1 /* PPC GNU/Linux native support.
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "observable.h"
24 #include "gdbthread.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
32 #include <sys/ioctl.h>
35 #include <sys/procfs.h>
36 #include "nat/gdb_ptrace.h"
37 #include "inf-ptrace.h"
39 /* Prototypes for supply_gregset etc. */
42 #include "ppc-linux-tdep.h"
44 /* Required when using the AUXV. */
45 #include "elf/common.h"
48 #include "nat/ppc-linux.h"
50 /* Similarly for the hardware watchpoint support. These requests are used
51 when the PowerPC HWDEBUG ptrace interface is not available. */
52 #ifndef PTRACE_GET_DEBUGREG
53 #define PTRACE_GET_DEBUGREG 25
55 #ifndef PTRACE_SET_DEBUGREG
56 #define PTRACE_SET_DEBUGREG 26
58 #ifndef PTRACE_GETSIGINFO
59 #define PTRACE_GETSIGINFO 0x4202
62 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
63 available. It exposes the debug facilities of PowerPC processors, as well
64 as additional features of BookE processors, such as ranged breakpoints and
65 watchpoints and hardware-accelerated condition evaluation. */
66 #ifndef PPC_PTRACE_GETHWDBGINFO
68 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
69 ptrace interface is not present in ptrace.h, so we'll have to pretty much
70 include it all here so that the code at least compiles on older systems. */
71 #define PPC_PTRACE_GETHWDBGINFO 0x89
72 #define PPC_PTRACE_SETHWDEBUG 0x88
73 #define PPC_PTRACE_DELHWDEBUG 0x87
77 uint32_t version; /* Only version 1 exists to date. */
78 uint32_t num_instruction_bps;
79 uint32_t num_data_bps;
80 uint32_t num_condition_regs;
81 uint32_t data_bp_alignment;
82 uint32_t sizeof_condition; /* size of the DVC register. */
86 /* Features will have bits indicating whether there is support for: */
87 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
88 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
89 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
90 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
92 struct ppc_hw_breakpoint
94 uint32_t version; /* currently, version must be 1 */
95 uint32_t trigger_type; /* only some combinations allowed */
96 uint32_t addr_mode; /* address match mode */
97 uint32_t condition_mode; /* break/watchpoint condition flags */
98 uint64_t addr; /* break/watchpoint address */
99 uint64_t addr2; /* range end or mask */
100 uint64_t condition_value; /* contents of the DVC register */
104 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
105 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
106 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
107 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
110 #define PPC_BREAKPOINT_MODE_EXACT 0x0
111 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
112 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
113 #define PPC_BREAKPOINT_MODE_MASK 0x3
115 /* Condition mode. */
116 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
117 #define PPC_BREAKPOINT_CONDITION_AND 0x1
118 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
119 #define PPC_BREAKPOINT_CONDITION_OR 0x2
120 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
121 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
122 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
123 #define PPC_BREAKPOINT_CONDITION_BE(n) \
124 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
125 #endif /* PPC_PTRACE_GETHWDBGINFO */
127 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
128 watchpoint (up to 512 bytes). */
129 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
130 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
131 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
133 /* Similarly for the general-purpose (gp0 -- gp31)
134 and floating-point registers (fp0 -- fp31). */
135 #ifndef PTRACE_GETREGS
136 #define PTRACE_GETREGS 12
138 #ifndef PTRACE_SETREGS
139 #define PTRACE_SETREGS 13
141 #ifndef PTRACE_GETFPREGS
142 #define PTRACE_GETFPREGS 14
144 #ifndef PTRACE_SETFPREGS
145 #define PTRACE_SETFPREGS 15
148 /* This oddity is because the Linux kernel defines elf_vrregset_t as
149 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
150 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
151 the vrsave as an extra 4 bytes at the end. I opted for creating a
152 flat array of chars, so that it is easier to manipulate for gdb.
154 There are 32 vector registers 16 bytes longs, plus a VSCR register
155 which is only 4 bytes long, but is fetched as a 16 bytes
156 quantity. Up to here we have the elf_vrregset_t structure.
157 Appended to this there is space for the VRSAVE register: 4 bytes.
158 Even though this vrsave register is not included in the regset
159 typedef, it is handled by the ptrace requests.
161 Note that GNU/Linux doesn't support little endian PPC hardware,
162 therefore the offset at which the real value of the VSCR register
163 is located will be always 12 bytes.
165 The layout is like this (where x is the actual value of the vscr reg): */
169 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
170 <-------> <-------><-------><->
175 #define SIZEOF_VRREGS 33*16+4
177 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
179 /* This is the layout of the POWER7 VSX registers and the way they overlap
180 with the existing FPR and VMX registers.
182 VSR doubleword 0 VSR doubleword 1
183 ----------------------------------------------------------------
185 ----------------------------------------------------------------
187 ----------------------------------------------------------------
190 ----------------------------------------------------------------
191 VSR[30] | FPR[30] | |
192 ----------------------------------------------------------------
193 VSR[31] | FPR[31] | |
194 ----------------------------------------------------------------
196 ----------------------------------------------------------------
198 ----------------------------------------------------------------
201 ----------------------------------------------------------------
203 ----------------------------------------------------------------
205 ----------------------------------------------------------------
207 VSX has 64 128bit registers. The first 32 registers overlap with
208 the FP registers (doubleword 0) and hence extend them with additional
209 64 bits (doubleword 1). The other 32 regs overlap with the VMX
211 #define SIZEOF_VSXREGS 32*8
213 typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
215 /* On PPC processors that support the Signal Processing Extension
216 (SPE) APU, the general-purpose registers are 64 bits long.
217 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
218 ptrace calls only access the lower half of each register, to allow
219 them to behave the same way they do on non-SPE systems. There's a
220 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
221 read and write the top halves of all the general-purpose registers
222 at once, along with some SPE-specific registers.
