1 /* PPC GNU/Linux native support.
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "gdbthread.h"
29 #include "linux-nat.h"
32 #include <sys/types.h>
35 #include <sys/ioctl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
41 /* Prototypes for supply_gregset etc. */
44 #include "ppc-linux-tdep.h"
46 /* Required when using the AUXV. */
47 #include "elf/common.h"
50 /* This sometimes isn't defined. */
58 /* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
59 If they aren't, we can provide them ourselves (their values are fixed
60 because they are part of the kernel ABI). They are used in the AT_HWCAP
62 #ifndef PPC_FEATURE_CELL
63 #define PPC_FEATURE_CELL 0x00010000
65 #ifndef PPC_FEATURE_BOOKE
66 #define PPC_FEATURE_BOOKE 0x00008000
68 #ifndef PPC_FEATURE_HAS_DFP
69 #define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
72 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
73 configure time check. Some older glibc's (for instance 2.2.1)
74 don't have a specific powerpc version of ptrace.h, and fall back on
75 a generic one. In such cases, sys/ptrace.h defines
76 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
77 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
78 PTRACE_SETVRREGS to be. This also makes a configury check pretty
81 /* These definitions should really come from the glibc header files,
82 but Glibc doesn't know about the vrregs yet. */
83 #ifndef PTRACE_GETVRREGS
84 #define PTRACE_GETVRREGS 18
85 #define PTRACE_SETVRREGS 19
88 /* PTRACE requests for POWER7 VSX registers. */
89 #ifndef PTRACE_GETVSXREGS
90 #define PTRACE_GETVSXREGS 27
91 #define PTRACE_SETVSXREGS 28
94 /* Similarly for the ptrace requests for getting / setting the SPE
95 registers (ev0 -- ev31, acc, and spefscr). See the description of
96 gdb_evrregset_t for details. */
97 #ifndef PTRACE_GETEVRREGS
98 #define PTRACE_GETEVRREGS 20
99 #define PTRACE_SETEVRREGS 21
102 /* Similarly for the hardware watchpoint support. These requests are used
103 when the PowerPC HWDEBUG ptrace interface is not available. */
104 #ifndef PTRACE_GET_DEBUGREG
105 #define PTRACE_GET_DEBUGREG 25
107 #ifndef PTRACE_SET_DEBUGREG
108 #define PTRACE_SET_DEBUGREG 26
110 #ifndef PTRACE_GETSIGINFO
111 #define PTRACE_GETSIGINFO 0x4202
114 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
115 available. It exposes the debug facilities of PowerPC processors, as well
116 as additional features of BookE processors, such as ranged breakpoints and
117 watchpoints and hardware-accelerated condition evaluation. */
118 #ifndef PPC_PTRACE_GETHWDBGINFO
120 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
121 ptrace interface is not present in ptrace.h, so we'll have to pretty much
122 include it all here so that the code at least compiles on older systems. */
123 #define PPC_PTRACE_GETHWDBGINFO 0x89
124 #define PPC_PTRACE_SETHWDEBUG 0x88
125 #define PPC_PTRACE_DELHWDEBUG 0x87
127 struct ppc_debug_info
129 uint32_t version; /* Only version 1 exists to date. */
130 uint32_t num_instruction_bps;
131 uint32_t num_data_bps;
132 uint32_t num_condition_regs;
133 uint32_t data_bp_alignment;
134 uint32_t sizeof_condition; /* size of the DVC register. */
138 /* Features will have bits indicating whether there is support for: */
139 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
140 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
141 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
142 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
144 struct ppc_hw_breakpoint
146 uint32_t version; /* currently, version must be 1 */
147 uint32_t trigger_type; /* only some combinations allowed */
148 uint32_t addr_mode; /* address match mode */
149 uint32_t condition_mode; /* break/watchpoint condition flags */
150 uint64_t addr; /* break/watchpoint address */
151 uint64_t addr2; /* range end or mask */
152 uint64_t condition_value; /* contents of the DVC register */
156 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
157 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
158 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
159 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
162 #define PPC_BREAKPOINT_MODE_EXACT 0x0
163 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
164 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
165 #define PPC_BREAKPOINT_MODE_MASK 0x3
167 /* Condition mode. */
168 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
169 #define PPC_BREAKPOINT_CONDITION_AND 0x1
170 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
171 #define PPC_BREAKPOINT_CONDITION_OR 0x2
172 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
173 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
174 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
175 #define PPC_BREAKPOINT_CONDITION_BE(n) \
176 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
177 #endif /* PPC_PTRACE_GETHWDBGINFO */
179 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
180 watchpoint (up to 512 bytes). */
181 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
182 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
183 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
185 /* Similarly for the general-purpose (gp0 -- gp31)
186 and floating-point registers (fp0 -- fp31). */
187 #ifndef PTRACE_GETREGS
188 #define PTRACE_GETREGS 12
190 #ifndef PTRACE_SETREGS
191 #define PTRACE_SETREGS 13
193 #ifndef PTRACE_GETFPREGS
194 #define PTRACE_GETFPREGS 14
196 #ifndef PTRACE_SETFPREGS
197 #define PTRACE_SETFPREGS 15
200 /* This oddity is because the Linux kernel defines elf_vrregset_t as
201 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
202 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
203 the vrsave as an extra 4 bytes at the end. I opted for creating a
204 flat array of chars, so that it is easier to manipulate for gdb.
206 There are 32 vector registers 16 bytes longs, plus a VSCR register
207 which is only 4 bytes long, but is fetched as a 16 bytes
208 quantity. Up to here we have the elf_vrregset_t structure.
209 Appended to this there is space for the VRSAVE register: 4 bytes.
210 Even though this vrsave register is not included in the regset
211 typedef, it is handled by the ptrace requests.
213 Note that GNU/Linux doesn't support little endian PPC hardware,
214 therefore the offset at which the real value of the VSCR register
215 is located will be always 12 bytes.
217 The layout is like this (where x is the actual value of the vscr reg): */
221 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
222 <-------> <-------><-------><->
227 #define SIZEOF_VRREGS 33*16+4
229 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
231 /* This is the layout of the POWER7 VSX registers and the way they overlap
232 with the existing FPR and VMX registers.
234 VSR doubleword 0 VSR doubleword 1
235 ----------------------------------------------------------------
237 ----------------------------------------------------------------
239 ----------------------------------------------------------------
242 ----------------------------------------------------------------
243 VSR[30] | FPR[30] | |
244 ----------------------------------------------------------------
245 VSR[31] | FPR[31] | |
246 ----------------------------------------------------------------
248 ----------------------------------------------------------------
250 ----------------------------------------------------------------
253 ----------------------------------------------------------------
255 ----------------------------------------------------------------
257 ----------------------------------------------------------------
259 VSX has 64 128bit registers. The first 32 registers overlap with
260 the FP registers (doubleword 0) and hence extend them with additional
261 64 bits (doubleword 1). The other 32 regs overlap with the VMX
263 #define SIZEOF_VSXREGS 32*8
265 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
267 /* On PPC processors that support the Signal Processing Extension
268 (SPE) APU, the general-purpose registers are 64 bits long.
269 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
270 ptrace calls only access the lower half of each register, to allow
271 them to behave the same way they do on non-SPE systems. There's a
272 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
273 read and write the top halves of all the general-purpose registers
274 at once, along with some SPE-specific registers.
276 GDB itself continues to claim the general-purpose registers are 32
277 bits long. It has unnamed raw registers that hold the upper halves
278 of the gprs, and the full 64-bit SIMD views of the registers,
279 'ev0' -- 'ev31', are pseudo-registers that splice the top and
280 bottom halves together.
