2004-07-17 Andrew Cagney <cagney@gnu.org>
[external/binutils.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3    Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
4    2003 Free Software Foundation, Inc.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <signal.h>
34 #include <sys/user.h>
35 #include <sys/ioctl.h>
36 #include "gdb_wait.h"
37 #include <fcntl.h>
38 #include <sys/procfs.h>
39 #include <sys/ptrace.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43 #include "ppc-tdep.h"
44
45 #ifndef PT_READ_U
46 #define PT_READ_U PTRACE_PEEKUSR
47 #endif
48 #ifndef PT_WRITE_U
49 #define PT_WRITE_U PTRACE_POKEUSR
50 #endif
51
52 /* Default the type of the ptrace transfer to int.  */
53 #ifndef PTRACE_XFER_TYPE
54 #define PTRACE_XFER_TYPE int
55 #endif
56
57 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
58    configure time check.  Some older glibc's (for instance 2.2.1)
59    don't have a specific powerpc version of ptrace.h, and fall back on
60    a generic one.  In such cases, sys/ptrace.h defines
61    PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
62    ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
63    PTRACE_SETVRREGS to be.  This also makes a configury check pretty
64    much useless.  */
65
66 /* These definitions should really come from the glibc header files,
67    but Glibc doesn't know about the vrregs yet.  */
68 #ifndef PTRACE_GETVRREGS
69 #define PTRACE_GETVRREGS 18
70 #define PTRACE_SETVRREGS 19
71 #endif
72
73
74 /* Similarly for the ptrace requests for getting / setting the SPE
75    registers (ev0 -- ev31, acc, and spefscr).  See the description of
76    gdb_evrregset_t for details.  */
77 #ifndef PTRACE_GETEVRREGS
78 #define PTRACE_GETEVRREGS 20
79 #define PTRACE_SETEVRREGS 21
80 #endif
81
82
83 /* This oddity is because the Linux kernel defines elf_vrregset_t as
84    an array of 33 16 bytes long elements.  I.e. it leaves out vrsave.
85    However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
86    the vrsave as an extra 4 bytes at the end.  I opted for creating a
87    flat array of chars, so that it is easier to manipulate for gdb.
88
89    There are 32 vector registers 16 bytes longs, plus a VSCR register
90    which is only 4 bytes long, but is fetched as a 16 bytes
91    quantity. Up to here we have the elf_vrregset_t structure.
92    Appended to this there is space for the VRSAVE register: 4 bytes.
93    Even though this vrsave register is not included in the regset
94    typedef, it is handled by the ptrace requests.
95
96    Note that GNU/Linux doesn't support little endian PPC hardware,
97    therefore the offset at which the real value of the VSCR register
98    is located will be always 12 bytes.
99
100    The layout is like this (where x is the actual value of the vscr reg): */
101
102 /* *INDENT-OFF* */
103 /*
104    |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
105    <------->     <-------><-------><->
106      VR0           VR31     VSCR    VRSAVE
107 */
108 /* *INDENT-ON* */
109
110 #define SIZEOF_VRREGS 33*16+4
111
112 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
113
114
115 /* On PPC processors that support the the Signal Processing Extension
116    (SPE) APU, the general-purpose registers are 64 bits long.
117    However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR
118    / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of
119    each register, to allow them to behave the same way they do on
120    non-SPE systems.  There's a separate pair of calls,
121    PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top
122    halves of all the general-purpose registers at once, along with
123    some SPE-specific registers.
124
125    GDB itself continues to claim the general-purpose registers are 32
126    bits long; the full 64-bit registers are called 'ev0' -- 'ev31'.
