1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "trad-frame.h"
42 #include "frame-unwind.h"
43 #include "tramp-frame.h"
46 #include "elf/common.h"
47 #include "elf/ppc64.h"
48 #include "exceptions.h"
49 #include "arch-utils.h"
51 #include "xml-syscall.h"
52 #include "linux-tdep.h"
54 #include "stap-probe.h"
57 #include "cli/cli-utils.h"
58 #include "parser-defs.h"
59 #include "user-regs.h"
61 #include "elf-bfd.h" /* for elfcore_write_* */
63 #include "features/rs6000/powerpc-32l.c"
64 #include "features/rs6000/powerpc-altivec32l.c"
65 #include "features/rs6000/powerpc-cell32l.c"
66 #include "features/rs6000/powerpc-vsx32l.c"
67 #include "features/rs6000/powerpc-isa205-32l.c"
68 #include "features/rs6000/powerpc-isa205-altivec32l.c"
69 #include "features/rs6000/powerpc-isa205-vsx32l.c"
70 #include "features/rs6000/powerpc-64l.c"
71 #include "features/rs6000/powerpc-altivec64l.c"
72 #include "features/rs6000/powerpc-cell64l.c"
73 #include "features/rs6000/powerpc-vsx64l.c"
74 #include "features/rs6000/powerpc-isa205-64l.c"
75 #include "features/rs6000/powerpc-isa205-altivec64l.c"
76 #include "features/rs6000/powerpc-isa205-vsx64l.c"
77 #include "features/rs6000/powerpc-e500l.c"
79 /* Shared library operations for PowerPC-Linux. */
80 static struct target_so_ops powerpc_so_ops;
82 /* The syscall's XML filename for PPC and PPC64. */
83 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
84 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
86 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
87 in much the same fashion as memory_remove_breakpoint in mem-break.c,
88 but is careful not to write back the previous contents if the code
89 in question has changed in between inserting the breakpoint and
92 Here is the problem that we're trying to solve...
94 Once upon a time, before introducing this function to remove
95 breakpoints from the inferior, setting a breakpoint on a shared
96 library function prior to running the program would not work
97 properly. In order to understand the problem, it is first
98 necessary to understand a little bit about dynamic linking on
101 A call to a shared library function is accomplished via a bl
102 (branch-and-link) instruction whose branch target is an entry
103 in the procedure linkage table (PLT). The PLT in the object
104 file is uninitialized. To gdb, prior to running the program, the
105 entries in the PLT are all zeros.
107 Once the program starts running, the shared libraries are loaded
108 and the procedure linkage table is initialized, but the entries in
109 the table are not (necessarily) resolved. Once a function is
110 actually called, the code in the PLT is hit and the function is
111 resolved. In order to better illustrate this, an example is in
112 order; the following example is from the gdb testsuite.
114 We start the program shmain.
116 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
119 We place two breakpoints, one on shr1 and the other on main.
122 Breakpoint 1 at 0x100409d4
124 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
126 Examine the instruction (and the immediatly following instruction)
127 upon which the breakpoint was placed. Note that the PLT entry
128 for shr1 contains zeros.
130 (gdb) x/2i 0x100409d4
131 0x100409d4 <shr1>: .long 0x0
132 0x100409d8 <shr1+4>: .long 0x0
137 Starting program: gdb.base/shmain
138 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
140 Breakpoint 2, main ()
141 at gdb.base/shmain.c:44
144 Examine the PLT again. Note that the loading of the shared
145 library has initialized the PLT to code which loads a constant
146 (which I think is an index into the GOT) into r11 and then
147 branchs a short distance to the code which actually does the
150 (gdb) x/2i 0x100409d4
151 0x100409d4 <shr1>: li r11,4
152 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
156 Breakpoint 1, shr1 (x=1)
157 at gdb.base/shr1.c:19
160 Now we've hit the breakpoint at shr1. (The breakpoint was
161 reset from the PLT entry to the actual shr1 function after the
162 shared library was loaded.) Note that the PLT entry has been
163 resolved to contain a branch that takes us directly to shr1.
164 (The real one, not the PLT entry.)
166 (gdb) x/2i 0x100409d4
167 0x100409d4 <shr1>: b 0xffaf76c <shr1>
168 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
170 The thing to note here is that the PLT entry for shr1 has been
173 Now the problem should be obvious. GDB places a breakpoint (a
174 trap instruction) on the zero value of the PLT entry for shr1.
175 Later on, after the shared library had been loaded and the PLT
176 initialized, GDB gets a signal indicating this fact and attempts
177 (as it always does when it stops) to remove all the breakpoints.
179 The breakpoint removal was causing the former contents (a zero
180 word) to be written back to the now initialized PLT entry thus
181 destroying a portion of the initialization that had occurred only a
182 short time ago. When execution continued, the zero word would be
183 executed as an instruction an illegal instruction trap was
184 generated instead. (0 is not a legal instruction.)