282 This is the structure filled in by PTRACE_GETEVRREGS and written to
283 the inferior's registers by PTRACE_SETEVRREGS. */
284 struct gdb_evrregset_t
286 unsigned long evr[32];
287 unsigned long long acc;
288 unsigned long spefscr;
291 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
292 PTRACE_SETVSXREGS requests, for reading and writing the VSX
293 POWER7 registers 0 through 31. Zero if we've tried one of them and
294 gotten an error. Note that VSX registers 32 through 63 overlap
295 with VR registers 0 through 31. */
296 int have_ptrace_getsetvsxregs = 1;
298 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
299 PTRACE_SETVRREGS requests, for reading and writing the Altivec
300 registers. Zero if we've tried one of them and gotten an
302 int have_ptrace_getvrregs = 1;
304 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
305 PTRACE_SETEVRREGS requests, for reading and writing the SPE
306 registers. Zero if we've tried one of them and gotten an
308 int have_ptrace_getsetevrregs = 1;
310 /* Non-zero if our kernel may support the PTRACE_GETREGS and
311 PTRACE_SETREGS requests, for reading and writing the
312 general-purpose registers. Zero if we've tried one of
313 them and gotten an error. */
314 int have_ptrace_getsetregs = 1;
316 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
317 PTRACE_SETFPREGS requests, for reading and writing the
318 floating-pointers registers. Zero if we've tried one of
319 them and gotten an error. */
320 int have_ptrace_getsetfpregs = 1;
323 /* registers layout, as presented by the ptrace interface:
324 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
325 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
326 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
327 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
328 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
329 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
330 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
331 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
332 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
333 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
334 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
335 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
336 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
340 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
345 interface, and not the wordsize of the program's ABI. */
346 int wordsize = sizeof (long);
348 /* General purpose registers occupy 1 slot each in the buffer. */
349 if (regno >= tdep->ppc_gp0_regnum
350 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
351 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
353 /* Floating point regs: eight bytes each in both 32- and 64-bit
354 ptrace interfaces. Thus, two slots each in 32-bit interface, one
355 slot each in 64-bit interface. */
356 if (tdep->ppc_fp0_regnum >= 0
357 && regno >= tdep->ppc_fp0_regnum
358 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
359 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
361 /* UISA special purpose registers: 1 slot each. */
362 if (regno == gdbarch_pc_regnum (gdbarch))
363 u_addr = PT_NIP * wordsize;
364 if (regno == tdep->ppc_lr_regnum)
365 u_addr = PT_LNK * wordsize;
366 if (regno == tdep->ppc_cr_regnum)
367 u_addr = PT_CCR * wordsize;
368 if (regno == tdep->ppc_xer_regnum)
369 u_addr = PT_XER * wordsize;
370 if (regno == tdep->ppc_ctr_regnum)
371 u_addr = PT_CTR * wordsize;
373 if (regno == tdep->ppc_mq_regnum)
374 u_addr = PT_MQ * wordsize;
376 if (regno == tdep->ppc_ps_regnum)
377 u_addr = PT_MSR * wordsize;
378 if (regno == PPC_ORIG_R3_REGNUM)
379 u_addr = PT_ORIG_R3 * wordsize;
380 if (regno == PPC_TRAP_REGNUM)
381 u_addr = PT_TRAP * wordsize;
382 if (tdep->ppc_fpscr_regnum >= 0
383 && regno == tdep->ppc_fpscr_regnum)
385 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
386 kernel headers incorrectly contained the 32-bit definition of
387 PT_FPSCR. For the 32-bit definition, floating-point
388 registers occupy two 32-bit "slots", and the FPSCR lives in
389 the second half of such a slot-pair (hence +1). For 64-bit,
390 the FPSCR instead occupies the full 64-bit 2-word-slot and
391 hence no adjustment is necessary. Hack around this. */
392 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
393 u_addr = (48 + 32) * wordsize;
394 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
395 slot and not just its second word. The PT_FPSCR supplied when
396 GDB is compiled as a 32-bit app doesn't reflect this. */
397 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
398 && PT_FPSCR == (48 + 2*32 + 1))
399 u_addr = (48 + 2*32) * wordsize;
401 u_addr = PT_FPSCR * wordsize;
406 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
407 registers set mechanism, as opposed to the interface for all the
408 other registers, that stores/fetches each register individually. */
410 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
413 gdb_vsxregset_t regs;
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
418 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
423 have_ptrace_getsetvsxregs = 0;
426 perror_with_name (_("Unable to fetch VSX register"));
429 regcache_raw_supply (regcache, regno,
430 regs + (regno - tdep->ppc_vsr0_upper_regnum)
434 /* The Linux kernel ptrace interface for AltiVec registers uses the
435 registers set mechanism, as opposed to the interface for all the
436 other registers, that stores/fetches each register individually. */
438 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
443 struct gdbarch *gdbarch = get_regcache_arch (regcache);
444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
445 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
447 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
452 have_ptrace_getvrregs = 0;
455 perror_with_name (_("Unable to fetch AltiVec register"));
458 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
459 long on the hardware. We deal only with the lower 4 bytes of the
460 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
461 there is no need to define an offset for it. */
462 if (regno == (tdep->ppc_vrsave_regnum - 1))
463 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
465 regcache_raw_supply (regcache, regno,
467 - tdep->ppc_vr0_regnum) * vrregsize + offset);
470 /* Fetch the top 32 bits of TID's general-purpose registers and the
471 SPE-specific registers, and place the results in EVRREGSET. If we
472 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
475 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
476 PTRACE_SETEVRREGS requests are supported is isolated here, and in
477 set_spe_registers. */
479 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
481 if (have_ptrace_getsetevrregs)
483 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
487 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
488 we just return zeros. */
490 have_ptrace_getsetevrregs = 0;
492 /* Anything else needs to be reported. */
493 perror_with_name (_("Unable to fetch SPE registers"));
497 memset (evrregset, 0, sizeof (*evrregset));
500 /* Supply values from TID for SPE-specific raw registers: the upper
501 halves of the GPRs, the accumulator, and the spefscr. REGNO must
502 be the number of an upper half register, acc, spefscr, or -1 to
503 supply the values of all registers. */
505 fetch_spe_register (struct regcache *regcache, int tid, int regno)
507 struct gdbarch *gdbarch = get_regcache_arch (regcache);
508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509 struct gdb_evrregset_t evrregs;
511 gdb_assert (sizeof (evrregs.evr[0])
512 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
513 gdb_assert (sizeof (evrregs.acc)
514 == register_size (gdbarch, tdep->ppc_acc_regnum));
515 gdb_assert (sizeof (evrregs.spefscr)
516 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
518 get_spe_registers (tid, &evrregs);
524 for (i = 0; i < ppc_num_gprs; i++)
525 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
528 else if (tdep->ppc_ev0_upper_regnum <= regno
529 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
530 regcache_raw_supply (regcache, regno,
531 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
534 || regno == tdep->ppc_acc_regnum)
535 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
538 || regno == tdep->ppc_spefscr_regnum)
539 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
544 fetch_register (struct regcache *regcache, int tid, int regno)
546 struct gdbarch *gdbarch = get_regcache_arch (regcache);
547 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
548 /* This isn't really an address. But ptrace thinks of it as one. */
549 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
550 int bytes_transferred;
551 unsigned int offset; /* Offset of registers within the u area. */
