1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
36 #include "solib-svr4.h"
39 /* The following instructions are used in the signal trampoline code
40 on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
41 0x7777 but now uses the sigreturn syscalls. We check for both. */
42 #define INSTR_LI_R0_0x6666 0x38006666
43 #define INSTR_LI_R0_0x7777 0x38007777
44 #define INSTR_LI_R0_NR_sigreturn 0x38000077
45 #define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC
47 #define INSTR_SC 0x44000002
49 /* Since the *-tdep.c files are platform independent (i.e, they may be
50 used to build cross platform debuggers), we can't include system
51 headers. Therefore, details concerning the sigcontext structure
52 must be painstakingly rerecorded. What's worse, if these details
53 ever change in the header files, they'll have to be changed here
56 /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
57 #define PPC_LINUX_SIGNAL_FRAMESIZE 64
59 /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
60 #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
62 /* From <asm/sigcontext.h>,
63 offsetof(struct sigcontext_struct, handler) == 0x14 */
64 #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
66 /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
67 #define PPC_LINUX_PT_R0 0
68 #define PPC_LINUX_PT_R1 1
69 #define PPC_LINUX_PT_R2 2
70 #define PPC_LINUX_PT_R3 3
71 #define PPC_LINUX_PT_R4 4
72 #define PPC_LINUX_PT_R5 5
73 #define PPC_LINUX_PT_R6 6
74 #define PPC_LINUX_PT_R7 7
75 #define PPC_LINUX_PT_R8 8
76 #define PPC_LINUX_PT_R9 9
77 #define PPC_LINUX_PT_R10 10
78 #define PPC_LINUX_PT_R11 11
79 #define PPC_LINUX_PT_R12 12
80 #define PPC_LINUX_PT_R13 13
81 #define PPC_LINUX_PT_R14 14
82 #define PPC_LINUX_PT_R15 15
83 #define PPC_LINUX_PT_R16 16
84 #define PPC_LINUX_PT_R17 17
85 #define PPC_LINUX_PT_R18 18
86 #define PPC_LINUX_PT_R19 19
87 #define PPC_LINUX_PT_R20 20
88 #define PPC_LINUX_PT_R21 21
89 #define PPC_LINUX_PT_R22 22
90 #define PPC_LINUX_PT_R23 23
91 #define PPC_LINUX_PT_R24 24
92 #define PPC_LINUX_PT_R25 25
93 #define PPC_LINUX_PT_R26 26
94 #define PPC_LINUX_PT_R27 27
95 #define PPC_LINUX_PT_R28 28
96 #define PPC_LINUX_PT_R29 29
97 #define PPC_LINUX_PT_R30 30
98 #define PPC_LINUX_PT_R31 31
99 #define PPC_LINUX_PT_NIP 32
100 #define PPC_LINUX_PT_MSR 33
101 #define PPC_LINUX_PT_CTR 35
102 #define PPC_LINUX_PT_LNK 36
103 #define PPC_LINUX_PT_XER 37
104 #define PPC_LINUX_PT_CCR 38
105 #define PPC_LINUX_PT_MQ 39
106 #define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
107 #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
108 #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
110 static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
112 /* Determine if pc is in a signal trampoline...
114 Ha! That's not what this does at all. wait_for_inferior in
115 infrun.c calls PC_IN_SIGTRAMP in order to detect entry into a
116 signal trampoline just after delivery of a signal. But on
117 GNU/Linux, signal trampolines are used for the return path only.
118 The kernel sets things up so that the signal handler is called
121 If we use in_sigtramp2() in place of in_sigtramp() (see below)
122 we'll (often) end up with stop_pc in the trampoline and prev_pc in
123 the (now exited) handler. The code there will cause a temporary
124 breakpoint to be set on prev_pc which is not very likely to get hit
127 If this is confusing, think of it this way... the code in
128 wait_for_inferior() needs to be able to detect entry into a signal
129 trampoline just after a signal is delivered, not after the handler
132 So, we define in_sigtramp() below to return 1 if the following is
135 1) The previous frame is a real signal trampoline.
