1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
33 #include "solib-svr4.h"
34 #include "solib-spu.h"
38 #include "ppc64-tdep.h"
39 #include "ppc-linux-tdep.h"
40 #include "arch/ppc-linux-common.h"
41 #include "arch/ppc-linux-tdesc.h"
42 #include "glibc-tdep.h"
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "tramp-frame.h"
46 #include "observable.h"
48 #include "elf/common.h"
49 #include "elf/ppc64.h"
50 #include "arch-utils.h"
52 #include "xml-syscall.h"
53 #include "linux-tdep.h"
54 #include "linux-record.h"
55 #include "record-full.h"
58 #include "stap-probe.h"
61 #include "cli/cli-utils.h"
62 #include "parser-defs.h"
63 #include "user-regs.h"
67 #include "features/rs6000/powerpc-32l.c"
68 #include "features/rs6000/powerpc-altivec32l.c"
69 #include "features/rs6000/powerpc-cell32l.c"
70 #include "features/rs6000/powerpc-vsx32l.c"
71 #include "features/rs6000/powerpc-isa205-32l.c"
72 #include "features/rs6000/powerpc-isa205-altivec32l.c"
73 #include "features/rs6000/powerpc-isa205-vsx32l.c"
74 #include "features/rs6000/powerpc-64l.c"
75 #include "features/rs6000/powerpc-altivec64l.c"
76 #include "features/rs6000/powerpc-cell64l.c"
77 #include "features/rs6000/powerpc-vsx64l.c"
78 #include "features/rs6000/powerpc-isa205-64l.c"
79 #include "features/rs6000/powerpc-isa205-altivec64l.c"
80 #include "features/rs6000/powerpc-isa205-vsx64l.c"
81 #include "features/rs6000/powerpc-e500l.c"
83 /* Shared library operations for PowerPC-Linux. */
84 static struct target_so_ops powerpc_so_ops;
86 /* The syscall's XML filename for PPC and PPC64. */
87 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
88 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
90 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
91 in much the same fashion as memory_remove_breakpoint in mem-break.c,
92 but is careful not to write back the previous contents if the code
93 in question has changed in between inserting the breakpoint and
96 Here is the problem that we're trying to solve...
98 Once upon a time, before introducing this function to remove
99 breakpoints from the inferior, setting a breakpoint on a shared
100 library function prior to running the program would not work
101 properly. In order to understand the problem, it is first
102 necessary to understand a little bit about dynamic linking on
105 A call to a shared library function is accomplished via a bl
106 (branch-and-link) instruction whose branch target is an entry
107 in the procedure linkage table (PLT). The PLT in the object
108 file is uninitialized. To gdb, prior to running the program, the
109 entries in the PLT are all zeros.
111 Once the program starts running, the shared libraries are loaded
112 and the procedure linkage table is initialized, but the entries in
113 the table are not (necessarily) resolved. Once a function is
114 actually called, the code in the PLT is hit and the function is
115 resolved. In order to better illustrate this, an example is in
116 order; the following example is from the gdb testsuite.
118 We start the program shmain.
120 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
123 We place two breakpoints, one on shr1 and the other on main.
126 Breakpoint 1 at 0x100409d4
128 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
130 Examine the instruction (and the immediatly following instruction)
131 upon which the breakpoint was placed. Note that the PLT entry
132 for shr1 contains zeros.
134 (gdb) x/2i 0x100409d4
135 0x100409d4 <shr1>: .long 0x0
136 0x100409d8 <shr1+4>: .long 0x0
141 Starting program: gdb.base/shmain
142 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
144 Breakpoint 2, main ()
145 at gdb.base/shmain.c:44
148 Examine the PLT again. Note that the loading of the shared
149 library has initialized the PLT to code which loads a constant
150 (which I think is an index into the GOT) into r11 and then
151 branchs a short distance to the code which actually does the
154 (gdb) x/2i 0x100409d4
155 0x100409d4 <shr1>: li r11,4
156 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
160 Breakpoint 1, shr1 (x=1)
161 at gdb.base/shr1.c:19
164 Now we've hit the breakpoint at shr1. (The breakpoint was
165 reset from the PLT entry to the actual shr1 function after the
166 shared library was loaded.) Note that the PLT entry has been
167 resolved to contain a branch that takes us directly to shr1.
168 (The real one, not the PLT entry.)
170 (gdb) x/2i 0x100409d4
171 0x100409d4 <shr1>: b 0xffaf76c <shr1>
172 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
174 The thing to note here is that the PLT entry for shr1 has been
177 Now the problem should be obvious. GDB places a breakpoint (a
178 trap instruction) on the zero value of the PLT entry for shr1.
179 Later on, after the shared library had been loaded and the PLT
180 initialized, GDB gets a signal indicating this fact and attempts
181 (as it always does when it stops) to remove all the breakpoints.
183 The breakpoint removal was causing the former contents (a zero
184 word) to be written back to the now initialized PLT entry thus
185 destroying a portion of the initialization that had occurred only a
186 short time ago. When execution continued, the zero word would be
187 executed as an instruction an illegal instruction trap was
188 generated instead. (0 is not a legal instruction.)
190 The fix for this problem was fairly straightforward. The function
191 memory_remove_breakpoint from mem-break.c was copied to this file,
192 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
193 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
196 The differences between ppc_linux_memory_remove_breakpoint () and
197 memory_remove_breakpoint () are minor. All that the former does
198 that the latter does not is check to make sure that the breakpoint
199 location actually contains a breakpoint (trap instruction) prior
200 to attempting to write back the old contents. If it does contain
201 a trap instruction, we allow the old contents to be written back.
202 Otherwise, we silently do nothing.
204 The big question is whether memory_remove_breakpoint () should be
205 changed to have the same functionality. The downside is that more
206 traffic is generated for remote targets since we'll have an extra
207 fetch of a memory word each time a breakpoint is removed.