552 gdb_byte buf[MAX_REGISTER_SIZE];
554 if (altivec_register_p (gdbarch, regno))
556 /* If this is the first time through, or if it is not the first
557 time through, and we have comfirmed that there is kernel
558 support for such a ptrace request, then go and fetch the
560 if (have_ptrace_getvrregs)
562 fetch_altivec_register (regcache, tid, regno);
565 /* If we have discovered that there is no ptrace support for
566 AltiVec registers, fall through and return zeroes, because
567 regaddr will be -1 in this case. */
569 if (vsx_register_p (gdbarch, regno))
571 if (have_ptrace_getsetvsxregs)
573 fetch_vsx_register (regcache, tid, regno);
577 else if (spe_register_p (gdbarch, regno))
579 fetch_spe_register (regcache, tid, regno);
585 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
586 regcache_raw_supply (regcache, regno, buf);
590 /* Read the raw register using sizeof(long) sized chunks. On a
591 32-bit platform, 64-bit floating-point registers will require two
593 for (bytes_transferred = 0;
594 bytes_transferred < register_size (gdbarch, regno);
595 bytes_transferred += sizeof (long))
600 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
601 regaddr += sizeof (long);
605 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
606 gdbarch_register_name (gdbarch, regno), regno);
607 perror_with_name (message);
609 memcpy (&buf[bytes_transferred], &l, sizeof (l));
612 /* Now supply the register. Keep in mind that the regcache's idea
613 of the register's size may not be a multiple of sizeof
615 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
617 /* Little-endian values are always found at the left end of the
618 bytes transferred. */
619 regcache_raw_supply (regcache, regno, buf);
621 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
623 /* Big-endian values are found at the right end of the bytes
625 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
626 regcache_raw_supply (regcache, regno, buf + padding);
629 internal_error (__FILE__, __LINE__,
630 _("fetch_register: unexpected byte order: %d"),
631 gdbarch_byte_order (gdbarch));
635 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
638 struct gdbarch *gdbarch = get_regcache_arch (regcache);
639 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
640 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
642 for (i = 0; i < ppc_num_vshrs; i++)
644 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
645 *vsxregsetp + i * vsxregsize);
650 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
653 struct gdbarch *gdbarch = get_regcache_arch (regcache);
654 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
655 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
656 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
657 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
659 for (i = 0; i < num_of_vrregs; i++)
661 /* The last 2 registers of this set are only 32 bit long, not
662 128. However an offset is necessary only for VSCR because it
663 occupies a whole vector, while VRSAVE occupies a full 4 bytes
665 if (i == (num_of_vrregs - 2))
666 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
667 *vrregsetp + i * vrregsize + offset);
669 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
670 *vrregsetp + i * vrregsize);
675 fetch_vsx_registers (struct regcache *regcache, int tid)
678 gdb_vsxregset_t regs;
680 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
685 have_ptrace_getsetvsxregs = 0;
688 perror_with_name (_("Unable to fetch VSX registers"));
690 supply_vsxregset (regcache, ®s);
694 fetch_altivec_registers (struct regcache *regcache, int tid)
699 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
704 have_ptrace_getvrregs = 0;
707 perror_with_name (_("Unable to fetch AltiVec registers"));
709 supply_vrregset (regcache, ®s);
712 /* This function actually issues the request to ptrace, telling
713 it to get all general-purpose registers and put them into the
716 If the ptrace request does not exist, this function returns 0
717 and properly sets the have_ptrace_* flag. If the request fails,
718 this function calls perror_with_name. Otherwise, if the request
719 succeeds, then the regcache gets filled and 1 is returned. */
721 fetch_all_gp_regs (struct regcache *regcache, int tid)
723 struct gdbarch *gdbarch = get_regcache_arch (regcache);
724 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
725 gdb_gregset_t gregset;
727 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
731 have_ptrace_getsetregs = 0;
734 perror_with_name (_("Couldn't get general-purpose registers."));
737 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
742 /* This is a wrapper for the fetch_all_gp_regs function. It is
743 responsible for verifying if this target has the ptrace request
744 that can be used to fetch all general-purpose registers at one
745 shot. If it doesn't, then we should fetch them using the
746 old-fashioned way, which is to iterate over the registers and
747 request them one by one. */
749 fetch_gp_regs (struct regcache *regcache, int tid)
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
755 if (have_ptrace_getsetregs)
756 if (fetch_all_gp_regs (regcache, tid))
759 /* If we've hit this point, it doesn't really matter which
760 architecture we are using. We just need to read the
761 registers in the "old-fashioned way". */
762 for (i = 0; i < ppc_num_gprs; i++)
763 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
766 /* This function actually issues the request to ptrace, telling
767 it to get all floating-point registers and put them into the
770 If the ptrace request does not exist, this function returns 0
771 and properly sets the have_ptrace_* flag. If the request fails,
772 this function calls perror_with_name. Otherwise, if the request
773 succeeds, then the regcache gets filled and 1 is returned. */
775 fetch_all_fp_regs (struct regcache *regcache, int tid)
777 gdb_fpregset_t fpregs;
779 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
783 have_ptrace_getsetfpregs = 0;
786 perror_with_name (_("Couldn't get floating-point registers."));
789 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
794 /* This is a wrapper for the fetch_all_fp_regs function. It is
795 responsible for verifying if this target has the ptrace request
796 that can be used to fetch all floating-point registers at one
797 shot. If it doesn't, then we should fetch them using the
798 old-fashioned way, which is to iterate over the registers and
799 request them one by one. */
801 fetch_fp_regs (struct regcache *regcache, int tid)
803 struct gdbarch *gdbarch = get_regcache_arch (regcache);
804 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
807 if (have_ptrace_getsetfpregs)
808 if (fetch_all_fp_regs (regcache, tid))
811 /* If we've hit this point, it doesn't really matter which
812 architecture we are using. We just need to read the
813 registers in the "old-fashioned way". */
814 for (i = 0; i < ppc_num_fprs; i++)
815 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
819 fetch_ppc_registers (struct regcache *regcache, int tid)
822 struct gdbarch *gdbarch = get_regcache_arch (regcache);
823 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
825 fetch_gp_regs (regcache, tid);
826 if (tdep->ppc_fp0_regnum >= 0)
827 fetch_fp_regs (regcache, tid);
828 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
829 if (tdep->ppc_ps_regnum != -1)
830 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
831 if (tdep->ppc_cr_regnum != -1)
832 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
833 if (tdep->ppc_lr_regnum != -1)
834 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
835 if (tdep->ppc_ctr_regnum != -1)
836 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
837 if (tdep->ppc_xer_regnum != -1)
838 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
839 if (tdep->ppc_mq_regnum != -1)
840 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
841 if (ppc_linux_trap_reg_p (gdbarch))
843 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
844 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
846 if (tdep->ppc_fpscr_regnum != -1)
847 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
848 if (have_ptrace_getvrregs)
849 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
850 fetch_altivec_registers (regcache, tid);
851 if (have_ptrace_getsetvsxregs)
852 if (tdep->ppc_vsr0_upper_regnum != -1)
853 fetch_vsx_registers (regcache, tid);
854 if (tdep->ppc_ev0_upper_regnum >= 0)
855 fetch_spe_register (regcache, tid, -1);
858 /* Fetch registers from the child process. Fetch all registers if
859 regno == -1, otherwise fetch all general registers or all floating
860 point registers depending upon the value of regno. */
862 ppc_linux_fetch_inferior_registers (struct target_ops *ops,
863 struct regcache *regcache, int regno)
865 /* Overload thread id onto process id. */