224 GDB itself continues to claim the general-purpose registers are 32
225 bits long. It has unnamed raw registers that hold the upper halves
226 of the gprs, and the full 64-bit SIMD views of the registers,
227 'ev0' -- 'ev31', are pseudo-registers that splice the top and
228 bottom halves together.
230 This is the structure filled in by PTRACE_GETEVRREGS and written to
231 the inferior's registers by PTRACE_SETEVRREGS. */
232 struct gdb_evrregset_t
234 unsigned long evr[32];
235 unsigned long long acc;
236 unsigned long spefscr;
239 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
240 PTRACE_SETVSXREGS requests, for reading and writing the VSX
241 POWER7 registers 0 through 31. Zero if we've tried one of them and
242 gotten an error. Note that VSX registers 32 through 63 overlap
243 with VR registers 0 through 31. */
244 int have_ptrace_getsetvsxregs = 1;
246 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
247 PTRACE_SETVRREGS requests, for reading and writing the Altivec
248 registers. Zero if we've tried one of them and gotten an
250 int have_ptrace_getvrregs = 1;
252 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
253 PTRACE_SETEVRREGS requests, for reading and writing the SPE
254 registers. Zero if we've tried one of them and gotten an
256 int have_ptrace_getsetevrregs = 1;
258 /* Non-zero if our kernel may support the PTRACE_GETREGS and
259 PTRACE_SETREGS requests, for reading and writing the
260 general-purpose registers. Zero if we've tried one of
261 them and gotten an error. */
262 int have_ptrace_getsetregs = 1;
264 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
265 PTRACE_SETFPREGS requests, for reading and writing the
266 floating-pointers registers. Zero if we've tried one of
267 them and gotten an error. */
268 int have_ptrace_getsetfpregs = 1;
270 struct ppc_linux_nat_target final : public linux_nat_target
272 /* Add our register access methods. */
273 void fetch_registers (struct regcache *, int) override;
274 void store_registers (struct regcache *, int) override;
276 /* Add our breakpoint/watchpoint methods. */
277 int can_use_hw_breakpoint (enum bptype, int, int) override;
279 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
282 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
285 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
287 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
288 struct expression *) override;
290 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
291 struct expression *) override;
293 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
296 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
299 bool stopped_by_watchpoint () override;
301 bool stopped_data_address (CORE_ADDR *) override;
303 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
305 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
308 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
310 int ranged_break_num_registers () override;
312 const struct target_desc *read_description () override;
314 int auxv_parse (gdb_byte **readptr,
315 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
318 /* Override linux_nat_target low methods. */
319 void low_new_thread (struct lwp_info *lp) override;
322 static ppc_linux_nat_target the_ppc_linux_nat_target;
325 /* registers layout, as presented by the ptrace interface:
326 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
327 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
328 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
329 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
330 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
331 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
332 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
333 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
334 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
335 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
336 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
337 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
338 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
342 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
347 interface, and not the wordsize of the program's ABI. */
348 int wordsize = sizeof (long);
350 /* General purpose registers occupy 1 slot each in the buffer. */
351 if (regno >= tdep->ppc_gp0_regnum
352 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
353 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
355 /* Floating point regs: eight bytes each in both 32- and 64-bit
356 ptrace interfaces. Thus, two slots each in 32-bit interface, one
357 slot each in 64-bit interface. */
358 if (tdep->ppc_fp0_regnum >= 0
359 && regno >= tdep->ppc_fp0_regnum
360 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
361 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
363 /* UISA special purpose registers: 1 slot each. */
364 if (regno == gdbarch_pc_regnum (gdbarch))
365 u_addr = PT_NIP * wordsize;
366 if (regno == tdep->ppc_lr_regnum)
367 u_addr = PT_LNK * wordsize;
368 if (regno == tdep->ppc_cr_regnum)
369 u_addr = PT_CCR * wordsize;
370 if (regno == tdep->ppc_xer_regnum)
371 u_addr = PT_XER * wordsize;
372 if (regno == tdep->ppc_ctr_regnum)
373 u_addr = PT_CTR * wordsize;
375 if (regno == tdep->ppc_mq_regnum)
376 u_addr = PT_MQ * wordsize;
378 if (regno == tdep->ppc_ps_regnum)
379 u_addr = PT_MSR * wordsize;
380 if (regno == PPC_ORIG_R3_REGNUM)
381 u_addr = PT_ORIG_R3 * wordsize;
382 if (regno == PPC_TRAP_REGNUM)
383 u_addr = PT_TRAP * wordsize;
384 if (tdep->ppc_fpscr_regnum >= 0
385 && regno == tdep->ppc_fpscr_regnum)
387 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
388 kernel headers incorrectly contained the 32-bit definition of
389 PT_FPSCR. For the 32-bit definition, floating-point
390 registers occupy two 32-bit "slots", and the FPSCR lives in
391 the second half of such a slot-pair (hence +1). For 64-bit,
392 the FPSCR instead occupies the full 64-bit 2-word-slot and
393 hence no adjustment is necessary. Hack around this. */
394 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
395 u_addr = (48 + 32) * wordsize;
396 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
397 slot and not just its second word. The PT_FPSCR supplied when
398 GDB is compiled as a 32-bit app doesn't reflect this. */
399 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
400 && PT_FPSCR == (48 + 2*32 + 1))
401 u_addr = (48 + 2*32) * wordsize;
403 u_addr = PT_FPSCR * wordsize;
408 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
409 registers set mechanism, as opposed to the interface for all the
410 other registers, that stores/fetches each register individually. */
