1 /* PPC GNU/Linux native support.
3 Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 #include "gdb_string.h"
29 #include "gdb_assert.h"
31 #include "linux-nat.h"
34 #include <sys/types.h>
35 #include <sys/param.h>
38 #include <sys/ioctl.h>
41 #include <sys/procfs.h>
42 #include <sys/ptrace.h>
44 /* Prototypes for supply_gregset etc. */
48 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
49 configure time check. Some older glibc's (for instance 2.2.1)
50 don't have a specific powerpc version of ptrace.h, and fall back on
51 a generic one. In such cases, sys/ptrace.h defines
52 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
53 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
54 PTRACE_SETVRREGS to be. This also makes a configury check pretty
57 /* These definitions should really come from the glibc header files,
58 but Glibc doesn't know about the vrregs yet. */
59 #ifndef PTRACE_GETVRREGS
60 #define PTRACE_GETVRREGS 18
61 #define PTRACE_SETVRREGS 19
65 /* Similarly for the ptrace requests for getting / setting the SPE
66 registers (ev0 -- ev31, acc, and spefscr). See the description of
67 gdb_evrregset_t for details. */
68 #ifndef PTRACE_GETEVRREGS
69 #define PTRACE_GETEVRREGS 20
70 #define PTRACE_SETEVRREGS 21
73 /* Similarly for the hardware watchpoint support. */
74 #ifndef PTRACE_GET_DEBUGREG
75 #define PTRACE_GET_DEBUGREG 25
77 #ifndef PTRACE_SET_DEBUGREG
78 #define PTRACE_SET_DEBUGREG 26
80 #ifndef PTRACE_GETSIGINFO
81 #define PTRACE_GETSIGINFO 0x4202
84 /* This oddity is because the Linux kernel defines elf_vrregset_t as
85 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
86 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
87 the vrsave as an extra 4 bytes at the end. I opted for creating a
88 flat array of chars, so that it is easier to manipulate for gdb.
90 There are 32 vector registers 16 bytes longs, plus a VSCR register
91 which is only 4 bytes long, but is fetched as a 16 bytes
92 quantity. Up to here we have the elf_vrregset_t structure.
93 Appended to this there is space for the VRSAVE register: 4 bytes.
94 Even though this vrsave register is not included in the regset
95 typedef, it is handled by the ptrace requests.
97 Note that GNU/Linux doesn't support little endian PPC hardware,
98 therefore the offset at which the real value of the VSCR register
99 is located will be always 12 bytes.
101 The layout is like this (where x is the actual value of the vscr reg): */
105 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
106 <-------> <-------><-------><->
111 #define SIZEOF_VRREGS 33*16+4
113 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
116 /* On PPC processors that support the the Signal Processing Extension
117 (SPE) APU, the general-purpose registers are 64 bits long.
118 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
119 ptrace calls only access the lower half of each register, to allow
120 them to behave the same way they do on non-SPE systems. There's a
121 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
122 read and write the top halves of all the general-purpose registers
123 at once, along with some SPE-specific registers.
125 GDB itself continues to claim the general-purpose registers are 32
126 bits long. It has unnamed raw registers that hold the upper halves
127 of the gprs, and the the full 64-bit SIMD views of the registers,
128 'ev0' -- 'ev31', are pseudo-registers that splice the top and
129 bottom halves together.