209 For the time being, we'll leave this self-modifying-code-friendly
210 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
211 else in the event that some other platform has similar needs with
212 regard to removing breakpoints in some potentially self modifying
215 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
216 struct bp_target_info *bp_tgt)
218 CORE_ADDR addr = bp_tgt->reqstd_address;
219 const unsigned char *bp;
222 gdb_byte old_contents[BREAKPOINT_MAX];
224 /* Determine appropriate breakpoint contents and size for this address. */
225 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
227 /* Make sure we see the memory breakpoints. */
228 scoped_restore restore_memory
229 = make_scoped_restore_show_memory_breakpoints (1);
230 val = target_read_memory (addr, old_contents, bplen);
232 /* If our breakpoint is no longer at the address, this means that the
233 program modified the code on us, so it is wrong to put back the
235 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
236 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
241 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
242 than the 32 bit SYSV R4 ABI structure return convention - all
243 structures, no matter their size, are put in memory. Vectors,
244 which were added later, do get returned in a register though. */
246 static enum return_value_convention
247 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
248 struct type *valtype, struct regcache *regcache,
249 gdb_byte *readbuf, const gdb_byte *writebuf)
251 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
252 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
253 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
254 && TYPE_VECTOR (valtype)))
255 return RETURN_VALUE_STRUCT_CONVENTION;
257 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
261 /* PLT stub in an executable. */
262 static const struct ppc_insn_pattern powerpc32_plt_stub[] =
264 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
265 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
266 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
267 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
271 /* PLT stubs in a shared library or PIE.
272 The first variant is used when the PLT entry is within +/-32k of
273 the GOT pointer (r30). */
274 static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
276 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
277 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
278 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
282 /* The second variant is used when the PLT entry is more than +/-32k
283 from the GOT pointer (r30). */
284 static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
286 { 0xffff0000, 0x3d7e0000, 0 }, /* addis r11, r30, xxxx */
287 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
288 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
289 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
293 /* The max number of insns we check using ppc_insns_match_pattern. */
294 #define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)
296 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
297 section. For secure PLT, stub is in .text and we need to check
298 instruction patterns. */
301 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
303 struct bound_minimal_symbol sym;
305 /* Check whether PC is in the dynamic linker. This also checks
306 whether it is in the .plt section, used by non-PIC executables. */
307 if (svr4_in_dynsym_resolve_code (pc))
310 /* Check if we are in the resolver. */
311 sym = lookup_minimal_symbol_by_pc (pc);
312 if (sym.minsym != NULL
313 && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
314 || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
315 "__glink_PLTresolve") == 0))
321 /* Follow PLT stub to actual routine.
323 When the execution direction is EXEC_REVERSE, scan backward to
324 check whether we are in the middle of a PLT stub. Currently,
325 we only look-behind at most 4 instructions (the max length of a PLT
329 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
331 unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
332 struct gdbarch *gdbarch = get_frame_arch (frame);
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335 CORE_ADDR target = 0;
339 /* When reverse-debugging, scan backward to check whether we are
340 in the middle of trampoline code. */
341 if (execution_direction == EXEC_REVERSE)
342 scan_limit = 4; /* At most 4 instructions. */
344 for (i = 0; i < scan_limit; i++)
346 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
348 /* Calculate PLT entry address from
350 lwz r11, xxxx(r11). */
351 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
352 + ppc_insn_d_field (insnbuf[1]));
354 else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
355 && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
358 /* Calculate PLT entry address from
359 lwz r11, xxxx(r30). */
360 target = (ppc_insn_d_field (insnbuf[0])
361 + get_frame_register_unsigned (frame,
362 tdep->ppc_gp0_regnum + 30));
364 else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
367 /* Calculate PLT entry address from
369 lwz r11, xxxx(r11). */
370 target = ((ppc_insn_d_field (insnbuf[0]) << 16)
371 + ppc_insn_d_field (insnbuf[1])
372 + get_frame_register_unsigned (frame,
373 tdep->ppc_gp0_regnum + 30));
377 /* Scan backward one more instruction if it doesn't match. */
382 target = read_memory_unsigned_integer (target, 4, byte_order);
389 /* Wrappers to handle Linux-only registers. */
392 ppc_linux_supply_gregset (const struct regset *regset,
393 struct regcache *regcache,
394 int regnum, const void *gregs, size_t len)
396 const struct ppc_reg_offsets *offsets
397 = (const struct ppc_reg_offsets *) regset->regmap;
399 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
401 if (ppc_linux_trap_reg_p (regcache->arch ()))
403 /* "orig_r3" is stored 2 slots after "pc". */
404 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
405 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
406 offsets->pc_offset + 2 * offsets->gpr_size,
409 /* "trap" is stored 8 slots after "pc". */
410 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
411 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
412 offsets->pc_offset + 8 * offsets->gpr_size,
418 ppc_linux_collect_gregset (const struct regset *regset,
419 const struct regcache *regcache,
420 int regnum, void *gregs, size_t len)
422 const struct ppc_reg_offsets *offsets
423 = (const struct ppc_reg_offsets *) regset->regmap;
425 /* Clear areas in the linux gregset not written elsewhere. */
427 memset (gregs, 0, len);
429 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
431 if (ppc_linux_trap_reg_p (regcache->arch ()))
433 /* "orig_r3" is stored 2 slots after "pc". */
434 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
435 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
436 offsets->pc_offset + 2 * offsets->gpr_size,
439 /* "trap" is stored 8 slots after "pc". */
440 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
441 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
442 offsets->pc_offset + 8 * offsets->gpr_size,
447 /* Regset descriptions. */
448 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
450 /* General-purpose registers. */
451 /* .r0_offset = */ 0,
454 /* .pc_offset = */ 128,
455 /* .ps_offset = */ 132,
456 /* .cr_offset = */ 152,
457 /* .lr_offset = */ 144,
458 /* .ctr_offset = */ 140,
459 /* .xer_offset = */ 148,