186 The fix for this problem was fairly straightforward. The function
187 memory_remove_breakpoint from mem-break.c was copied to this file,
188 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
189 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
192 The differences between ppc_linux_memory_remove_breakpoint () and
193 memory_remove_breakpoint () are minor. All that the former does
194 that the latter does not is check to make sure that the breakpoint
195 location actually contains a breakpoint (trap instruction) prior
196 to attempting to write back the old contents. If it does contain
197 a trap instruction, we allow the old contents to be written back.
198 Otherwise, we silently do nothing.
200 The big question is whether memory_remove_breakpoint () should be
201 changed to have the same functionality. The downside is that more
202 traffic is generated for remote targets since we'll have an extra
203 fetch of a memory word each time a breakpoint is removed.
205 For the time being, we'll leave this self-modifying-code-friendly
206 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
207 else in the event that some other platform has similar needs with
208 regard to removing breakpoints in some potentially self modifying
211 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
212 struct bp_target_info *bp_tgt)
214 CORE_ADDR addr = bp_tgt->placed_address;
215 const unsigned char *bp;
218 gdb_byte old_contents[BREAKPOINT_MAX];
219 struct cleanup *cleanup;
221 /* Determine appropriate breakpoint contents and size for this address. */
222 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
224 error (_("Software breakpoints not implemented for this target."));
226 /* Make sure we see the memory breakpoints. */
227 cleanup = make_show_memory_breakpoints_cleanup (1);
228 val = target_read_memory (addr, old_contents, bplen);
230 /* If our breakpoint is no longer at the address, this means that the
231 program modified the code on us, so it is wrong to put back the
233 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
234 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
236 do_cleanups (cleanup);
240 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
241 than the 32 bit SYSV R4 ABI structure return convention - all
242 structures, no matter their size, are put in memory. Vectors,
243 which were added later, do get returned in a register though. */
245 static enum return_value_convention
246 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
247 struct type *valtype, struct regcache *regcache,
248 gdb_byte *readbuf, const gdb_byte *writebuf)
250 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
251 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
252 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
253 && TYPE_VECTOR (valtype)))
254 return RETURN_VALUE_STRUCT_CONVENTION;
256 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
260 static struct core_regset_section ppc_linux_vsx_regset_sections[] =
262 { ".reg", 48 * 4, "general-purpose" },
263 { ".reg2", 264, "floating-point" },
264 { ".reg-ppc-vmx", 544, "ppc Altivec" },
265 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
269 static struct core_regset_section ppc_linux_vmx_regset_sections[] =
271 { ".reg", 48 * 4, "general-purpose" },
272 { ".reg2", 264, "floating-point" },
273 { ".reg-ppc-vmx", 544, "ppc Altivec" },
277 static struct core_regset_section ppc_linux_fp_regset_sections[] =
279 { ".reg", 48 * 4, "general-purpose" },
280 { ".reg2", 264, "floating-point" },
284 static struct core_regset_section ppc64_linux_vsx_regset_sections[] =
286 { ".reg", 48 * 8, "general-purpose" },
287 { ".reg2", 264, "floating-point" },
288 { ".reg-ppc-vmx", 544, "ppc Altivec" },
289 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
293 static struct core_regset_section ppc64_linux_vmx_regset_sections[] =
295 { ".reg", 48 * 8, "general-purpose" },
296 { ".reg2", 264, "floating-point" },
297 { ".reg-ppc-vmx", 544, "ppc Altivec" },
301 static struct core_regset_section ppc64_linux_fp_regset_sections[] =
303 { ".reg", 48 * 8, "general-purpose" },
304 { ".reg2", 264, "floating-point" },
308 /* PLT stub in executable. */
309 static struct ppc_insn_pattern powerpc32_plt_stub[] =
311 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
312 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
313 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
314 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
318 /* PLT stub in shared library. */
319 static struct ppc_insn_pattern powerpc32_plt_stub_so[] =
321 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
322 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
323 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
324 { 0xffffffff, 0x60000000, 0 }, /* nop */
327 #define POWERPC32_PLT_STUB_LEN ARRAY_SIZE (powerpc32_plt_stub)
329 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
330 section. For secure PLT, stub is in .text and we need to check
331 instruction patterns. */
334 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
336 struct bound_minimal_symbol sym;
338 /* Check whether PC is in the dynamic linker. This also checks