131 This is the structure filled in by PTRACE_GETEVRREGS and written to
132 the inferior's registers by PTRACE_SETEVRREGS. */
133 struct gdb_evrregset_t
135 unsigned long evr[32];
136 unsigned long long acc;
137 unsigned long spefscr;
141 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
142 PTRACE_SETVRREGS requests, for reading and writing the Altivec
143 registers. Zero if we've tried one of them and gotten an
145 int have_ptrace_getvrregs = 1;
147 static CORE_ADDR last_stopped_data_address = 0;
149 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
150 PTRACE_SETEVRREGS requests, for reading and writing the SPE
151 registers. Zero if we've tried one of them and gotten an
153 int have_ptrace_getsetevrregs = 1;
156 /* registers layout, as presented by the ptrace interface:
157 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
158 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
159 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
160 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
161 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
162 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
163 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
164 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
165 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
169 ppc_register_u_addr (int regno)
172 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
173 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
174 interface, and not the wordsize of the program's ABI. */
175 int wordsize = sizeof (long);
177 /* General purpose registers occupy 1 slot each in the buffer */
178 if (regno >= tdep->ppc_gp0_regnum
179 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
180 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
182 /* Floating point regs: eight bytes each in both 32- and 64-bit
183 ptrace interfaces. Thus, two slots each in 32-bit interface, one
184 slot each in 64-bit interface. */
185 if (tdep->ppc_fp0_regnum >= 0
186 && regno >= tdep->ppc_fp0_regnum
187 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
188 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
190 /* UISA special purpose registers: 1 slot each */
191 if (regno == PC_REGNUM)
192 u_addr = PT_NIP * wordsize;
193 if (regno == tdep->ppc_lr_regnum)
194 u_addr = PT_LNK * wordsize;
195 if (regno == tdep->ppc_cr_regnum)
196 u_addr = PT_CCR * wordsize;
197 if (regno == tdep->ppc_xer_regnum)
198 u_addr = PT_XER * wordsize;
199 if (regno == tdep->ppc_ctr_regnum)
200 u_addr = PT_CTR * wordsize;
202 if (regno == tdep->ppc_mq_regnum)
203 u_addr = PT_MQ * wordsize;
205 if (regno == tdep->ppc_ps_regnum)
206 u_addr = PT_MSR * wordsize;
207 if (tdep->ppc_fpscr_regnum >= 0
208 && regno == tdep->ppc_fpscr_regnum)
210 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
211 kernel headers incorrectly contained the 32-bit definition of
212 PT_FPSCR. For the 32-bit definition, floating-point
213 registers occupy two 32-bit "slots", and the FPSCR lives in
214 the secondhalf of such a slot-pair (hence +1). For 64-bit,
215 the FPSCR instead occupies the full 64-bit 2-word-slot and
216 hence no adjustment is necessary. Hack around this. */
217 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
218 u_addr = (48 + 32) * wordsize;
220 u_addr = PT_FPSCR * wordsize;
225 /* The Linux kernel ptrace interface for AltiVec registers uses the
226 registers set mechanism, as opposed to the interface for all the
227 other registers, that stores/fetches each register individually. */
229 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
234 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
235 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
237 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
242 have_ptrace_getvrregs = 0;
245 perror_with_name (_("Unable to fetch AltiVec register"));
248 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
249 long on the hardware. We deal only with the lower 4 bytes of the
250 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
251 there is no need to define an offset for it. */
252 if (regno == (tdep->ppc_vrsave_regnum - 1))
253 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
255 regcache_raw_supply (regcache, regno,
256 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
259 /* Fetch the top 32 bits of TID's general-purpose registers and the
260 SPE-specific registers, and place the results in EVRREGSET. If we
261 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
264 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
265 PTRACE_SETEVRREGS requests are supported is isolated here, and in
266 set_spe_registers. */
268 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
270 if (have_ptrace_getsetevrregs)
272 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
276 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
