1 /* PPC GNU/Linux native support.
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdbthread.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
32 #include <sys/ioctl.h>
35 #include <sys/procfs.h>
36 #include "nat/gdb_ptrace.h"
38 /* Prototypes for supply_gregset etc. */
41 #include "ppc-linux-tdep.h"
43 /* Required when using the AUXV. */
44 #include "elf/common.h"
47 #include "nat/ppc-linux.h"
49 /* Similarly for the hardware watchpoint support. These requests are used
50 when the PowerPC HWDEBUG ptrace interface is not available. */
51 #ifndef PTRACE_GET_DEBUGREG
52 #define PTRACE_GET_DEBUGREG 25
54 #ifndef PTRACE_SET_DEBUGREG
55 #define PTRACE_SET_DEBUGREG 26
57 #ifndef PTRACE_GETSIGINFO
58 #define PTRACE_GETSIGINFO 0x4202
61 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
62 available. It exposes the debug facilities of PowerPC processors, as well
63 as additional features of BookE processors, such as ranged breakpoints and
64 watchpoints and hardware-accelerated condition evaluation. */
65 #ifndef PPC_PTRACE_GETHWDBGINFO
67 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
68 ptrace interface is not present in ptrace.h, so we'll have to pretty much
69 include it all here so that the code at least compiles on older systems. */
70 #define PPC_PTRACE_GETHWDBGINFO 0x89
71 #define PPC_PTRACE_SETHWDEBUG 0x88
72 #define PPC_PTRACE_DELHWDEBUG 0x87
76 uint32_t version; /* Only version 1 exists to date. */
77 uint32_t num_instruction_bps;
78 uint32_t num_data_bps;
79 uint32_t num_condition_regs;
80 uint32_t data_bp_alignment;
81 uint32_t sizeof_condition; /* size of the DVC register. */
85 /* Features will have bits indicating whether there is support for: */
86 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
87 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
88 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
89 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
91 struct ppc_hw_breakpoint
93 uint32_t version; /* currently, version must be 1 */
94 uint32_t trigger_type; /* only some combinations allowed */
95 uint32_t addr_mode; /* address match mode */
96 uint32_t condition_mode; /* break/watchpoint condition flags */
97 uint64_t addr; /* break/watchpoint address */
98 uint64_t addr2; /* range end or mask */
99 uint64_t condition_value; /* contents of the DVC register */
103 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
104 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
105 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
106 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
109 #define PPC_BREAKPOINT_MODE_EXACT 0x0
110 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
111 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
112 #define PPC_BREAKPOINT_MODE_MASK 0x3
114 /* Condition mode. */
115 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
116 #define PPC_BREAKPOINT_CONDITION_AND 0x1
117 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
118 #define PPC_BREAKPOINT_CONDITION_OR 0x2
119 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
120 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
121 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
122 #define PPC_BREAKPOINT_CONDITION_BE(n) \
123 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
124 #endif /* PPC_PTRACE_GETHWDBGINFO */
126 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
127 watchpoint (up to 512 bytes). */
128 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
129 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
130 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
132 /* Similarly for the general-purpose (gp0 -- gp31)
133 and floating-point registers (fp0 -- fp31). */
134 #ifndef PTRACE_GETREGS
135 #define PTRACE_GETREGS 12
137 #ifndef PTRACE_SETREGS
138 #define PTRACE_SETREGS 13
140 #ifndef PTRACE_GETFPREGS
141 #define PTRACE_GETFPREGS 14
143 #ifndef PTRACE_SETFPREGS
144 #define PTRACE_SETFPREGS 15
147 /* This oddity is because the Linux kernel defines elf_vrregset_t as
148 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
149 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
150 the vrsave as an extra 4 bytes at the end. I opted for creating a
151 flat array of chars, so that it is easier to manipulate for gdb.
153 There are 32 vector registers 16 bytes longs, plus a VSCR register
154 which is only 4 bytes long, but is fetched as a 16 bytes
155 quantity. Up to here we have the elf_vrregset_t structure.
156 Appended to this there is space for the VRSAVE register: 4 bytes.
157 Even though this vrsave register is not included in the regset
158 typedef, it is handled by the ptrace requests.
160 Note that GNU/Linux doesn't support little endian PPC hardware,
161 therefore the offset at which the real value of the VSCR register
162 is located will be always 12 bytes.
164 The layout is like this (where x is the actual value of the vscr reg): */
168 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
169 <-------> <-------><-------><->
174 #define SIZEOF_VRREGS 33*16+4
176 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
178 /* This is the layout of the POWER7 VSX registers and the way they overlap
179 with the existing FPR and VMX registers.
181 VSR doubleword 0 VSR doubleword 1
182 ----------------------------------------------------------------
184 ----------------------------------------------------------------
186 ----------------------------------------------------------------
189 ----------------------------------------------------------------
190 VSR[30] | FPR[30] | |
191 ----------------------------------------------------------------
192 VSR[31] | FPR[31] | |
193 ----------------------------------------------------------------
195 ----------------------------------------------------------------
197 ----------------------------------------------------------------
200 ----------------------------------------------------------------
202 ----------------------------------------------------------------
204 ----------------------------------------------------------------
206 VSX has 64 128bit registers. The first 32 registers overlap with
207 the FP registers (doubleword 0) and hence extend them with additional
208 64 bits (doubleword 1). The other 32 regs overlap with the VMX
210 #define SIZEOF_VSXREGS 32*8
212 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
214 /* On PPC processors that support the Signal Processing Extension
215 (SPE) APU, the general-purpose registers are 64 bits long.
216 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
217 ptrace calls only access the lower half of each register, to allow
218 them to behave the same way they do on non-SPE systems. There's a
219 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
220 read and write the top halves of all the general-purpose registers
221 at once, along with some SPE-specific registers.
223 GDB itself continues to claim the general-purpose registers are 32
224 bits long. It has unnamed raw registers that hold the upper halves
225 of the gprs, and the full 64-bit SIMD views of the registers,
226 'ev0' -- 'ev31', are pseudo-registers that splice the top and
227 bottom halves together.