339 whether it is in the .plt section, used by non-PIC executables. */
340 if (svr4_in_dynsym_resolve_code (pc))
343 /* Check if we are in the resolver. */
344 sym = lookup_minimal_symbol_by_pc (pc);
345 if (sym.minsym != NULL
346 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
347 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
348 "__glink_PLTresolve") == 0))
354 /* Follow PLT stub to actual routine. */
357 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
359 unsigned int insnbuf[POWERPC32_PLT_STUB_LEN];
360 struct gdbarch *gdbarch = get_frame_arch (frame);
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
363 CORE_ADDR target = 0;
365 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
370 Branch target is in r11. */
372 target = (ppc_insn_d_field (insnbuf[0]) << 16)
373 | ppc_insn_d_field (insnbuf[1]);
374 target = read_memory_unsigned_integer (target, 4, byte_order);
377 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so, insnbuf))
381 Branch target is in r11. */
383 target = get_frame_register_unsigned (frame, tdep->ppc_gp0_regnum + 30)
384 + ppc_insn_d_field (insnbuf[0]);
385 target = read_memory_unsigned_integer (target, 4, byte_order);
391 /* Wrappers to handle Linux-only registers. */
394 ppc_linux_supply_gregset (const struct regset *regset,
395 struct regcache *regcache,
396 int regnum, const void *gregs, size_t len)
398 const struct ppc_reg_offsets *offsets = regset->descr;
400 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
402 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
404 /* "orig_r3" is stored 2 slots after "pc". */
405 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
406 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
407 offsets->pc_offset + 2 * offsets->gpr_size,
410 /* "trap" is stored 8 slots after "pc". */
411 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
412 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
413 offsets->pc_offset + 8 * offsets->gpr_size,
419 ppc_linux_collect_gregset (const struct regset *regset,
420 const struct regcache *regcache,
421 int regnum, void *gregs, size_t len)
423 const struct ppc_reg_offsets *offsets = regset->descr;
425 /* Clear areas in the linux gregset not written elsewhere. */
427 memset (gregs, 0, len);
429 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
431 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
433 /* "orig_r3" is stored 2 slots after "pc". */
434 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
435 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
436 offsets->pc_offset + 2 * offsets->gpr_size,
439 /* "trap" is stored 8 slots after "pc". */
440 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
441 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
442 offsets->pc_offset + 8 * offsets->gpr_size,
447 /* Regset descriptions. */
448 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
450 /* General-purpose registers. */
451 /* .r0_offset = */ 0,
454 /* .pc_offset = */ 128,
455 /* .ps_offset = */ 132,
456 /* .cr_offset = */ 152,
457 /* .lr_offset = */ 144,
458 /* .ctr_offset = */ 140,
459 /* .xer_offset = */ 148,
460 /* .mq_offset = */ 156,
462 /* Floating-point registers. */
463 /* .f0_offset = */ 0,
464 /* .fpscr_offset = */ 256,
465 /* .fpscr_size = */ 8,
467 /* AltiVec registers. */
468 /* .vr0_offset = */ 0,
469 /* .vscr_offset = */ 512 + 12,
470 /* .vrsave_offset = */ 528
473 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
475 /* General-purpose registers. */
476 /* .r0_offset = */ 0,
479 /* .pc_offset = */ 256,
480 /* .ps_offset = */ 264,
481 /* .cr_offset = */ 304,
482 /* .lr_offset = */ 288,
483 /* .ctr_offset = */ 280,
484 /* .xer_offset = */ 296,
485 /* .mq_offset = */ 312,
487 /* Floating-point registers. */
488 /* .f0_offset = */ 0,
489 /* .fpscr_offset = */ 256,
490 /* .fpscr_size = */ 8,
492 /* AltiVec registers. */
493 /* .vr0_offset = */ 0,
494 /* .vscr_offset = */ 512 + 12,
495 /* .vrsave_offset = */ 528
498 static const struct regset ppc32_linux_gregset = {
499 &ppc32_linux_reg_offsets,
500 ppc_linux_supply_gregset,
501 ppc_linux_collect_gregset
504 static const struct regset ppc64_linux_gregset = {
505 &ppc64_linux_reg_offsets,
506 ppc_linux_supply_gregset,
507 ppc_linux_collect_gregset
510 static const struct regset ppc32_linux_fpregset = {
511 &ppc32_linux_reg_offsets,
516 static const struct regset ppc32_linux_vrregset = {
517 &ppc32_linux_reg_offsets,
522 static const struct regset ppc32_linux_vsxregset = {
523 &ppc32_linux_reg_offsets,
524 ppc_supply_vsxregset,
525 ppc_collect_vsxregset
528 const struct regset *
529 ppc_linux_gregset (int wordsize)
531 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
534 const struct regset *
535 ppc_linux_fpregset (void)
537 return &ppc32_linux_fpregset;
540 static const struct regset *
541 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
542 const char *sect_name, size_t sect_size)
544 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
545 if (strcmp (sect_name, ".reg") == 0)
547 if (tdep->wordsize == 4)
548 return &ppc32_linux_gregset;
550 return &ppc64_linux_gregset;
552 if (strcmp (sect_name, ".reg2") == 0)
553 return &ppc32_linux_fpregset;