277 we just return zeros. */
279 have_ptrace_getsetevrregs = 0;
281 /* Anything else needs to be reported. */
282 perror_with_name (_("Unable to fetch SPE registers"));
286 memset (evrregset, 0, sizeof (*evrregset));
289 /* Supply values from TID for SPE-specific raw registers: the upper
290 halves of the GPRs, the accumulator, and the spefscr. REGNO must
291 be the number of an upper half register, acc, spefscr, or -1 to
292 supply the values of all registers. */
294 fetch_spe_register (struct regcache *regcache, int tid, int regno)
296 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
297 struct gdb_evrregset_t evrregs;
299 gdb_assert (sizeof (evrregs.evr[0])
300 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
301 gdb_assert (sizeof (evrregs.acc)
302 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
303 gdb_assert (sizeof (evrregs.spefscr)
304 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
306 get_spe_registers (tid, &evrregs);
312 for (i = 0; i < ppc_num_gprs; i++)
313 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
316 else if (tdep->ppc_ev0_upper_regnum <= regno
317 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
318 regcache_raw_supply (regcache, regno,
319 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
322 || regno == tdep->ppc_acc_regnum)
323 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
326 || regno == tdep->ppc_spefscr_regnum)
327 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
332 fetch_register (struct regcache *regcache, int tid, int regno)
334 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
335 /* This isn't really an address. But ptrace thinks of it as one. */
336 CORE_ADDR regaddr = ppc_register_u_addr (regno);
337 int bytes_transferred;
338 unsigned int offset; /* Offset of registers within the u area. */
339 char buf[MAX_REGISTER_SIZE];
341 if (altivec_register_p (regno))
343 /* If this is the first time through, or if it is not the first
344 time through, and we have comfirmed that there is kernel
345 support for such a ptrace request, then go and fetch the
347 if (have_ptrace_getvrregs)
349 fetch_altivec_register (regcache, tid, regno);
352 /* If we have discovered that there is no ptrace support for
353 AltiVec registers, fall through and return zeroes, because
354 regaddr will be -1 in this case. */
356 else if (spe_register_p (regno))
358 fetch_spe_register (regcache, tid, regno);
364 memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
365 regcache_raw_supply (regcache, regno, buf);
369 /* Read the raw register using sizeof(long) sized chunks. On a
370 32-bit platform, 64-bit floating-point registers will require two
372 for (bytes_transferred = 0;
373 bytes_transferred < register_size (current_gdbarch, regno);
374 bytes_transferred += sizeof (long))
377 *(long *) &buf[bytes_transferred]
378 = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
379 regaddr += sizeof (long);
383 sprintf (message, "reading register %s (#%d)",
384 gdbarch_register_name (current_gdbarch, regno), regno);
385 perror_with_name (message);
389 /* Now supply the register. Keep in mind that the regcache's idea
390 of the register's size may not be a multiple of sizeof
392 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
394 /* Little-endian values are always found at the left end of the
395 bytes transferred. */
396 regcache_raw_supply (regcache, regno, buf);
398 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
400 /* Big-endian values are found at the right end of the bytes
402 size_t padding = (bytes_transferred
403 - register_size (current_gdbarch, regno));
404 regcache_raw_supply (regcache, regno, buf + padding);
407 internal_error (__FILE__, __LINE__,
408 _("fetch_register: unexpected byte order: %d"),
409 gdbarch_byte_order (current_gdbarch));
413 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
416 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
417 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
418 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
419 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
421 for (i = 0; i < num_of_vrregs; i++)
423 /* The last 2 registers of this set are only 32 bit long, not
424 128. However an offset is necessary only for VSCR because it
425 occupies a whole vector, while VRSAVE occupies a full 4 bytes
427 if (i == (num_of_vrregs - 2))
428 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
429 *vrregsetp + i * vrregsize + offset);
431 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
432 *vrregsetp + i * vrregsize);
437 fetch_altivec_registers (struct regcache *regcache, int tid)
442 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
447 have_ptrace_getvrregs = 0;
450 perror_with_name (_("Unable to fetch AltiVec registers"));
452 supply_vrregset (regcache, ®s);
456 fetch_ppc_registers (struct regcache *regcache, int tid)