139 2) pc is at the first or second instruction of the corresponding
142 Why the second instruction? It seems that wait_for_inferior()
143 never sees the first instruction when single stepping. When a
144 signal is delivered while stepping, the next instruction that
145 would've been stepped over isn't, instead a signal is delivered and
146 the first instruction of the handler is stepped over instead. That
147 puts us on the second instruction. (I added the test for the
148 first instruction long after the fact, just in case the observed
149 behavior is ever fixed.)
151 PC_IN_SIGTRAMP is called from blockframe.c as well in order to set
152 the frame's type (if a SIGTRAMP_FRAME). Because of our strange
153 definition of in_sigtramp below, we can't rely on the frame's type
154 getting set correctly from within blockframe.c. This is why we
155 take pains to set it in init_extra_frame_info().
157 NOTE: cagney/2002-11-10: I suspect the real problem here is that
158 the get_prev_frame() only initializes the frame's type after the
159 call to INIT_FRAME_INFO. get_prev_frame() should be fixed, this
160 code shouldn't be working its way around a bug :-(. */
163 ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
171 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
172 if (!ppc_linux_at_sigtramp_return_path (lr))
175 sp = read_register (SP_REGNUM);
177 if (target_read_memory (sp, buf, sizeof (buf)) != 0)
180 tramp_sp = extract_unsigned_integer (buf, 4);
182 if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
186 handler = extract_unsigned_integer (buf, 4);
188 return (pc == handler || pc == handler + 4);
192 insn_is_sigreturn (unsigned long pcinsn)
196 case INSTR_LI_R0_0x6666:
197 case INSTR_LI_R0_0x7777:
198 case INSTR_LI_R0_NR_sigreturn:
199 case INSTR_LI_R0_NR_rt_sigreturn:
207 * The signal handler trampoline is on the stack and consists of exactly
208 * two instructions. The easiest and most accurate way of determining
209 * whether the pc is in one of these trampolines is by inspecting the
210 * instructions. It'd be faster though if we could find a way to do this
211 * via some simple address comparisons.
214 ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
217 unsigned long pcinsn;
218 if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
221 /* extract the instruction at the pc */
222 pcinsn = extract_unsigned_integer (buf + 4, 4);
225 (insn_is_sigreturn (pcinsn)
226 && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
229 && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
233 ppc_linux_skip_trampoline_code (CORE_ADDR pc)
236 struct obj_section *sect;
237 struct objfile *objfile;
239 CORE_ADDR plt_start = 0;
240 CORE_ADDR symtab = 0;
241 CORE_ADDR strtab = 0;
243 int reloc_index = -1;
249 struct minimal_symbol *msymbol;
251 /* Find the section pc is in; return if not in .plt */
252 sect = find_pc_section (pc);
253 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
256 objfile = sect->objfile;
258 /* Pick up the instruction at pc. It had better be of the
262 where IDX is an index into the plt_table. */
264 if (target_read_memory (pc, buf, 4) != 0)
266 insn = extract_unsigned_integer (buf, 4);
268 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
271 reloc_index = (insn << 16) >> 16;
273 /* Find the objfile that pc is in and obtain the information
274 necessary for finding the symbol name. */
275 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
277 const char *secname = sect->the_bfd_section->name;
278 if (strcmp (secname, ".plt") == 0)
279 plt_start = sect->addr;
280 else if (strcmp (secname, ".rela.plt") == 0)
281 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
282 else if (strcmp (secname, ".dynsym") == 0)
284 else if (strcmp (secname, ".dynstr") == 0)
288 /* Make sure we have all the information we need. */
289 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
292 /* Compute the value of the plt table */
293 plt_table = plt_start + 72 + 8 * num_slots;
295 /* Get address of the relocation entry (Elf32_Rela) */
296 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
298 reloc = extract_unsigned_integer (buf, 4);
300 sect = find_pc_section (reloc);
304 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
307 /* Now get the r_info field which is the relocation type and symbol
309 if (target_read_memory (reloc + 4, buf, 4) != 0)