866 int tid = ptid_get_lwp (inferior_ptid);
868 /* No thread id, just use process id. */
870 tid = ptid_get_pid (inferior_ptid);
873 fetch_ppc_registers (regcache, tid);
875 fetch_register (regcache, tid, regno);
878 /* Store one VSX register. */
880 store_vsx_register (const struct regcache *regcache, int tid, int regno)
883 gdb_vsxregset_t regs;
884 struct gdbarch *gdbarch = get_regcache_arch (regcache);
885 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
886 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
888 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
893 have_ptrace_getsetvsxregs = 0;
896 perror_with_name (_("Unable to fetch VSX register"));
899 regcache_raw_collect (regcache, regno, regs +
900 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
902 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s);
904 perror_with_name (_("Unable to store VSX register"));
907 /* Store one register. */
909 store_altivec_register (const struct regcache *regcache, int tid, int regno)
914 struct gdbarch *gdbarch = get_regcache_arch (regcache);
915 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
916 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
918 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
923 have_ptrace_getvrregs = 0;
926 perror_with_name (_("Unable to fetch AltiVec register"));
929 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
930 long on the hardware. */
931 if (regno == (tdep->ppc_vrsave_regnum - 1))
932 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
934 regcache_raw_collect (regcache, regno,
936 - tdep->ppc_vr0_regnum) * vrregsize + offset);
938 ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
940 perror_with_name (_("Unable to store AltiVec register"));
943 /* Assuming TID referrs to an SPE process, set the top halves of TID's
944 general-purpose registers and its SPE-specific registers to the
945 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
948 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
949 PTRACE_SETEVRREGS requests are supported is isolated here, and in
950 get_spe_registers. */
952 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
954 if (have_ptrace_getsetevrregs)
956 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
960 /* EIO means that the PTRACE_SETEVRREGS request isn't
961 supported; we fail silently, and don't try the call
964 have_ptrace_getsetevrregs = 0;
966 /* Anything else needs to be reported. */
967 perror_with_name (_("Unable to set SPE registers"));
972 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
973 If REGNO is -1, write the values of all the SPE-specific
976 store_spe_register (const struct regcache *regcache, int tid, int regno)
978 struct gdbarch *gdbarch = get_regcache_arch (regcache);
979 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
980 struct gdb_evrregset_t evrregs;
982 gdb_assert (sizeof (evrregs.evr[0])
983 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
984 gdb_assert (sizeof (evrregs.acc)
985 == register_size (gdbarch, tdep->ppc_acc_regnum));
986 gdb_assert (sizeof (evrregs.spefscr)
987 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
990 /* Since we're going to write out every register, the code below
991 should store to every field of evrregs; if that doesn't happen,
992 make it obvious by initializing it with suspicious values. */
993 memset (&evrregs, 42, sizeof (evrregs));
995 /* We can only read and write the entire EVR register set at a
996 time, so to write just a single register, we do a
997 read-modify-write maneuver. */
998 get_spe_registers (tid, &evrregs);
1004 for (i = 0; i < ppc_num_gprs; i++)
1005 regcache_raw_collect (regcache,
1006 tdep->ppc_ev0_upper_regnum + i,
1009 else if (tdep->ppc_ev0_upper_regnum <= regno
1010 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1011 regcache_raw_collect (regcache, regno,
1012 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1015 || regno == tdep->ppc_acc_regnum)
1016 regcache_raw_collect (regcache,
1017 tdep->ppc_acc_regnum,
1021 || regno == tdep->ppc_spefscr_regnum)
1022 regcache_raw_collect (regcache,
1023 tdep->ppc_spefscr_regnum,
1026 /* Write back the modified register set. */
1027 set_spe_registers (tid, &evrregs);
1031 store_register (const struct regcache *regcache, int tid, int regno)
1033 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1035 /* This isn't really an address. But ptrace thinks of it as one. */
1036 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1038 size_t bytes_to_transfer;
1039 gdb_byte buf[MAX_REGISTER_SIZE];
1041 if (altivec_register_p (gdbarch, regno))
1043 store_altivec_register (regcache, tid, regno);
1046 if (vsx_register_p (gdbarch, regno))
1048 store_vsx_register (regcache, tid, regno);
1051 else if (spe_register_p (gdbarch, regno))
1053 store_spe_register (regcache, tid, regno);
1060 /* First collect the register. Keep in mind that the regcache's
1061 idea of the register's size may not be a multiple of sizeof
1063 memset (buf, 0, sizeof buf);
1064 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1065 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1067 /* Little-endian values always sit at the left end of the buffer. */
1068 regcache_raw_collect (regcache, regno, buf);
1070 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1072 /* Big-endian values sit at the right end of the buffer. */
1073 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1074 regcache_raw_collect (regcache, regno, buf + padding);
1077 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1081 memcpy (&l, &buf[i], sizeof (l));
1083 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1084 regaddr += sizeof (long);
1087 && (regno == tdep->ppc_fpscr_regnum
1088 || regno == PPC_ORIG_R3_REGNUM
1089 || regno == PPC_TRAP_REGNUM))
1091 /* Some older kernel versions don't allow fpscr, orig_r3
1092 or trap to be written. */
1099 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1100 gdbarch_register_name (gdbarch, regno), regno);
1101 perror_with_name (message);
1107 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1110 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1111 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1112 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1114 for (i = 0; i < ppc_num_vshrs; i++)
1115 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1116 *vsxregsetp + i * vsxregsize);
1120 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1123 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1125 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1126 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1127 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1129 for (i = 0; i < num_of_vrregs; i++)
1131 /* The last 2 registers of this set are only 32 bit long, not
1132 128, but only VSCR is fetched as a 16 bytes quantity. */
1133 if (i == (num_of_vrregs - 2))
1134 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1135 *vrregsetp + i * vrregsize + offset);
1137 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1138 *vrregsetp + i * vrregsize);
1143 store_vsx_registers (const struct regcache *regcache, int tid)
1146 gdb_vsxregset_t regs;
1148 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
1153 have_ptrace_getsetvsxregs = 0;
1156 perror_with_name (_("Couldn't get VSX registers"));
1159 fill_vsxregset (regcache, ®s);
1161 if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0)
1162 perror_with_name (_("Couldn't write VSX registers"));
1166 store_altivec_registers (const struct regcache *regcache, int tid)
1169 gdb_vrregset_t regs;
1171 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
1176 have_ptrace_getvrregs = 0;
1179 perror_with_name (_("Couldn't get AltiVec registers"));
1182 fill_vrregset (regcache, ®s);
1184 if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
1185 perror_with_name (_("Couldn't write AltiVec registers"));
1188 /* This function actually issues the request to ptrace, telling
1189 it to store all general-purpose registers present in the specified
1192 If the ptrace request does not exist, this function returns 0
1193 and properly sets the have_ptrace_* flag. If the request fails,
1194 this function calls perror_with_name. Otherwise, if the request
1195 succeeds, then the regcache is stored and 1 is returned. */
1197 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1199 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1201 gdb_gregset_t gregset;
1203 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1207 have_ptrace_getsetregs = 0;
1210 perror_with_name (_("Couldn't get general-purpose registers."));
1213 fill_gregset (regcache, &gregset, regno);
1215 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1219 have_ptrace_getsetregs = 0;
1222 perror_with_name (_("Couldn't set general-purpose registers."));