127    The ev registers are raw registers, and the GPR's are pseudo-
128    registers mapped onto their lower halves.  This means that reading
129    and writing ev registers involves a mix of regset-at-once
130    PTRACE_{GET,SET}EVRREGS calls and register-at-a-time
131    PTRACE_{PEEK,POKE}USR calls.
132
133    This is the structure filled in by PTRACE_GETEVRREGS and written to
134    the inferior's registers by PTRACE_SETEVRREGS.  */
135 struct gdb_evrregset_t
136 {
137   unsigned long evr[32];
138   unsigned long long acc;
139   unsigned long spefscr;
140 };
141
142
143 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
144    PTRACE_SETVRREGS requests, for reading and writing the Altivec
145    registers.  Zero if we've tried one of them and gotten an
146    error.  */
147 int have_ptrace_getvrregs = 1;
148
149
150 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
151    PTRACE_SETEVRREGS requests, for reading and writing the SPE
152    registers.  Zero if we've tried one of them and gotten an
153    error.  */
154 int have_ptrace_getsetevrregs = 1;
155
156
157 int
158 kernel_u_size (void)
159 {
160   return (sizeof (struct user));
161 }
162
163 /* *INDENT-OFF* */
164 /* registers layout, as presented by the ptrace interface:
165 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
166 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
167 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
168 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
169 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
170 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
171 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
172 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
173 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
174 /* *INDENT_ON * */
175
176 static int
177 ppc_register_u_addr (int regno)
178 {
179   int u_addr = -1;
180   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
181   /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
182      interface, and not the wordsize of the program's ABI.  */
183   int wordsize = sizeof (PTRACE_XFER_TYPE);
184
185   /* General purpose registers occupy 1 slot each in the buffer */
186   if (regno >= tdep->ppc_gp0_regnum 
187       && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
188     u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
189
190   /* Floating point regs: eight bytes each in both 32- and 64-bit
191      ptrace interfaces.  Thus, two slots each in 32-bit interface, one
192      slot each in 64-bit interface.  */
193   if (tdep->ppc_fp0_regnum >= 0
194       && regno >= tdep->ppc_fp0_regnum
195       && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
196     u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
197
198   /* UISA special purpose registers: 1 slot each */
199   if (regno == PC_REGNUM)
200     u_addr = PT_NIP * wordsize;
201   if (regno == tdep->ppc_lr_regnum)
202     u_addr = PT_LNK * wordsize;
203   if (regno == tdep->ppc_cr_regnum)
204     u_addr = PT_CCR * wordsize;
205   if (regno == tdep->ppc_xer_regnum)
206     u_addr = PT_XER * wordsize;
207   if (regno == tdep->ppc_ctr_regnum)
208     u_addr = PT_CTR * wordsize;
209 #ifdef PT_MQ
210   if (regno == tdep->ppc_mq_regnum)
211     u_addr = PT_MQ * wordsize;
212 #endif
213   if (regno == tdep->ppc_ps_regnum)
214     u_addr = PT_MSR * wordsize;
215   if (tdep->ppc_fpscr_regnum >= 0
216       && regno == tdep->ppc_fpscr_regnum)
217     u_addr = PT_FPSCR * wordsize;
218
219   return u_addr;
220 }
221
222 /* The Linux kernel ptrace interface for AltiVec registers uses the
223    registers set mechanism, as opposed to the interface for all the
224    other registers, that stores/fetches each register individually.  */
225 static void
226 fetch_altivec_register (int tid, int regno)
227 {
228   int ret;
229   int offset = 0;
230   gdb_vrregset_t regs;
231   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
232   int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
233
234   ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
235   if (ret < 0)
236     {
237       if (errno == EIO)
238         {
239           have_ptrace_getvrregs = 0;
240           return;
241         }
242       perror_with_name ("Unable to fetch AltiVec register");
243     }
244  
245   /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
246      long on the hardware.  We deal only with the lower 4 bytes of the
247      vector.  VRSAVE is at the end of the array in a 4 bytes slot, so
248      there is no need to define an offset for it.  */
249   if (regno == (tdep->ppc_vrsave_regnum - 1))
250     offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
251   
252   supply_register (regno,
253                    regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
254 }
255
256 /* Fetch the top 32 bits of TID's general-purpose registers and the
257    SPE-specific registers, and place the results in EVRREGSET.  If we
258    don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
259    zeros.
