
1627 for (write_pass = 0; write_pass < 2; write_pass++)
1631 struct ppc64_sysv_argpos argpos;
1638 /* During the first pass, GPARAM and REFPARAM are more like
1639 offsets (start address zero) than addresses. That way
1640 they accumulate the total stack space each region
1642 argpos.regcache = NULL;
1644 argpos.refparam = 0;
1648 /* Decrement the stack pointer making space for the Altivec
1649 and general on-stack parameters. Set refparam and gparam
1650 to their corresponding regions. */
1651 argpos.regcache = regcache;
1652 argpos.refparam = align_down (sp - refparam_size, 16);
1653 argpos.gparam = align_down (argpos.refparam - gparam_size, 16);
1654 /* Add in space for the TOC, link editor double word (v1 only),
1655 compiler double word (v1 only), LR save area, CR save area,
1657 if (tdep->elf_abi == POWERPC_ELF_V1)
1658 sp = align_down (argpos.gparam - 48, 16);
1660 sp = align_down (argpos.gparam - 32, 16);
1663 /* If the function is returning a `struct', then there is an
1664 extra hidden parameter (which will be passed in r3)
1665 containing the address of that struct.. In that case we
1666 should advance one word and start from r4 register to copy
1667 parameters. This also consumes one on-stack parameter slot. */
1669 ppc64_sysv_abi_push_integer (gdbarch, struct_addr, &argpos);
1671 for (argno = 0; argno < nargs; argno++)
1673 struct value *arg = args[argno];
1674 struct type *type = check_typedef (value_type (arg));
1675 const bfd_byte *val = value_contents (arg);
1677 if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
1679 /* Complex types are passed as if two independent scalars. */
1680 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1682 ppc64_sysv_abi_push_param (gdbarch, eltype, val, &argpos);
1683 ppc64_sysv_abi_push_param (gdbarch, eltype,
1684 val + TYPE_LENGTH (eltype), &argpos);
1686 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1689 /* OpenCL vectors shorter than 16 bytes are passed as if
1690 a series of independent scalars; OpenCL vectors 16 bytes
1691 or longer are passed as if a series of AltiVec vectors. */
1692 struct type *eltype;
1695 if (TYPE_LENGTH (type) < 16)
1696 eltype = check_typedef (TYPE_TARGET_TYPE (type));
1698 eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
1700 nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
1701 for (i = 0; i < nelt; i++)
1703 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
1705 ppc64_sysv_abi_push_param (gdbarch, eltype, elval, &argpos);
1710 /* All other types are passed as single arguments. */
1711 ppc64_sysv_abi_push_param (gdbarch, type, val, &argpos);
1717 /* Save the true region sizes ready for the second pass. */
1718 refparam_size = argpos.refparam;
1719 /* Make certain that the general parameter save area is at
1720 least the minimum 8 registers (or doublewords) in size. */
1721 if (argpos.greg < 8)
1722 gparam_size = 8 * tdep->wordsize;
1724 gparam_size = argpos.gparam;
1729 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
1731 /* Write the backchain (it occupies WORDSIZED bytes). */
1732 write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
1734 /* Point the inferior function call's return address at the dummy's
1736 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1738 /* In the ELFv1 ABI, use the func_addr to find the descriptor, and use
1739 that to find the TOC. If we're calling via a function pointer,
1740 the pointer itself identifies the descriptor. */
1741 if (tdep->elf_abi == POWERPC_ELF_V1)
1743 struct type *ftype = check_typedef (value_type (function));
1744 CORE_ADDR desc_addr = value_as_address (function);
1746 if (TYPE_CODE (ftype) == TYPE_CODE_PTR
1747 || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
1749 /* The TOC is the second double word in the descriptor. */
1751 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
1752 tdep->wordsize, byte_order);
1754 regcache_cooked_write_unsigned (regcache,
1755 tdep->ppc_gp0_regnum + 2, toc);
1759 /* In the ELFv2 ABI, we need to pass the target address in r12 since
1760 we may be calling a global entry point. */
1761 if (tdep->elf_abi == POWERPC_ELF_V2)
1762 regcache_cooked_write_unsigned (regcache,
1763 tdep->ppc_gp0_regnum + 12, func_addr);
1768 /* Subroutine of ppc64_sysv_abi_return_value that handles "base" types:
1769 integer, floating-point, and AltiVec vector types.