460 /* .mq_offset = */ 156,
462 /* Floating-point registers. */
463 /* .f0_offset = */ 0,
464 /* .fpscr_offset = */ 256,
465 /* .fpscr_size = */ 8,
467 /* AltiVec registers. */
468 /* .vr0_offset = */ 0,
469 /* .vscr_offset = */ 512 + 12,
470 /* .vrsave_offset = */ 528
473 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
475 /* General-purpose registers. */
476 /* .r0_offset = */ 0,
479 /* .pc_offset = */ 256,
480 /* .ps_offset = */ 264,
481 /* .cr_offset = */ 304,
482 /* .lr_offset = */ 288,
483 /* .ctr_offset = */ 280,
484 /* .xer_offset = */ 296,
485 /* .mq_offset = */ 312,
487 /* Floating-point registers. */
488 /* .f0_offset = */ 0,
489 /* .fpscr_offset = */ 256,
490 /* .fpscr_size = */ 8,
492 /* AltiVec registers. */
493 /* .vr0_offset = */ 0,
494 /* .vscr_offset = */ 512 + 12,
495 /* .vrsave_offset = */ 528
498 static const struct regset ppc32_linux_gregset = {
499 &ppc32_linux_reg_offsets,
500 ppc_linux_supply_gregset,
501 ppc_linux_collect_gregset
504 static const struct regset ppc64_linux_gregset = {
505 &ppc64_linux_reg_offsets,
506 ppc_linux_supply_gregset,
507 ppc_linux_collect_gregset
510 static const struct regset ppc32_linux_fpregset = {
511 &ppc32_linux_reg_offsets,
516 static const struct regset ppc32_linux_vrregset = {
517 &ppc32_linux_reg_offsets,
522 static const struct regset ppc32_linux_vsxregset = {
523 &ppc32_linux_reg_offsets,
524 ppc_supply_vsxregset,
525 ppc_collect_vsxregset
528 const struct regset *
529 ppc_linux_gregset (int wordsize)
531 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
534 const struct regset *
535 ppc_linux_fpregset (void)
537 return &ppc32_linux_fpregset;
540 /* Iterate over supported core file register note sections. */
543 ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
544 iterate_over_regset_sections_cb *cb,
546 const struct regcache *regcache)
548 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
549 int have_altivec = tdep->ppc_vr0_regnum != -1;
550 int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
552 if (tdep->wordsize == 4)
553 cb (".reg", 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
555 cb (".reg", 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
557 cb (".reg2", 264, &ppc32_linux_fpregset, NULL, cb_data);
560 cb (".reg-ppc-vmx", 544, &ppc32_linux_vrregset, "ppc Altivec", cb_data);
563 cb (".reg-ppc-vsx", 256, &ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
567 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
568 struct trad_frame_cache *this_cache,
569 CORE_ADDR func, LONGEST offset,
577 struct gdbarch *gdbarch = get_frame_arch (this_frame);
578 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
581 base = get_frame_register_unsigned (this_frame,
582 gdbarch_sp_regnum (gdbarch));
583 if (bias > 0 && get_frame_pc (this_frame) != func)
584 /* See below, some signal trampolines increment the stack as their
585 first instruction, need to compensate for that. */
588 /* Find the address of the register buffer pointer. */
589 regs = base + offset;
590 /* Use that to find the address of the corresponding register
592 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
593 fpregs = gpregs + 48 * tdep->wordsize;
595 /* General purpose. */
596 for (i = 0; i < 32; i++)
598 int regnum = i + tdep->ppc_gp0_regnum;
599 trad_frame_set_reg_addr (this_cache,
600 regnum, gpregs + i * tdep->wordsize);
602 trad_frame_set_reg_addr (this_cache,
603 gdbarch_pc_regnum (gdbarch),
604 gpregs + 32 * tdep->wordsize);
605 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
606 gpregs + 35 * tdep->wordsize);
607 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
608 gpregs + 36 * tdep->wordsize);
609 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
610 gpregs + 37 * tdep->wordsize);
611 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
612 gpregs + 38 * tdep->wordsize);
614 if (ppc_linux_trap_reg_p (gdbarch))
616 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
617 gpregs + 34 * tdep->wordsize);
618 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
619 gpregs + 40 * tdep->wordsize);
622 if (ppc_floating_point_unit_p (gdbarch))
624 /* Floating point registers. */
625 for (i = 0; i < 32; i++)
627 int regnum = i + gdbarch_fp0_regnum (gdbarch);
628 trad_frame_set_reg_addr (this_cache, regnum,
629 fpregs + i * tdep->wordsize);
631 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
632 fpregs + 32 * tdep->wordsize);
634 trad_frame_set_id (this_cache, frame_id_build (base, func));
638 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
639 struct frame_info *this_frame,
640 struct trad_frame_cache *this_cache,
643 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
644 0xd0 /* Offset to ucontext_t. */
645 + 0x30 /* Offset to .reg. */,
650 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
651 struct frame_info *this_frame,
652 struct trad_frame_cache *this_cache,
655 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
656 0x80 /* Offset to ucontext_t. */
657 + 0xe0 /* Offset to .reg. */,
662 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
663 struct frame_info *this_frame,
664 struct trad_frame_cache *this_cache,
667 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
668 0x40 /* Offset to ucontext_t. */
669 + 0x1c /* Offset to .reg. */,
674 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
675 struct frame_info *this_frame,
676 struct trad_frame_cache *this_cache,
679 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
680 0x80 /* Offset to struct sigcontext. */
681 + 0x38 /* Offset to .reg. */,
685 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
689 { 0x380000ac, -1 }, /* li r0, 172 */
690 { 0x44000002, -1 }, /* sc */
691 { TRAMP_SENTINEL_INSN },
693 ppc32_linux_sigaction_cache_init
695 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
699 { 0x38210080, -1 }, /* addi r1,r1,128 */
700 { 0x380000ac, -1 }, /* li r0, 172 */
701 { 0x44000002, -1 }, /* sc */
702 { TRAMP_SENTINEL_INSN },
704 ppc64_linux_sigaction_cache_init
706 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
710 { 0x38000077, -1 }, /* li r0,119 */
711 { 0x44000002, -1 }, /* sc */
712 { TRAMP_SENTINEL_INSN },
714 ppc32_linux_sighandler_cache_init
716 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
720 { 0x38210080, -1 }, /* addi r1,r1,128 */
721 { 0x38000077, -1 }, /* li r0,119 */
722 { 0x44000002, -1 }, /* sc */
723 { TRAMP_SENTINEL_INSN },
725 ppc64_linux_sighandler_cache_init
728 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
730 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
732 /* If we do not have a target description with registers, then
733 the special registers will not be included in the register set. */
734 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
737 /* If we do, then it is safe to check the size. */
738 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
739 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
742 /* Return the current system call's number present in the
743 r0 register. When the function fails, it returns -1. */
745 ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
748 struct regcache *regcache = get_thread_regcache (ptid);
749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
750 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
752 /* Make sure we're in a 32- or 64-bit machine */
753 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
755 /* The content of a register */
756 gdb::byte_vector buf (tdep->wordsize);
758 /* Getting the system call number from the register.