229 This is the structure filled in by PTRACE_GETEVRREGS and written to
230 the inferior's registers by PTRACE_SETEVRREGS. */
231 struct gdb_evrregset_t
233 unsigned long evr[32];
234 unsigned long long acc;
235 unsigned long spefscr;
238 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
239 PTRACE_SETVSXREGS requests, for reading and writing the VSX
240 POWER7 registers 0 through 31. Zero if we've tried one of them and
241 gotten an error. Note that VSX registers 32 through 63 overlap
242 with VR registers 0 through 31. */
243 int have_ptrace_getsetvsxregs = 1;
245 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
246 PTRACE_SETVRREGS requests, for reading and writing the Altivec
247 registers. Zero if we've tried one of them and gotten an
249 int have_ptrace_getvrregs = 1;
251 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
252 PTRACE_SETEVRREGS requests, for reading and writing the SPE
253 registers. Zero if we've tried one of them and gotten an
255 int have_ptrace_getsetevrregs = 1;
257 /* Non-zero if our kernel may support the PTRACE_GETREGS and
258 PTRACE_SETREGS requests, for reading and writing the
259 general-purpose registers. Zero if we've tried one of
260 them and gotten an error. */
261 int have_ptrace_getsetregs = 1;
263 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
264 PTRACE_SETFPREGS requests, for reading and writing the
265 floating-pointers registers. Zero if we've tried one of
266 them and gotten an error. */
267 int have_ptrace_getsetfpregs = 1;
270 /* registers layout, as presented by the ptrace interface:
271 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
272 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
273 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
274 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
275 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
276 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
277 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
278 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
279 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
280 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
281 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
282 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
283 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
287 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
292 interface, and not the wordsize of the program's ABI. */
293 int wordsize = sizeof (long);
295 /* General purpose registers occupy 1 slot each in the buffer. */
296 if (regno >= tdep->ppc_gp0_regnum
297 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
298 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
300 /* Floating point regs: eight bytes each in both 32- and 64-bit
301 ptrace interfaces. Thus, two slots each in 32-bit interface, one
302 slot each in 64-bit interface. */
303 if (tdep->ppc_fp0_regnum >= 0
304 && regno >= tdep->ppc_fp0_regnum
305 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
306 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
308 /* UISA special purpose registers: 1 slot each. */
309 if (regno == gdbarch_pc_regnum (gdbarch))
310 u_addr = PT_NIP * wordsize;
311 if (regno == tdep->ppc_lr_regnum)
312 u_addr = PT_LNK * wordsize;
313 if (regno == tdep->ppc_cr_regnum)
314 u_addr = PT_CCR * wordsize;
315 if (regno == tdep->ppc_xer_regnum)
316 u_addr = PT_XER * wordsize;
317 if (regno == tdep->ppc_ctr_regnum)
318 u_addr = PT_CTR * wordsize;
320 if (regno == tdep->ppc_mq_regnum)
321 u_addr = PT_MQ * wordsize;
323 if (regno == tdep->ppc_ps_regnum)
324 u_addr = PT_MSR * wordsize;
325 if (regno == PPC_ORIG_R3_REGNUM)
326 u_addr = PT_ORIG_R3 * wordsize;
327 if (regno == PPC_TRAP_REGNUM)
328 u_addr = PT_TRAP * wordsize;
329 if (tdep->ppc_fpscr_regnum >= 0
330 && regno == tdep->ppc_fpscr_regnum)
332 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
333 kernel headers incorrectly contained the 32-bit definition of
334 PT_FPSCR. For the 32-bit definition, floating-point
335 registers occupy two 32-bit "slots", and the FPSCR lives in
336 the second half of such a slot-pair (hence +1). For 64-bit,
337 the FPSCR instead occupies the full 64-bit 2-word-slot and
338 hence no adjustment is necessary. Hack around this. */
339 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
340 u_addr = (48 + 32) * wordsize;
341 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
342 slot and not just its second word. The PT_FPSCR supplied when
343 GDB is compiled as a 32-bit app doesn't reflect this. */
344 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
345 && PT_FPSCR == (48 + 2*32 + 1))
346 u_addr = (48 + 2*32) * wordsize;
348 u_addr = PT_FPSCR * wordsize;
353 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
354 registers set mechanism, as opposed to the interface for all the
355 other registers, that stores/fetches each register individually. */
357 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
360 gdb_vsxregset_t regs;
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
365 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
370 have_ptrace_getsetvsxregs = 0;
373 perror_with_name (_("Unable to fetch VSX register"));
376 regcache_raw_supply (regcache, regno,
377 regs + (regno - tdep->ppc_vsr0_upper_regnum)
381 /* The Linux kernel ptrace interface for AltiVec registers uses the
382 registers set mechanism, as opposed to the interface for all the
383 other registers, that stores/fetches each register individually. */
385 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
392 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
394 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
399 have_ptrace_getvrregs = 0;
402 perror_with_name (_("Unable to fetch AltiVec register"));
405 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
406 long on the hardware. We deal only with the lower 4 bytes of the
407 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
408 there is no need to define an offset for it. */
409 if (regno == (tdep->ppc_vrsave_regnum - 1))
410 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
412 regcache_raw_supply (regcache, regno,
414 - tdep->ppc_vr0_regnum) * vrregsize + offset);
417 /* Fetch the top 32 bits of TID's general-purpose registers and the
418 SPE-specific registers, and place the results in EVRREGSET. If we
419 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
422 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
423 PTRACE_SETEVRREGS requests are supported is isolated here, and in
424 set_spe_registers. */
426 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
428 if (have_ptrace_getsetevrregs)
430 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
434 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
435 we just return zeros. */
437 have_ptrace_getsetevrregs = 0;
439 /* Anything else needs to be reported. */
440 perror_with_name (_("Unable to fetch SPE registers"));
444 memset (evrregset, 0, sizeof (*evrregset));
447 /* Supply values from TID for SPE-specific raw registers: the upper
448 halves of the GPRs, the accumulator, and the spefscr. REGNO must
449 be the number of an upper half register, acc, spefscr, or -1 to
450 supply the values of all registers. */
452 fetch_spe_register (struct regcache *regcache, int tid, int regno)
454 struct gdbarch *gdbarch = get_regcache_arch (regcache);
455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
456 struct gdb_evrregset_t evrregs;
458 gdb_assert (sizeof (evrregs.evr[0])
459 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
460 gdb_assert (sizeof (evrregs.acc)
461 == register_size (gdbarch, tdep->ppc_acc_regnum));
462 gdb_assert (sizeof (evrregs.spefscr)
463 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
465 get_spe_registers (tid, &evrregs);
471 for (i = 0; i < ppc_num_gprs; i++)
472 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
475 else if (tdep->ppc_ev0_upper_regnum <= regno
476 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
477 regcache_raw_supply (regcache, regno,
478 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
481 || regno == tdep->ppc_acc_regnum)
482 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
485 || regno == tdep->ppc_spefscr_regnum)
486 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
491 fetch_register (struct regcache *regcache, int tid, int regno)
493 struct gdbarch *gdbarch = get_regcache_arch (regcache);
494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
495 /* This isn't really an address. But ptrace thinks of it as one. */
496 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
497 int bytes_transferred;
498 unsigned int offset; /* Offset of registers within the u area. */