412 fetch_vsx_register (struct regcache *regcache, int tid, int regno)
415 gdb_vsxregset_t regs;
416 struct gdbarch *gdbarch = regcache->arch ();
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
420 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
425 have_ptrace_getsetvsxregs = 0;
428 perror_with_name (_("Unable to fetch VSX register"));
431 regcache_raw_supply (regcache, regno,
432 regs + (regno - tdep->ppc_vsr0_upper_regnum)
436 /* The Linux kernel ptrace interface for AltiVec registers uses the
437 registers set mechanism, as opposed to the interface for all the
438 other registers, that stores/fetches each register individually. */
440 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
445 struct gdbarch *gdbarch = regcache->arch ();
446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
447 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
449 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
454 have_ptrace_getvrregs = 0;
457 perror_with_name (_("Unable to fetch AltiVec register"));
460 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
461 long on the hardware. We deal only with the lower 4 bytes of the
462 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
463 there is no need to define an offset for it. */
464 if (regno == (tdep->ppc_vrsave_regnum - 1))
465 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
467 regcache_raw_supply (regcache, regno,
469 - tdep->ppc_vr0_regnum) * vrregsize + offset);
472 /* Fetch the top 32 bits of TID's general-purpose registers and the
473 SPE-specific registers, and place the results in EVRREGSET. If we
474 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
477 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
478 PTRACE_SETEVRREGS requests are supported is isolated here, and in
479 set_spe_registers. */
481 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
483 if (have_ptrace_getsetevrregs)
485 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
489 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
490 we just return zeros. */
492 have_ptrace_getsetevrregs = 0;
494 /* Anything else needs to be reported. */
495 perror_with_name (_("Unable to fetch SPE registers"));
499 memset (evrregset, 0, sizeof (*evrregset));
502 /* Supply values from TID for SPE-specific raw registers: the upper
503 halves of the GPRs, the accumulator, and the spefscr. REGNO must
504 be the number of an upper half register, acc, spefscr, or -1 to
505 supply the values of all registers. */
507 fetch_spe_register (struct regcache *regcache, int tid, int regno)
509 struct gdbarch *gdbarch = regcache->arch ();
510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
511 struct gdb_evrregset_t evrregs;
513 gdb_assert (sizeof (evrregs.evr[0])
514 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
515 gdb_assert (sizeof (evrregs.acc)
516 == register_size (gdbarch, tdep->ppc_acc_regnum));
517 gdb_assert (sizeof (evrregs.spefscr)
518 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
520 get_spe_registers (tid, &evrregs);
526 for (i = 0; i < ppc_num_gprs; i++)
527 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
530 else if (tdep->ppc_ev0_upper_regnum <= regno
531 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
532 regcache_raw_supply (regcache, regno,
533 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
536 || regno == tdep->ppc_acc_regnum)
537 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
540 || regno == tdep->ppc_spefscr_regnum)
541 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
546 fetch_register (struct regcache *regcache, int tid, int regno)
548 struct gdbarch *gdbarch = regcache->arch ();
549 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
550 /* This isn't really an address. But ptrace thinks of it as one. */
551 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
552 int bytes_transferred;
553 unsigned int offset; /* Offset of registers within the u area. */
554 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
556 if (altivec_register_p (gdbarch, regno))
558 /* If this is the first time through, or if it is not the first
559 time through, and we have comfirmed that there is kernel
560 support for such a ptrace request, then go and fetch the
562 if (have_ptrace_getvrregs)
564 fetch_altivec_register (regcache, tid, regno);
567 /* If we have discovered that there is no ptrace support for
568 AltiVec registers, fall through and return zeroes, because
569 regaddr will be -1 in this case. */
571 if (vsx_register_p (gdbarch, regno))
573 if (have_ptrace_getsetvsxregs)
575 fetch_vsx_register (regcache, tid, regno);
579 else if (spe_register_p (gdbarch, regno))
581 fetch_spe_register (regcache, tid, regno);
587 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
588 regcache_raw_supply (regcache, regno, buf);
592 /* Read the raw register using sizeof(long) sized chunks. On a
593 32-bit platform, 64-bit floating-point registers will require two
595 for (bytes_transferred = 0;
596 bytes_transferred < register_size (gdbarch, regno);
597 bytes_transferred += sizeof (long))
602 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
603 regaddr += sizeof (long);
607 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
608 gdbarch_register_name (gdbarch, regno), regno);
609 perror_with_name (message);
611 memcpy (&buf[bytes_transferred], &l, sizeof (l));
614 /* Now supply the register. Keep in mind that the regcache's idea
615 of the register's size may not be a multiple of sizeof
617 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
619 /* Little-endian values are always found at the left end of the
620 bytes transferred. */
621 regcache_raw_supply (regcache, regno, buf);
623 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
625 /* Big-endian values are found at the right end of the bytes
627 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
628 regcache_raw_supply (regcache, regno, buf + padding);
631 internal_error (__FILE__, __LINE__,
632 _("fetch_register: unexpected byte order: %d"),
633 gdbarch_byte_order (gdbarch));
637 supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
640 struct gdbarch *gdbarch = regcache->arch ();
641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
642 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
644 for (i = 0; i < ppc_num_vshrs; i++)
646 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
647 *vsxregsetp + i * vsxregsize);
652 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
655 struct gdbarch *gdbarch = regcache->arch ();
656 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
657 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
658 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
659 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