554 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
555 return &ppc32_linux_vrregset;
556 if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
557 return &ppc32_linux_vsxregset;
562 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
563 struct trad_frame_cache *this_cache,
564 CORE_ADDR func, LONGEST offset,
572 struct gdbarch *gdbarch = get_frame_arch (this_frame);
573 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
576 base = get_frame_register_unsigned (this_frame,
577 gdbarch_sp_regnum (gdbarch));
578 if (bias > 0 && get_frame_pc (this_frame) != func)
579 /* See below, some signal trampolines increment the stack as their
580 first instruction, need to compensate for that. */
583 /* Find the address of the register buffer pointer. */
584 regs = base + offset;
585 /* Use that to find the address of the corresponding register
587 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
588 fpregs = gpregs + 48 * tdep->wordsize;
590 /* General purpose. */
591 for (i = 0; i < 32; i++)
593 int regnum = i + tdep->ppc_gp0_regnum;
594 trad_frame_set_reg_addr (this_cache,
595 regnum, gpregs + i * tdep->wordsize);
597 trad_frame_set_reg_addr (this_cache,
598 gdbarch_pc_regnum (gdbarch),
599 gpregs + 32 * tdep->wordsize);
600 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
601 gpregs + 35 * tdep->wordsize);
602 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
603 gpregs + 36 * tdep->wordsize);
604 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
605 gpregs + 37 * tdep->wordsize);
606 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
607 gpregs + 38 * tdep->wordsize);
609 if (ppc_linux_trap_reg_p (gdbarch))
611 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
612 gpregs + 34 * tdep->wordsize);
613 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
614 gpregs + 40 * tdep->wordsize);
617 if (ppc_floating_point_unit_p (gdbarch))
619 /* Floating point registers. */
620 for (i = 0; i < 32; i++)
622 int regnum = i + gdbarch_fp0_regnum (gdbarch);
623 trad_frame_set_reg_addr (this_cache, regnum,
624 fpregs + i * tdep->wordsize);
626 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
627 fpregs + 32 * tdep->wordsize);
629 trad_frame_set_id (this_cache, frame_id_build (base, func));
633 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
634 struct frame_info *this_frame,
635 struct trad_frame_cache *this_cache,
638 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
639 0xd0 /* Offset to ucontext_t. */
640 + 0x30 /* Offset to .reg. */,
645 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
646 struct frame_info *this_frame,
647 struct trad_frame_cache *this_cache,
650 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
651 0x80 /* Offset to ucontext_t. */
652 + 0xe0 /* Offset to .reg. */,
657 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
658 struct frame_info *this_frame,
659 struct trad_frame_cache *this_cache,
662 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
663 0x40 /* Offset to ucontext_t. */
664 + 0x1c /* Offset to .reg. */,
669 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
670 struct frame_info *this_frame,
671 struct trad_frame_cache *this_cache,
674 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
675 0x80 /* Offset to struct sigcontext. */
676 + 0x38 /* Offset to .reg. */,
680 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
684 { 0x380000ac, -1 }, /* li r0, 172 */
685 { 0x44000002, -1 }, /* sc */
686 { TRAMP_SENTINEL_INSN },
688 ppc32_linux_sigaction_cache_init
690 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
694 { 0x38210080, -1 }, /* addi r1,r1,128 */
695 { 0x380000ac, -1 }, /* li r0, 172 */
696 { 0x44000002, -1 }, /* sc */
697 { TRAMP_SENTINEL_INSN },
699 ppc64_linux_sigaction_cache_init
701 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
705 { 0x38000077, -1 }, /* li r0,119 */
706 { 0x44000002, -1 }, /* sc */
707 { TRAMP_SENTINEL_INSN },
709 ppc32_linux_sighandler_cache_init
711 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
715 { 0x38210080, -1 }, /* addi r1,r1,128 */
716 { 0x38000077, -1 }, /* li r0,119 */
717 { 0x44000002, -1 }, /* sc */
718 { TRAMP_SENTINEL_INSN },
720 ppc64_linux_sighandler_cache_init
724 /* Address to use for displaced stepping. When debugging a stand-alone
725 SPU executable, entry_point_address () will point to an SPU local-store
726 address and is thus not usable as displaced stepping location. We use
727 the auxiliary vector to determine the PowerPC-side entry point address
730 static CORE_ADDR ppc_linux_entry_point_addr = 0;
733 ppc_linux_inferior_created (struct target_ops *target, int from_tty)
735 ppc_linux_entry_point_addr = 0;
739 ppc_linux_displaced_step_location (struct gdbarch *gdbarch)
741 if (ppc_linux_entry_point_addr == 0)
745 /* Determine entry point from target auxiliary vector. */
746 if (target_auxv_search (¤t_target, AT_ENTRY, &addr) <= 0)
747 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
749 /* Make certain that the address points at real code, and not a
750 function descriptor. */
751 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
754 /* Inferior calls also use the entry point as a breakpoint location.