311 symidx = extract_unsigned_integer (buf, 4);
313 /* Shift out the relocation type leaving just the symbol index */
314 /* symidx = ELF32_R_SYM(symidx); */
315 symidx = symidx >> 8;
317 /* compute the address of the symbol */
318 sym = symtab + symidx * 4;
320 /* Fetch the string table index */
321 if (target_read_memory (sym, buf, 4) != 0)
323 symidx = extract_unsigned_integer (buf, 4);
325 /* Fetch the string; we don't know how long it is. Is it possible
326 that the following will fail because we're trying to fetch too
328 if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
331 /* This might not work right if we have multiple symbols with the
332 same name; the only way to really get it right is to perform
333 the same sort of lookup as the dynamic linker. */
334 msymbol = lookup_minimal_symbol_text (symname, NULL, NULL);
338 return SYMBOL_VALUE_ADDRESS (msymbol);
341 /* The rs6000 version of FRAME_SAVED_PC will almost work for us. The
342 signal handler details are different, so we'll handle those here
343 and call the rs6000 version to do the rest. */
345 ppc_linux_frame_saved_pc (struct frame_info *fi)
347 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
349 CORE_ADDR regs_addr =
350 read_memory_integer (get_frame_base (fi)
351 + PPC_LINUX_REGS_PTR_OFFSET, 4);
352 /* return the NIP in the regs array */
353 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_NIP, 4);
355 else if (get_next_frame (fi)
356 && (get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
358 CORE_ADDR regs_addr =
359 read_memory_integer (get_frame_base (get_next_frame (fi))
360 + PPC_LINUX_REGS_PTR_OFFSET, 4);
361 /* return LNK in the regs array */
362 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_LNK, 4);
365 return rs6000_frame_saved_pc (fi);
369 ppc_linux_init_extra_frame_info (int fromleaf, struct frame_info *fi)
371 rs6000_init_extra_frame_info (fromleaf, fi);
373 if (get_next_frame (fi) != 0)
375 /* We're called from get_prev_frame_info; check to see if
376 this is a signal frame by looking to see if the pc points
377 at trampoline code */
378 if (ppc_linux_at_sigtramp_return_path (get_frame_pc (fi)))
379 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
381 /* FIXME: cagney/2002-11-10: Is this double bogus? What
382 happens if the frame has previously been marked as a dummy? */
383 deprecated_set_frame_type (fi, NORMAL_FRAME);
388 ppc_linux_frameless_function_invocation (struct frame_info *fi)
390 /* We'll find the wrong thing if we let
391 rs6000_frameless_function_invocation () search for a signal trampoline */
392 if (ppc_linux_at_sigtramp_return_path (get_frame_pc (fi)))
395 return rs6000_frameless_function_invocation (fi);
399 ppc_linux_frame_init_saved_regs (struct frame_info *fi)
401 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
405 if (get_frame_saved_regs (fi))
408 frame_saved_regs_zalloc (fi);
411 read_memory_integer (get_frame_base (fi)
412 + PPC_LINUX_REGS_PTR_OFFSET, 4);
413 get_frame_saved_regs (fi)[PC_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_NIP;
414 get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_ps_regnum] =
415 regs_addr + 4 * PPC_LINUX_PT_MSR;
416 get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
417 regs_addr + 4 * PPC_LINUX_PT_CCR;
418 get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
419 regs_addr + 4 * PPC_LINUX_PT_LNK;
420 get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum] =
421 regs_addr + 4 * PPC_LINUX_PT_CTR;
422 get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_xer_regnum] =
423 regs_addr + 4 * PPC_LINUX_PT_XER;
424 get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_mq_regnum] =
425 regs_addr + 4 * PPC_LINUX_PT_MQ;
426 for (i = 0; i < 32; i++)
427 get_frame_saved_regs (fi)[gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + i] =
428 regs_addr + 4 * PPC_LINUX_PT_R0 + 4 * i;
429 for (i = 0; i < 32; i++)
430 get_frame_saved_regs (fi)[FP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_FPR0 + 8 * i;
433 rs6000_frame_init_saved_regs (fi);
437 ppc_linux_frame_chain (struct frame_info *thisframe)
439 /* Kernel properly constructs the frame chain for the handler */
440 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
441 return read_memory_integer (get_frame_base (thisframe), 4);
443 return rs6000_frame_chain (thisframe);