459 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
461 for (i = 0; i < ppc_num_gprs; i++)
462 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
463 if (tdep->ppc_fp0_regnum >= 0)
464 for (i = 0; i < ppc_num_fprs; i++)
465 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
466 fetch_register (regcache, tid, PC_REGNUM);
467 if (tdep->ppc_ps_regnum != -1)
468 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
469 if (tdep->ppc_cr_regnum != -1)
470 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
471 if (tdep->ppc_lr_regnum != -1)
472 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
473 if (tdep->ppc_ctr_regnum != -1)
474 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
475 if (tdep->ppc_xer_regnum != -1)
476 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
477 if (tdep->ppc_mq_regnum != -1)
478 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
479 if (tdep->ppc_fpscr_regnum != -1)
480 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
481 if (have_ptrace_getvrregs)
482 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
483 fetch_altivec_registers (regcache, tid);
484 if (tdep->ppc_ev0_upper_regnum >= 0)
485 fetch_spe_register (regcache, tid, -1);
488 /* Fetch registers from the child process. Fetch all registers if
489 regno == -1, otherwise fetch all general registers or all floating
490 point registers depending upon the value of regno. */
492 ppc_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
494 /* Overload thread id onto process id */
495 int tid = TIDGET (inferior_ptid);
497 /* No thread id, just use process id */
499 tid = PIDGET (inferior_ptid);
502 fetch_ppc_registers (regcache, tid);
504 fetch_register (regcache, tid, regno);
507 /* Store one register. */
509 store_altivec_register (const struct regcache *regcache, int tid, int regno)
514 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
515 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
517 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
522 have_ptrace_getvrregs = 0;
525 perror_with_name (_("Unable to fetch AltiVec register"));
528 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
529 long on the hardware. */
530 if (regno == (tdep->ppc_vrsave_regnum - 1))
531 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
533 regcache_raw_collect (regcache, regno,
534 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
536 ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
538 perror_with_name (_("Unable to store AltiVec register"));
541 /* Assuming TID referrs to an SPE process, set the top halves of TID's
542 general-purpose registers and its SPE-specific registers to the
543 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
546 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
547 PTRACE_SETEVRREGS requests are supported is isolated here, and in
548 get_spe_registers. */
550 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
552 if (have_ptrace_getsetevrregs)
554 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
558 /* EIO means that the PTRACE_SETEVRREGS request isn't
559 supported; we fail silently, and don't try the call
562 have_ptrace_getsetevrregs = 0;
564 /* Anything else needs to be reported. */
565 perror_with_name (_("Unable to set SPE registers"));
570 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
571 If REGNO is -1, write the values of all the SPE-specific
574 store_spe_register (const struct regcache *regcache, int tid, int regno)
576 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
577 struct gdb_evrregset_t evrregs;
579 gdb_assert (sizeof (evrregs.evr[0])
580 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
581 gdb_assert (sizeof (evrregs.acc)
582 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
583 gdb_assert (sizeof (evrregs.spefscr)
584 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
587 /* Since we're going to write out every register, the code below
588 should store to every field of evrregs; if that doesn't happen,
589 make it obvious by initializing it with suspicious values. */
590 memset (&evrregs, 42, sizeof (evrregs));
592 /* We can only read and write the entire EVR register set at a
593 time, so to write just a single register, we do a
594 read-modify-write maneuver. */
595 get_spe_registers (tid, &evrregs);
601 for (i = 0; i < ppc_num_gprs; i++)
602 regcache_raw_collect (regcache,
603 tdep->ppc_ev0_upper_regnum + i,
606 else if (tdep->ppc_ev0_upper_regnum <= regno
607 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
608 regcache_raw_collect (regcache, regno,
609 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
612 || regno == tdep->ppc_acc_regnum)
613 regcache_raw_collect (regcache,
614 tdep->ppc_acc_regnum,
618 || regno == tdep->ppc_spefscr_regnum)
619 regcache_raw_collect (regcache,
620 tdep->ppc_spefscr_regnum,
623 /* Write back the modified register set. */