661 for (i = 0; i < num_of_vrregs; i++)
663 /* The last 2 registers of this set are only 32 bit long, not
664 128. However an offset is necessary only for VSCR because it
665 occupies a whole vector, while VRSAVE occupies a full 4 bytes
667 if (i == (num_of_vrregs - 2))
668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
669 *vrregsetp + i * vrregsize + offset);
671 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
672 *vrregsetp + i * vrregsize);
677 fetch_vsx_registers (struct regcache *regcache, int tid)
680 gdb_vsxregset_t regs;
682 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
687 have_ptrace_getsetvsxregs = 0;
690 perror_with_name (_("Unable to fetch VSX registers"));
692 supply_vsxregset (regcache, ®s);
696 fetch_altivec_registers (struct regcache *regcache, int tid)
701 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
706 have_ptrace_getvrregs = 0;
709 perror_with_name (_("Unable to fetch AltiVec registers"));
711 supply_vrregset (regcache, ®s);
714 /* This function actually issues the request to ptrace, telling
715 it to get all general-purpose registers and put them into the
718 If the ptrace request does not exist, this function returns 0
719 and properly sets the have_ptrace_* flag. If the request fails,
720 this function calls perror_with_name. Otherwise, if the request
721 succeeds, then the regcache gets filled and 1 is returned. */
723 fetch_all_gp_regs (struct regcache *regcache, int tid)
725 struct gdbarch *gdbarch = regcache->arch ();
726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
727 gdb_gregset_t gregset;
729 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
733 have_ptrace_getsetregs = 0;
736 perror_with_name (_("Couldn't get general-purpose registers."));
739 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
744 /* This is a wrapper for the fetch_all_gp_regs function. It is
745 responsible for verifying if this target has the ptrace request
746 that can be used to fetch all general-purpose registers at one
747 shot. If it doesn't, then we should fetch them using the
748 old-fashioned way, which is to iterate over the registers and
749 request them one by one. */
751 fetch_gp_regs (struct regcache *regcache, int tid)
753 struct gdbarch *gdbarch = regcache->arch ();
754 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
757 if (have_ptrace_getsetregs)
758 if (fetch_all_gp_regs (regcache, tid))
761 /* If we've hit this point, it doesn't really matter which
762 architecture we are using. We just need to read the
763 registers in the "old-fashioned way". */
764 for (i = 0; i < ppc_num_gprs; i++)
765 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
768 /* This function actually issues the request to ptrace, telling
769 it to get all floating-point registers and put them into the
772 If the ptrace request does not exist, this function returns 0
773 and properly sets the have_ptrace_* flag. If the request fails,
774 this function calls perror_with_name. Otherwise, if the request
775 succeeds, then the regcache gets filled and 1 is returned. */
777 fetch_all_fp_regs (struct regcache *regcache, int tid)
779 gdb_fpregset_t fpregs;
781 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
785 have_ptrace_getsetfpregs = 0;
788 perror_with_name (_("Couldn't get floating-point registers."));
791 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
796 /* This is a wrapper for the fetch_all_fp_regs function. It is
797 responsible for verifying if this target has the ptrace request
798 that can be used to fetch all floating-point registers at one
799 shot. If it doesn't, then we should fetch them using the
800 old-fashioned way, which is to iterate over the registers and
801 request them one by one. */
803 fetch_fp_regs (struct regcache *regcache, int tid)
805 struct gdbarch *gdbarch = regcache->arch ();
806 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
809 if (have_ptrace_getsetfpregs)
810 if (fetch_all_fp_regs (regcache, tid))
813 /* If we've hit this point, it doesn't really matter which
814 architecture we are using. We just need to read the
815 registers in the "old-fashioned way". */
816 for (i = 0; i < ppc_num_fprs; i++)
817 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
821 fetch_ppc_registers (struct regcache *regcache, int tid)
824 struct gdbarch *gdbarch = regcache->arch ();
825 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
827 fetch_gp_regs (regcache, tid);
828 if (tdep->ppc_fp0_regnum >= 0)
829 fetch_fp_regs (regcache, tid);
830 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
831 if (tdep->ppc_ps_regnum != -1)
832 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
833 if (tdep->ppc_cr_regnum != -1)
834 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
835 if (tdep->ppc_lr_regnum != -1)
836 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
837 if (tdep->ppc_ctr_regnum != -1)
838 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
839 if (tdep->ppc_xer_regnum != -1)
840 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
841 if (tdep->ppc_mq_regnum != -1)
842 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
843 if (ppc_linux_trap_reg_p (gdbarch))
845 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
846 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
848 if (tdep->ppc_fpscr_regnum != -1)
849 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
850 if (have_ptrace_getvrregs)
851 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
852 fetch_altivec_registers (regcache, tid);
853 if (have_ptrace_getsetvsxregs)
854 if (tdep->ppc_vsr0_upper_regnum != -1)
855 fetch_vsx_registers (regcache, tid);
856 if (tdep->ppc_ev0_upper_regnum >= 0)
857 fetch_spe_register (regcache, tid, -1);
860 /* Fetch registers from the child process. Fetch all registers if
861 regno == -1, otherwise fetch all general registers or all floating
862 point registers depending upon the value of regno. */
864 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
866 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
869 fetch_ppc_registers (regcache, tid);
871 fetch_register (regcache, tid, regno);
874 /* Store one VSX register. */
876 store_vsx_register (const struct regcache *regcache, int tid, int regno)
879 gdb_vsxregset_t regs;
880 struct gdbarch *gdbarch = regcache->arch ();
881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
882 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
884 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
889 have_ptrace_getsetvsxregs = 0;
892 perror_with_name (_("Unable to fetch VSX register"));
895 regcache_raw_collect (regcache, regno, regs +
896 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