446 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
447 in much the same fashion as memory_remove_breakpoint in mem-break.c,
448 but is careful not to write back the previous contents if the code
449 in question has changed in between inserting the breakpoint and
452 Here is the problem that we're trying to solve...
454 Once upon a time, before introducing this function to remove
455 breakpoints from the inferior, setting a breakpoint on a shared
456 library function prior to running the program would not work
457 properly. In order to understand the problem, it is first
458 necessary to understand a little bit about dynamic linking on
461 A call to a shared library function is accomplished via a bl
462 (branch-and-link) instruction whose branch target is an entry
463 in the procedure linkage table (PLT). The PLT in the object
464 file is uninitialized. To gdb, prior to running the program, the
465 entries in the PLT are all zeros.
467 Once the program starts running, the shared libraries are loaded
468 and the procedure linkage table is initialized, but the entries in
469 the table are not (necessarily) resolved. Once a function is
470 actually called, the code in the PLT is hit and the function is
471 resolved. In order to better illustrate this, an example is in
472 order; the following example is from the gdb testsuite.
474 We start the program shmain.
476 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
479 We place two breakpoints, one on shr1 and the other on main.
482 Breakpoint 1 at 0x100409d4
484 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
486 Examine the instruction (and the immediatly following instruction)
487 upon which the breakpoint was placed. Note that the PLT entry
488 for shr1 contains zeros.
490 (gdb) x/2i 0x100409d4
491 0x100409d4 <shr1>: .long 0x0
492 0x100409d8 <shr1+4>: .long 0x0
497 Starting program: gdb.base/shmain
498 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
500 Breakpoint 2, main ()
501 at gdb.base/shmain.c:44
504 Examine the PLT again. Note that the loading of the shared
505 library has initialized the PLT to code which loads a constant
506 (which I think is an index into the GOT) into r11 and then
507 branchs a short distance to the code which actually does the
510 (gdb) x/2i 0x100409d4
511 0x100409d4 <shr1>: li r11,4
512 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
516 Breakpoint 1, shr1 (x=1)
517 at gdb.base/shr1.c:19
520 Now we've hit the breakpoint at shr1. (The breakpoint was
521 reset from the PLT entry to the actual shr1 function after the
522 shared library was loaded.) Note that the PLT entry has been
523 resolved to contain a branch that takes us directly to shr1.
524 (The real one, not the PLT entry.)
526 (gdb) x/2i 0x100409d4
527 0x100409d4 <shr1>: b 0xffaf76c <shr1>
528 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
530 The thing to note here is that the PLT entry for shr1 has been
533 Now the problem should be obvious. GDB places a breakpoint (a
534 trap instruction) on the zero value of the PLT entry for shr1.
535 Later on, after the shared library had been loaded and the PLT
536 initialized, GDB gets a signal indicating this fact and attempts
537 (as it always does when it stops) to remove all the breakpoints.
539 The breakpoint removal was causing the former contents (a zero
540 word) to be written back to the now initialized PLT entry thus
541 destroying a portion of the initialization that had occurred only a
542 short time ago. When execution continued, the zero word would be
543 executed as an instruction an an illegal instruction trap was
544 generated instead. (0 is not a legal instruction.)