624 set_spe_registers (tid, &evrregs);
628 store_register (const struct regcache *regcache, int tid, int regno)
630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
631 /* This isn't really an address. But ptrace thinks of it as one. */
632 CORE_ADDR regaddr = ppc_register_u_addr (regno);
634 size_t bytes_to_transfer;
635 char buf[MAX_REGISTER_SIZE];
637 if (altivec_register_p (regno))
639 store_altivec_register (regcache, tid, regno);
642 else if (spe_register_p (regno))
644 store_spe_register (regcache, tid, regno);
651 /* First collect the register. Keep in mind that the regcache's
652 idea of the register's size may not be a multiple of sizeof
654 memset (buf, 0, sizeof buf);
655 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
657 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
659 /* Little-endian values always sit at the left end of the buffer. */
660 regcache_raw_collect (regcache, regno, buf);
662 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
664 /* Big-endian values sit at the right end of the buffer. */
665 size_t padding = (bytes_to_transfer
666 - register_size (current_gdbarch, regno));
667 regcache_raw_collect (regcache, regno, buf + padding);
670 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
673 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
675 regaddr += sizeof (long);
678 && regno == tdep->ppc_fpscr_regnum)
680 /* Some older kernel versions don't allow fpscr to be written. */
687 sprintf (message, "writing register %s (#%d)",
688 gdbarch_register_name (current_gdbarch, regno), regno);
689 perror_with_name (message);
695 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
698 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
699 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
700 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
701 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
703 for (i = 0; i < num_of_vrregs; i++)
705 /* The last 2 registers of this set are only 32 bit long, not
706 128, but only VSCR is fetched as a 16 bytes quantity. */
707 if (i == (num_of_vrregs - 2))
708 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
709 *vrregsetp + i * vrregsize + offset);
711 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
712 *vrregsetp + i * vrregsize);
717 store_altivec_registers (const struct regcache *regcache, int tid)
722 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
727 have_ptrace_getvrregs = 0;
730 perror_with_name (_("Couldn't get AltiVec registers"));
733 fill_vrregset (regcache, ®s);
735 if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
736 perror_with_name (_("Couldn't write AltiVec registers"));
740 store_ppc_registers (const struct regcache *regcache, int tid)
743 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
745 for (i = 0; i < ppc_num_gprs; i++)
746 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
747 if (tdep->ppc_fp0_regnum >= 0)
748 for (i = 0; i < ppc_num_fprs; i++)
749 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
750 store_register (regcache, tid, PC_REGNUM);
751 if (tdep->ppc_ps_regnum != -1)
752 store_register (regcache, tid, tdep->ppc_ps_regnum);
753 if (tdep->ppc_cr_regnum != -1)
754 store_register (regcache, tid, tdep->ppc_cr_regnum);
755 if (tdep->ppc_lr_regnum != -1)
756 store_register (regcache, tid, tdep->ppc_lr_regnum);
757 if (tdep->ppc_ctr_regnum != -1)
758 store_register (regcache, tid, tdep->ppc_ctr_regnum);
759 if (tdep->ppc_xer_regnum != -1)
760 store_register (regcache, tid, tdep->ppc_xer_regnum);
761 if (tdep->ppc_mq_regnum != -1)
762 store_register (regcache, tid, tdep->ppc_mq_regnum);
763 if (tdep->ppc_fpscr_regnum != -1)
764 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
765 if (have_ptrace_getvrregs)
766 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
767 store_altivec_registers (regcache, tid);
768 if (tdep->ppc_ev0_upper_regnum >= 0)
769 store_spe_register (regcache, tid, -1);
773 ppc_linux_check_watch_resources (int type, int cnt, int ot)
776 ptid_t ptid = inferior_ptid;
778 /* DABR (data address breakpoint register) is optional for PPC variants.
779 Some variants have one DABR, others have none. So CNT can't be larger
784 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
785 the target has DABR. If either answer is no, the ptrace call will
786 return -1. Fail in that case. */
791 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
797 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
799 /* Handle sub-8-byte quantities. */
803 /* addr+len must fall in the 8 byte watchable region. */
804 if ((addr + len) > (addr & ~7) + 8)
810 /* Set a watchpoint of type TYPE at address ADDR. */
812 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
816 ptid_t ptid = inferior_ptid;
818 dabr_value = addr & ~7;
822 /* Set read and translate bits. */
826 /* Set write and translate bits. */