260
261    All the logic to deal with whether or not the PTRACE_GETEVRREGS and
262    PTRACE_SETEVRREGS requests are supported is isolated here, and in
263    set_spe_registers.  */
264 static void
265 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
266 {
267   if (have_ptrace_getsetevrregs)
268     {
269       if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
270         return;
271       else
272         {
273           /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
274              we just return zeros.  */
275           if (errno == EIO)
276             have_ptrace_getsetevrregs = 0;
277           else
278             /* Anything else needs to be reported.  */
279             perror_with_name ("Unable to fetch SPE registers");
280         }
281     }
282
283   memset (evrregset, 0, sizeof (*evrregset));
284 }
285
286 /* Assuming TID refers to an SPE process, store the full 64-bit value
287    of TID's ev register EV_REGNUM in DEST, getting the high bits from
288    EVRREGS and the low bits from the kernel via ptrace.  */
289 static void
290 read_spliced_spe_reg (int tid, int ev_regnum,
291                       struct gdb_evrregset_t *evrregs,
292                       char *dest)
293 {
294   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
295
296   /* Make sure we're trying to read an EV register; that's all we
297      handle.  */
298   gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
299               && ev_regnum <= tdep->ppc_ev31_regnum);
300
301   /* Make sure the sizes for the splicing add up.  */
302   gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
303               == register_size (current_gdbarch, ev_regnum));
304
305   {
306     /* The index of ev_regnum in evrregs->evr[].  */
307     int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
308
309     /* The number of the corresponding general-purpose register, which
310        holds the lower 32 bits of the EV register.  */
311     int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
312
313     /* The offset of gpr_regnum in the process's uarea.  */
314     CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
315
316     /* The low word of the EV register's value.  */
317     PTRACE_XFER_TYPE low_word;
318
319     /* The PTRACE_PEEKUSR / PT_READ_U ptrace requests need to be able
320        to return arbitrary register values, so they can't return -1 to
321        indicate an error.  So we clear errno, and then check it after
322        the call.  */
323     errno = 0;
324     low_word = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset, 0);
325   
326     if (errno != 0)
327       {
328         char message[128];
329         sprintf (message, "reading register %s (#%d)",
330                  REGISTER_NAME (ev_regnum), ev_regnum);
331         perror_with_name (message);
332       }
333
334     if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
335       {
336         memcpy (dest, &evrregs->evr[ev_index],
337                 sizeof (evrregs->evr[ev_index]));
338         * (PTRACE_XFER_TYPE *) (dest + sizeof (evrregs->evr[ev_index]))
339           = low_word;
340       }
341     else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
342       {
343         * (PTRACE_XFER_TYPE *) dest = low_word;
344         memcpy (dest + sizeof (PTRACE_XFER_TYPE),
345                 &evrregs->evr[ev_index], sizeof (evrregs->evr[ev_index]));
346       }
347     else
348       gdb_assert (0);
349   }
350 }
351
352
353 /* On SPE machines, supply the full value of the SPE register REGNO
354    from TID.  This handles ev0 -- ev31 and acc, which are 64 bits
355    long, and spefscr, which is 32 bits long.  */
356 static void
357 fetch_spe_register (int tid, int regno)
358 {
359   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
360   struct gdb_evrregset_t evrregs;
361
362   get_spe_registers (tid, &evrregs);
363
364   if (tdep->ppc_ev0_regnum <= regno
365       && regno <= tdep->ppc_ev31_regnum)
366     {
367       char buf[MAX_REGISTER_SIZE];
368       read_spliced_spe_reg (tid, regno, &evrregs, buf);
369       supply_register (regno, buf);
370     }
371   else if (regno == tdep->ppc_acc_regnum)
372     {
373       gdb_assert (sizeof (evrregs.acc)
374                   == register_size (current_gdbarch, regno));
375       supply_register (regno, &evrregs.acc);
376     }
377   else if (regno == tdep->ppc_spefscr_regnum)
378     {
379       gdb_assert (sizeof (evrregs.spefscr)
380                   == register_size (current_gdbarch, regno));
381       supply_register (regno, &evrregs.spefscr);
382     }
383   else
384     gdb_assert (0);
385 }
386
387 static void
388 fetch_register (int tid, int regno)
389 {
390   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