1228 /* This is a wrapper for the store_all_gp_regs function. It is
1229 responsible for verifying if this target has the ptrace request
1230 that can be used to store all general-purpose registers at one
1231 shot. If it doesn't, then we should store them using the
1232 old-fashioned way, which is to iterate over the registers and
1233 store them one by one. */
1235 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1237 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1241 if (have_ptrace_getsetregs)
1242 if (store_all_gp_regs (regcache, tid, regno))
1245 /* If we hit this point, it doesn't really matter which
1246 architecture we are using. We just need to store the
1247 registers in the "old-fashioned way". */
1248 for (i = 0; i < ppc_num_gprs; i++)
1249 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1252 /* This function actually issues the request to ptrace, telling
1253 it to store all floating-point registers present in the specified
1256 If the ptrace request does not exist, this function returns 0
1257 and properly sets the have_ptrace_* flag. If the request fails,
1258 this function calls perror_with_name. Otherwise, if the request
1259 succeeds, then the regcache is stored and 1 is returned. */
1261 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1263 gdb_fpregset_t fpregs;
1265 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1269 have_ptrace_getsetfpregs = 0;
1272 perror_with_name (_("Couldn't get floating-point registers."));
1275 fill_fpregset (regcache, &fpregs, regno);
1277 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1281 have_ptrace_getsetfpregs = 0;
1284 perror_with_name (_("Couldn't set floating-point registers."));
1290 /* This is a wrapper for the store_all_fp_regs function. It is
1291 responsible for verifying if this target has the ptrace request
1292 that can be used to store all floating-point registers at one
1293 shot. If it doesn't, then we should store them using the
1294 old-fashioned way, which is to iterate over the registers and
1295 store them one by one. */
1297 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1299 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1303 if (have_ptrace_getsetfpregs)
1304 if (store_all_fp_regs (regcache, tid, regno))
1307 /* If we hit this point, it doesn't really matter which
1308 architecture we are using. We just need to store the
1309 registers in the "old-fashioned way". */
1310 for (i = 0; i < ppc_num_fprs; i++)
1311 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1315 store_ppc_registers (const struct regcache *regcache, int tid)
1318 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1321 store_gp_regs (regcache, tid, -1);
1322 if (tdep->ppc_fp0_regnum >= 0)
1323 store_fp_regs (regcache, tid, -1);
1324 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1325 if (tdep->ppc_ps_regnum != -1)
1326 store_register (regcache, tid, tdep->ppc_ps_regnum);
1327 if (tdep->ppc_cr_regnum != -1)
1328 store_register (regcache, tid, tdep->ppc_cr_regnum);
1329 if (tdep->ppc_lr_regnum != -1)
1330 store_register (regcache, tid, tdep->ppc_lr_regnum);
1331 if (tdep->ppc_ctr_regnum != -1)
1332 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1333 if (tdep->ppc_xer_regnum != -1)
1334 store_register (regcache, tid, tdep->ppc_xer_regnum);
1335 if (tdep->ppc_mq_regnum != -1)
1336 store_register (regcache, tid, tdep->ppc_mq_regnum);
1337 if (tdep->ppc_fpscr_regnum != -1)
1338 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1339 if (ppc_linux_trap_reg_p (gdbarch))
1341 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1342 store_register (regcache, tid, PPC_TRAP_REGNUM);
1344 if (have_ptrace_getvrregs)
1345 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1346 store_altivec_registers (regcache, tid);
1347 if (have_ptrace_getsetvsxregs)
1348 if (tdep->ppc_vsr0_upper_regnum != -1)
1349 store_vsx_registers (regcache, tid);
1350 if (tdep->ppc_ev0_upper_regnum >= 0)
1351 store_spe_register (regcache, tid, -1);
1354 /* Fetch the AT_HWCAP entry from the aux vector. */
1355 static unsigned long
1356 ppc_linux_get_hwcap (void)
1360 if (target_auxv_search (¤t_target, AT_HWCAP, &field))
1361 return (unsigned long) field;
1366 /* The cached DABR value, to install in new threads.
1367 This variable is used when the PowerPC HWDEBUG ptrace
1368 interface is not available. */
1369 static long saved_dabr_value;
1371 /* Global structure that will store information about the available
1372 features provided by the PowerPC HWDEBUG ptrace interface. */
1373 static struct ppc_debug_info hwdebug_info;
1375 /* Global variable that holds the maximum number of slots that the
1376 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1378 static size_t max_slots_number = 0;
1380 struct hw_break_tuple
1383 struct ppc_hw_breakpoint *hw_break;
1386 /* This is an internal VEC created to store information about *points inserted
1387 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1389 typedef struct thread_points
1391 /* The TID to which this *point relates. */
1393 /* Information about the *point, such as its address, type, etc.
1395 Each element inside this vector corresponds to a hardware
1396 breakpoint or watchpoint in the thread represented by TID. The maximum
1397 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1398 the tuple is NULL, then the position in the vector is free. */
1399 struct hw_break_tuple *hw_breaks;
1401 DEF_VEC_P (thread_points_p);
1403 VEC(thread_points_p) *ppc_threads = NULL;
1405 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1407 #define PPC_DEBUG_CURRENT_VERSION 1
1409 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1411 have_ptrace_hwdebug_interface (void)
1413 static int have_ptrace_hwdebug_interface = -1;
1415 if (have_ptrace_hwdebug_interface == -1)
1419 tid = ptid_get_lwp (inferior_ptid);
1421 tid = ptid_get_pid (inferior_ptid);
1423 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1424 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1426 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1427 provides any supported feature. */
1428 if (hwdebug_info.features != 0)
1430 have_ptrace_hwdebug_interface = 1;
1431 max_slots_number = hwdebug_info.num_instruction_bps
1432 + hwdebug_info.num_data_bps
1433 + hwdebug_info.num_condition_regs;
1434 return have_ptrace_hwdebug_interface;
1437 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1438 have_ptrace_hwdebug_interface = 0;
1439 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1442 return have_ptrace_hwdebug_interface;
1446 ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
1447 int type, int cnt, int ot)
1449 int total_hw_wp, total_hw_bp;
1451 if (have_ptrace_hwdebug_interface ())
1453 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1454 available hardware watchpoints and breakpoints is stored at the
1455 hwdebug_info struct. */
1456 total_hw_bp = hwdebug_info.num_instruction_bps;
1457 total_hw_wp = hwdebug_info.num_data_bps;
1461 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1462 consider having 1 hardware watchpoint and no hardware breakpoints. */
1467 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1468 || type == bp_access_watchpoint || type == bp_watchpoint)
1470 if (cnt + ot > total_hw_wp)
1473 else if (type == bp_hardware_breakpoint)
1475 if (total_hw_bp == 0)
1477 /* No hardware breakpoint support. */
1480 if (cnt > total_hw_bp)
1484 if (!have_ptrace_hwdebug_interface ())
1487 ptid_t ptid = inferior_ptid;
1489 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1490 and whether the target has DABR. If either answer is no, the
1491 ptrace call will return -1. Fail in that case. */
1492 tid = ptid_get_lwp (ptid);
1494 tid = ptid_get_pid (ptid);
1496 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1504 ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1505 CORE_ADDR addr, int len)
1507 /* Handle sub-8-byte quantities. */
1511 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1512 restrictions for watchpoints in the processors. In that case, we use that
1513 information to determine the hardcoded watchable region for
1515 if (have_ptrace_hwdebug_interface ())
1518 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1519 watchpoints and can watch any access within an arbitrary memory
1520 region. This is useful to watch arrays and structs, for instance. It
1521 takes two hardware watchpoints though. */
1523 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1524 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1526 /* Check if the processor provides DAWR interface. */
1527 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1528 /* DAWR interface allows to watch up to 512 byte wide ranges which
1529 can't cross a 512 byte boundary. */
1532 region_size = hwdebug_info.data_bp_alignment;
1533 /* Server processors provide one hardware watchpoint and addr+len should