499 gdb_byte buf[MAX_REGISTER_SIZE];
501 if (altivec_register_p (gdbarch, regno))
503 /* If this is the first time through, or if it is not the first
504 time through, and we have comfirmed that there is kernel
505 support for such a ptrace request, then go and fetch the
507 if (have_ptrace_getvrregs)
509 fetch_altivec_register (regcache, tid, regno);
512 /* If we have discovered that there is no ptrace support for
513 AltiVec registers, fall through and return zeroes, because
514 regaddr will be -1 in this case. */
516 if (vsx_register_p (gdbarch, regno))
518 if (have_ptrace_getsetvsxregs)
520 fetch_vsx_register (regcache, tid, regno);
524 else if (spe_register_p (gdbarch, regno))
526 fetch_spe_register (regcache, tid, regno);
532 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
533 regcache_raw_supply (regcache, regno, buf);
537 /* Read the raw register using sizeof(long) sized chunks. On a
538 32-bit platform, 64-bit floating-point registers will require two
540 for (bytes_transferred = 0;
541 bytes_transferred < register_size (gdbarch, regno);
542 bytes_transferred += sizeof (long))
547 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
548 regaddr += sizeof (long);
552 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
553 gdbarch_register_name (gdbarch, regno), regno);
554 perror_with_name (message);
556 memcpy (&buf[bytes_transferred], &l, sizeof (l));
559 /* Now supply the register. Keep in mind that the regcache's idea
560 of the register's size may not be a multiple of sizeof
562 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
564 /* Little-endian values are always found at the left end of the
565 bytes transferred. */
566 regcache_raw_supply (regcache, regno, buf);
568 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
570 /* Big-endian values are found at the right end of the bytes
572 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
573 regcache_raw_supply (regcache, regno, buf + padding);
576 internal_error (__FILE__, __LINE__,
577 _("fetch_register: unexpected byte order: %d"),
578 gdbarch_byte_order (gdbarch));
582 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
585 struct gdbarch *gdbarch = get_regcache_arch (regcache);
586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
587 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
589 for (i = 0; i < ppc_num_vshrs; i++)
591 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
592 *vsxregsetp + i * vsxregsize);
597 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
600 struct gdbarch *gdbarch = get_regcache_arch (regcache);
601 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
602 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
603 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
604 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
606 for (i = 0; i < num_of_vrregs; i++)
608 /* The last 2 registers of this set are only 32 bit long, not
609 128. However an offset is necessary only for VSCR because it
610 occupies a whole vector, while VRSAVE occupies a full 4 bytes
612 if (i == (num_of_vrregs - 2))
613 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
614 *vrregsetp + i * vrregsize + offset);
616 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
617 *vrregsetp + i * vrregsize);
622 fetch_vsx_registers (struct regcache *regcache, int tid)
625 gdb_vsxregset_t regs;
627 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
632 have_ptrace_getsetvsxregs = 0;
635 perror_with_name (_("Unable to fetch VSX registers"));
637 supply_vsxregset (regcache, ®s);
641 fetch_altivec_registers (struct regcache *regcache, int tid)
646 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
651 have_ptrace_getvrregs = 0;
654 perror_with_name (_("Unable to fetch AltiVec registers"));
656 supply_vrregset (regcache, ®s);
659 /* This function actually issues the request to ptrace, telling
660 it to get all general-purpose registers and put them into the
663 If the ptrace request does not exist, this function returns 0
664 and properly sets the have_ptrace_* flag. If the request fails,
665 this function calls perror_with_name. Otherwise, if the request
666 succeeds, then the regcache gets filled and 1 is returned. */
668 fetch_all_gp_regs (struct regcache *regcache, int tid)
670 struct gdbarch *gdbarch = get_regcache_arch (regcache);
671 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
672 gdb_gregset_t gregset;
674 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
678 have_ptrace_getsetregs = 0;
681 perror_with_name (_("Couldn't get general-purpose registers."));
684 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
689 /* This is a wrapper for the fetch_all_gp_regs function. It is
690 responsible for verifying if this target has the ptrace request
691 that can be used to fetch all general-purpose registers at one
692 shot. If it doesn't, then we should fetch them using the
693 old-fashioned way, which is to iterate over the registers and
694 request them one by one. */
696 fetch_gp_regs (struct regcache *regcache, int tid)
698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
702 if (have_ptrace_getsetregs)
703 if (fetch_all_gp_regs (regcache, tid))
706 /* If we've hit this point, it doesn't really matter which
707 architecture we are using. We just need to read the
708 registers in the "old-fashioned way". */
709 for (i = 0; i < ppc_num_gprs; i++)
710 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
713 /* This function actually issues the request to ptrace, telling
714 it to get all floating-point registers and put them into the
717 If the ptrace request does not exist, this function returns 0
718 and properly sets the have_ptrace_* flag. If the request fails,
719 this function calls perror_with_name. Otherwise, if the request
720 succeeds, then the regcache gets filled and 1 is returned. */
722 fetch_all_fp_regs (struct regcache *regcache, int tid)
724 gdb_fpregset_t fpregs;
726 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
730 have_ptrace_getsetfpregs = 0;
733 perror_with_name (_("Couldn't get floating-point registers."));
736 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
741 /* This is a wrapper for the fetch_all_fp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all floating-point registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
748 fetch_fp_regs (struct regcache *regcache, int tid)
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
754 if (have_ptrace_getsetfpregs)
755 if (fetch_all_fp_regs (regcache, tid))
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_fprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
766 fetch_ppc_registers (struct regcache *regcache, int tid)
769 struct gdbarch *gdbarch = get_regcache_arch (regcache);
770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
772 fetch_gp_regs (regcache, tid);
773 if (tdep->ppc_fp0_regnum >= 0)
774 fetch_fp_regs (regcache, tid);
775 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
776 if (tdep->ppc_ps_regnum != -1)
777 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
778 if (tdep->ppc_cr_regnum != -1)
779 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
780 if (tdep->ppc_lr_regnum != -1)
781 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
782 if (tdep->ppc_ctr_regnum != -1)
783 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
784 if (tdep->ppc_xer_regnum != -1)
785 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
786 if (tdep->ppc_mq_regnum != -1)
787 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
788 if (ppc_linux_trap_reg_p (gdbarch))
790 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
791 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
793 if (tdep->ppc_fpscr_regnum != -1)
794 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
795 if (have_ptrace_getvrregs)
796 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
797 fetch_altivec_registers (regcache, tid);
798 if (have_ptrace_getsetvsxregs)
799 if (tdep->ppc_vsr0_upper_regnum != -1)
800 fetch_vsx_registers (regcache, tid);
801 if (tdep->ppc_ev0_upper_regnum >= 0)
802 fetch_spe_register (regcache, tid, -1);
805 /* Fetch registers from the child process. Fetch all registers if
806 regno == -1, otherwise fetch all general registers or all floating
807 point registers depending upon the value of regno. */
809 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
810 struct regcache *regcache, int regno)
812 /* Overload thread id onto process id. */
813 int tid = ptid_get_lwp (inferior_ptid);
815 /* No thread id, just use process id. */
817 tid = ptid_get_pid (inferior_ptid);
820 fetch_ppc_registers (regcache, tid);
822 fetch_register (regcache, tid, regno);
825 /* Store one VSX register. */