755 We don't want displaced stepping to interfere with those
756 breakpoints, so leave space. */
757 ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE;
760 return ppc_linux_entry_point_addr;
764 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
766 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
768 /* If we do not have a target description with registers, then
769 the special registers will not be included in the register set. */
770 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
773 /* If we do, then it is safe to check the size. */
774 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
775 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
778 /* Return the current system call's number present in the
779 r0 register. When the function fails, it returns -1. */
781 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
784 struct regcache *regcache = get_thread_regcache (ptid);
785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
786 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
787 struct cleanup *cleanbuf;
788 /* The content of a register */
793 /* Make sure we're in a 32- or 64-bit machine */
794 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
796 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
798 cleanbuf = make_cleanup (xfree, buf);
800 /* Getting the system call number from the register.
801 When dealing with PowerPC architecture, this information
802 is stored at 0th register. */
803 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
805 ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
806 do_cleanups (cleanbuf);
812 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
814 struct gdbarch *gdbarch = get_regcache_arch (regcache);
816 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
818 /* Set special TRAP register to -1 to prevent the kernel from
819 messing with the PC we just installed, if we happen to be
820 within an interrupted system call that the kernel wants to
823 Note that after we return from the dummy call, the TRAP and
824 ORIG_R3 registers will be automatically restored, and the
825 kernel continues to restart the system call at this point. */
826 if (ppc_linux_trap_reg_p (gdbarch))
827 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
831 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
833 return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0;
836 static const struct target_desc *
837 ppc_linux_core_read_description (struct gdbarch *gdbarch,
838 struct target_ops *target,
841 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
842 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
843 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
844 asection *section = bfd_get_section_by_name (abfd, ".reg");
848 switch (bfd_section_size (abfd, section))
852 return tdesc_powerpc_cell32l;
854 return tdesc_powerpc_vsx32l;
856 return tdesc_powerpc_altivec32l;
858 return tdesc_powerpc_32l;
862 return tdesc_powerpc_cell64l;
864 return tdesc_powerpc_vsx64l;
866 return tdesc_powerpc_altivec64l;
868 return tdesc_powerpc_64l;
876 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
877 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
880 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
882 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
884 /* If the symbol is marked as having a local entry point, set a target
885 flag in the msymbol. We currently only support local entry point
886 offsets of 8 bytes, which is the only entry point offset ever used
887 by current compilers. If/when other offsets are ever used, we will
888 have to use additional target flag bits to store them. */
889 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
894 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
899 /* Implementation of `gdbarch_skip_entrypoint', as defined in
900 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
903 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
905 struct bound_minimal_symbol fun;
906 int local_entry_offset = 0;
908 fun = lookup_minimal_symbol_by_pc (pc);
909 if (fun.minsym == NULL)
912 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
913 offset values are encoded. */
914 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
915 local_entry_offset = 8;
917 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
918 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
919 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
924 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
928 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
930 return (*s == 'i' /* Literal number. */
931 || (isdigit (*s) && s[1] == '('
932 && isdigit (s[2])) /* Displacement. */
933 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
934 || isdigit (*s)); /* Register value. */
937 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
941 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
942 struct stap_parse_info *p)
944 if (isdigit (*p->arg))
946 /* This temporary pointer is needed because we have to do a lookahead.