546 The fix for this problem was fairly straightforward. The function
547 memory_remove_breakpoint from mem-break.c was copied to this file,
548 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
549 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
552 The differences between ppc_linux_memory_remove_breakpoint () and
553 memory_remove_breakpoint () are minor. All that the former does
554 that the latter does not is check to make sure that the breakpoint
555 location actually contains a breakpoint (trap instruction) prior
556 to attempting to write back the old contents. If it does contain
557 a trap instruction, we allow the old contents to be written back.
558 Otherwise, we silently do nothing.
560 The big question is whether memory_remove_breakpoint () should be
561 changed to have the same functionality. The downside is that more
562 traffic is generated for remote targets since we'll have an extra
563 fetch of a memory word each time a breakpoint is removed.
565 For the time being, we'll leave this self-modifying-code-friendly
566 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
567 else in the event that some other platform has similar needs with
568 regard to removing breakpoints in some potentially self modifying
571 ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
573 const unsigned char *bp;
576 char old_contents[BREAKPOINT_MAX];
578 /* Determine appropriate breakpoint contents and size for this address. */
579 bp = BREAKPOINT_FROM_PC (&addr, &bplen);
581 error ("Software breakpoints not implemented for this target.");
583 val = target_read_memory (addr, old_contents, bplen);
585 /* If our breakpoint is no longer at the address, this means that the
586 program modified the code on us, so it is wrong to put back the
588 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
589 val = target_write_memory (addr, contents_cache, bplen);
594 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
595 than the 32 bit SYSV R4 ABI structure return convention - all
596 structures, no matter their size, are put in memory. Vectors,
597 which were added later, do get returned in a register though. */
600 ppc_linux_use_struct_convention (int gcc_p, struct type *value_type)
602 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
603 && TYPE_VECTOR (value_type))
608 /* Fetch (and possibly build) an appropriate link_map_offsets
609 structure for GNU/Linux PPC targets using the struct offsets
610 defined in link.h (but without actual reference to that file).
612 This makes it possible to access GNU/Linux PPC shared libraries
613 from a GDB that was not built on an GNU/Linux PPC host (for cross
616 struct link_map_offsets *
617 ppc_linux_svr4_fetch_link_map_offsets (void)
619 static struct link_map_offsets lmo;
620 static struct link_map_offsets *lmp = NULL;
626 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
627 this is all we need. */
628 lmo.r_map_offset = 4;
631 lmo.link_map_size = 20; /* The actual size is 560 bytes, but
632 this is all we need. */
633 lmo.l_addr_offset = 0;
636 lmo.l_name_offset = 4;
639 lmo.l_next_offset = 12;
642 lmo.l_prev_offset = 16;
650 /* Macros for matching instructions. Note that, since all the
651 operands are masked off before they're or-ed into the instruction,
652 you can use -1 to make masks. */
654 #define insn_d(opcd, rts, ra, d) \
655 ((((opcd) & 0x3f) << 26) \
656 | (((rts) & 0x1f) << 21) \
657 | (((ra) & 0x1f) << 16) \
660 #define insn_ds(opcd, rts, ra, d, xo) \
661 ((((opcd) & 0x3f) << 26) \
662 | (((rts) & 0x1f) << 21) \
663 | (((ra) & 0x1f) << 16) \
667 #define insn_xfx(opcd, rts, spr, xo) \
668 ((((opcd) & 0x3f) << 26) \
669 | (((rts) & 0x1f) << 21) \
670 | (((spr) & 0x1f) << 16) \
671 | (((spr) & 0x3e0) << 6) \
672 | (((xo) & 0x3ff) << 1))
674 /* Read a PPC instruction from memory. PPC instructions are always
675 big-endian, no matter what endianness the program is running in, so
676 we can't use read_memory_integer or one of its friends here. */
678 read_insn (CORE_ADDR pc)
680 unsigned char buf[4];
682 read_memory (pc, buf, 4);
683 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
687 /* An instruction to match. */
690 unsigned int mask; /* mask the insn with this... */
691 unsigned int data; /* ...and see if it matches this. */
692 int optional; /* If non-zero, this insn may be absent. */
695 /* Return non-zero if the instructions at PC match the series
696 described in PATTERN, or zero otherwise. PATTERN is an array of
697 'struct insn_pattern' objects, terminated by an entry whose mask is
700 When the match is successful, fill INSN[i] with what PATTERN[i]
701 matched. If PATTERN[i] is optional, and the instruction wasn't
702 present, set INSN[i] to 0 (which is not a valid PPC instruction).