827 store_vsx_register (const struct regcache *regcache, int tid, int regno)
830 gdb_vsxregset_t regs;
831 struct gdbarch *gdbarch = get_regcache_arch (regcache);
832 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
833 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
835 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
840 have_ptrace_getsetvsxregs = 0;
843 perror_with_name (_("Unable to fetch VSX register"));
846 regcache_raw_collect (regcache, regno, regs +
847 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
849 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s);
851 perror_with_name (_("Unable to store VSX register"));
854 /* Store one register. */
856 store_altivec_register (const struct regcache *regcache, int tid, int regno)
861 struct gdbarch *gdbarch = get_regcache_arch (regcache);
862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
863 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
865 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
870 have_ptrace_getvrregs = 0;
873 perror_with_name (_("Unable to fetch AltiVec register"));
876 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
877 long on the hardware. */
878 if (regno == (tdep->ppc_vrsave_regnum - 1))
879 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
881 regcache_raw_collect (regcache, regno,
883 - tdep->ppc_vr0_regnum) * vrregsize + offset);
885 ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
887 perror_with_name (_("Unable to store AltiVec register"));
890 /* Assuming TID referrs to an SPE process, set the top halves of TID's
891 general-purpose registers and its SPE-specific registers to the
892 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
895 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
896 PTRACE_SETEVRREGS requests are supported is isolated here, and in
897 get_spe_registers. */
899 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
901 if (have_ptrace_getsetevrregs)
903 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
907 /* EIO means that the PTRACE_SETEVRREGS request isn't
908 supported; we fail silently, and don't try the call
911 have_ptrace_getsetevrregs = 0;
913 /* Anything else needs to be reported. */
914 perror_with_name (_("Unable to set SPE registers"));
919 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
920 If REGNO is -1, write the values of all the SPE-specific
923 store_spe_register (const struct regcache *regcache, int tid, int regno)
925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
927 struct gdb_evrregset_t evrregs;
929 gdb_assert (sizeof (evrregs.evr[0])
930 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
931 gdb_assert (sizeof (evrregs.acc)
932 == register_size (gdbarch, tdep->ppc_acc_regnum));
933 gdb_assert (sizeof (evrregs.spefscr)
934 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
937 /* Since we're going to write out every register, the code below
938 should store to every field of evrregs; if that doesn't happen,
939 make it obvious by initializing it with suspicious values. */
940 memset (&evrregs, 42, sizeof (evrregs));
942 /* We can only read and write the entire EVR register set at a
943 time, so to write just a single register, we do a
944 read-modify-write maneuver. */
945 get_spe_registers (tid, &evrregs);
951 for (i = 0; i < ppc_num_gprs; i++)
952 regcache_raw_collect (regcache,
953 tdep->ppc_ev0_upper_regnum + i,
956 else if (tdep->ppc_ev0_upper_regnum <= regno
957 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
958 regcache_raw_collect (regcache, regno,
959 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
962 || regno == tdep->ppc_acc_regnum)
963 regcache_raw_collect (regcache,
964 tdep->ppc_acc_regnum,
968 || regno == tdep->ppc_spefscr_regnum)
969 regcache_raw_collect (regcache,
970 tdep->ppc_spefscr_regnum,
973 /* Write back the modified register set. */
974 set_spe_registers (tid, &evrregs);
978 store_register (const struct regcache *regcache, int tid, int regno)
980 struct gdbarch *gdbarch = get_regcache_arch (regcache);
981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
982 /* This isn't really an address. But ptrace thinks of it as one. */
983 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
985 size_t bytes_to_transfer;
986 gdb_byte buf[MAX_REGISTER_SIZE];
988 if (altivec_register_p (gdbarch, regno))
990 store_altivec_register (regcache, tid, regno);
993 if (vsx_register_p (gdbarch, regno))
995 store_vsx_register (regcache, tid, regno);
998 else if (spe_register_p (gdbarch, regno))
1000 store_spe_register (regcache, tid, regno);
1007 /* First collect the register. Keep in mind that the regcache's
1008 idea of the register's size may not be a multiple of sizeof
1010 memset (buf, 0, sizeof buf);
1011 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1012 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1014 /* Little-endian values always sit at the left end of the buffer. */
1015 regcache_raw_collect (regcache, regno, buf);
1017 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1019 /* Big-endian values sit at the right end of the buffer. */
1020 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1021 regcache_raw_collect (regcache, regno, buf + padding);
1024 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1028 memcpy (&l, &buf[i], sizeof (l));
1030 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1031 regaddr += sizeof (long);
1034 && (regno == tdep->ppc_fpscr_regnum
1035 || regno == PPC_ORIG_R3_REGNUM
1036 || regno == PPC_TRAP_REGNUM))
1038 /* Some older kernel versions don't allow fpscr, orig_r3
1039 or trap to be written. */
1046 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1047 gdbarch_register_name (gdbarch, regno), regno);
1048 perror_with_name (message);
1054 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1057 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1059 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1061 for (i = 0; i < ppc_num_vshrs; i++)
1062 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1063 *vsxregsetp + i * vsxregsize);
1067 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1070 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1072 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1073 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1074 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1076 for (i = 0; i < num_of_vrregs; i++)
1078 /* The last 2 registers of this set are only 32 bit long, not
1079 128, but only VSCR is fetched as a 16 bytes quantity. */
1080 if (i == (num_of_vrregs - 2))
1081 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1082 *vrregsetp + i * vrregsize + offset);
1084 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1085 *vrregsetp + i * vrregsize);
1090 store_vsx_registers (const struct regcache *regcache, int tid)
1093 gdb_vsxregset_t regs;
1095 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
1100 have_ptrace_getsetvsxregs = 0;
1103 perror_with_name (_("Couldn't get VSX registers"));
1106 fill_vsxregset (regcache, ®s);
1108 if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0)
1109 perror_with_name (_("Couldn't write VSX registers"));
1113 store_altivec_registers (const struct regcache *regcache, int tid)
1116 gdb_vrregset_t regs;
1118 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
1123 have_ptrace_getvrregs = 0;
1126 perror_with_name (_("Couldn't get AltiVec registers"));
1129 fill_vrregset (regcache, ®s);
1131 if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
1132 perror_with_name (_("Couldn't write AltiVec registers"));
1135 /* This function actually issues the request to ptrace, telling
1136 it to store all general-purpose registers present in the specified
1139 If the ptrace request does not exist, this function returns 0
1140 and properly sets the have_ptrace_* flag. If the request fails,
1141 this function calls perror_with_name. Otherwise, if the request
1142 succeeds, then the regcache is stored and 1 is returned. */
1144 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1148 gdb_gregset_t gregset;
1150 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1154 have_ptrace_getsetregs = 0;
1157 perror_with_name (_("Couldn't get general-purpose registers."));
1160 fill_gregset (regcache, &gregset, regno);
1162 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1166 have_ptrace_getsetregs = 0;
1169 perror_with_name (_("Couldn't set general-purpose registers."));
1175 /* This is a wrapper for the store_all_gp_regs function. It is
1176 responsible for verifying if this target has the ptrace request
1177 that can be used to store all general-purpose registers at one
1178 shot. If it doesn't, then we should store them using the
1179 old-fashioned way, which is to iterate over the registers and