947 We could be dealing with a register displacement, and in such case
948 we would not need to do anything. */
949 const char *s = p->arg;
959 /* It is a register displacement indeed. Returning 0 means we are
960 deferring the treatment of this case to the generic parser. */
965 regname = alloca (len + 2);
968 strncpy (regname + 1, p->arg, len);
972 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
973 error (_("Invalid register name `%s' on expression `%s'."),
974 regname, p->saved_arg);
976 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
979 write_exp_string (&p->pstate, str);
980 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
986 /* All the other tokens should be handled correctly by the generic
994 /* Cell/B.E. active SPE context tracking support. */
996 static struct objfile *spe_context_objfile = NULL;
997 static CORE_ADDR spe_context_lm_addr = 0;
998 static CORE_ADDR spe_context_offset = 0;
1000 static ptid_t spe_context_cache_ptid;
1001 static CORE_ADDR spe_context_cache_address;
1003 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1004 to track whether we've loaded a version of libspe2 (as static or dynamic
1005 library) that provides the __spe_current_active_context variable. */
1007 ppc_linux_spe_context_lookup (struct objfile *objfile)
1009 struct bound_minimal_symbol sym;
1013 spe_context_objfile = NULL;
1014 spe_context_lm_addr = 0;
1015 spe_context_offset = 0;
1016 spe_context_cache_ptid = minus_one_ptid;
1017 spe_context_cache_address = 0;
1021 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1024 spe_context_objfile = objfile;
1025 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1026 spe_context_offset = BMSYMBOL_VALUE_ADDRESS (sym);
1027 spe_context_cache_ptid = minus_one_ptid;
1028 spe_context_cache_address = 0;
1034 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1036 struct objfile *objfile;
1038 ppc_linux_spe_context_lookup (NULL);
1039 ALL_OBJFILES (objfile)
1040 ppc_linux_spe_context_lookup (objfile);
1044 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1046 if (strstr (so->so_original_name, "/libspe") != NULL)
1048 solib_read_symbols (so, 0);
1049 ppc_linux_spe_context_lookup (so->objfile);
1054 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1056 if (so->objfile == spe_context_objfile)
1057 ppc_linux_spe_context_lookup (NULL);
1060 /* Retrieve contents of the N'th element in the current thread's
1061 linked SPE context list into ID and NPC. Return the address of
1062 said context element, or 0 if not found. */
1064 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1065 int n, int *id, unsigned int *npc)
1067 CORE_ADDR spe_context = 0;
1071 /* Quick exit if we have not found __spe_current_active_context. */
1072 if (!spe_context_objfile)
1075 /* Look up cached address of thread-local variable. */
1076 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1078 struct target_ops *target = ¤t_target;
1079 volatile struct gdb_exception ex;
1081 TRY_CATCH (ex, RETURN_MASK_ERROR)
1083 /* We do not call target_translate_tls_address here, because
1084 svr4_fetch_objfile_link_map may invalidate the frame chain,
1085 which must not do while inside a frame sniffer.
1087 Instead, we have cached the lm_addr value, and use that to
1088 directly call the target's to_get_thread_local_address. */
1089 spe_context_cache_address
1090 = target->to_get_thread_local_address (target, inferior_ptid,
1091 spe_context_lm_addr,
1092 spe_context_offset);
1093 spe_context_cache_ptid = inferior_ptid;
1100 /* Read variable value. */
1101 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1102 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1104 /* Cyle through to N'th linked list element. */
1105 for (i = 0; i < n && spe_context; i++)
1106 if (target_read_memory (spe_context + align_up (12, wordsize),
1107 buf, wordsize) == 0)
1108 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1112 /* Read current context. */
1114 && target_read_memory (spe_context, buf, 12) != 0)
1117 /* Extract data elements. */
1121 *id = extract_signed_integer (buf, 4, byte_order);
1123 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1130 /* Cell/B.E. cross-architecture unwinder support. */
1132 struct ppu2spu_cache
1134 struct frame_id frame_id;
1135 struct regcache *regcache;
1138 static struct gdbarch *
1139 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1141 struct ppu2spu_cache *cache = *this_cache;
1142 return get_regcache_arch (cache->regcache);
1146 ppu2spu_this_id (struct frame_info *this_frame,
1147 void **this_cache, struct frame_id *this_id)
1149 struct ppu2spu_cache *cache = *this_cache;
1150 *this_id = cache->frame_id;
1153 static struct value *
1154 ppu2spu_prev_register (struct frame_info *this_frame,
1155 void **this_cache, int regnum)
1157 struct ppu2spu_cache *cache = *this_cache;
1158 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1161 buf = alloca (register_size (gdbarch, regnum));
1163 if (regnum < gdbarch_num_regs (gdbarch))
1164 regcache_raw_read (cache->regcache, regnum, buf);
1166 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf);
1168 return frame_unwind_got_bytes (this_frame, regnum, buf);
1173 struct gdbarch *gdbarch;
1176 gdb_byte gprs[128*16];
1180 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1182 struct ppu2spu_data *data = src;
1183 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1185 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1186 memcpy (buf, data->gprs + 16*regnum, 16);
1187 else if (regnum == SPU_ID_REGNUM)