1771 This routine also handles components of aggregate return types;
1772 INDEX describes which part of the aggregate is to be handled.
1774 Returns true if VALTYPE is some such base type that could be handled,
1777 ppc64_sysv_abi_return_value_base (struct gdbarch *gdbarch, struct type *valtype,
1778 struct regcache *regcache, gdb_byte *readbuf,
1779 const gdb_byte *writebuf, int index)
1781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1783 /* Integers live in GPRs starting at r3. */
1784 if ((TYPE_CODE (valtype) == TYPE_CODE_INT
1785 || TYPE_CODE (valtype) == TYPE_CODE_ENUM
1786 || TYPE_CODE (valtype) == TYPE_CODE_CHAR
1787 || TYPE_CODE (valtype) == TYPE_CODE_BOOL)
1788 && TYPE_LENGTH (valtype) <= 8)
1790 int regnum = tdep->ppc_gp0_regnum + 3 + index;
1792 if (writebuf != NULL)
1794 /* Be careful to sign extend the value. */
1795 regcache_cooked_write_unsigned (regcache, regnum,
1796 unpack_long (valtype, writebuf));
1798 if (readbuf != NULL)
1800 /* Extract the integer from GPR. Since this is truncating the
1801 value, there isn't a sign extension problem. */
1804 regcache_cooked_read_unsigned (regcache, regnum, ®val);
1805 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype),
1806 gdbarch_byte_order (gdbarch), regval);
1811 /* Floats and doubles go in f1 .. f13. 32-bit floats are converted
1813 if (TYPE_LENGTH (valtype) <= 8
1814 && TYPE_CODE (valtype) == TYPE_CODE_FLT)
1816 int regnum = tdep->ppc_fp0_regnum + 1 + index;
1817 struct type *regtype = register_type (gdbarch, regnum);
1818 gdb_byte regval[MAX_REGISTER_SIZE];
1820 if (writebuf != NULL)
1822 convert_typed_floating (writebuf, valtype, regval, regtype);
1823 regcache_cooked_write (regcache, regnum, regval);
1825 if (readbuf != NULL)
1827 regcache_cooked_read (regcache, regnum, regval);
1828 convert_typed_floating (regval, regtype, readbuf, valtype);
1833 /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
1834 placed in the least significant word. */
1835 if (TYPE_LENGTH (valtype) <= 8
1836 && TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
1838 int regnum = tdep->ppc_fp0_regnum + 1 + index;
1841 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1842 offset = 8 - TYPE_LENGTH (valtype);
1844 if (writebuf != NULL)
1845 regcache_cooked_write_part (regcache, regnum,
1846 offset, TYPE_LENGTH (valtype), writebuf);
1847 if (readbuf != NULL)
1848 regcache_cooked_read_part (regcache, regnum,
1849 offset, TYPE_LENGTH (valtype), readbuf);
1853 /* IBM long double stored in two consecutive FPRs. */
1854 if (TYPE_LENGTH (valtype) == 16
1855 && TYPE_CODE (valtype) == TYPE_CODE_FLT
1856 && (gdbarch_long_double_format (gdbarch)
1857 == floatformats_ibm_long_double))
1859 int regnum = tdep->ppc_fp0_regnum + 1 + 2 * index;
1861 if (writebuf != NULL)
1863 regcache_cooked_write (regcache, regnum, writebuf);
1864 regcache_cooked_write (regcache, regnum + 1, writebuf + 8);
1866 if (readbuf != NULL)
1868 regcache_cooked_read (regcache, regnum, readbuf);
1869 regcache_cooked_read (regcache, regnum + 1, readbuf + 8);
1874 /* 128-bit decimal floating-point values are stored in an even/odd
1875 pair of FPRs, with the even FPR holding the most significant half. */
1876 if (TYPE_LENGTH (valtype) == 16
1877 && TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
1879 int regnum = tdep->ppc_fp0_regnum + 2 + 2 * index;
1880 int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
1881 int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
1883 if (writebuf != NULL)
1885 regcache_cooked_write (regcache, regnum, writebuf + hipart);
1886 regcache_cooked_write (regcache, regnum + 1, writebuf + lopart);
1888 if (readbuf != NULL)
1890 regcache_cooked_read (regcache, regnum, readbuf + hipart);
1891 regcache_cooked_read (regcache, regnum + 1, readbuf + lopart);
1896 /* AltiVec vectors are returned in VRs starting at v2. */
1897 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1898 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
1900 int regnum = tdep->ppc_vr0_regnum + 2 + index;
1902 if (writebuf != NULL)
1903 regcache_cooked_write (regcache, regnum, writebuf);
1904 if (readbuf != NULL)
1905 regcache_cooked_read (regcache, regnum, readbuf);
1912 /* The 64 bit ABI return value convention.
1914 Return non-zero if the return-value is stored in a register, return
1915 0 if the return-value is instead stored on the stack (a.k.a.,
1916 struct return convention).