1180 store them one by one. */
1182 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1184 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1188 if (have_ptrace_getsetregs)
1189 if (store_all_gp_regs (regcache, tid, regno))
1192 /* If we hit this point, it doesn't really matter which
1193 architecture we are using. We just need to store the
1194 registers in the "old-fashioned way". */
1195 for (i = 0; i < ppc_num_gprs; i++)
1196 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1199 /* This function actually issues the request to ptrace, telling
1200 it to store all floating-point registers present in the specified
1203 If the ptrace request does not exist, this function returns 0
1204 and properly sets the have_ptrace_* flag. If the request fails,
1205 this function calls perror_with_name. Otherwise, if the request
1206 succeeds, then the regcache is stored and 1 is returned. */
1208 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1210 gdb_fpregset_t fpregs;
1212 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1216 have_ptrace_getsetfpregs = 0;
1219 perror_with_name (_("Couldn't get floating-point registers."));
1222 fill_fpregset (regcache, &fpregs, regno);
1224 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1228 have_ptrace_getsetfpregs = 0;
1231 perror_with_name (_("Couldn't set floating-point registers."));
1237 /* This is a wrapper for the store_all_fp_regs function. It is
1238 responsible for verifying if this target has the ptrace request
1239 that can be used to store all floating-point registers at one
1240 shot. If it doesn't, then we should store them using the
1241 old-fashioned way, which is to iterate over the registers and
1242 store them one by one. */
1244 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1250 if (have_ptrace_getsetfpregs)
1251 if (store_all_fp_regs (regcache, tid, regno))
1254 /* If we hit this point, it doesn't really matter which
1255 architecture we are using. We just need to store the
1256 registers in the "old-fashioned way". */
1257 for (i = 0; i < ppc_num_fprs; i++)
1258 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1262 store_ppc_registers (const struct regcache *regcache, int tid)
1265 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1268 store_gp_regs (regcache, tid, -1);
1269 if (tdep->ppc_fp0_regnum >= 0)
1270 store_fp_regs (regcache, tid, -1);
1271 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1272 if (tdep->ppc_ps_regnum != -1)
1273 store_register (regcache, tid, tdep->ppc_ps_regnum);
1274 if (tdep->ppc_cr_regnum != -1)
1275 store_register (regcache, tid, tdep->ppc_cr_regnum);
1276 if (tdep->ppc_lr_regnum != -1)
1277 store_register (regcache, tid, tdep->ppc_lr_regnum);
1278 if (tdep->ppc_ctr_regnum != -1)
1279 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1280 if (tdep->ppc_xer_regnum != -1)
1281 store_register (regcache, tid, tdep->ppc_xer_regnum);
1282 if (tdep->ppc_mq_regnum != -1)
1283 store_register (regcache, tid, tdep->ppc_mq_regnum);
1284 if (tdep->ppc_fpscr_regnum != -1)
1285 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1286 if (ppc_linux_trap_reg_p (gdbarch))
1288 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1289 store_register (regcache, tid, PPC_TRAP_REGNUM);
1291 if (have_ptrace_getvrregs)
1292 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1293 store_altivec_registers (regcache, tid);
1294 if (have_ptrace_getsetvsxregs)
1295 if (tdep->ppc_vsr0_upper_regnum != -1)
1296 store_vsx_registers (regcache, tid);
1297 if (tdep->ppc_ev0_upper_regnum >= 0)
1298 store_spe_register (regcache, tid, -1);
1301 /* Fetch the AT_HWCAP entry from the aux vector. */
1302 static unsigned long
1303 ppc_linux_get_hwcap (void)
1307 if (target_auxv_search (¤t_target, AT_HWCAP, &field))
1308 return (unsigned long) field;
1313 /* The cached DABR value, to install in new threads.
1314 This variable is used when the PowerPC HWDEBUG ptrace
1315 interface is not available. */
1316 static long saved_dabr_value;
1318 /* Global structure that will store information about the available
1319 features provided by the PowerPC HWDEBUG ptrace interface. */
1320 static struct ppc_debug_info hwdebug_info;
1322 /* Global variable that holds the maximum number of slots that the
1323 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1325 static size_t max_slots_number = 0;
1327 struct hw_break_tuple
1330 struct ppc_hw_breakpoint *hw_break;
1333 /* This is an internal VEC created to store information about *points inserted
1334 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1336 typedef struct thread_points
1338 /* The TID to which this *point relates. */
1340 /* Information about the *point, such as its address, type, etc.
1342 Each element inside this vector corresponds to a hardware
1343 breakpoint or watchpoint in the thread represented by TID. The maximum
1344 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1345 the tuple is NULL, then the position in the vector is free. */
1346 struct hw_break_tuple *hw_breaks;
1348 DEF_VEC_P (thread_points_p);
1350 VEC(thread_points_p) *ppc_threads = NULL;
1352 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1354 #define PPC_DEBUG_CURRENT_VERSION 1
1356 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1358 have_ptrace_hwdebug_interface (void)
1360 static int have_ptrace_hwdebug_interface = -1;
1362 if (have_ptrace_hwdebug_interface == -1)
1366 tid = ptid_get_lwp (inferior_ptid);
1368 tid = ptid_get_pid (inferior_ptid);
1370 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1371 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1373 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1374 provides any supported feature. */
1375 if (hwdebug_info.features != 0)
1377 have_ptrace_hwdebug_interface = 1;
1378 max_slots_number = hwdebug_info.num_instruction_bps
1379 + hwdebug_info.num_data_bps
1380 + hwdebug_info.num_condition_regs;
1381 return have_ptrace_hwdebug_interface;
1384 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1385 have_ptrace_hwdebug_interface = 0;
1386 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1389 return have_ptrace_hwdebug_interface;
1393 ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
1394 enum bptype type, int cnt, int ot)
1396 int total_hw_wp, total_hw_bp;
1398 if (have_ptrace_hwdebug_interface ())
1400 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1401 available hardware watchpoints and breakpoints is stored at the
1402 hwdebug_info struct. */
1403 total_hw_bp = hwdebug_info.num_instruction_bps;
1404 total_hw_wp = hwdebug_info.num_data_bps;
1408 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1409 consider having 1 hardware watchpoint and no hardware breakpoints. */
1414 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1415 || type == bp_access_watchpoint || type == bp_watchpoint)
1417 if (cnt + ot > total_hw_wp)
1420 else if (type == bp_hardware_breakpoint)
1422 if (total_hw_bp == 0)
1424 /* No hardware breakpoint support. */
1427 if (cnt > total_hw_bp)
1431 if (!have_ptrace_hwdebug_interface ())
1434 ptid_t ptid = inferior_ptid;
1436 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1437 and whether the target has DABR. If either answer is no, the
1438 ptrace call will return -1. Fail in that case. */
1439 tid = ptid_get_lwp (ptid);
1441 tid = ptid_get_pid (ptid);
1443 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1451 ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1452 CORE_ADDR addr, int len)
1454 /* Handle sub-8-byte quantities. */
1458 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1459 restrictions for watchpoints in the processors. In that case, we use that
1460 information to determine the hardcoded watchable region for
1462 if (have_ptrace_hwdebug_interface ())
1465 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1466 watchpoints and can watch any access within an arbitrary memory
1467 region. This is useful to watch arrays and structs, for instance. It
1468 takes two hardware watchpoints though. */
1470 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1471 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1473 /* Check if the processor provides DAWR interface. */
1474 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1475 /* DAWR interface allows to watch up to 512 byte wide ranges which
1476 can't cross a 512 byte boundary. */
1479 region_size = hwdebug_info.data_bp_alignment;
1480 /* Server processors provide one hardware watchpoint and addr+len should
1481 fall in the watchable region provided by the ptrace interface. */
1483 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1486 /* addr+len must fall in the 8 byte watchable region for DABR-based