703 INSN should have as many elements as PATTERN. Note that, if
704 PATTERN contains optional instructions which aren't present in
705 memory, then INSN will have holes, so INSN[i] isn't necessarily the
706 i'th instruction in memory. */
708 insns_match_pattern (CORE_ADDR pc,
709 struct insn_pattern *pattern,
714 for (i = 0; pattern[i].mask; i++)
716 insn[i] = read_insn (pc);
717 if ((insn[i] & pattern[i].mask) == pattern[i].data)
719 else if (pattern[i].optional)
729 /* Return the 'd' field of the d-form instruction INSN, properly
732 insn_d_field (unsigned int insn)
734 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
738 /* Return the 'ds' field of the ds-form instruction INSN, with the two
739 zero bits concatenated at the right, and properly
742 insn_ds_field (unsigned int insn)
744 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
748 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
749 descriptor, return the descriptor's entry point. */
751 ppc64_desc_entry_point (CORE_ADDR desc)
753 /* The first word of the descriptor is the entry point. */
754 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
758 /* Pattern for the standard linkage function. These are built by
759 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
761 static struct insn_pattern ppc64_standard_linkage[] =
763 /* addis r12, r2, <any> */
764 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
767 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
769 /* ld r11, <any>(r12) */
770 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
772 /* addis r12, r12, 1 <optional> */
773 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
775 /* ld r2, <any>(r12) */
776 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
778 /* addis r12, r12, 1 <optional> */
779 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
782 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
785 /* ld r11, <any>(r12) */
786 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
789 { -1, 0x4e800420, 0 },
793 #define PPC64_STANDARD_LINKAGE_LEN \
794 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
797 /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
798 calls a "solib trampoline". */
800 ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
802 /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
804 It's not specifically solib call trampolines that are the issue.
805 Any call from one function to another function that uses a
806 different TOC requires a trampoline, to save the caller's TOC
807 pointer and then load the callee's TOC. An executable or shared
808 library may have more than one TOC, so even intra-object calls
809 may require a trampoline. Since executable and shared libraries
810 will all have their own distinct TOCs, every inter-object call is
811 also an inter-TOC call, and requires a trampoline --- so "solib
812 call trampolines" are just a special case.
814 The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
815 "linkage functions". Since they need to be near the functions
816 that call them, they all appear in .text, not in any special
817 section. The .plt section just contains an array of function
818 descriptors, from which the linkage functions load the callee's
819 entry point, TOC value, and environment pointer. So
820 in_plt_section is useless. The linkage functions don't have any
821 special linker symbols to name them, either.