1918 For a return-value stored in a register: when WRITEBUF is non-NULL,
1919 copy the buffer to the corresponding register return-value location
1920 location; when READBUF is non-NULL, fill the buffer from the
1921 corresponding register return-value location. */
1922 enum return_value_convention
1923 ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
1924 struct type *valtype, struct regcache *regcache,
1925 gdb_byte *readbuf, const gdb_byte *writebuf)
1927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1928 struct type *func_type = function ? value_type (function) : NULL;
1929 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
1930 struct type *eltype;
1933 /* This function exists to support a calling convention that
1934 requires floating-point registers. It shouldn't be used on
1935 processors that lack them. */
1936 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1938 /* Complex types are returned as if two independent scalars. */
1939 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
1941 eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
1943 for (i = 0; i < 2; i++)
1945 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
1946 readbuf, writebuf, i);
1950 readbuf += TYPE_LENGTH (eltype);
1952 writebuf += TYPE_LENGTH (eltype);
1954 return RETURN_VALUE_REGISTER_CONVENTION;
1957 /* OpenCL vectors shorter than 16 bytes are returned as if
1958 a series of independent scalars; OpenCL vectors 16 bytes
1959 or longer are returned as if a series of AltiVec vectors. */
1960 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1963 if (TYPE_LENGTH (valtype) < 16)
1964 eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
1966 eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
1968 nelt = TYPE_LENGTH (valtype) / TYPE_LENGTH (eltype);
1969 for (i = 0; i < nelt; i++)
1971 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
1972 readbuf, writebuf, i);
1976 readbuf += TYPE_LENGTH (eltype);
1978 writebuf += TYPE_LENGTH (eltype);
1980 return RETURN_VALUE_REGISTER_CONVENTION;
1983 /* All pointers live in r3. */
1984 if (TYPE_CODE (valtype) == TYPE_CODE_PTR
1985 || TYPE_CODE (valtype) == TYPE_CODE_REF)
1987 int regnum = tdep->ppc_gp0_regnum + 3;
1989 if (writebuf != NULL)
1990 regcache_cooked_write (regcache, regnum, writebuf);
1991 if (readbuf != NULL)
1992 regcache_cooked_read (regcache, regnum, readbuf);
1993 return RETURN_VALUE_REGISTER_CONVENTION;
1996 /* Small character arrays are returned, right justified, in r3. */
1997 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1998 && TYPE_LENGTH (valtype) <= 8
1999 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
2000 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
2002 int regnum = tdep->ppc_gp0_regnum + 3;
2003 int offset = (register_size (gdbarch, regnum) - TYPE_LENGTH (valtype));
2005 if (writebuf != NULL)
2006 regcache_cooked_write_part (regcache, regnum,
2007 offset, TYPE_LENGTH (valtype), writebuf);
2008 if (readbuf != NULL)
2009 regcache_cooked_read_part (regcache, regnum,
2010 offset, TYPE_LENGTH (valtype), readbuf);
2011 return RETURN_VALUE_REGISTER_CONVENTION;
2014 /* In the ELFv2 ABI, homogeneous floating-point or vector
2015 aggregates are returned in registers. */
2016 if (tdep->elf_abi == POWERPC_ELF_V2
2017 && ppc64_elfv2_abi_homogeneous_aggregate (valtype, &eltype, &nelt))
2019 for (i = 0; i < nelt; i++)
2021 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
2022 readbuf, writebuf, i);
2026 readbuf += TYPE_LENGTH (eltype);
2028 writebuf += TYPE_LENGTH (eltype);
2031 return RETURN_VALUE_REGISTER_CONVENTION;
2034 /* In the ELFv2 ABI, aggregate types of up to 16 bytes are
2035 returned in registers r3:r4. */
2036 if (tdep->elf_abi == POWERPC_ELF_V2
2037 && TYPE_LENGTH (valtype) <= 16
2038 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2039 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2040 || (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
2041 && !TYPE_VECTOR (valtype))))
2043 int n_regs = ((TYPE_LENGTH (valtype) + tdep->wordsize - 1)
2047 for (i = 0; i < n_regs; i++)
2049 gdb_byte regval[MAX_REGISTER_SIZE];
2050 int regnum = tdep->ppc_gp0_regnum + 3 + i;
2051 int offset = i * tdep->wordsize;
2052 int len = TYPE_LENGTH (valtype) - offset;
2054 if (len > tdep->wordsize)
2055 len = tdep->wordsize;
2057 if (writebuf != NULL)
2059 memset (regval, 0, sizeof regval);
2060 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
2062 memcpy (regval + tdep->wordsize - len, writebuf, len);
2064 memcpy (regval, writebuf + offset, len);
2065 regcache_cooked_write (regcache, regnum, regval);
2067 if (readbuf != NULL)
2069 regcache_cooked_read (regcache, regnum, regval);
2070 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
2072 memcpy (readbuf, regval + tdep->wordsize - len, len);
2074 memcpy (readbuf + offset, regval, len);
2077 return RETURN_VALUE_REGISTER_CONVENTION;
2080 /* Handle plain base types. */
2081 if (ppc64_sysv_abi_return_value_base (gdbarch, valtype, regcache,
2082 readbuf, writebuf, 0))
2083 return RETURN_VALUE_REGISTER_CONVENTION;
2085 return RETURN_VALUE_STRUCT_CONVENTION;