1487 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1488 ptrace interface, DAC-based processors (i.e., embedded processors) will
1489 use addresses aligned to 4-bytes due to the way the read/write flags are
1490 passed in the old ptrace interface. */
1491 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1492 && (addr + len) > (addr & ~3) + 4)
1493 || (addr + len) > (addr & ~7) + 8)
1499 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1501 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1503 return (a->trigger_type == b->trigger_type
1504 && a->addr_mode == b->addr_mode
1505 && a->condition_mode == b->condition_mode
1506 && a->addr == b->addr
1507 && a->addr2 == b->addr2
1508 && a->condition_value == b->condition_value);
1511 /* This function can be used to retrieve a thread_points by the TID of the
1512 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1513 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1514 provided TID will be created and returned. */
1515 static struct thread_points *
1516 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1519 struct thread_points *t;
1521 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1527 /* Do we need to allocate a new point_item
1528 if the wanted one does not exist? */
1531 t = XNEW (struct thread_points);
1532 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
1534 VEC_safe_push (thread_points_p, ppc_threads, t);
1540 /* This function is a generic wrapper that is responsible for inserting a
1541 *point (i.e., calling `ptrace' in order to issue the request to the
1542 kernel) and registering it internally in GDB. */
1544 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1548 struct ppc_hw_breakpoint *p = XNEW (struct ppc_hw_breakpoint);
1549 struct hw_break_tuple *hw_breaks;
1550 struct cleanup *c = make_cleanup (xfree, p);
1551 struct thread_points *t;
1552 struct hw_break_tuple *tuple;
1554 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1557 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1559 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1561 /* Everything went fine, so we have to register this *point. */
1562 t = hwdebug_find_thread_points_by_tid (tid, 1);
1563 gdb_assert (t != NULL);
1564 hw_breaks = t->hw_breaks;
1566 /* Find a free element in the hw_breaks vector. */
1567 for (i = 0; i < max_slots_number; i++)
1568 if (hw_breaks[i].hw_break == NULL)
1570 hw_breaks[i].slot = slot;
1571 hw_breaks[i].hw_break = p;
1575 gdb_assert (i != max_slots_number);
1577 discard_cleanups (c);
1580 /* This function is a generic wrapper that is responsible for removing a
1581 *point (i.e., calling `ptrace' in order to issue the request to the
1582 kernel), and unregistering it internally at GDB. */
1584 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1587 struct hw_break_tuple *hw_breaks;
1588 struct thread_points *t;
1590 t = hwdebug_find_thread_points_by_tid (tid, 0);
1591 gdb_assert (t != NULL);
1592 hw_breaks = t->hw_breaks;
1594 for (i = 0; i < max_slots_number; i++)
1595 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1598 gdb_assert (i != max_slots_number);
1600 /* We have to ignore ENOENT errors because the kernel implements hardware
1601 breakpoints/watchpoints as "one-shot", that is, they are automatically
1602 deleted when hit. */
1604 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1605 if (errno != ENOENT)
1606 perror_with_name (_("Unexpected error deleting "
1607 "breakpoint or watchpoint"));
1609 xfree (hw_breaks[i].hw_break);
1610 hw_breaks[i].hw_break = NULL;
1613 /* Return the number of registers needed for a ranged breakpoint. */
1616 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1618 return ((have_ptrace_hwdebug_interface ()
1619 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1623 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1624 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1627 ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1628 struct gdbarch *gdbarch,
1629 struct bp_target_info *bp_tgt)
1631 struct lwp_info *lp;
1632 struct ppc_hw_breakpoint p;
1634 if (!have_ptrace_hwdebug_interface ())
1637 p.version = PPC_DEBUG_CURRENT_VERSION;
1638 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1639 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1640 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1641 p.condition_value = 0;
1645 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1647 /* The breakpoint will trigger if the address of the instruction is
1648 within the defined range, as follows: p.addr <= address < p.addr2. */
1649 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1653 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1658 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1664 ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1665 struct gdbarch *gdbarch,
1666 struct bp_target_info *bp_tgt)
1668 struct lwp_info *lp;
1669 struct ppc_hw_breakpoint p;
1671 if (!have_ptrace_hwdebug_interface ())
1674 p.version = PPC_DEBUG_CURRENT_VERSION;
1675 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1676 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1677 p.addr = (uint64_t) bp_tgt->placed_address;
1678 p.condition_value = 0;
1682 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1684 /* The breakpoint will trigger if the address of the instruction is within
1685 the defined range, as follows: p.addr <= address < p.addr2. */
1686 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1690 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1695 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1701 get_trigger_type (enum target_hw_bp_type type)
1705 if (type == hw_read)
1706 t = PPC_BREAKPOINT_TRIGGER_READ;
1707 else if (type == hw_write)
1708 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1710 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1715 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1716 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1717 or hw_access for an access watchpoint. Returns 0 on success and throws
1718 an error on failure. */
1721 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1722 CORE_ADDR mask, enum target_hw_bp_type rw)
1724 struct lwp_info *lp;
1725 struct ppc_hw_breakpoint p;
1727 gdb_assert (have_ptrace_hwdebug_interface ());
1729 p.version = PPC_DEBUG_CURRENT_VERSION;
1730 p.trigger_type = get_trigger_type (rw);
1731 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1732 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1735 p.condition_value = 0;
1738 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1743 /* Remove a masked watchpoint at ADDR with the mask MASK.
1744 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1745 or hw_access for an access watchpoint. Returns 0 on success and throws
1746 an error on failure. */
1749 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1750 CORE_ADDR mask, enum target_hw_bp_type rw)
1752 struct lwp_info *lp;
1753 struct ppc_hw_breakpoint p;
1755 gdb_assert (have_ptrace_hwdebug_interface ());
1757 p.version = PPC_DEBUG_CURRENT_VERSION;
1758 p.trigger_type = get_trigger_type (rw);
1759 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1760 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1763 p.condition_value = 0;
1766 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1771 /* Check whether we have at least one free DVC register. */
1773 can_use_watchpoint_cond_accel (void)
1775 struct thread_points *p;
1776 int tid = ptid_get_lwp (inferior_ptid);
1777 int cnt = hwdebug_info.num_condition_regs, i;
1778 CORE_ADDR tmp_value;
1780 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1783 p = hwdebug_find_thread_points_by_tid (tid, 0);
1787 for (i = 0; i < max_slots_number; i++)
1788 if (p->hw_breaks[i].hw_break != NULL
1789 && (p->hw_breaks[i].hw_break->condition_mode
1790 != PPC_BREAKPOINT_CONDITION_NONE))
1793 /* There are no available slots now. */
1801 /* Calculate the enable bits and the contents of the Data Value Compare
1802 debug register present in BookE processors.
1804 ADDR is the address to be watched, LEN is the length of watched data
1805 and DATA_VALUE is the value which will trigger the watchpoint.
1806 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1807 CONDITION_VALUE will hold the value which should be put in the
1810 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1811 uint32_t *condition_mode, uint64_t *condition_value)
1813 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1814 rightmost_enabled_byte;
1815 CORE_ADDR addr_end_data, addr_end_dvc;
1817 /* The DVC register compares bytes within fixed-length windows which
1818 are word-aligned, with length equal to that of the DVC register.