759 When dealing with PowerPC architecture, this information
760 is stored at 0th register. */
761 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf.data ());
763 return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
766 /* PPC process record-replay */
768 static struct linux_record_tdep ppc_linux_record_tdep;
769 static struct linux_record_tdep ppc64_linux_record_tdep;
771 /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
772 syscall ids into a canonical set of syscall ids used by process
773 record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
774 Return -1 if this system call is not supported by process record.
775 Otherwise, return the syscall number for preocess reocrd of given
778 static enum gdb_syscall
779 ppc_canonicalize_syscall (int syscall)
785 else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
786 result = syscall + 1;
787 else if (syscall >= 192 && syscall <= 197) /* mmap2 */
789 else if (syscall == 208) /* tkill */
790 result = gdb_sys_tkill;
791 else if (syscall >= 207 && syscall <= 220) /* gettid */
792 result = syscall + 224 - 207;
793 else if (syscall >= 234 && syscall <= 239) /* exit_group */
794 result = syscall + 252 - 234;
795 else if (syscall >= 240 && syscall <= 248) /* timer_create */
796 result = syscall += 259 - 240;
797 else if (syscall >= 250 && syscall <= 251) /* tgkill */
798 result = syscall + 270 - 250;
799 else if (syscall == 336)
800 result = gdb_sys_recv;
801 else if (syscall == 337)
802 result = gdb_sys_recvfrom;
803 else if (syscall == 342)
804 result = gdb_sys_recvmsg;
806 return (enum gdb_syscall) result;
809 /* Record registers which might be clobbered during system call.
810 Return 0 if successful. */
813 ppc_linux_syscall_record (struct regcache *regcache)
815 struct gdbarch *gdbarch = regcache->arch ();
816 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
818 enum gdb_syscall syscall_gdb;
822 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
823 syscall_gdb = ppc_canonicalize_syscall (scnum);
827 printf_unfiltered (_("Process record and replay target doesn't "
828 "support syscall number %d\n"), (int) scnum);
832 if (syscall_gdb == gdb_sys_sigreturn
833 || syscall_gdb == gdb_sys_rt_sigreturn)
836 int regsets[] = { tdep->ppc_gp0_regnum,
837 tdep->ppc_fp0_regnum,
838 tdep->ppc_vr0_regnum,
839 tdep->ppc_vsr0_upper_regnum };
841 for (j = 0; j < 4; j++)
843 if (regsets[j] == -1)
845 for (i = 0; i < 32; i++)
847 if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
852 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
854 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
856 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
858 if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
864 if (tdep->wordsize == 8)
865 ret = record_linux_system_call (syscall_gdb, regcache,
866 &ppc64_linux_record_tdep);
868 ret = record_linux_system_call (syscall_gdb, regcache,
869 &ppc_linux_record_tdep);
874 /* Record registers clobbered during syscall. */
875 for (i = 3; i <= 12; i++)
877 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
880 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
882 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
884 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
886 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
892 /* Record registers which might be clobbered during signal handling.
893 Return 0 if successful. */
896 ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
897 enum gdb_signal signal)
899 /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
900 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
901 arch/powerpc/include/asm/ptrace.h
903 const int SIGNAL_FRAMESIZE = 128;
904 const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
909 for (i = 3; i <= 12; i++)
911 if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
915 if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
917 if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
919 if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
921 if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
923 if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
926 /* Record the change in the stack.
927 frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
928 regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
929 sp -= SIGNAL_FRAMESIZE;
930 sp -= sizeof_rt_sigframe;
932 if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
935 if (record_full_arch_list_add_end ())
942 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
944 struct gdbarch *gdbarch = regcache->arch ();
946 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
948 /* Set special TRAP register to -1 to prevent the kernel from
949 messing with the PC we just installed, if we happen to be
950 within an interrupted system call that the kernel wants to
953 Note that after we return from the dummy call, the TRAP and
954 ORIG_R3 registers will be automatically restored, and the
955 kernel continues to restart the system call at this point. */
956 if (ppc_linux_trap_reg_p (gdbarch))
957 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
961 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
963 return startswith (bfd_section_name (abfd, asect), "SPU/");
966 static const struct target_desc *
967 ppc_linux_core_read_description (struct gdbarch *gdbarch,
968 struct target_ops *target,
971 struct ppc_linux_features features = ppc_linux_no_features;
972 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
973 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
974 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
975 asection *section = bfd_get_section_by_name (abfd, ".reg");
980 switch (bfd_section_size (abfd, section))
983 features.wordsize = 4;
986 features.wordsize = 8;
993 features.cell = true;
996 features.altivec = true;
1001 return ppc_linux_match_description (features);
1005 /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
1006 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1009 ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1011 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
1013 /* If the symbol is marked as having a local entry point, set a target
1014 flag in the msymbol. We currently only support local entry point
1015 offsets of 8 bytes, which is the only entry point offset ever used
1016 by current compilers. If/when other offsets are ever used, we will
1017 have to use additional target flag bits to store them. */
1018 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
1023 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
1028 /* Implementation of `gdbarch_skip_entrypoint', as defined in
1029 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
1032 ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
1034 struct bound_minimal_symbol fun;
1035 int local_entry_offset = 0;
1037 fun = lookup_minimal_symbol_by_pc (pc);
1038 if (fun.minsym == NULL)
1041 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
1042 offset values are encoded. */
1043 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
1044 local_entry_offset = 8;
1046 if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
1047 && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
1048 return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
1053 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1057 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1059 return (*s == 'i' /* Literal number. */
1060 || (isdigit (*s) && s[1] == '('
1061 && isdigit (s[2])) /* Displacement. */
1062 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
1063 || isdigit (*s)); /* Register value. */
1066 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
1070 ppc_stap_parse_special_token (struct gdbarch *gdbarch,
1071 struct stap_parse_info *p)
1073 if (isdigit (*p->arg))
1075 /* This temporary pointer is needed because we have to do a lookahead.