823 The only way I can see to recognize them is to actually look at
824 their code. They're generated by ppc_build_one_stub and some
825 other functions in bfd/elf64-ppc.c, so that should show us all
826 the instruction sequences we need to recognize. */
827 unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
829 return insns_match_pattern (pc, ppc64_standard_linkage, insn);
833 /* When the dynamic linker is doing lazy symbol resolution, the first
834 call to a function in another object will go like this:
836 - The user's function calls the linkage function:
838 100007c4: 4b ff fc d5 bl 10000498
839 100007c8: e8 41 00 28 ld r2,40(r1)
841 - The linkage function loads the entry point (and other stuff) from
842 the function descriptor in the PLT, and jumps to it:
844 10000498: 3d 82 00 00 addis r12,r2,0
845 1000049c: f8 41 00 28 std r2,40(r1)
846 100004a0: e9 6c 80 98 ld r11,-32616(r12)
847 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
848 100004a8: 7d 69 03 a6 mtctr r11
849 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
850 100004b0: 4e 80 04 20 bctr
852 - But since this is the first time that PLT entry has been used, it
853 sends control to its glink entry. That loads the number of the
854 PLT entry and jumps to the common glink0 code:
856 10000c98: 38 00 00 00 li r0,0
857 10000c9c: 4b ff ff dc b 10000c78
859 - The common glink0 code then transfers control to the dynamic
862 10000c78: e8 41 00 28 ld r2,40(r1)
863 10000c7c: 3d 82 00 00 addis r12,r2,0
864 10000c80: e9 6c 80 80 ld r11,-32640(r12)
865 10000c84: e8 4c 80 88 ld r2,-32632(r12)
866 10000c88: 7d 69 03 a6 mtctr r11
867 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
868 10000c90: 4e 80 04 20 bctr
870 Eventually, this code will figure out how to skip all of this,
871 including the dynamic linker. At the moment, we just get through
872 the linkage function. */
874 /* If the current thread is about to execute a series of instructions
875 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
876 from that pattern match, return the code address to which the
877 standard linkage function will send them. (This doesn't deal with
878 dynamic linker lazy symbol resolution stubs.) */
880 ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
882 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
884 /* The address of the function descriptor this linkage function
887 = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
888 + (insn_d_field (insn[0]) << 16)
889 + insn_ds_field (insn[2]));
891 /* The first word of the descriptor is the entry point. Return that. */
892 return ppc64_desc_entry_point (desc);
896 /* Given that we've begun executing a call trampoline at PC, return
897 the entry point of the function the trampoline will go to. */
899 ppc64_skip_trampoline_code (CORE_ADDR pc)
901 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
903 if (insns_match_pattern (pc, ppc64_standard_linkage,
904 ppc64_standard_linkage_insn))
905 return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
911 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR) on PPC64 GNU/Linux.
913 Usually a function pointer's representation is simply the address
914 of the function. On GNU/Linux on the 64-bit PowerPC however, a
915 function pointer is represented by a pointer to a TOC entry. This
916 TOC entry contains three words, the first word is the address of
917 the function, the second word is the TOC pointer (r2), and the
918 third word is the static chain value. Throughout GDB it is
919 currently assumed that a function pointer contains the address of
920 the function, which is not easy to fix. In addition, the
921 conversion of a function address to a function pointer would
922 require allocation of a TOC entry in the inferior's memory space,
923 with all its drawbacks. To be able to call C++ virtual methods in
924 the inferior (which are called via function pointers),
925 find_function_addr uses this function to get the function address
926 from a function pointer. */
928 /* Return real function address if ADDR (a function pointer) is in the data
929 space and is therefore a special function pointer. */
932 ppc64_linux_convert_from_func_ptr_addr (CORE_ADDR addr)
934 struct obj_section *s;
936 s = find_pc_section (addr);
937 if (s && s->the_bfd_section->flags & SEC_CODE)
940 /* ADDR is in the data space, so it's a pointer to a descriptor, not
942 return ppc64_desc_entry_point (addr);
953 ELF_GREGSET_SIZE = (ELF_NGREG * 4),
954 ELF_FPREGSET_SIZE = (ELF_NFPREG * 8)
958 ppc_linux_supply_gregset (char *buf)
961 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
963 for (regi = 0; regi < 32; regi++)
964 supply_register (regi, buf + 4 * regi);
966 supply_register (PC_REGNUM, buf + 4 * PPC_LINUX_PT_NIP);
967 supply_register (tdep->ppc_lr_regnum, buf + 4 * PPC_LINUX_PT_LNK);
968 supply_register (tdep->ppc_cr_regnum, buf + 4 * PPC_LINUX_PT_CCR);
969 supply_register (tdep->ppc_xer_regnum, buf + 4 * PPC_LINUX_PT_XER);
970 supply_register (tdep->ppc_ctr_regnum, buf + 4 * PPC_LINUX_PT_CTR);
971 if (tdep->ppc_mq_regnum != -1)
972 supply_register (tdep->ppc_mq_regnum, buf + 4 * PPC_LINUX_PT_MQ);
973 supply_register (tdep->ppc_ps_regnum, buf + 4 * PPC_LINUX_PT_MSR);
977 ppc_linux_supply_fpregset (char *buf)
980 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
982 for (regi = 0; regi < 32; regi++)
983 supply_register (FP0_REGNUM + regi, buf + 8 * regi);
985 /* The FPSCR is stored in the low order word of the last doubleword in the
987 supply_register (tdep->ppc_fpscr_regnum, buf + 8 * 32 + 4);