391   /* This isn't really an address.  But ptrace thinks of it as one.  */
392   CORE_ADDR regaddr = ppc_register_u_addr (regno);
393   int bytes_transferred;
394   unsigned int offset;         /* Offset of registers within the u area. */
395   char buf[MAX_REGISTER_SIZE];
396
397   /* Sanity check: this function should only be called to fetch raw
398      registers' values, never pseudoregisters' values.  */
399   if (tdep->ppc_gp0_regnum <= regno
400       && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
401     gdb_assert (! tdep->ppc_gprs_pseudo_p);
402
403   if (altivec_register_p (regno))
404     {
405       /* If this is the first time through, or if it is not the first
406          time through, and we have comfirmed that there is kernel
407          support for such a ptrace request, then go and fetch the
408          register.  */
409       if (have_ptrace_getvrregs)
410        {
411          fetch_altivec_register (tid, regno);
412          return;
413        }
414      /* If we have discovered that there is no ptrace support for
415         AltiVec registers, fall through and return zeroes, because
416         regaddr will be -1 in this case.  */
417     }
418   else if (spe_register_p (regno))
419     {
420       fetch_spe_register (tid, regno);
421       return;
422     }
423
424   if (regaddr == -1)
425     {
426       memset (buf, '\0', DEPRECATED_REGISTER_RAW_SIZE (regno));   /* Supply zeroes */
427       supply_register (regno, buf);
428       return;
429     }
430
431   /* Read the raw register using PTRACE_XFER_TYPE sized chunks.  On a
432      32-bit platform, 64-bit floating-point registers will require two
433      transfers.  */
434   for (bytes_transferred = 0;
435        bytes_transferred < register_size (current_gdbarch, regno);
436        bytes_transferred += sizeof (PTRACE_XFER_TYPE))
437     {
438       errno = 0;
439       *(PTRACE_XFER_TYPE *) & buf[bytes_transferred]
440         = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0);
441       regaddr += sizeof (PTRACE_XFER_TYPE);
442       if (errno != 0)
443         {
444           char message[128];
445           sprintf (message, "reading register %s (#%d)", 
446                    REGISTER_NAME (regno), regno);
447           perror_with_name (message);
448         }
449     }
450
451   /* Now supply the register.  Keep in mind that the regcache's idea
452      of the register's size may not be a multiple of sizeof
453      (PTRACE_XFER_TYPE).  */
454   if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
455     {
456       /* Little-endian values are always found at the left end of the
457          bytes transferred.  */
458       regcache_raw_supply (current_regcache, regno, buf);
459     }
460   else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
461     {
462       /* Big-endian values are found at the right end of the bytes
463          transferred.  */
464       size_t padding = (bytes_transferred
465                         - register_size (current_gdbarch, regno));
466       regcache_raw_supply (current_regcache, regno, buf + padding);
467     }
468   else 
469     gdb_assert (0);
470 }
471
472 static void
473 supply_vrregset (gdb_vrregset_t *vrregsetp)
474 {
475   int i;
476   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
477   int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
478   int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
479   int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
480
481   for (i = 0; i < num_of_vrregs; i++)
482     {
483       /* The last 2 registers of this set are only 32 bit long, not
484          128.  However an offset is necessary only for VSCR because it
485          occupies a whole vector, while VRSAVE occupies a full 4 bytes
486          slot.  */
487       if (i == (num_of_vrregs - 2))
488         supply_register (tdep->ppc_vr0_regnum + i,
489                          *vrregsetp + i * vrregsize + offset);
490       else
491         supply_register (tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize);
492     }
493 }
494
495 static void
496 fetch_altivec_registers (int tid)
497 {
498   int ret;
499   gdb_vrregset_t regs;
500   
501   ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
502   if (ret < 0)
503     {
504       if (errno == EIO)
505         {
506           have_ptrace_getvrregs = 0;
507           return;
508         }
509       perror_with_name ("Unable to fetch AltiVec registers");
510     }
511   supply_vrregset (&regs);
512 }
513
514 /* On SPE machines, fetch the full 64 bits of all the general-purpose
515    registers, as well as the SPE-specific registers 'acc' and
516    'spefscr'.  */
517 static void
518 fetch_spe_registers (int tid)