1188 store_unsigned_integer (buf, 4, byte_order, data->id);
1189 else if (regnum == SPU_PC_REGNUM)
1190 store_unsigned_integer (buf, 4, byte_order, data->npc);
1192 return REG_UNAVAILABLE;
1198 ppu2spu_sniffer (const struct frame_unwind *self,
1199 struct frame_info *this_frame, void **this_prologue_cache)
1201 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1204 struct ppu2spu_data data;
1205 struct frame_info *fi;
1206 CORE_ADDR base, func, backchain, spe_context;
1210 /* Count the number of SPU contexts already in the frame chain. */
1211 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1212 if (get_frame_type (fi) == ARCH_FRAME
1213 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1216 base = get_frame_sp (this_frame);
1217 func = get_frame_pc (this_frame);
1218 if (target_read_memory (base, buf, tdep->wordsize))
1220 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1222 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1223 n, &data.id, &data.npc);
1224 if (spe_context && base <= spe_context && spe_context < backchain)
1228 /* Find gdbarch for SPU. */
1229 struct gdbarch_info info;
1230 gdbarch_info_init (&info);
1231 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1232 info.byte_order = BFD_ENDIAN_BIG;
1233 info.osabi = GDB_OSABI_LINUX;
1234 info.tdep_info = (void *) &data.id;
1235 data.gdbarch = gdbarch_find_by_info (info);
1239 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1240 if (target_read (¤t_target, TARGET_OBJECT_SPU, annex,
1241 data.gprs, 0, sizeof data.gprs)
1242 == sizeof data.gprs)
1244 struct ppu2spu_cache *cache
1245 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1247 struct address_space *aspace = get_frame_address_space (this_frame);
1248 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
1249 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1250 regcache_save (regcache, ppu2spu_unwind_register, &data);
1251 discard_cleanups (cleanups);
1253 cache->frame_id = frame_id_build (base, func);
1254 cache->regcache = regcache;
1255 *this_prologue_cache = cache;
1264 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1266 struct ppu2spu_cache *cache = this_cache;
1267 regcache_xfree (cache->regcache);
1270 static const struct frame_unwind ppu2spu_unwind = {
1272 default_frame_unwind_stop_reason,
1274 ppu2spu_prev_register,
1277 ppu2spu_dealloc_cache,
1283 ppc_linux_init_abi (struct gdbarch_info info,
1284 struct gdbarch *gdbarch)
1286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1287 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1288 static const char *const stap_integer_prefixes[] = { "i", NULL };
1289 static const char *const stap_register_indirection_prefixes[] = { "(",
1291 static const char *const stap_register_indirection_suffixes[] = { ")",
1294 linux_init_abi (info, gdbarch);
1296 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1297 128-bit, they are IBM long double, not IEEE quad long double as
1298 in the System V ABI PowerPC Processor Supplement. We can safely
1299 let them default to 128-bit, since the debug info will give the
1300 size of type actually used in each case. */
1301 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1302 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1304 /* Handle inferior calls during interrupted system calls. */
1305 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1307 /* Get the syscall number from the arch's register. */
1308 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1310 /* SystemTap functions. */
1311 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1312 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1313 stap_register_indirection_prefixes);
1314 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1315 stap_register_indirection_suffixes);
1316 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1317 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1318 set_gdbarch_stap_parse_special_token (gdbarch,
1319 ppc_stap_parse_special_token);
1321 if (tdep->wordsize == 4)
1323 /* Until November 2001, gcc did not comply with the 32 bit SysV
1324 R4 ABI requirement that structures less than or equal to 8
1325 bytes should be returned in registers. Instead GCC was using
1326 the AIX/PowerOpen ABI - everything returned in memory
1327 (well ignoring vectors that is). When this was corrected, it
1328 wasn't fixed for GNU/Linux native platform. Use the
1329 PowerOpen struct convention. */
1330 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1332 set_gdbarch_memory_remove_breakpoint (gdbarch,
1333 ppc_linux_memory_remove_breakpoint);
1335 /* Shared library handling. */
1336 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1337 set_solib_svr4_fetch_link_map_offsets
1338 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1340 /* Setting the correct XML syscall filename. */
1341 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC);
1344 tramp_frame_prepend_unwinder (gdbarch,
1345 &ppc32_linux_sigaction_tramp_frame);
1346 tramp_frame_prepend_unwinder (gdbarch,
1347 &ppc32_linux_sighandler_tramp_frame);
1349 /* BFD target for core files. */
1350 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1351 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1353 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1355 /* Supported register sections. */
1356 if (tdesc_find_feature (info.target_desc,
1357 "org.gnu.gdb.power.vsx"))
1358 set_gdbarch_core_regset_sections (gdbarch,
1359 ppc_linux_vsx_regset_sections);
1360 else if (tdesc_find_feature (info.target_desc,
1361 "org.gnu.gdb.power.altivec"))