1076 We could be dealing with a register displacement, and in such case
1077 we would not need to do anything. */
1078 const char *s = p->arg;
1083 while (isdigit (*s))
1088 /* It is a register displacement indeed. Returning 0 means we are
1089 deferring the treatment of this case to the generic parser. */
1094 regname = (char *) alloca (len + 2);
1097 strncpy (regname + 1, p->arg, len);
1099 regname[len] = '\0';
1101 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1102 error (_("Invalid register name `%s' on expression `%s'."),
1103 regname, p->saved_arg);
1105 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1108 write_exp_string (&p->pstate, str);
1109 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1115 /* All the other tokens should be handled correctly by the generic
1123 /* Cell/B.E. active SPE context tracking support. */
1125 static struct objfile *spe_context_objfile = NULL;
1126 static CORE_ADDR spe_context_lm_addr = 0;
1127 static CORE_ADDR spe_context_offset = 0;
1129 static ptid_t spe_context_cache_ptid;
1130 static CORE_ADDR spe_context_cache_address;
1132 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1133 to track whether we've loaded a version of libspe2 (as static or dynamic
1134 library) that provides the __spe_current_active_context variable. */
1136 ppc_linux_spe_context_lookup (struct objfile *objfile)
1138 struct bound_minimal_symbol sym;
1142 spe_context_objfile = NULL;
1143 spe_context_lm_addr = 0;
1144 spe_context_offset = 0;
1145 spe_context_cache_ptid = minus_one_ptid;
1146 spe_context_cache_address = 0;
1150 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1153 spe_context_objfile = objfile;
1154 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1155 spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
1156 spe_context_cache_ptid = minus_one_ptid;
1157 spe_context_cache_address = 0;
1163 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1165 struct objfile *objfile;
1167 ppc_linux_spe_context_lookup (NULL);
1168 ALL_OBJFILES (objfile)
1169 ppc_linux_spe_context_lookup (objfile);
1173 ppc_linux_spe_context_solib_loaded (struct so_list *so)
1175 if (strstr (so->so_original_name, "/libspe") != NULL)
1177 solib_read_symbols (so, 0);
1178 ppc_linux_spe_context_lookup (so->objfile);
1183 ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1185 if (so->objfile == spe_context_objfile)
1186 ppc_linux_spe_context_lookup (NULL);
1189 /* Retrieve contents of the N'th element in the current thread's
1190 linked SPE context list into ID and NPC. Return the address of
1191 said context element, or 0 if not found. */
1193 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1194 int n, int *id, unsigned int *npc)
1196 CORE_ADDR spe_context = 0;
1200 /* Quick exit if we have not found __spe_current_active_context. */
1201 if (!spe_context_objfile)
1204 /* Look up cached address of thread-local variable. */
1205 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1207 struct target_ops *target = target_stack;
1211 /* We do not call target_translate_tls_address here, because
1212 svr4_fetch_objfile_link_map may invalidate the frame chain,
1213 which must not do while inside a frame sniffer.
1215 Instead, we have cached the lm_addr value, and use that to
1216 directly call the target's to_get_thread_local_address. */
1217 spe_context_cache_address
1218 = target->get_thread_local_address (inferior_ptid,
1219 spe_context_lm_addr,
1220 spe_context_offset);
1221 spe_context_cache_ptid = inferior_ptid;
1224 CATCH (ex, RETURN_MASK_ERROR)
1231 /* Read variable value. */
1232 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1233 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1235 /* Cyle through to N'th linked list element. */
1236 for (i = 0; i < n && spe_context; i++)
1237 if (target_read_memory (spe_context + align_up (12, wordsize),
1238 buf, wordsize) == 0)
1239 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1243 /* Read current context. */
1245 && target_read_memory (spe_context, buf, 12) != 0)
1248 /* Extract data elements. */
1252 *id = extract_signed_integer (buf, 4, byte_order);
1254 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1261 /* Cell/B.E. cross-architecture unwinder support. */
1263 struct ppu2spu_cache
1265 struct frame_id frame_id;
1266 readonly_detached_regcache *regcache;
1269 static struct gdbarch *
1270 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1272 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1273 return cache->regcache->arch ();
1277 ppu2spu_this_id (struct frame_info *this_frame,
1278 void **this_cache, struct frame_id *this_id)
1280 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1281 *this_id = cache->frame_id;
1284 static struct value *
1285 ppu2spu_prev_register (struct frame_info *this_frame,
1286 void **this_cache, int regnum)
1288 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
1289 struct gdbarch *gdbarch = cache->regcache->arch ();
1292 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1294 cache->regcache->cooked_read (regnum, buf);
1295 return frame_unwind_got_bytes (this_frame, regnum, buf);
1300 struct gdbarch *gdbarch;
1303 gdb_byte gprs[128*16];
1306 static enum register_status
1307 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1309 struct ppu2spu_data *data = (struct ppu2spu_data *) src;
1310 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1312 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1313 memcpy (buf, data->gprs + 16*regnum, 16);
1314 else if (regnum == SPU_ID_REGNUM)
1315 store_unsigned_integer (buf, 4, byte_order, data->id);
1316 else if (regnum == SPU_PC_REGNUM)
1317 store_unsigned_integer (buf, 4, byte_order, data->npc);
1319 return REG_UNAVAILABLE;
1325 ppu2spu_sniffer (const struct frame_unwind *self,
1326 struct frame_info *this_frame, void **this_prologue_cache)
1328 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1331 struct ppu2spu_data data;
1332 struct frame_info *fi;
1333 CORE_ADDR base, func, backchain, spe_context;
1337 /* Count the number of SPU contexts already in the frame chain. */
1338 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1339 if (get_frame_type (fi) == ARCH_FRAME
1340 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1343 base = get_frame_sp (this_frame);
1344 func = get_frame_pc (this_frame);
1345 if (target_read_memory (base, buf, tdep->wordsize))
1347 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1349 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1350 n, &data.id, &data.npc);
1351 if (spe_context && base <= spe_context && spe_context < backchain)
1355 /* Find gdbarch for SPU. */
1356 struct gdbarch_info info;
1357 gdbarch_info_init (&info);
1358 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1359 info.byte_order = BFD_ENDIAN_BIG;
1360 info.osabi = GDB_OSABI_LINUX;
1362 data.gdbarch = gdbarch_find_by_info (info);
1366 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1367 if (target_read (target_stack, TARGET_OBJECT_SPU, annex,
1368 data.gprs, 0, sizeof data.gprs)
1369 == sizeof data.gprs)
1371 struct ppu2spu_cache *cache
1372 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1373 std::unique_ptr<readonly_detached_regcache> regcache
1374 (new readonly_detached_regcache (data.gdbarch,
1375 ppu2spu_unwind_register,
1378 cache->frame_id = frame_id_build (base, func);
1379 cache->regcache = regcache.release ();
1380 *this_prologue_cache = cache;
1389 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1391 struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
1392 delete cache->regcache;
1395 static const struct frame_unwind ppu2spu_unwind = {
1397 default_frame_unwind_stop_reason,
1399 ppu2spu_prev_register,
1402 ppu2spu_dealloc_cache,
1406 /* Initialize linux_record_tdep if not initialized yet.