519 {
520   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
521   struct gdb_evrregset_t evrregs;
522   int i;
523
524   get_spe_registers (tid, &evrregs);
525
526   /* Splice and supply each of the EV registers.  */
527   for (i = 0; i < ppc_num_gprs; i++)
528     {
529       char buf[MAX_REGISTER_SIZE];
530
531       read_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
532       supply_register (tdep->ppc_ev0_regnum + i, buf);
533     }
534
535   /* Supply the SPE-specific registers.  */
536   supply_register (tdep->ppc_acc_regnum, &evrregs.acc);
537   supply_register (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
538 }
539
540 static void 
541 fetch_ppc_registers (int tid)
542 {
543   int i;
544   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
545
546   if (! tdep->ppc_gprs_pseudo_p)
547     for (i = 0; i < ppc_num_gprs; i++)
548       fetch_register (tid, tdep->ppc_gp0_regnum + i);
549   if (tdep->ppc_fp0_regnum >= 0)
550     for (i = 0; i < ppc_num_fprs; i++)
551       fetch_register (tid, tdep->ppc_fp0_regnum + i);
552   fetch_register (tid, PC_REGNUM);
553   if (tdep->ppc_ps_regnum != -1)
554     fetch_register (tid, tdep->ppc_ps_regnum);
555   if (tdep->ppc_cr_regnum != -1)
556     fetch_register (tid, tdep->ppc_cr_regnum);
557   if (tdep->ppc_lr_regnum != -1)
558     fetch_register (tid, tdep->ppc_lr_regnum);
559   if (tdep->ppc_ctr_regnum != -1)
560     fetch_register (tid, tdep->ppc_ctr_regnum);
561   if (tdep->ppc_xer_regnum != -1)
562     fetch_register (tid, tdep->ppc_xer_regnum);
563   if (tdep->ppc_mq_regnum != -1)
564     fetch_register (tid, tdep->ppc_mq_regnum);
565   if (tdep->ppc_fpscr_regnum != -1)
566     fetch_register (tid, tdep->ppc_fpscr_regnum);
567   if (have_ptrace_getvrregs)
568     if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
569       fetch_altivec_registers (tid);
570   if (tdep->ppc_ev0_regnum >= 0)
571     fetch_spe_registers (tid);
572 }
573
574 /* Fetch registers from the child process.  Fetch all registers if
575    regno == -1, otherwise fetch all general registers or all floating
576    point registers depending upon the value of regno.  */
577 void
578 fetch_inferior_registers (int regno)
579 {
580   /* Overload thread id onto process id */
581   int tid = TIDGET (inferior_ptid);
582
583   /* No thread id, just use process id */
584   if (tid == 0)
585     tid = PIDGET (inferior_ptid);
586
587   if (regno == -1)
588     fetch_ppc_registers (tid);
589   else 
590     fetch_register (tid, regno);
591 }
592
593 /* Store one register. */
594 static void
595 store_altivec_register (int tid, int regno)
596 {
597   int ret;
598   int offset = 0;
599   gdb_vrregset_t regs;
600   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
601   int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
602
603   ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
604   if (ret < 0)
605     {
606       if (errno == EIO)
607         {
608           have_ptrace_getvrregs = 0;
609           return;
610         }
611       perror_with_name ("Unable to fetch AltiVec register");
612     }
613
614   /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
615      long on the hardware.  */
616   if (regno == (tdep->ppc_vrsave_regnum - 1))
617     offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
618
619   regcache_collect (regno,
620                     regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
621
622   ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
623   if (ret < 0)
624     perror_with_name ("Unable to store AltiVec register");
625 }
626
627 /* Assuming TID referrs to an SPE process, set the top halves of TID's
628    general-purpose registers and its SPE-specific registers to the
629    values in EVRREGSET.  If we don't support PTRACE_SETEVRREGS, do
630    nothing.
631
632    All the logic to deal with whether or not the PTRACE_GETEVRREGS and
633    PTRACE_SETEVRREGS requests are supported is isolated here, and in
634    get_spe_registers.  */
635 static void
636 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
637 {
638   if (have_ptrace_getsetevrregs)
639     {
640       if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
641         return;
642       else
643         {
644           /* EIO means that the PTRACE_SETEVRREGS request isn't
645              supported; we fail silently, and don't try the call
646              again.  */
647           if (errno == EIO)
648             have_ptrace_getsetevrregs = 0;
649           else
650             /* Anything else needs to be reported.  */
651             perror_with_name ("Unable to set SPE registers");
652         }
653     }
654 }
655
656 /* Store the bytes at SRC as the contents of TID's EV register EV_REGNUM.