1534 fall in the watchable region provided by the ptrace interface. */
1536 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1539 /* addr+len must fall in the 8 byte watchable region for DABR-based
1540 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1541 ptrace interface, DAC-based processors (i.e., embedded processors) will
1542 use addresses aligned to 4-bytes due to the way the read/write flags are
1543 passed in the old ptrace interface. */
1544 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1545 && (addr + len) > (addr & ~3) + 4)
1546 || (addr + len) > (addr & ~7) + 8)
1552 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1554 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1556 return (a->trigger_type == b->trigger_type
1557 && a->addr_mode == b->addr_mode
1558 && a->condition_mode == b->condition_mode
1559 && a->addr == b->addr
1560 && a->addr2 == b->addr2
1561 && a->condition_value == b->condition_value);
1564 /* This function can be used to retrieve a thread_points by the TID of the
1565 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1566 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1567 provided TID will be created and returned. */
1568 static struct thread_points *
1569 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1572 struct thread_points *t;
1574 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1580 /* Do we need to allocate a new point_item
1581 if the wanted one does not exist? */
1584 t = xmalloc (sizeof (struct thread_points));
1586 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
1588 VEC_safe_push (thread_points_p, ppc_threads, t);
1594 /* This function is a generic wrapper that is responsible for inserting a
1595 *point (i.e., calling `ptrace' in order to issue the request to the
1596 kernel) and registering it internally in GDB. */
1598 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1602 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1603 struct hw_break_tuple *hw_breaks;
1604 struct cleanup *c = make_cleanup (xfree, p);
1605 struct thread_points *t;
1606 struct hw_break_tuple *tuple;
1608 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1611 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1613 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1615 /* Everything went fine, so we have to register this *point. */
1616 t = hwdebug_find_thread_points_by_tid (tid, 1);
1617 gdb_assert (t != NULL);
1618 hw_breaks = t->hw_breaks;
1620 /* Find a free element in the hw_breaks vector. */
1621 for (i = 0; i < max_slots_number; i++)
1622 if (hw_breaks[i].hw_break == NULL)
1624 hw_breaks[i].slot = slot;
1625 hw_breaks[i].hw_break = p;
1629 gdb_assert (i != max_slots_number);
1631 discard_cleanups (c);
1634 /* This function is a generic wrapper that is responsible for removing a
1635 *point (i.e., calling `ptrace' in order to issue the request to the
1636 kernel), and unregistering it internally at GDB. */
1638 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1641 struct hw_break_tuple *hw_breaks;
1642 struct thread_points *t;
1644 t = hwdebug_find_thread_points_by_tid (tid, 0);
1645 gdb_assert (t != NULL);
1646 hw_breaks = t->hw_breaks;
1648 for (i = 0; i < max_slots_number; i++)
1649 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1652 gdb_assert (i != max_slots_number);
1654 /* We have to ignore ENOENT errors because the kernel implements hardware
1655 breakpoints/watchpoints as "one-shot", that is, they are automatically
1656 deleted when hit. */
1658 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1659 if (errno != ENOENT)
1660 perror_with_name (_("Unexpected error deleting "
1661 "breakpoint or watchpoint"));
1663 xfree (hw_breaks[i].hw_break);
1664 hw_breaks[i].hw_break = NULL;
1667 /* Return the number of registers needed for a ranged breakpoint. */
1670 ppc_linux_ranged_break_num_registers (struct target_ops *target)
1672 return ((have_ptrace_hwdebug_interface ()
1673 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1677 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1678 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1681 ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1682 struct gdbarch *gdbarch,
1683 struct bp_target_info *bp_tgt)
1685 struct lwp_info *lp;
1686 struct ppc_hw_breakpoint p;
1688 if (!have_ptrace_hwdebug_interface ())
1691 p.version = PPC_DEBUG_CURRENT_VERSION;
1692 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1693 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1694 p.addr = (uint64_t) bp_tgt->placed_address;
1695 p.condition_value = 0;
1699 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1701 /* The breakpoint will trigger if the address of the instruction is
1702 within the defined range, as follows: p.addr <= address < p.addr2. */
1703 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1707 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1712 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1718 ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1719 struct gdbarch *gdbarch,
1720 struct bp_target_info *bp_tgt)
1722 struct lwp_info *lp;
1723 struct ppc_hw_breakpoint p;
1725 if (!have_ptrace_hwdebug_interface ())
1728 p.version = PPC_DEBUG_CURRENT_VERSION;
1729 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1730 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1731 p.addr = (uint64_t) bp_tgt->placed_address;
1732 p.condition_value = 0;
1736 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1738 /* The breakpoint will trigger if the address of the instruction is within
1739 the defined range, as follows: p.addr <= address < p.addr2. */
1740 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1744 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1749 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1755 get_trigger_type (int rw)
1760 t = PPC_BREAKPOINT_TRIGGER_READ;
1761 else if (rw == hw_write)
1762 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1764 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1769 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1770 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1771 or hw_access for an access watchpoint. Returns 0 on success and throws
1772 an error on failure. */
1775 ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1776 CORE_ADDR mask, int rw)
1778 struct lwp_info *lp;
1779 struct ppc_hw_breakpoint p;
1781 gdb_assert (have_ptrace_hwdebug_interface ());
1783 p.version = PPC_DEBUG_CURRENT_VERSION;
1784 p.trigger_type = get_trigger_type (rw);
1785 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1786 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1789 p.condition_value = 0;
1792 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1797 /* Remove a masked watchpoint at ADDR with the mask MASK.
1798 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1799 or hw_access for an access watchpoint. Returns 0 on success and throws
1800 an error on failure. */
1803 ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1804 CORE_ADDR mask, int rw)
1806 struct lwp_info *lp;
1807 struct ppc_hw_breakpoint p;
1809 gdb_assert (have_ptrace_hwdebug_interface ());
1811 p.version = PPC_DEBUG_CURRENT_VERSION;
1812 p.trigger_type = get_trigger_type (rw);
1813 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1814 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1817 p.condition_value = 0;
1820 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1825 /* Check whether we have at least one free DVC register. */
1827 can_use_watchpoint_cond_accel (void)
1829 struct thread_points *p;
1830 int tid = ptid_get_lwp (inferior_ptid);
1831 int cnt = hwdebug_info.num_condition_regs, i;
1832 CORE_ADDR tmp_value;
1834 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1837 p = hwdebug_find_thread_points_by_tid (tid, 0);
1841 for (i = 0; i < max_slots_number; i++)
1842 if (p->hw_breaks[i].hw_break != NULL
1843 && (p->hw_breaks[i].hw_break->condition_mode
1844 != PPC_BREAKPOINT_CONDITION_NONE))
1847 /* There are no available slots now. */
1855 /* Calculate the enable bits and the contents of the Data Value Compare
1856 debug register present in BookE processors.
1858 ADDR is the address to be watched, LEN is the length of watched data
1859 and DATA_VALUE is the value which will trigger the watchpoint.
1860 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1861 CONDITION_VALUE will hold the value which should be put in the
1864 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1865 uint32_t *condition_mode, uint64_t *condition_value)
1867 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1868 rightmost_enabled_byte;
1869 CORE_ADDR addr_end_data, addr_end_dvc;
1871 /* The DVC register compares bytes within fixed-length windows which
1872 are word-aligned, with length equal to that of the DVC register.