1407 WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
1408 Sizes of data structures are initialized accordingly. */
1411 ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
1414 /* Simply return if it had been initialized. */
1415 if (record_tdep->size_pointer != 0)
1418 /* These values are the size of the type that will be used in a system
1419 call. They are obtained from Linux Kernel source. */
1423 record_tdep->size_pointer = 8;
1424 record_tdep->size__old_kernel_stat = 32;
1425 record_tdep->size_tms = 32;
1426 record_tdep->size_loff_t = 8;
1427 record_tdep->size_flock = 32;
1428 record_tdep->size_oldold_utsname = 45;
1429 record_tdep->size_ustat = 32;
1430 record_tdep->size_old_sigaction = 32;
1431 record_tdep->size_old_sigset_t = 8;
1432 record_tdep->size_rlimit = 16;
1433 record_tdep->size_rusage = 144;
1434 record_tdep->size_timeval = 16;
1435 record_tdep->size_timezone = 8;
1436 record_tdep->size_old_gid_t = 4;
1437 record_tdep->size_old_uid_t = 4;
1438 record_tdep->size_fd_set = 128;
1439 record_tdep->size_old_dirent = 280;
1440 record_tdep->size_statfs = 120;
1441 record_tdep->size_statfs64 = 120;
1442 record_tdep->size_sockaddr = 16;
1443 record_tdep->size_int = 4;
1444 record_tdep->size_long = 8;
1445 record_tdep->size_ulong = 8;
1446 record_tdep->size_msghdr = 56;
1447 record_tdep->size_itimerval = 32;
1448 record_tdep->size_stat = 144;
1449 record_tdep->size_old_utsname = 325;
1450 record_tdep->size_sysinfo = 112;
1451 record_tdep->size_msqid_ds = 120;
1452 record_tdep->size_shmid_ds = 112;
1453 record_tdep->size_new_utsname = 390;
1454 record_tdep->size_timex = 208;
1455 record_tdep->size_mem_dqinfo = 24;
1456 record_tdep->size_if_dqblk = 72;
1457 record_tdep->size_fs_quota_stat = 80;
1458 record_tdep->size_timespec = 16;
1459 record_tdep->size_pollfd = 8;
1460 record_tdep->size_NFS_FHSIZE = 32;
1461 record_tdep->size_knfsd_fh = 132;
1462 record_tdep->size_TASK_COMM_LEN = 16;
1463 record_tdep->size_sigaction = 32;
1464 record_tdep->size_sigset_t = 8;
1465 record_tdep->size_siginfo_t = 128;
1466 record_tdep->size_cap_user_data_t = 8;
1467 record_tdep->size_stack_t = 24;
1468 record_tdep->size_off_t = 8;
1469 record_tdep->size_stat64 = 104;
1470 record_tdep->size_gid_t = 4;
1471 record_tdep->size_uid_t = 4;
1472 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1473 record_tdep->size_flock64 = 32;
1474 record_tdep->size_io_event = 32;
1475 record_tdep->size_iocb = 64;
1476 record_tdep->size_epoll_event = 16;
1477 record_tdep->size_itimerspec = 32;
1478 record_tdep->size_mq_attr = 64;
1479 record_tdep->size_termios = 44;
1480 record_tdep->size_pid_t = 4;
1481 record_tdep->size_winsize = 8;
1482 record_tdep->size_serial_struct = 72;
1483 record_tdep->size_serial_icounter_struct = 80;
1484 record_tdep->size_size_t = 8;
1485 record_tdep->size_iovec = 16;
1486 record_tdep->size_time_t = 8;
1488 else if (wordsize == 4)
1490 record_tdep->size_pointer = 4;
1491 record_tdep->size__old_kernel_stat = 32;
1492 record_tdep->size_tms = 16;
1493 record_tdep->size_loff_t = 8;
1494 record_tdep->size_flock = 16;
1495 record_tdep->size_oldold_utsname = 45;
1496 record_tdep->size_ustat = 20;
1497 record_tdep->size_old_sigaction = 16;
1498 record_tdep->size_old_sigset_t = 4;
1499 record_tdep->size_rlimit = 8;
1500 record_tdep->size_rusage = 72;
1501 record_tdep->size_timeval = 8;
1502 record_tdep->size_timezone = 8;
1503 record_tdep->size_old_gid_t = 4;
1504 record_tdep->size_old_uid_t = 4;
1505 record_tdep->size_fd_set = 128;
1506 record_tdep->size_old_dirent = 268;
1507 record_tdep->size_statfs = 64;
1508 record_tdep->size_statfs64 = 88;
1509 record_tdep->size_sockaddr = 16;
1510 record_tdep->size_int = 4;
1511 record_tdep->size_long = 4;
1512 record_tdep->size_ulong = 4;
1513 record_tdep->size_msghdr = 28;
1514 record_tdep->size_itimerval = 16;
1515 record_tdep->size_stat = 88;
1516 record_tdep->size_old_utsname = 325;
1517 record_tdep->size_sysinfo = 64;
1518 record_tdep->size_msqid_ds = 68;
1519 record_tdep->size_shmid_ds = 60;
1520 record_tdep->size_new_utsname = 390;
1521 record_tdep->size_timex = 128;
1522 record_tdep->size_mem_dqinfo = 24;
1523 record_tdep->size_if_dqblk = 72;
1524 record_tdep->size_fs_quota_stat = 80;
1525 record_tdep->size_timespec = 8;
1526 record_tdep->size_pollfd = 8;
1527 record_tdep->size_NFS_FHSIZE = 32;
1528 record_tdep->size_knfsd_fh = 132;
1529 record_tdep->size_TASK_COMM_LEN = 16;
1530 record_tdep->size_sigaction = 20;
1531 record_tdep->size_sigset_t = 8;
1532 record_tdep->size_siginfo_t = 128;
1533 record_tdep->size_cap_user_data_t = 4;
1534 record_tdep->size_stack_t = 12;
1535 record_tdep->size_off_t = 4;
1536 record_tdep->size_stat64 = 104;
1537 record_tdep->size_gid_t = 4;
1538 record_tdep->size_uid_t = 4;
1539 record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
1540 record_tdep->size_flock64 = 32;
1541 record_tdep->size_io_event = 32;
1542 record_tdep->size_iocb = 64;
1543 record_tdep->size_epoll_event = 16;
1544 record_tdep->size_itimerspec = 16;
1545 record_tdep->size_mq_attr = 32;
1546 record_tdep->size_termios = 44;
1547 record_tdep->size_pid_t = 4;
1548 record_tdep->size_winsize = 8;
1549 record_tdep->size_serial_struct = 60;
1550 record_tdep->size_serial_icounter_struct = 80;
1551 record_tdep->size_size_t = 4;
1552 record_tdep->size_iovec = 8;
1553 record_tdep->size_time_t = 4;
1556 internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
1558 /* These values are the second argument of system call "sys_fcntl"
1559 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1560 record_tdep->fcntl_F_GETLK = 5;
1561 record_tdep->fcntl_F_GETLK64 = 12;
1562 record_tdep->fcntl_F_SETLK64 = 13;
1563 record_tdep->fcntl_F_SETLKW64 = 14;
1565 record_tdep->arg1 = PPC_R0_REGNUM + 3;
1566 record_tdep->arg2 = PPC_R0_REGNUM + 4;
1567 record_tdep->arg3 = PPC_R0_REGNUM + 5;
1568 record_tdep->arg4 = PPC_R0_REGNUM + 6;
1569 record_tdep->arg5 = PPC_R0_REGNUM + 7;
1570 record_tdep->arg6 = PPC_R0_REGNUM + 8;
1572 /* These values are the second argument of system call "sys_ioctl".