898 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s);
900 perror_with_name (_("Unable to store VSX register"));
903 /* Store one register. */
905 store_altivec_register (const struct regcache *regcache, int tid, int regno)
910 struct gdbarch *gdbarch = regcache->arch ();
911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
912 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
914 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
919 have_ptrace_getvrregs = 0;
922 perror_with_name (_("Unable to fetch AltiVec register"));
925 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
926 long on the hardware. */
927 if (regno == (tdep->ppc_vrsave_regnum - 1))
928 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
930 regcache_raw_collect (regcache, regno,
932 - tdep->ppc_vr0_regnum) * vrregsize + offset);
934 ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
936 perror_with_name (_("Unable to store AltiVec register"));
939 /* Assuming TID referrs to an SPE process, set the top halves of TID's
940 general-purpose registers and its SPE-specific registers to the
941 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
944 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
945 PTRACE_SETEVRREGS requests are supported is isolated here, and in
946 get_spe_registers. */
948 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
950 if (have_ptrace_getsetevrregs)
952 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
956 /* EIO means that the PTRACE_SETEVRREGS request isn't
957 supported; we fail silently, and don't try the call
960 have_ptrace_getsetevrregs = 0;
962 /* Anything else needs to be reported. */
963 perror_with_name (_("Unable to set SPE registers"));
968 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
969 If REGNO is -1, write the values of all the SPE-specific
972 store_spe_register (const struct regcache *regcache, int tid, int regno)
974 struct gdbarch *gdbarch = regcache->arch ();
975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
976 struct gdb_evrregset_t evrregs;
978 gdb_assert (sizeof (evrregs.evr[0])
979 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
980 gdb_assert (sizeof (evrregs.acc)
981 == register_size (gdbarch, tdep->ppc_acc_regnum));
982 gdb_assert (sizeof (evrregs.spefscr)
983 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
986 /* Since we're going to write out every register, the code below
987 should store to every field of evrregs; if that doesn't happen,
988 make it obvious by initializing it with suspicious values. */
989 memset (&evrregs, 42, sizeof (evrregs));
991 /* We can only read and write the entire EVR register set at a
992 time, so to write just a single register, we do a
993 read-modify-write maneuver. */
994 get_spe_registers (tid, &evrregs);
1000 for (i = 0; i < ppc_num_gprs; i++)
1001 regcache_raw_collect (regcache,
1002 tdep->ppc_ev0_upper_regnum + i,
1005 else if (tdep->ppc_ev0_upper_regnum <= regno
1006 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1007 regcache_raw_collect (regcache, regno,
1008 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1011 || regno == tdep->ppc_acc_regnum)
1012 regcache_raw_collect (regcache,
1013 tdep->ppc_acc_regnum,
1017 || regno == tdep->ppc_spefscr_regnum)
1018 regcache_raw_collect (regcache,
1019 tdep->ppc_spefscr_regnum,
1022 /* Write back the modified register set. */
1023 set_spe_registers (tid, &evrregs);
1027 store_register (const struct regcache *regcache, int tid, int regno)
1029 struct gdbarch *gdbarch = regcache->arch ();
1030 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1031 /* This isn't really an address. But ptrace thinks of it as one. */
1032 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1034 size_t bytes_to_transfer;
1035 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1037 if (altivec_register_p (gdbarch, regno))
1039 store_altivec_register (regcache, tid, regno);
1042 if (vsx_register_p (gdbarch, regno))
1044 store_vsx_register (regcache, tid, regno);
1047 else if (spe_register_p (gdbarch, regno))
1049 store_spe_register (regcache, tid, regno);
1056 /* First collect the register. Keep in mind that the regcache's
1057 idea of the register's size may not be a multiple of sizeof
1059 memset (buf, 0, sizeof buf);
1060 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1061 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1063 /* Little-endian values always sit at the left end of the buffer. */
1064 regcache_raw_collect (regcache, regno, buf);
1066 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1068 /* Big-endian values sit at the right end of the buffer. */
1069 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1070 regcache_raw_collect (regcache, regno, buf + padding);
1073 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1077 memcpy (&l, &buf[i], sizeof (l));
1079 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1080 regaddr += sizeof (long);
1083 && (regno == tdep->ppc_fpscr_regnum
1084 || regno == PPC_ORIG_R3_REGNUM
1085 || regno == PPC_TRAP_REGNUM))
1087 /* Some older kernel versions don't allow fpscr, orig_r3
1088 or trap to be written. */
1095 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1096 gdbarch_register_name (gdbarch, regno), regno);
1097 perror_with_name (message);
1103 fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1106 struct gdbarch *gdbarch = regcache->arch ();
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1108 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1110 for (i = 0; i < ppc_num_vshrs; i++)
1111 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1112 *vsxregsetp + i * vsxregsize);
1116 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
1119 struct gdbarch *gdbarch = regcache->arch ();
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1121 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
1122 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1123 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
1125 for (i = 0; i < num_of_vrregs; i++)
1127 /* The last 2 registers of this set are only 32 bit long, not
1128 128, but only VSCR is fetched as a 16 bytes quantity. */
1129 if (i == (num_of_vrregs - 2))
1130 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1131 *vrregsetp + i * vrregsize + offset);
1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
1134 *vrregsetp + i * vrregsize);
1139 store_vsx_registers (const struct regcache *regcache, int tid)
1142 gdb_vsxregset_t regs;
1144 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
1149 have_ptrace_getsetvsxregs = 0;
1152 perror_with_name (_("Couldn't get VSX registers"));
1155 fill_vsxregset (regcache, ®s);
1157 if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0)