1362 set_gdbarch_core_regset_sections (gdbarch,
1363 ppc_linux_vmx_regset_sections);
1365 set_gdbarch_core_regset_sections (gdbarch,
1366 ppc_linux_fp_regset_sections);
1368 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1370 powerpc_so_ops = svr4_so_ops;
1371 /* Override dynamic resolve function. */
1372 powerpc_so_ops.in_dynsym_resolve_code =
1373 powerpc_linux_in_dynsym_resolve_code;
1375 set_solib_ops (gdbarch, &powerpc_so_ops);
1377 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1380 if (tdep->wordsize == 8)
1382 if (tdep->elf_abi == POWERPC_ELF_V1)
1384 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1385 function descriptors). */
1386 set_gdbarch_convert_from_func_ptr_addr
1387 (gdbarch, ppc64_convert_from_func_ptr_addr);
1389 set_gdbarch_elf_make_msymbol_special
1390 (gdbarch, ppc64_elf_make_msymbol_special);
1394 set_gdbarch_elf_make_msymbol_special
1395 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1397 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1400 /* Shared library handling. */
1401 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1402 set_solib_svr4_fetch_link_map_offsets
1403 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1405 /* Setting the correct XML syscall filename. */
1406 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64);
1409 tramp_frame_prepend_unwinder (gdbarch,
1410 &ppc64_linux_sigaction_tramp_frame);
1411 tramp_frame_prepend_unwinder (gdbarch,
1412 &ppc64_linux_sighandler_tramp_frame);
1414 /* BFD target for core files. */
1415 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1416 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1418 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1420 /* Supported register sections. */
1421 if (tdesc_find_feature (info.target_desc,
1422 "org.gnu.gdb.power.vsx"))
1423 set_gdbarch_core_regset_sections (gdbarch,
1424 ppc64_linux_vsx_regset_sections);
1425 else if (tdesc_find_feature (info.target_desc,
1426 "org.gnu.gdb.power.altivec"))
1427 set_gdbarch_core_regset_sections (gdbarch,
1428 ppc64_linux_vmx_regset_sections);
1430 set_gdbarch_core_regset_sections (gdbarch,
1431 ppc64_linux_fp_regset_sections);
1434 /* PPC32 uses a different prpsinfo32 compared to most other Linux
1436 if (tdep->wordsize == 4)
1437 set_gdbarch_elfcore_write_linux_prpsinfo (gdbarch,
1438 elfcore_write_ppc_linux_prpsinfo32);
1440 set_gdbarch_regset_from_core_section (gdbarch,
1441 ppc_linux_regset_from_core_section);
1442 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1444 /* Enable TLS support. */
1445 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1446 svr4_fetch_objfile_link_map);
1450 const struct tdesc_feature *feature;
1452 /* If we have target-described registers, then we can safely
1453 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1454 (whether they are described or not). */
1455 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1456 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1458 /* If they are present, then assign them to the reserved number. */
1459 feature = tdesc_find_feature (info.target_desc,
1460 "org.gnu.gdb.power.linux");
1461 if (feature != NULL)
1463 tdesc_numbered_register (feature, tdesc_data,
1464 PPC_ORIG_R3_REGNUM, "orig_r3");
1465 tdesc_numbered_register (feature, tdesc_data,
1466 PPC_TRAP_REGNUM, "trap");
1470 /* Enable Cell/B.E. if supported by the target. */
1471 if (tdesc_compatible_p (info.target_desc,
1472 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1474 /* Cell/B.E. multi-architecture support. */
1475 set_spu_solib_ops (gdbarch);
1477 /* Cell/B.E. cross-architecture unwinder support. */
1478 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1480 /* The default displaced_step_at_entry_point doesn't work for
1481 SPU stand-alone executables. */
1482 set_gdbarch_displaced_step_location (gdbarch,
1483 ppc_linux_displaced_step_location);
1486 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1489 /* Provide a prototype to silence -Wmissing-prototypes. */
1490 extern initialize_file_ftype _initialize_ppc_linux_tdep;
1493 _initialize_ppc_linux_tdep (void)
1495 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1496 64-bit PowerPC, and the older rs6k. */
1497 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1498 ppc_linux_init_abi);
1499 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1500 ppc_linux_init_abi);
1501 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1502 ppc_linux_init_abi);
1504 /* Attach to inferior_created observer. */
1505 observer_attach_inferior_created (ppc_linux_inferior_created);
1507 /* Attach to observers to track __spe_current_active_context. */
1508 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1509 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1510 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1512 /* Initialize the Linux target descriptions. */
1513 initialize_tdesc_powerpc_32l ();
1514 initialize_tdesc_powerpc_altivec32l ();
1515 initialize_tdesc_powerpc_cell32l ();
1516 initialize_tdesc_powerpc_vsx32l ();
1517 initialize_tdesc_powerpc_isa205_32l ();
1518 initialize_tdesc_powerpc_isa205_altivec32l ();
1519 initialize_tdesc_powerpc_isa205_vsx32l ();
1520 initialize_tdesc_powerpc_64l ();
1521 initialize_tdesc_powerpc_altivec64l ();
1522 initialize_tdesc_powerpc_cell64l ();
1523 initialize_tdesc_powerpc_vsx64l ();
1524 initialize_tdesc_powerpc_isa205_64l ();
1525 initialize_tdesc_powerpc_isa205_altivec64l ();
1526 initialize_tdesc_powerpc_isa205_vsx64l ();
1527 initialize_tdesc_powerpc_e500l ();