830 /* Set read, write and translate bits. */
839 return ptrace (PTRACE_SET_DEBUGREG, tid, 0, dabr_value);
843 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
846 ptid_t ptid = inferior_ptid;
852 return ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0);
856 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
858 if (last_stopped_data_address)
860 *addr_p = last_stopped_data_address;
861 last_stopped_data_address = 0;
868 ppc_linux_stopped_by_watchpoint (void)
871 struct siginfo siginfo;
872 ptid_t ptid = inferior_ptid;
880 ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_TYPE_ARG3) 0, &siginfo);
882 if (errno != 0 || siginfo.si_signo != SIGTRAP ||
883 (siginfo.si_code & 0xffff) != 0x0004)
886 last_stopped_data_address = (uintptr_t) siginfo.si_addr;
891 ppc_linux_store_inferior_registers (struct regcache *regcache, int regno)
893 /* Overload thread id onto process id */
894 int tid = TIDGET (inferior_ptid);
896 /* No thread id, just use process id */
898 tid = PIDGET (inferior_ptid);
901 store_register (regcache, tid, regno);
903 store_ppc_registers (regcache, tid);
907 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
909 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
910 interface, and not the wordsize of the program's ABI. */
911 int wordsize = sizeof (long);
912 ppc_linux_supply_gregset (regcache, -1, gregsetp,
913 sizeof (gdb_gregset_t), wordsize);
917 right_fill_reg (const struct regcache *regcache, int regnum, void *reg)
919 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
920 interface, and not the wordsize of the program's ABI. */
921 int wordsize = sizeof (long);
922 /* Right fill the register. */
923 regcache_raw_collect (regcache, regnum,
926 - register_size (current_gdbarch, regnum)));
930 fill_gregset (const struct regcache *regcache,
931 gdb_gregset_t *gregsetp, int regno)
934 elf_greg_t *regp = (elf_greg_t *) gregsetp;
935 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
936 const int elf_ngreg = 48;
939 /* Start with zeros. */
940 memset (regp, 0, elf_ngreg * sizeof (*regp));
942 for (regi = 0; regi < ppc_num_gprs; regi++)
944 if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
945 right_fill_reg (regcache, tdep->ppc_gp0_regnum + regi,
946 (regp + PT_R0 + regi));
949 if ((regno == -1) || regno == PC_REGNUM)
950 right_fill_reg (regcache, PC_REGNUM, regp + PT_NIP);
951 if ((regno == -1) || regno == tdep->ppc_lr_regnum)
952 right_fill_reg (regcache, tdep->ppc_lr_regnum, regp + PT_LNK);
953 if ((regno == -1) || regno == tdep->ppc_cr_regnum)
954 regcache_raw_collect (regcache, tdep->ppc_cr_regnum,
956 if ((regno == -1) || regno == tdep->ppc_xer_regnum)
957 regcache_raw_collect (regcache, tdep->ppc_xer_regnum,
959 if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
960 right_fill_reg (regcache, tdep->ppc_ctr_regnum, regp + PT_CTR);
962 if (((regno == -1) || regno == tdep->ppc_mq_regnum)
963 && (tdep->ppc_mq_regnum != -1))
964 right_fill_reg (regcache, tdep->ppc_mq_regnum, regp + PT_MQ);
966 if ((regno == -1) || regno == tdep->ppc_ps_regnum)
967 right_fill_reg (regcache, tdep->ppc_ps_regnum, regp + PT_MSR);
971 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
973 ppc_linux_supply_fpregset (NULL, regcache, -1, fpregsetp,
974 sizeof (gdb_fpregset_t));
977 /* Given a pointer to a floating point register set in /proc format
978 (fpregset_t *), update the register specified by REGNO from gdb's
979 idea of the current floating point register set. If REGNO is -1,
982 fill_fpregset (const struct regcache *regcache,
983 gdb_fpregset_t *fpregsetp, int regno)
986 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
987 bfd_byte *fpp = (void *) fpregsetp;
989 if (ppc_floating_point_unit_p (current_gdbarch))
991 for (regi = 0; regi < ppc_num_fprs; regi++)
993 if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
994 regcache_raw_collect (regcache, tdep->ppc_fp0_regnum + regi,
997 if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
998 right_fill_reg (regcache, tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
1002 void _initialize_ppc_linux_nat (void);
1005 _initialize_ppc_linux_nat (void)
1007 struct target_ops *t;
1009 /* Fill in the generic GNU/Linux methods. */
1010 t = linux_target ();
1012 /* Add our register access methods. */
1013 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
1014 t->to_store_registers = ppc_linux_store_inferior_registers;
1016 /* Add our watchpoint methods. */
1017 t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
1018 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
1019 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
1020 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
1021 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
1022 t->to_stopped_data_address = ppc_linux_stopped_data_address;
1024 /* Register the target. */
1025 linux_nat_add_target (t);