1158 perror_with_name (_("Couldn't write VSX registers"));
1162 store_altivec_registers (const struct regcache *regcache, int tid)
1165 gdb_vrregset_t regs;
1167 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
1172 have_ptrace_getvrregs = 0;
1175 perror_with_name (_("Couldn't get AltiVec registers"));
1178 fill_vrregset (regcache, ®s);
1180 if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
1181 perror_with_name (_("Couldn't write AltiVec registers"));
1184 /* This function actually issues the request to ptrace, telling
1185 it to store all general-purpose registers present in the specified
1188 If the ptrace request does not exist, this function returns 0
1189 and properly sets the have_ptrace_* flag. If the request fails,
1190 this function calls perror_with_name. Otherwise, if the request
1191 succeeds, then the regcache is stored and 1 is returned. */
1193 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1195 struct gdbarch *gdbarch = regcache->arch ();
1196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1197 gdb_gregset_t gregset;
1199 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1203 have_ptrace_getsetregs = 0;
1206 perror_with_name (_("Couldn't get general-purpose registers."));
1209 fill_gregset (regcache, &gregset, regno);
1211 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1215 have_ptrace_getsetregs = 0;
1218 perror_with_name (_("Couldn't set general-purpose registers."));
1224 /* This is a wrapper for the store_all_gp_regs function. It is
1225 responsible for verifying if this target has the ptrace request
1226 that can be used to store all general-purpose registers at one
1227 shot. If it doesn't, then we should store them using the
1228 old-fashioned way, which is to iterate over the registers and
1229 store them one by one. */
1231 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1233 struct gdbarch *gdbarch = regcache->arch ();
1234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1237 if (have_ptrace_getsetregs)
1238 if (store_all_gp_regs (regcache, tid, regno))
1241 /* If we hit this point, it doesn't really matter which
1242 architecture we are using. We just need to store the
1243 registers in the "old-fashioned way". */
1244 for (i = 0; i < ppc_num_gprs; i++)
1245 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1248 /* This function actually issues the request to ptrace, telling
1249 it to store all floating-point registers present in the specified
1252 If the ptrace request does not exist, this function returns 0
1253 and properly sets the have_ptrace_* flag. If the request fails,
1254 this function calls perror_with_name. Otherwise, if the request
1255 succeeds, then the regcache is stored and 1 is returned. */
1257 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1259 gdb_fpregset_t fpregs;
1261 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1265 have_ptrace_getsetfpregs = 0;
1268 perror_with_name (_("Couldn't get floating-point registers."));
1271 fill_fpregset (regcache, &fpregs, regno);
1273 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1277 have_ptrace_getsetfpregs = 0;
1280 perror_with_name (_("Couldn't set floating-point registers."));
1286 /* This is a wrapper for the store_all_fp_regs function. It is
1287 responsible for verifying if this target has the ptrace request
1288 that can be used to store all floating-point registers at one
1289 shot. If it doesn't, then we should store them using the
1290 old-fashioned way, which is to iterate over the registers and
1291 store them one by one. */
1293 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1295 struct gdbarch *gdbarch = regcache->arch ();
1296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1299 if (have_ptrace_getsetfpregs)
1300 if (store_all_fp_regs (regcache, tid, regno))
1303 /* If we hit this point, it doesn't really matter which
1304 architecture we are using. We just need to store the
1305 registers in the "old-fashioned way". */
1306 for (i = 0; i < ppc_num_fprs; i++)
1307 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1311 store_ppc_registers (const struct regcache *regcache, int tid)
1314 struct gdbarch *gdbarch = regcache->arch ();
1315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1317 store_gp_regs (regcache, tid, -1);
1318 if (tdep->ppc_fp0_regnum >= 0)
1319 store_fp_regs (regcache, tid, -1);
1320 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1321 if (tdep->ppc_ps_regnum != -1)
1322 store_register (regcache, tid, tdep->ppc_ps_regnum);
1323 if (tdep->ppc_cr_regnum != -1)
1324 store_register (regcache, tid, tdep->ppc_cr_regnum);
1325 if (tdep->ppc_lr_regnum != -1)
1326 store_register (regcache, tid, tdep->ppc_lr_regnum);
1327 if (tdep->ppc_ctr_regnum != -1)
1328 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1329 if (tdep->ppc_xer_regnum != -1)
1330 store_register (regcache, tid, tdep->ppc_xer_regnum);
1331 if (tdep->ppc_mq_regnum != -1)
1332 store_register (regcache, tid, tdep->ppc_mq_regnum);
1333 if (tdep->ppc_fpscr_regnum != -1)
1334 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1335 if (ppc_linux_trap_reg_p (gdbarch))
1337 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1338 store_register (regcache, tid, PPC_TRAP_REGNUM);
1340 if (have_ptrace_getvrregs)
1341 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1342 store_altivec_registers (regcache, tid);
1343 if (have_ptrace_getsetvsxregs)
1344 if (tdep->ppc_vsr0_upper_regnum != -1)
1345 store_vsx_registers (regcache, tid);
1346 if (tdep->ppc_ev0_upper_regnum >= 0)
1347 store_spe_register (regcache, tid, -1);
1350 /* Fetch the AT_HWCAP entry from the aux vector. */
1351 static unsigned long
1352 ppc_linux_get_hwcap (void)
1356 if (target_auxv_search (target_stack, AT_HWCAP, &field))
1357 return (unsigned long) field;
1362 /* The cached DABR value, to install in new threads.
1363 This variable is used when the PowerPC HWDEBUG ptrace
1364 interface is not available. */
1365 static long saved_dabr_value;
1367 /* Global structure that will store information about the available
1368 features provided by the PowerPC HWDEBUG ptrace interface. */
1369 static struct ppc_debug_info hwdebug_info;
1371 /* Global variable that holds the maximum number of slots that the
1372 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1374 static size_t max_slots_number = 0;
1376 struct hw_break_tuple
1379 struct ppc_hw_breakpoint *hw_break;
1382 /* This is an internal VEC created to store information about *points inserted
1383 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1385 typedef struct thread_points
1387 /* The TID to which this *point relates. */
1389 /* Information about the *point, such as its address, type, etc.