991 Use a local version of this function to get the correct types for regsets.
995 fetch_core_registers (char *core_reg_sect,
996 unsigned core_reg_size,
1002 if (core_reg_size == ELF_GREGSET_SIZE)
1003 ppc_linux_supply_gregset (core_reg_sect);
1005 warning ("wrong size gregset struct in core file");
1007 else if (which == 2)
1009 if (core_reg_size == ELF_FPREGSET_SIZE)
1010 ppc_linux_supply_fpregset (core_reg_sect);
1012 warning ("wrong size fpregset struct in core file");
1016 /* Register that we are able to handle ELF file formats using standard
1017 procfs "regset" structures. */
1019 static struct core_fns ppc_linux_regset_core_fns =
1021 bfd_target_elf_flavour, /* core_flavour */
1022 default_check_format, /* check_format */
1023 default_core_sniffer, /* core_sniffer */
1024 fetch_core_registers, /* core_read_registers */
1029 ppc_linux_init_abi (struct gdbarch_info info,
1030 struct gdbarch *gdbarch)
1032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1034 if (tdep->wordsize == 4)
1036 /* Until November 2001, gcc did not comply with the 32 bit SysV
1037 R4 ABI requirement that structures less than or equal to 8
1038 bytes should be returned in registers. Instead GCC was using
1039 the the AIX/PowerOpen ABI - everything returned in memory
1040 (well ignoring vectors that is). When this was corrected, it
1041 wasn't fixed for GNU/Linux native platform. Use the
1042 PowerOpen struct convention. */
1043 set_gdbarch_use_struct_convention (gdbarch, ppc_linux_use_struct_convention);
1045 /* Note: kevinb/2002-04-12: See note in rs6000_gdbarch_init regarding
1046 *_push_arguments(). The same remarks hold for the methods below. */
1047 set_gdbarch_frameless_function_invocation (gdbarch,
1048 ppc_linux_frameless_function_invocation);
1049 set_gdbarch_deprecated_frame_chain (gdbarch, ppc_linux_frame_chain);
1050 set_gdbarch_deprecated_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
1052 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1053 ppc_linux_frame_init_saved_regs);
1054 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1055 ppc_linux_init_extra_frame_info);
1057 set_gdbarch_memory_remove_breakpoint (gdbarch,
1058 ppc_linux_memory_remove_breakpoint);
1059 /* Shared library handling. */
1060 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1061 set_gdbarch_skip_trampoline_code (gdbarch,
1062 ppc_linux_skip_trampoline_code);
1063 set_solib_svr4_fetch_link_map_offsets
1064 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
1067 if (tdep->wordsize == 8)
1069 /* Handle PPC64 GNU/Linux function pointers (which are really
1070 function descriptors). */
1071 set_gdbarch_convert_from_func_ptr_addr
1072 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1074 set_gdbarch_in_solib_call_trampoline
1075 (gdbarch, ppc64_in_solib_call_trampoline);
1076 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1081 _initialize_ppc_linux_tdep (void)
1083 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_LINUX,
1084 ppc_linux_init_abi);
1085 add_core_fns (&ppc_linux_regset_core_fns);