1819 We need to calculate where our watch region is relative to that
1820 window and enable comparison of the bytes which fall within it. */
1822 align_offset = addr % hwdebug_info.sizeof_condition;
1823 addr_end_data = addr + len;
1824 addr_end_dvc = (addr - align_offset
1825 + hwdebug_info.sizeof_condition);
1826 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1827 addr_end_data - addr_end_dvc : 0;
1828 num_byte_enable = len - num_bytes_off_dvc;
1829 /* Here, bytes are numbered from right to left. */
1830 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1831 addr_end_dvc - addr_end_data : 0;
1833 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1834 for (i = 0; i < num_byte_enable; i++)
1836 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1838 /* Now we need to match the position within the DVC of the comparison
1839 value with where the watch region is relative to the window
1840 (i.e., the ALIGN_OFFSET). */
1842 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1843 << rightmost_enabled_byte * 8);
1846 /* Return the number of memory locations that need to be accessed to
1847 evaluate the expression which generated the given value chain.
1848 Returns -1 if there's any register access involved, or if there are
1849 other kinds of values which are not acceptable in a condition
1850 expression (e.g., lval_computed or lval_internalvar). */
1852 num_memory_accesses (struct value *v)
1854 int found_memory_cnt = 0;
1855 struct value *head = v;
1857 /* The idea here is that evaluating an expression generates a series
1858 of values, one holding the value of every subexpression. (The
1859 expression a*b+c has five subexpressions: a, b, a*b, c, and
1860 a*b+c.) GDB's values hold almost enough information to establish
1861 the criteria given above --- they identify memory lvalues,
1862 register lvalues, computed values, etcetera. So we can evaluate
1863 the expression, and then scan the chain of values that leaves
1864 behind to determine the memory locations involved in the evaluation
1867 However, I don't think that the values returned by inferior
1868 function calls are special in any way. So this function may not
1869 notice that an expression contains an inferior function call.
1872 for (; v; v = value_next (v))
1874 /* Constants and values from the history are fine. */
1875 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1877 else if (VALUE_LVAL (v) == lval_memory)
1879 /* A lazy memory lvalue is one that GDB never needed to fetch;
1880 we either just used its address (e.g., `a' in `a.b') or
1881 we never needed it at all (e.g., `a' in `a,b'). */
1882 if (!value_lazy (v))
1885 /* Other kinds of values are not fine. */
1890 return found_memory_cnt;
1893 /* Verifies whether the expression COND can be implemented using the
1894 DVC (Data Value Compare) register in BookE processors. The expression
1895 must test the watch value for equality with a constant expression.
1896 If the function returns 1, DATA_VALUE will contain the constant against
1897 which the watch value should be compared and LEN will contain the size
1900 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1901 CORE_ADDR *data_value, int *len)
1903 int pc = 1, num_accesses_left, num_accesses_right;
1904 struct value *left_val, *right_val, *left_chain, *right_chain;
1906 if (cond->elts[0].opcode != BINOP_EQUAL)
1909 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1910 num_accesses_left = num_memory_accesses (left_chain);
1912 if (left_val == NULL || num_accesses_left < 0)
1914 free_value_chain (left_chain);
1919 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1920 num_accesses_right = num_memory_accesses (right_chain);
1922 if (right_val == NULL || num_accesses_right < 0)
1924 free_value_chain (left_chain);
1925 free_value_chain (right_chain);
1930 if (num_accesses_left == 1 && num_accesses_right == 0
1931 && VALUE_LVAL (left_val) == lval_memory
1932 && value_address (left_val) == watch_addr)
1934 *data_value = value_as_long (right_val);
1936 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1937 the same type as the memory region referenced by LEFT_VAL. */
1938 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1940 else if (num_accesses_left == 0 && num_accesses_right == 1
1941 && VALUE_LVAL (right_val) == lval_memory
1942 && value_address (right_val) == watch_addr)
1944 *data_value = value_as_long (left_val);
1946 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1947 the same type as the memory region referenced by RIGHT_VAL. */
1948 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1952 free_value_chain (left_chain);
1953 free_value_chain (right_chain);
1958 free_value_chain (left_chain);
1959 free_value_chain (right_chain);
1964 /* Return non-zero if the target is capable of using hardware to evaluate
1965 the condition expression, thus only triggering the watchpoint when it is
1968 ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
1969 CORE_ADDR addr, int len, int rw,
1970 struct expression *cond)
1972 CORE_ADDR data_value;
1974 return (have_ptrace_hwdebug_interface ()
1975 && hwdebug_info.num_condition_regs > 0
1976 && check_condition (addr, cond, &data_value, &len));
1979 /* Set up P with the parameters necessary to request a watchpoint covering
1980 LEN bytes starting at ADDR and if possible with condition expression COND
1981 evaluated by hardware. INSERT tells if we are creating a request for
1982 inserting or removing the watchpoint. */
1985 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
1986 int len, enum target_hw_bp_type type,
1987 struct expression *cond, int insert)
1990 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
1993 CORE_ADDR data_value;
1995 use_condition = (insert? can_use_watchpoint_cond_accel ()
1996 : hwdebug_info.num_condition_regs > 0);
1997 if (cond && use_condition && check_condition (addr, cond,
1999 calculate_dvc (addr, len, data_value, &p->condition_mode,
2000 &p->condition_value);
2003 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2004 p->condition_value = 0;
2007 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2012 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2013 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2014 p->condition_value = 0;
2016 /* The watchpoint will trigger if the address of the memory access is
2017 within the defined range, as follows: p->addr <= address < p->addr2.
2019 Note that the above sentence just documents how ptrace interprets
2020 its arguments; the watchpoint is set to watch the range defined by
2021 the user _inclusively_, as specified by the user interface. */
2022 p->addr2 = (uint64_t) addr + len;
2025 p->version = PPC_DEBUG_CURRENT_VERSION;
2026 p->trigger_type = get_trigger_type (type);
2027 p->addr = (uint64_t) addr;
2031 ppc_linux_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
2032 enum target_hw_bp_type type,
2033 struct expression *cond)
2035 struct lwp_info *lp;
2038 if (have_ptrace_hwdebug_interface ())
2040 struct ppc_hw_breakpoint p;
2042 create_watchpoint_request (&p, addr, len, type, cond, 1);
2045 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2052 long read_mode, write_mode;
2054 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2056 /* PowerPC 440 requires only the read/write flags to be passed
2063 /* PowerPC 970 and other DABR-based processors are required to pass
2064 the Breakpoint Translation bit together with the flags. */
2069 dabr_value = addr & ~(read_mode | write_mode);
2073 /* Set read and translate bits. */
2074 dabr_value |= read_mode;
2077 /* Set write and translate bits. */
2078 dabr_value |= write_mode;
2081 /* Set read, write and translate bits. */
2082 dabr_value |= read_mode | write_mode;
2086 saved_dabr_value = dabr_value;
2089 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2090 saved_dabr_value) < 0)
2100 ppc_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
2101 enum target_hw_bp_type type,
2102 struct expression *cond)
2104 struct lwp_info *lp;
2107 if (have_ptrace_hwdebug_interface ())
2109 struct ppc_hw_breakpoint p;
2111 create_watchpoint_request (&p, addr, len, type, cond, 0);
2114 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2120 saved_dabr_value = 0;
2122 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2123 saved_dabr_value) < 0)
2133 ppc_linux_new_thread (struct lwp_info *lp)
2135 int tid = ptid_get_lwp (lp->ptid);
2137 if (have_ptrace_hwdebug_interface ())
2140 struct thread_points *p;
2141 struct hw_break_tuple *hw_breaks;
2143 if (VEC_empty (thread_points_p, ppc_threads))
2146 /* Get a list of breakpoints from any thread. */
2147 p = VEC_last (thread_points_p, ppc_threads);
2148 hw_breaks = p->hw_breaks;
2150 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2151 for (i = 0; i < max_slots_number; i++)
2152 if (hw_breaks[i].hw_break)
2154 /* Older kernels did not make new threads inherit their parent
2155 thread's debug state, so we always clear the slot and replicate
2156 the debug state ourselves, ensuring compatibility with all
2159 /* The ppc debug resource accounting is done through "slots".