1391 Each element inside this vector corresponds to a hardware
1392 breakpoint or watchpoint in the thread represented by TID. The maximum
1393 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1394 the tuple is NULL, then the position in the vector is free. */
1395 struct hw_break_tuple *hw_breaks;
1397 DEF_VEC_P (thread_points_p);
1399 VEC(thread_points_p) *ppc_threads = NULL;
1401 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1403 #define PPC_DEBUG_CURRENT_VERSION 1
1405 /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
1407 have_ptrace_hwdebug_interface (void)
1409 static int have_ptrace_hwdebug_interface = -1;
1411 if (have_ptrace_hwdebug_interface == -1)
1415 tid = ptid_get_lwp (inferior_ptid);
1417 tid = ptid_get_pid (inferior_ptid);
1419 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1420 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
1422 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
1423 provides any supported feature. */
1424 if (hwdebug_info.features != 0)
1426 have_ptrace_hwdebug_interface = 1;
1427 max_slots_number = hwdebug_info.num_instruction_bps
1428 + hwdebug_info.num_data_bps
1429 + hwdebug_info.num_condition_regs;
1430 return have_ptrace_hwdebug_interface;
1433 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1434 have_ptrace_hwdebug_interface = 0;
1435 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
1438 return have_ptrace_hwdebug_interface;
1442 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
1444 int total_hw_wp, total_hw_bp;
1446 if (have_ptrace_hwdebug_interface ())
1448 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1449 available hardware watchpoints and breakpoints is stored at the
1450 hwdebug_info struct. */
1451 total_hw_bp = hwdebug_info.num_instruction_bps;
1452 total_hw_wp = hwdebug_info.num_data_bps;
1456 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1457 consider having 1 hardware watchpoint and no hardware breakpoints. */
1462 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1463 || type == bp_access_watchpoint || type == bp_watchpoint)
1465 if (cnt + ot > total_hw_wp)
1468 else if (type == bp_hardware_breakpoint)
1470 if (total_hw_bp == 0)
1472 /* No hardware breakpoint support. */
1475 if (cnt > total_hw_bp)
1479 if (!have_ptrace_hwdebug_interface ())
1482 ptid_t ptid = inferior_ptid;
1484 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1485 and whether the target has DABR. If either answer is no, the
1486 ptrace call will return -1. Fail in that case. */
1487 tid = ptid_get_lwp (ptid);
1489 tid = ptid_get_pid (ptid);
1491 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1499 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1501 /* Handle sub-8-byte quantities. */
1505 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1506 restrictions for watchpoints in the processors. In that case, we use that
1507 information to determine the hardcoded watchable region for
1509 if (have_ptrace_hwdebug_interface ())
1512 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1513 watchpoints and can watch any access within an arbitrary memory
1514 region. This is useful to watch arrays and structs, for instance. It
1515 takes two hardware watchpoints though. */
1517 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1518 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1520 /* Check if the processor provides DAWR interface. */
1521 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1522 /* DAWR interface allows to watch up to 512 byte wide ranges which
1523 can't cross a 512 byte boundary. */
1526 region_size = hwdebug_info.data_bp_alignment;
1527 /* Server processors provide one hardware watchpoint and addr+len should
1528 fall in the watchable region provided by the ptrace interface. */
1530 && (addr + len > (addr & ~(region_size - 1)) + region_size))
1533 /* addr+len must fall in the 8 byte watchable region for DABR-based
1534 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1535 ptrace interface, DAC-based processors (i.e., embedded processors) will
1536 use addresses aligned to 4-bytes due to the way the read/write flags are
1537 passed in the old ptrace interface. */
1538 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1539 && (addr + len) > (addr & ~3) + 4)
1540 || (addr + len) > (addr & ~7) + 8)
1546 /* This function compares two ppc_hw_breakpoint structs field-by-field. */
1548 hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1550 return (a->trigger_type == b->trigger_type
1551 && a->addr_mode == b->addr_mode
1552 && a->condition_mode == b->condition_mode
1553 && a->addr == b->addr
1554 && a->addr2 == b->addr2
1555 && a->condition_value == b->condition_value);
1558 /* This function can be used to retrieve a thread_points by the TID of the
1559 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1560 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1561 provided TID will be created and returned. */
1562 static struct thread_points *
1563 hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
1566 struct thread_points *t;
1568 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1574 /* Do we need to allocate a new point_item
1575 if the wanted one does not exist? */
1578 t = XNEW (struct thread_points);
1579 t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
1581 VEC_safe_push (thread_points_p, ppc_threads, t);
1587 /* This function is a generic wrapper that is responsible for inserting a
1588 *point (i.e., calling `ptrace' in order to issue the request to the
1589 kernel) and registering it internally in GDB. */
1591 hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
1595 gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
1596 struct hw_break_tuple *hw_breaks;
1597 struct thread_points *t;
1598 struct hw_break_tuple *tuple;
1601 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
1603 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1605 /* Everything went fine, so we have to register this *point. */
1606 t = hwdebug_find_thread_points_by_tid (tid, 1);
1607 gdb_assert (t != NULL);
1608 hw_breaks = t->hw_breaks;
1610 /* Find a free element in the hw_breaks vector. */
1611 for (i = 0; i < max_slots_number; i++)
1612 if (hw_breaks[i].hw_break == NULL)
1614 hw_breaks[i].slot = slot;
1615 hw_breaks[i].hw_break = p.release ();
1619 gdb_assert (i != max_slots_number);
1622 /* This function is a generic wrapper that is responsible for removing a
1623 *point (i.e., calling `ptrace' in order to issue the request to the
1624 kernel), and unregistering it internally at GDB. */
1626 hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
1629 struct hw_break_tuple *hw_breaks;
1630 struct thread_points *t;
1632 t = hwdebug_find_thread_points_by_tid (tid, 0);
1633 gdb_assert (t != NULL);
1634 hw_breaks = t->hw_breaks;
1636 for (i = 0; i < max_slots_number; i++)
1637 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
1640 gdb_assert (i != max_slots_number);
1642 /* We have to ignore ENOENT errors because the kernel implements hardware
1643 breakpoints/watchpoints as "one-shot", that is, they are automatically
1644 deleted when hit. */
1646 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1647 if (errno != ENOENT)