657    Write the less significant word to TID using ptrace, and copy the
658    more significant word to the appropriate slot in EVRREGS.  */
659 static void
660 write_spliced_spe_reg (int tid, int ev_regnum,
661                        struct gdb_evrregset_t *evrregs,
662                        char *src)
663 {
664   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
665
666   /* Make sure we're trying to write an EV register; that's all we
667      handle.  */
668   gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
669               && ev_regnum <= tdep->ppc_ev31_regnum);
670
671   /* Make sure the sizes for the splicing add up.  */
672   gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
673               == register_size (current_gdbarch, ev_regnum));
674
675   {
676     int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
677
678     /* The number of the corresponding general-purpose register, which
679        holds the lower 32 bits of the EV register.  */
680     int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
681
682     /* The offset of gpr_regnum in the process's uarea.  */
683     CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
684
685     /* The PTRACE_POKEUSR / PT_WRITE_U ptrace requests need to be able
686        to return arbitrary register values, so they can't return -1 to
687        indicate an error.  So we clear errno, and check it again
688        afterwards.  */
689     errno = 0;
690
691     if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
692       {
693         memcpy (&evrregs->evr[ev_index], src, sizeof (evrregs->evr[ev_index]));
694         ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
695                 * (PTRACE_XFER_TYPE *) (src + sizeof (evrregs->evr[0])));
696       }
697     else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
698       {
699         ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
700                 * (PTRACE_XFER_TYPE *) src);
701         memcpy (&evrregs->evr[ev_index], src + sizeof (PTRACE_XFER_TYPE),
702                 sizeof (evrregs->evr[ev_index]));
703       }
704     else 
705       gdb_assert (0);
706
707     if (errno != 0)
708       {
709         char message[128];
710         sprintf (message, "writing register %s (#%d)", 
711                  REGISTER_NAME (ev_regnum), ev_regnum);
712         perror_with_name (message);
713       }
714   }
715 }
716
717 /* Write GDB's value for the SPE register REGNO to TID.  */
718 static void
719 store_spe_register (int tid, int regno)
720 {
721   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
722   struct gdb_evrregset_t evrregs;
723
724   /* We can only read and write the entire EVR register set at a time,
725      so to write just a single register, we do a read-modify-write
726      maneuver.  */
727   get_spe_registers (tid, &evrregs);
728
729   if (tdep->ppc_ev0_regnum >= 0
730       && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
731     {
732       char buf[MAX_REGISTER_SIZE];
733       regcache_collect (regno, buf);
734       write_spliced_spe_reg (tid, regno, &evrregs, buf);
735     }
736   else if (tdep->ppc_acc_regnum >= 0
737            && regno == tdep->ppc_acc_regnum)
738     {
739       gdb_assert (sizeof (evrregs.acc)
740                   == register_size (current_gdbarch, regno));
741       regcache_collect (regno, &evrregs.acc);
742     }
743   else if (tdep->ppc_spefscr_regnum >= 0
744            && regno == tdep->ppc_spefscr_regnum)
745     {
746       gdb_assert (sizeof (evrregs.spefscr)
747                   == register_size (current_gdbarch, regno));
748       regcache_collect (regno, &evrregs.spefscr);
749     }
750   else
751     gdb_assert (0);
752
753   /* Write back the modified register set.  */
754   set_spe_registers (tid, &evrregs);
755 }
756
757 static void
758 store_register (int tid, int regno)
759 {
760   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
761   /* This isn't really an address.  But ptrace thinks of it as one.  */
762   CORE_ADDR regaddr = ppc_register_u_addr (regno);
763   int i;
764   size_t bytes_to_transfer;
765   char buf[MAX_REGISTER_SIZE];
766
767   /* Sanity check: this function should only be called to store raw
768      registers' values, never pseudoregisters' values.  */
769   if (tdep->ppc_gp0_regnum <= regno
770       && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
771     gdb_assert (! tdep->ppc_gprs_pseudo_p);
772
773   if (altivec_register_p (regno))
774     {
775       store_altivec_register (tid, regno);
776       return;
777     }
778   else if (spe_register_p (regno))
779     {
780       store_spe_register (tid, regno);