1573 They are obtained from Linux Kernel source.
1574 See arch/powerpc/include/uapi/asm/ioctls.h. */
1575 record_tdep->ioctl_TCGETS = 0x403c7413;
1576 record_tdep->ioctl_TCSETS = 0x803c7414;
1577 record_tdep->ioctl_TCSETSW = 0x803c7415;
1578 record_tdep->ioctl_TCSETSF = 0x803c7416;
1579 record_tdep->ioctl_TCGETA = 0x40147417;
1580 record_tdep->ioctl_TCSETA = 0x80147418;
1581 record_tdep->ioctl_TCSETAW = 0x80147419;
1582 record_tdep->ioctl_TCSETAF = 0x8014741c;
1583 record_tdep->ioctl_TCSBRK = 0x2000741d;
1584 record_tdep->ioctl_TCXONC = 0x2000741e;
1585 record_tdep->ioctl_TCFLSH = 0x2000741f;
1586 record_tdep->ioctl_TIOCEXCL = 0x540c;
1587 record_tdep->ioctl_TIOCNXCL = 0x540d;
1588 record_tdep->ioctl_TIOCSCTTY = 0x540e;
1589 record_tdep->ioctl_TIOCGPGRP = 0x40047477;
1590 record_tdep->ioctl_TIOCSPGRP = 0x80047476;
1591 record_tdep->ioctl_TIOCOUTQ = 0x40047473;
1592 record_tdep->ioctl_TIOCSTI = 0x5412;
1593 record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
1594 record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
1595 record_tdep->ioctl_TIOCMGET = 0x5415;
1596 record_tdep->ioctl_TIOCMBIS = 0x5416;
1597 record_tdep->ioctl_TIOCMBIC = 0x5417;
1598 record_tdep->ioctl_TIOCMSET = 0x5418;
1599 record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
1600 record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
1601 record_tdep->ioctl_FIONREAD = 0x4004667f;
1602 record_tdep->ioctl_TIOCINQ = 0x4004667f;
1603 record_tdep->ioctl_TIOCLINUX = 0x541c;
1604 record_tdep->ioctl_TIOCCONS = 0x541d;
1605 record_tdep->ioctl_TIOCGSERIAL = 0x541e;
1606 record_tdep->ioctl_TIOCSSERIAL = 0x541f;
1607 record_tdep->ioctl_TIOCPKT = 0x5420;
1608 record_tdep->ioctl_FIONBIO = 0x8004667e;
1609 record_tdep->ioctl_TIOCNOTTY = 0x5422;
1610 record_tdep->ioctl_TIOCSETD = 0x5423;
1611 record_tdep->ioctl_TIOCGETD = 0x5424;
1612 record_tdep->ioctl_TCSBRKP = 0x5425;
1613 record_tdep->ioctl_TIOCSBRK = 0x5427;
1614 record_tdep->ioctl_TIOCCBRK = 0x5428;
1615 record_tdep->ioctl_TIOCGSID = 0x5429;
1616 record_tdep->ioctl_TIOCGPTN = 0x40045430;
1617 record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
1618 record_tdep->ioctl_FIONCLEX = 0x20006602;
1619 record_tdep->ioctl_FIOCLEX = 0x20006601;
1620 record_tdep->ioctl_FIOASYNC = 0x8004667d;
1621 record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
1622 record_tdep->ioctl_TIOCSERGWILD = 0x5454;
1623 record_tdep->ioctl_TIOCSERSWILD = 0x5455;
1624 record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
1625 record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
1626 record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
1627 record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
1628 record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
1629 record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
1630 record_tdep->ioctl_TIOCMIWAIT = 0x545c;
1631 record_tdep->ioctl_TIOCGICOUNT = 0x545d;
1632 record_tdep->ioctl_FIOQSIZE = 0x40086680;
1635 /* Return a floating-point format for a floating-point variable of
1636 length LEN in bits. If non-NULL, NAME is the name of its type.
1637 If no suitable type is found, return NULL. */
1639 const struct floatformat **
1640 ppc_floatformat_for_type (struct gdbarch *gdbarch,
1641 const char *name, int len)
1643 if (len == 128 && name)
1645 if (strcmp (name, "__float128") == 0
1646 || strcmp (name, "_Float128") == 0
1647 || strcmp (name, "_Float64x") == 0
1648 || strcmp (name, "complex _Float128") == 0
1649 || strcmp (name, "complex _Float64x") == 0)
1650 return floatformats_ia64_quad;
1652 if (strcmp (name, "__ibm128") == 0)
1653 return floatformats_ibm_long_double;
1656 return default_floatformat_for_type (gdbarch, name, len);
1660 ppc_linux_init_abi (struct gdbarch_info info,
1661 struct gdbarch *gdbarch)
1663 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1664 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1665 static const char *const stap_integer_prefixes[] = { "i", NULL };
1666 static const char *const stap_register_indirection_prefixes[] = { "(",
1668 static const char *const stap_register_indirection_suffixes[] = { ")",
1671 linux_init_abi (info, gdbarch);
1673 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1674 128-bit, they can be either IBM long double or IEEE quad long double.