1873 We need to calculate where our watch region is relative to that
1874 window and enable comparison of the bytes which fall within it. */
1876 align_offset = addr % hwdebug_info.sizeof_condition;
1877 addr_end_data = addr + len;
1878 addr_end_dvc = (addr - align_offset
1879 + hwdebug_info.sizeof_condition);
1880 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1881 addr_end_data - addr_end_dvc : 0;
1882 num_byte_enable = len - num_bytes_off_dvc;
1883 /* Here, bytes are numbered from right to left. */
1884 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1885 addr_end_dvc - addr_end_data : 0;
1887 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1888 for (i = 0; i < num_byte_enable; i++)
1890 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1892 /* Now we need to match the position within the DVC of the comparison
1893 value with where the watch region is relative to the window
1894 (i.e., the ALIGN_OFFSET). */
1896 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1897 << rightmost_enabled_byte * 8);
1900 /* Return the number of memory locations that need to be accessed to
1901 evaluate the expression which generated the given value chain.
1902 Returns -1 if there's any register access involved, or if there are
1903 other kinds of values which are not acceptable in a condition
1904 expression (e.g., lval_computed or lval_internalvar). */
1906 num_memory_accesses (struct value *v)
1908 int found_memory_cnt = 0;
1909 struct value *head = v;
1911 /* The idea here is that evaluating an expression generates a series
1912 of values, one holding the value of every subexpression. (The
1913 expression a*b+c has five subexpressions: a, b, a*b, c, and
1914 a*b+c.) GDB's values hold almost enough information to establish
1915 the criteria given above --- they identify memory lvalues,
1916 register lvalues, computed values, etcetera. So we can evaluate
1917 the expression, and then scan the chain of values that leaves
1918 behind to determine the memory locations involved in the evaluation
1921 However, I don't think that the values returned by inferior
1922 function calls are special in any way. So this function may not
1923 notice that an expression contains an inferior function call.
1926 for (; v; v = value_next (v))
1928 /* Constants and values from the history are fine. */
1929 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1931 else if (VALUE_LVAL (v) == lval_memory)
1933 /* A lazy memory lvalue is one that GDB never needed to fetch;
1934 we either just used its address (e.g., `a' in `a.b') or
1935 we never needed it at all (e.g., `a' in `a,b'). */
1936 if (!value_lazy (v))
1939 /* Other kinds of values are not fine. */
1944 return found_memory_cnt;
1947 /* Verifies whether the expression COND can be implemented using the
1948 DVC (Data Value Compare) register in BookE processors. The expression
1949 must test the watch value for equality with a constant expression.
1950 If the function returns 1, DATA_VALUE will contain the constant against
1951 which the watch value should be compared and LEN will contain the size
1954 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1955 CORE_ADDR *data_value, int *len)
1957 int pc = 1, num_accesses_left, num_accesses_right;
1958 struct value *left_val, *right_val, *left_chain, *right_chain;
1960 if (cond->elts[0].opcode != BINOP_EQUAL)
1963 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1964 num_accesses_left = num_memory_accesses (left_chain);
1966 if (left_val == NULL || num_accesses_left < 0)
1968 free_value_chain (left_chain);
1973 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1974 num_accesses_right = num_memory_accesses (right_chain);
1976 if (right_val == NULL || num_accesses_right < 0)
1978 free_value_chain (left_chain);
1979 free_value_chain (right_chain);
1984 if (num_accesses_left == 1 && num_accesses_right == 0
1985 && VALUE_LVAL (left_val) == lval_memory
1986 && value_address (left_val) == watch_addr)
1988 *data_value = value_as_long (right_val);
1990 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1991 the same type as the memory region referenced by LEFT_VAL. */
1992 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1994 else if (num_accesses_left == 0 && num_accesses_right == 1
1995 && VALUE_LVAL (right_val) == lval_memory
1996 && value_address (right_val) == watch_addr)
1998 *data_value = value_as_long (left_val);
2000 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2001 the same type as the memory region referenced by RIGHT_VAL. */
2002 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
2006 free_value_chain (left_chain);
2007 free_value_chain (right_chain);
2012 free_value_chain (left_chain);
2013 free_value_chain (right_chain);
2018 /* Return non-zero if the target is capable of using hardware to evaluate
2019 the condition expression, thus only triggering the watchpoint when it is
2022 ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
2023 CORE_ADDR addr, int len, int rw,
2024 struct expression *cond)
2026 CORE_ADDR data_value;
2028 return (have_ptrace_hwdebug_interface ()
2029 && hwdebug_info.num_condition_regs > 0
2030 && check_condition (addr, cond, &data_value, &len));
2033 /* Set up P with the parameters necessary to request a watchpoint covering
2034 LEN bytes starting at ADDR and if possible with condition expression COND
2035 evaluated by hardware. INSERT tells if we are creating a request for
2036 inserting or removing the watchpoint. */
2039 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2040 int len, int rw, struct expression *cond,
2044 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2047 CORE_ADDR data_value;
2049 use_condition = (insert? can_use_watchpoint_cond_accel ()
2050 : hwdebug_info.num_condition_regs > 0);
2051 if (cond && use_condition && check_condition (addr, cond,
2053 calculate_dvc (addr, len, data_value, &p->condition_mode,
2054 &p->condition_value);
2057 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2058 p->condition_value = 0;
2061 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2066 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2067 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2068 p->condition_value = 0;
2070 /* The watchpoint will trigger if the address of the memory access is
2071 within the defined range, as follows: p->addr <= address < p->addr2.
2073 Note that the above sentence just documents how ptrace interprets
2074 its arguments; the watchpoint is set to watch the range defined by
2075 the user _inclusively_, as specified by the user interface. */
2076 p->addr2 = (uint64_t) addr + len;
2079 p->version = PPC_DEBUG_CURRENT_VERSION;
2080 p->trigger_type = get_trigger_type (rw);
2081 p->addr = (uint64_t) addr;
2085 ppc_linux_insert_watchpoint (struct target_ops *self,
2086 CORE_ADDR addr, int len, int rw,
2087 struct expression *cond)
2089 struct lwp_info *lp;
2092 if (have_ptrace_hwdebug_interface ())
2094 struct ppc_hw_breakpoint p;
2096 create_watchpoint_request (&p, addr, len, rw, cond, 1);
2099 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2106 long read_mode, write_mode;
2108 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2110 /* PowerPC 440 requires only the read/write flags to be passed
2117 /* PowerPC 970 and other DABR-based processors are required to pass
2118 the Breakpoint Translation bit together with the flags. */
2123 dabr_value = addr & ~(read_mode | write_mode);
2127 /* Set read and translate bits. */
2128 dabr_value |= read_mode;
2131 /* Set write and translate bits. */
2132 dabr_value |= write_mode;
2135 /* Set read, write and translate bits. */
2136 dabr_value |= read_mode | write_mode;
2140 saved_dabr_value = dabr_value;
2143 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2144 saved_dabr_value) < 0)
2154 ppc_linux_remove_watchpoint (struct target_ops *self,
2155 CORE_ADDR addr, int len, int rw,
2156 struct expression *cond)
2158 struct lwp_info *lp;
2161 if (have_ptrace_hwdebug_interface ())
2163 struct ppc_hw_breakpoint p;
2165 create_watchpoint_request (&p, addr, len, rw, cond, 0);
2168 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2174 saved_dabr_value = 0;
2176 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2177 saved_dabr_value) < 0)
2187 ppc_linux_new_thread (struct lwp_info *lp)
2189 int tid = ptid_get_lwp (lp->ptid);
2191 if (have_ptrace_hwdebug_interface ())
2194 struct thread_points *p;
2195 struct hw_break_tuple *hw_breaks;
2197 if (VEC_empty (thread_points_p, ppc_threads))
2200 /* Get a list of breakpoints from any thread. */
2201 p = VEC_last (thread_points_p, ppc_threads);
2202 hw_breaks = p->hw_breaks;
2204 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2205 for (i = 0; i < max_slots_number; i++)
2206 if (hw_breaks[i].hw_break)
2208 /* Older kernels did not make new threads inherit their parent
2209 thread's debug state, so we always clear the slot and replicate
2210 the debug state ourselves, ensuring compatibility with all
2213 /* The ppc debug resource accounting is done through "slots".