781       return;
782     }
783
784   if (regaddr == -1)
785     return;
786
787   /* First collect the register.  Keep in mind that the regcache's
788      idea of the register's size may not be a multiple of sizeof
789      (PTRACE_XFER_TYPE).  */
790   memset (buf, 0, sizeof buf);
791   bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
792                                 sizeof (PTRACE_XFER_TYPE));
793   if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
794     {
795       /* Little-endian values always sit at the left end of the buffer.  */
796       regcache_raw_collect (current_regcache, regno, buf);
797     }
798   else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
799     {
800       /* Big-endian values sit at the right end of the buffer.  */
801       size_t padding = (bytes_to_transfer
802                         - register_size (current_gdbarch, regno));
803       regcache_raw_collect (current_regcache, regno, buf + padding);
804     }
805
806   for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE))
807     {
808       errno = 0;
809       ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
810               *(PTRACE_XFER_TYPE *) & buf[i]);
811       regaddr += sizeof (PTRACE_XFER_TYPE);
812
813       if (errno == EIO 
814           && regno == tdep->ppc_fpscr_regnum)
815         {
816           /* Some older kernel versions don't allow fpscr to be written.  */
817           continue;
818         }
819
820       if (errno != 0)
821         {
822           char message[128];
823           sprintf (message, "writing register %s (#%d)", 
824                    REGISTER_NAME (regno), regno);
825           perror_with_name (message);
826         }
827     }
828 }
829
830 static void
831 fill_vrregset (gdb_vrregset_t *vrregsetp)
832 {
833   int i;
834   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
835   int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
836   int vrregsize = DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
837   int offset = vrregsize - DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vrsave_regnum);
838
839   for (i = 0; i < num_of_vrregs; i++)
840     {
841       /* The last 2 registers of this set are only 32 bit long, not
842          128, but only VSCR is fetched as a 16 bytes quantity.  */
843       if (i == (num_of_vrregs - 2))
844         regcache_collect (tdep->ppc_vr0_regnum + i,
845                           *vrregsetp + i * vrregsize + offset);
846       else
847         regcache_collect (tdep->ppc_vr0_regnum + i, *vrregsetp + i * vrregsize);
848     }
849 }
850
851 static void
852 store_altivec_registers (int tid)
853 {
854   int ret;
855   gdb_vrregset_t regs;
856
857   ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
858   if (ret < 0)
859     {
860       if (errno == EIO)
861         {
862           have_ptrace_getvrregs = 0;
863           return;
864         }
865       perror_with_name ("Couldn't get AltiVec registers");
866     }
867
868   fill_vrregset (&regs);
869   
870   if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
871     perror_with_name ("Couldn't write AltiVec registers");
872 }
873
874 static void
875 store_spe_registers (tid)
876 {
877   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
878   struct gdb_evrregset_t evrregs;
879   int i;
880
881   /* The code below should store to every field of evrregs; if that
882      doesn't happen, make it obvious by initializing it with
883      suspicious values.  */
884   memset (&evrregs, 42, sizeof (evrregs));
885
886   for (i = 0; i < ppc_num_gprs; i++)
887     {
888       char buf[MAX_REGISTER_SIZE];
889
890       regcache_collect (tdep->ppc_ev0_regnum + i, buf);
891       write_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
892     }
893
894   gdb_assert (sizeof (evrregs.acc)
895               == register_size (current_gdbarch, tdep->ppc_acc_regnum));
896   regcache_collect (tdep->ppc_acc_regnum, &evrregs.acc);
897   gdb_assert (sizeof (evrregs.spefscr)
898               == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
899   regcache_collect (tdep->ppc_acc_regnum, &evrregs.spefscr);
900
901   set_spe_registers (tid, &evrregs);
902 }
903
904 static void
905 store_ppc_registers (int tid)
906 {
907   int i;
908   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
909   
910   if (! tdep->ppc_gprs_pseudo_p)
911     for (i = 0; i < ppc_num_gprs; i++)
912       store_register (tid, tdep->ppc_gp0_regnum + i);
913   if (tdep->ppc_fp0_regnum >= 0)
914     for (i = 0; i < ppc_num_fprs; i++)
915       store_register (tid, tdep->ppc_fp0_regnum + i);
916   store_register (tid, PC_REGNUM);