2160 Ask the kernel the deallocate this specific *point's slot. */
2161 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2163 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2167 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2171 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2174 int tid = ptid_get_lwp (tp->ptid);
2175 struct hw_break_tuple *hw_breaks;
2176 struct thread_points *t = NULL, *p;
2178 if (!have_ptrace_hwdebug_interface ())
2181 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2191 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2193 hw_breaks = t->hw_breaks;
2195 for (i = 0; i < max_slots_number; i++)
2196 if (hw_breaks[i].hw_break)
2197 xfree (hw_breaks[i].hw_break);
2199 xfree (t->hw_breaks);
2204 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2208 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2211 if (siginfo.si_signo != SIGTRAP
2212 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2215 if (have_ptrace_hwdebug_interface ())
2218 struct thread_points *t;
2219 struct hw_break_tuple *hw_breaks;
2220 /* The index (or slot) of the *point is passed in the si_errno field. */
2221 int slot = siginfo.si_errno;
2223 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2225 /* Find out if this *point is a hardware breakpoint.
2226 If so, we should return 0. */
2229 hw_breaks = t->hw_breaks;
2230 for (i = 0; i < max_slots_number; i++)
2231 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2232 && hw_breaks[i].hw_break->trigger_type
2233 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2238 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2243 ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
2246 return ppc_linux_stopped_data_address (ops, &addr);
2250 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2252 CORE_ADDR start, int length)
2256 if (have_ptrace_hwdebug_interface ()
2257 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2258 return start <= addr && start + length >= addr;
2259 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2266 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2267 return start <= addr + mask && start + length - 1 >= addr;
2270 /* Return the number of registers needed for a masked hardware watchpoint. */
2273 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2274 CORE_ADDR addr, CORE_ADDR mask)
2276 if (!have_ptrace_hwdebug_interface ()
2277 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2279 else if ((mask & 0xC0000000) != 0xC0000000)
2281 warning (_("The given mask covers kernel address space "
2282 "and cannot be used.\n"));
2291 ppc_linux_store_inferior_registers (struct target_ops *ops,
2292 struct regcache *regcache, int regno)
2294 /* Overload thread id onto process id. */
2295 int tid = ptid_get_lwp (inferior_ptid);
2297 /* No thread id, just use process id. */
2299 tid = ptid_get_pid (inferior_ptid);
2302 store_register (regcache, tid, regno);
2304 store_ppc_registers (regcache, tid);
2307 /* Functions for transferring registers between a gregset_t or fpregset_t
2308 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2309 by the ptrace interface, not the current program's ABI. Eg. if a
2310 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2311 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2314 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2316 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2318 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2322 fill_gregset (const struct regcache *regcache,
2323 gdb_gregset_t *gregsetp, int regno)
2325 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2328 memset (gregsetp, 0, sizeof (*gregsetp));
2329 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2333 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2335 const struct regset *regset = ppc_linux_fpregset ();
2337 ppc_supply_fpregset (regset, regcache, -1,
2338 fpregsetp, sizeof (*fpregsetp));
2342 fill_fpregset (const struct regcache *regcache,
2343 gdb_fpregset_t *fpregsetp, int regno)
2345 const struct regset *regset = ppc_linux_fpregset ();
2347 ppc_collect_fpregset (regset, regcache, regno,
2348 fpregsetp, sizeof (*fpregsetp));
2352 ppc_linux_target_wordsize (void)
2356 /* Check for 64-bit inferior process. This is the case when the host is
2357 64-bit, and in addition the top bit of the MSR register is set. */
2358 #ifdef __powerpc64__
2361 int tid = ptid_get_lwp (inferior_ptid);
2363 tid = ptid_get_pid (inferior_ptid);
2366 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2367 if (errno == 0 && ppc64_64bit_inferior_p (msr))
2375 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2376 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2378 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2379 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2380 gdb_byte *ptr = *readptr;
2385 if (endptr - ptr < sizeof_auxv_field * 2)
2388 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2389 ptr += sizeof_auxv_field;
2390 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2391 ptr += sizeof_auxv_field;
2397 static const struct target_desc *
2398 ppc_linux_read_description (struct target_ops *ops)
2405 int tid = ptid_get_lwp (inferior_ptid);
2407 tid = ptid_get_pid (inferior_ptid);
2409 if (have_ptrace_getsetevrregs)
2411 struct gdb_evrregset_t evrregset;
2413 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2414 return tdesc_powerpc_e500l;
2416 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2417 Anything else needs to be reported. */
2418 else if (errno != EIO)
2419 perror_with_name (_("Unable to fetch SPE registers"));
2422 if (have_ptrace_getsetvsxregs)
2424 gdb_vsxregset_t vsxregset;
2426 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2429 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2430 Anything else needs to be reported. */
2431 else if (errno != EIO)
2432 perror_with_name (_("Unable to fetch VSX registers"));
2435 if (have_ptrace_getvrregs)
2437 gdb_vrregset_t vrregset;
2439 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2442 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2443 Anything else needs to be reported. */
2444 else if (errno != EIO)
2445 perror_with_name (_("Unable to fetch AltiVec registers"));
2448 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2449 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2450 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2451 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2452 half of the register are for Decimal Floating Point, we check if that
2453 feature is available to decide the size of the FPSCR. */
2454 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2457 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2460 if (ppc_linux_target_wordsize () == 8)
2463 return tdesc_powerpc_cell64l;
2465 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2468 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2470 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2474 return tdesc_powerpc_cell32l;
2476 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2478 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2480 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2483 void _initialize_ppc_linux_nat (void);
2486 _initialize_ppc_linux_nat (void)
2488 struct target_ops *t;
2490 /* Fill in the generic GNU/Linux methods. */
2491 t = linux_target ();
2493 /* Add our register access methods. */
2494 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2495 t->to_store_registers = ppc_linux_store_inferior_registers;
2497 /* Add our breakpoint/watchpoint methods. */
2498 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2499 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2500 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2501 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2502 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2503 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2504 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2505 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2506 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2507 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2508 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2509 t->to_can_accel_watchpoint_condition
2510 = ppc_linux_can_accel_watchpoint_condition;
2511 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2512 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2514 t->to_read_description = ppc_linux_read_description;
2515 t->to_auxv_parse = ppc_linux_auxv_parse;
2517 observer_attach_thread_exit (ppc_linux_thread_exit);
2519 /* Register the target. */
2520 linux_nat_add_target (t);
2521 linux_nat_set_new_thread (t, ppc_linux_new_thread);