1675 The 64-bit long double case will be detected automatically using
1676 the size specified in debug info. We use a .gnu.attribute flag
1677 to distinguish between the IBM long double and IEEE quad cases. */
1678 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1679 if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
1680 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1682 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
1684 /* Support for floating-point data type variants. */
1685 set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
1687 /* Handle inferior calls during interrupted system calls. */
1688 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1690 /* Get the syscall number from the arch's register. */
1691 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1693 /* SystemTap functions. */
1694 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1695 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1696 stap_register_indirection_prefixes);
1697 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1698 stap_register_indirection_suffixes);
1699 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1700 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1701 set_gdbarch_stap_parse_special_token (gdbarch,
1702 ppc_stap_parse_special_token);
1704 if (tdep->wordsize == 4)
1706 /* Until November 2001, gcc did not comply with the 32 bit SysV
1707 R4 ABI requirement that structures less than or equal to 8
1708 bytes should be returned in registers. Instead GCC was using
1709 the AIX/PowerOpen ABI - everything returned in memory
1710 (well ignoring vectors that is). When this was corrected, it
1711 wasn't fixed for GNU/Linux native platform. Use the
1712 PowerOpen struct convention. */
1713 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1715 set_gdbarch_memory_remove_breakpoint (gdbarch,
1716 ppc_linux_memory_remove_breakpoint);
1718 /* Shared library handling. */
1719 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
1720 set_solib_svr4_fetch_link_map_offsets
1721 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1723 /* Setting the correct XML syscall filename. */
1724 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
1727 tramp_frame_prepend_unwinder (gdbarch,
1728 &ppc32_linux_sigaction_tramp_frame);
1729 tramp_frame_prepend_unwinder (gdbarch,
1730 &ppc32_linux_sighandler_tramp_frame);
1732 /* BFD target for core files. */
1733 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1734 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1736 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
1738 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1740 powerpc_so_ops = svr4_so_ops;
1741 /* Override dynamic resolve function. */
1742 powerpc_so_ops.in_dynsym_resolve_code =
1743 powerpc_linux_in_dynsym_resolve_code;
1745 set_solib_ops (gdbarch, &powerpc_so_ops);
1747 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1750 if (tdep->wordsize == 8)
1752 if (tdep->elf_abi == POWERPC_ELF_V1)
1754 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1755 function descriptors). */
1756 set_gdbarch_convert_from_func_ptr_addr
1757 (gdbarch, ppc64_convert_from_func_ptr_addr);
1759 set_gdbarch_elf_make_msymbol_special
1760 (gdbarch, ppc64_elf_make_msymbol_special);
1764 set_gdbarch_elf_make_msymbol_special
1765 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1767 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1770 /* Shared library handling. */
1771 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1772 set_solib_svr4_fetch_link_map_offsets
1773 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1775 /* Setting the correct XML syscall filename. */
1776 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
1779 tramp_frame_prepend_unwinder (gdbarch,
1780 &ppc64_linux_sigaction_tramp_frame);
1781 tramp_frame_prepend_unwinder (gdbarch,
1782 &ppc64_linux_sighandler_tramp_frame);
1784 /* BFD target for core files. */
1785 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1786 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1788 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
1791 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
1792 set_gdbarch_iterate_over_regset_sections (gdbarch,
1793 ppc_linux_iterate_over_regset_sections);
1795 /* Enable TLS support. */
1796 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1797 svr4_fetch_objfile_link_map);
1801 const struct tdesc_feature *feature;
1803 /* If we have target-described registers, then we can safely
1804 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1805 (whether they are described or not). */
1806 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1807 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1809 /* If they are present, then assign them to the reserved number. */
1810 feature = tdesc_find_feature (info.target_desc,
1811 "org.gnu.gdb.power.linux");
1812 if (feature != NULL)
1814 tdesc_numbered_register (feature, tdesc_data,
1815 PPC_ORIG_R3_REGNUM, "orig_r3");
1816 tdesc_numbered_register (feature, tdesc_data,
1817 PPC_TRAP_REGNUM, "trap");
1821 /* Enable Cell/B.E. if supported by the target. */
1822 if (tdesc_compatible_p (info.target_desc,
1823 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1825 /* Cell/B.E. multi-architecture support. */
1826 set_spu_solib_ops (gdbarch);
1828 /* Cell/B.E. cross-architecture unwinder support. */
1829 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1831 /* We need to support more than "addr_bit" significant address bits
1832 in order to support SPUADDR_ADDR encoded values. */
1833 set_gdbarch_significant_addr_bit (gdbarch, 64);
1836 set_gdbarch_displaced_step_location (gdbarch,
1837 linux_displaced_step_location);
1839 /* Support reverse debugging. */
1840 set_gdbarch_process_record (gdbarch, ppc_process_record);
1841 set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
1842 tdep->ppc_syscall_record = ppc_linux_syscall_record;
1844 ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
1845 ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
1849 _initialize_ppc_linux_tdep (void)
1851 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1852 64-bit PowerPC, and the older rs6k. */
1853 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1854 ppc_linux_init_abi);
1855 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1856 ppc_linux_init_abi);
1857 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1858 ppc_linux_init_abi);
1860 /* Attach to observers to track __spe_current_active_context. */
1861 gdb::observers::inferior_created.attach (ppc_linux_spe_context_inferior_created);
1862 gdb::observers::solib_loaded.attach (ppc_linux_spe_context_solib_loaded);
1863 gdb::observers::solib_unloaded.attach (ppc_linux_spe_context_solib_unloaded);
1865 /* Initialize the Linux target descriptions. */
1866 initialize_tdesc_powerpc_32l ();
1867 initialize_tdesc_powerpc_altivec32l ();
1868 initialize_tdesc_powerpc_cell32l ();
1869 initialize_tdesc_powerpc_vsx32l ();
1870 initialize_tdesc_powerpc_isa205_32l ();
1871 initialize_tdesc_powerpc_isa205_altivec32l ();
1872 initialize_tdesc_powerpc_isa205_vsx32l ();
1873 initialize_tdesc_powerpc_64l ();
1874 initialize_tdesc_powerpc_altivec64l ();
1875 initialize_tdesc_powerpc_cell64l ();
1876 initialize_tdesc_powerpc_vsx64l ();
1877 initialize_tdesc_powerpc_isa205_64l ();
1878 initialize_tdesc_powerpc_isa205_altivec64l ();
1879 initialize_tdesc_powerpc_isa205_vsx64l ();
1880 initialize_tdesc_powerpc_e500l ();