917   if (tdep->ppc_ps_regnum != -1)
918     store_register (tid, tdep->ppc_ps_regnum);
919   if (tdep->ppc_cr_regnum != -1)
920     store_register (tid, tdep->ppc_cr_regnum);
921   if (tdep->ppc_lr_regnum != -1)
922     store_register (tid, tdep->ppc_lr_regnum);
923   if (tdep->ppc_ctr_regnum != -1)
924     store_register (tid, tdep->ppc_ctr_regnum);
925   if (tdep->ppc_xer_regnum != -1)
926     store_register (tid, tdep->ppc_xer_regnum);
927   if (tdep->ppc_mq_regnum != -1)
928     store_register (tid, tdep->ppc_mq_regnum);
929   if (tdep->ppc_fpscr_regnum != -1)
930     store_register (tid, tdep->ppc_fpscr_regnum);
931   if (have_ptrace_getvrregs)
932     if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
933       store_altivec_registers (tid);
934   if (tdep->ppc_ev0_regnum >= 0)
935     store_spe_registers (tid);
936 }
937
938 void
939 store_inferior_registers (int regno)
940 {
941   /* Overload thread id onto process id */
942   int tid = TIDGET (inferior_ptid);
943
944   /* No thread id, just use process id */
945   if (tid == 0)
946     tid = PIDGET (inferior_ptid);
947
948   if (regno >= 0)
949     store_register (tid, regno);
950   else
951     store_ppc_registers (tid);
952 }
953
954 void
955 supply_gregset (gdb_gregset_t *gregsetp)
956 {
957   /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
958      interface, and not the wordsize of the program's ABI.  */
959   int wordsize = sizeof (PTRACE_XFER_TYPE);
960   ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
961                             sizeof (gdb_gregset_t), wordsize);
962 }
963
964 static void
965 right_fill_reg (int regnum, void *reg)
966 {
967   /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
968      interface, and not the wordsize of the program's ABI.  */
969   int wordsize = sizeof (PTRACE_XFER_TYPE);
970   /* Right fill the register.  */
971   regcache_raw_collect (current_regcache, regnum,
972                         ((bfd_byte *) reg
973                          + wordsize
974                          - register_size (current_gdbarch, regnum)));
975 }
976
977 void
978 fill_gregset (gdb_gregset_t *gregsetp, int regno)
979 {
980   int regi;
981   elf_greg_t *regp = (elf_greg_t *) gregsetp;
982   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
983   const int elf_ngreg = 48;
984
985
986   /* Start with zeros.  */
987   memset (regp, 0, elf_ngreg * sizeof (*regp));
988
989   for (regi = 0; regi < ppc_num_gprs; regi++)
990     {
991       if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
992         right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
993     }
994
995   if ((regno == -1) || regno == PC_REGNUM)
996     right_fill_reg (PC_REGNUM, regp + PT_NIP);
997   if ((regno == -1) || regno == tdep->ppc_lr_regnum)
998     right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
999   if ((regno == -1) || regno == tdep->ppc_cr_regnum)
1000     regcache_collect (tdep->ppc_cr_regnum, regp + PT_CCR);
1001   if ((regno == -1) || regno == tdep->ppc_xer_regnum)
1002     regcache_collect (tdep->ppc_xer_regnum, regp + PT_XER);
1003   if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
1004     right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
1005 #ifdef PT_MQ
1006   if (((regno == -1) || regno == tdep->ppc_mq_regnum)
1007       && (tdep->ppc_mq_regnum != -1))
1008     right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
1009 #endif
1010   if ((regno == -1) || regno == tdep->ppc_ps_regnum)
1011     right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
1012 }
1013
1014 void
1015 supply_fpregset (gdb_fpregset_t * fpregsetp)
1016 {
1017   ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
1018                              sizeof (gdb_fpregset_t));
1019 }
1020
1021 /* Given a pointer to a floating point register set in /proc format
1022    (fpregset_t *), update the register specified by REGNO from gdb's
1023    idea of the current floating point register set.  If REGNO is -1,
1024    update them all.  */
1025 void
1026 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1027 {
1028   int regi;
1029   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
1030   bfd_byte *fpp = (void *) fpregsetp;
1031   
1032   if (ppc_floating_point_unit_p (current_gdbarch))
1033     {
1034       for (regi = 0; regi < ppc_num_fprs; regi++)
1035         {
1036           if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
1037             regcache_collect (tdep->ppc_fp0_regnum + regi, fpp + 8 * regi);
1038         }
1039       if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
1040         right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
1041     }
1042 }