2214 Ask the kernel the deallocate this specific *point's slot. */
2215 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2217 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2221 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2225 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2228 int tid = ptid_get_lwp (tp->ptid);
2229 struct hw_break_tuple *hw_breaks;
2230 struct thread_points *t = NULL, *p;
2232 if (!have_ptrace_hwdebug_interface ())
2235 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2245 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2247 hw_breaks = t->hw_breaks;
2249 for (i = 0; i < max_slots_number; i++)
2250 if (hw_breaks[i].hw_break)
2251 xfree (hw_breaks[i].hw_break);
2253 xfree (t->hw_breaks);
2258 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
2262 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2265 if (siginfo.si_signo != SIGTRAP
2266 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2269 if (have_ptrace_hwdebug_interface ())
2272 struct thread_points *t;
2273 struct hw_break_tuple *hw_breaks;
2274 /* The index (or slot) of the *point is passed in the si_errno field. */
2275 int slot = siginfo.si_errno;
2277 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2279 /* Find out if this *point is a hardware breakpoint.
2280 If so, we should return 0. */
2283 hw_breaks = t->hw_breaks;
2284 for (i = 0; i < max_slots_number; i++)
2285 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2286 && hw_breaks[i].hw_break->trigger_type
2287 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2292 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2297 ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
2300 return ppc_linux_stopped_data_address (ops, &addr);
2304 ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2306 CORE_ADDR start, int length)
2310 if (have_ptrace_hwdebug_interface ()
2311 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2312 return start <= addr && start + length >= addr;
2313 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2320 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2321 return start <= addr + mask && start + length - 1 >= addr;
2324 /* Return the number of registers needed for a masked hardware watchpoint. */
2327 ppc_linux_masked_watch_num_registers (struct target_ops *target,
2328 CORE_ADDR addr, CORE_ADDR mask)
2330 if (!have_ptrace_hwdebug_interface ()
2331 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2333 else if ((mask & 0xC0000000) != 0xC0000000)
2335 warning (_("The given mask covers kernel address space "
2336 "and cannot be used.\n"));
2345 ppc_linux_store_inferior_registers (struct target_ops *ops,
2346 struct regcache *regcache, int regno)
2348 /* Overload thread id onto process id. */
2349 int tid = ptid_get_lwp (inferior_ptid);
2351 /* No thread id, just use process id. */
2353 tid = ptid_get_pid (inferior_ptid);
2356 store_register (regcache, tid, regno);
2358 store_ppc_registers (regcache, tid);
2361 /* Functions for transferring registers between a gregset_t or fpregset_t
2362 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2363 by the ptrace interface, not the current program's ABI. Eg. if a
2364 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2365 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2368 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2370 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2372 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2376 fill_gregset (const struct regcache *regcache,
2377 gdb_gregset_t *gregsetp, int regno)
2379 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2382 memset (gregsetp, 0, sizeof (*gregsetp));
2383 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2387 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2389 const struct regset *regset = ppc_linux_fpregset ();
2391 ppc_supply_fpregset (regset, regcache, -1,
2392 fpregsetp, sizeof (*fpregsetp));
2396 fill_fpregset (const struct regcache *regcache,
2397 gdb_fpregset_t *fpregsetp, int regno)
2399 const struct regset *regset = ppc_linux_fpregset ();
2401 ppc_collect_fpregset (regset, regcache, regno,
2402 fpregsetp, sizeof (*fpregsetp));
2406 ppc_linux_target_wordsize (void)
2410 /* Check for 64-bit inferior process. This is the case when the host is
2411 64-bit, and in addition the top bit of the MSR register is set. */
2412 #ifdef __powerpc64__
2415 int tid = ptid_get_lwp (inferior_ptid);
2417 tid = ptid_get_pid (inferior_ptid);
2420 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2421 if (errno == 0 && msr < 0)
2429 ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2430 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2432 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2433 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2434 gdb_byte *ptr = *readptr;
2439 if (endptr - ptr < sizeof_auxv_field * 2)
2442 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2443 ptr += sizeof_auxv_field;
2444 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2445 ptr += sizeof_auxv_field;
2451 static const struct target_desc *
2452 ppc_linux_read_description (struct target_ops *ops)
2459 int tid = ptid_get_lwp (inferior_ptid);
2461 tid = ptid_get_pid (inferior_ptid);
2463 if (have_ptrace_getsetevrregs)
2465 struct gdb_evrregset_t evrregset;
2467 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2468 return tdesc_powerpc_e500l;
2470 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2471 Anything else needs to be reported. */
2472 else if (errno != EIO)
2473 perror_with_name (_("Unable to fetch SPE registers"));
2476 if (have_ptrace_getsetvsxregs)
2478 gdb_vsxregset_t vsxregset;
2480 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2483 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2484 Anything else needs to be reported. */
2485 else if (errno != EIO)
2486 perror_with_name (_("Unable to fetch VSX registers"));
2489 if (have_ptrace_getvrregs)
2491 gdb_vrregset_t vrregset;
2493 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2496 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2497 Anything else needs to be reported. */
2498 else if (errno != EIO)
2499 perror_with_name (_("Unable to fetch AltiVec registers"));
2502 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2503 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2504 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2505 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2506 half of the register are for Decimal Floating Point, we check if that
2507 feature is available to decide the size of the FPSCR. */
2508 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2511 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2514 if (ppc_linux_target_wordsize () == 8)
2517 return tdesc_powerpc_cell64l;
2519 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2522 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2524 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2528 return tdesc_powerpc_cell32l;
2530 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2532 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2534 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2537 void _initialize_ppc_linux_nat (void);
2540 _initialize_ppc_linux_nat (void)
2542 struct target_ops *t;
2544 /* Fill in the generic GNU/Linux methods. */
2545 t = linux_target ();
2547 /* Add our register access methods. */
2548 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2549 t->to_store_registers = ppc_linux_store_inferior_registers;
2551 /* Add our breakpoint/watchpoint methods. */
2552 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2553 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2554 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
2555 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2556 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2557 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
2558 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2559 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
2560 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2561 t->to_stopped_data_address = ppc_linux_stopped_data_address;
2562 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
2563 t->to_can_accel_watchpoint_condition
2564 = ppc_linux_can_accel_watchpoint_condition;
2565 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
2566 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
2568 t->to_read_description = ppc_linux_read_description;
2569 t->to_auxv_parse = ppc_linux_auxv_parse;
2571 observer_attach_thread_exit (ppc_linux_thread_exit);
2573 /* Register the target. */
2574 linux_nat_add_target (t);
2575 linux_nat_set_new_thread (t, ppc_linux_new_thread);