1648 perror_with_name (_("Unexpected error deleting "
1649 "breakpoint or watchpoint"));
1651 xfree (hw_breaks[i].hw_break);
1652 hw_breaks[i].hw_break = NULL;
1655 /* Return the number of registers needed for a ranged breakpoint. */
1658 ppc_linux_nat_target::ranged_break_num_registers ()
1660 return ((have_ptrace_hwdebug_interface ()
1661 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1665 /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1666 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1669 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1670 struct bp_target_info *bp_tgt)
1672 struct lwp_info *lp;
1673 struct ppc_hw_breakpoint p;
1675 if (!have_ptrace_hwdebug_interface ())
1678 p.version = PPC_DEBUG_CURRENT_VERSION;
1679 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1680 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1681 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
1682 p.condition_value = 0;
1686 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1688 /* The breakpoint will trigger if the address of the instruction is
1689 within the defined range, as follows: p.addr <= address < p.addr2. */
1690 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1694 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1699 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1705 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1706 struct bp_target_info *bp_tgt)
1708 struct lwp_info *lp;
1709 struct ppc_hw_breakpoint p;
1711 if (!have_ptrace_hwdebug_interface ())
1714 p.version = PPC_DEBUG_CURRENT_VERSION;
1715 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
1716 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1717 p.addr = (uint64_t) bp_tgt->placed_address;
1718 p.condition_value = 0;
1722 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1724 /* The breakpoint will trigger if the address of the instruction is within
1725 the defined range, as follows: p.addr <= address < p.addr2. */
1726 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1730 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1735 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1741 get_trigger_type (enum target_hw_bp_type type)
1745 if (type == hw_read)
1746 t = PPC_BREAKPOINT_TRIGGER_READ;
1747 else if (type == hw_write)
1748 t = PPC_BREAKPOINT_TRIGGER_WRITE;
1750 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1755 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1756 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1757 or hw_access for an access watchpoint. Returns 0 on success and throws
1758 an error on failure. */
1761 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1762 target_hw_bp_type rw)
1764 struct lwp_info *lp;
1765 struct ppc_hw_breakpoint p;
1767 gdb_assert (have_ptrace_hwdebug_interface ());
1769 p.version = PPC_DEBUG_CURRENT_VERSION;
1770 p.trigger_type = get_trigger_type (rw);
1771 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1772 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1775 p.condition_value = 0;
1778 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
1783 /* Remove a masked watchpoint at ADDR with the mask MASK.
1784 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1785 or hw_access for an access watchpoint. Returns 0 on success and throws
1786 an error on failure. */
1789 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
1790 target_hw_bp_type rw)
1792 struct lwp_info *lp;
1793 struct ppc_hw_breakpoint p;
1795 gdb_assert (have_ptrace_hwdebug_interface ());
1797 p.version = PPC_DEBUG_CURRENT_VERSION;
1798 p.trigger_type = get_trigger_type (rw);
1799 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1800 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1803 p.condition_value = 0;
1806 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
1811 /* Check whether we have at least one free DVC register. */
1813 can_use_watchpoint_cond_accel (void)
1815 struct thread_points *p;
1816 int tid = ptid_get_lwp (inferior_ptid);
1817 int cnt = hwdebug_info.num_condition_regs, i;
1818 CORE_ADDR tmp_value;
1820 if (!have_ptrace_hwdebug_interface () || cnt == 0)
1823 p = hwdebug_find_thread_points_by_tid (tid, 0);
1827 for (i = 0; i < max_slots_number; i++)
1828 if (p->hw_breaks[i].hw_break != NULL
1829 && (p->hw_breaks[i].hw_break->condition_mode
1830 != PPC_BREAKPOINT_CONDITION_NONE))
1833 /* There are no available slots now. */
1841 /* Calculate the enable bits and the contents of the Data Value Compare
1842 debug register present in BookE processors.
1844 ADDR is the address to be watched, LEN is the length of watched data
1845 and DATA_VALUE is the value which will trigger the watchpoint.
1846 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1847 CONDITION_VALUE will hold the value which should be put in the
1850 calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1851 uint32_t *condition_mode, uint64_t *condition_value)
1853 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1854 rightmost_enabled_byte;
1855 CORE_ADDR addr_end_data, addr_end_dvc;
1857 /* The DVC register compares bytes within fixed-length windows which
1858 are word-aligned, with length equal to that of the DVC register.
1859 We need to calculate where our watch region is relative to that
1860 window and enable comparison of the bytes which fall within it. */
1862 align_offset = addr % hwdebug_info.sizeof_condition;
1863 addr_end_data = addr + len;
1864 addr_end_dvc = (addr - align_offset
1865 + hwdebug_info.sizeof_condition);
1866 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1867 addr_end_data - addr_end_dvc : 0;
1868 num_byte_enable = len - num_bytes_off_dvc;
1869 /* Here, bytes are numbered from right to left. */
1870 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1871 addr_end_dvc - addr_end_data : 0;
1873 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1874 for (i = 0; i < num_byte_enable; i++)
1876 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
1878 /* Now we need to match the position within the DVC of the comparison
1879 value with where the watch region is relative to the window
1880 (i.e., the ALIGN_OFFSET). */
1882 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1883 << rightmost_enabled_byte * 8);
1886 /* Return the number of memory locations that need to be accessed to
1887 evaluate the expression which generated the given value chain.
1888 Returns -1 if there's any register access involved, or if there are
1889 other kinds of values which are not acceptable in a condition
1890 expression (e.g., lval_computed or lval_internalvar). */
1892 num_memory_accesses (const std::vector<value_ref_ptr> &chain)
1894 int found_memory_cnt = 0;
1896 /* The idea here is that evaluating an expression generates a series
1897 of values, one holding the value of every subexpression. (The
1898 expression a*b+c has five subexpressions: a, b, a*b, c, and
1899 a*b+c.) GDB's values hold almost enough information to establish
1900 the criteria given above --- they identify memory lvalues,
1901 register lvalues, computed values, etcetera. So we can evaluate
1902 the expression, and then scan the chain of values that leaves
1903 behind to determine the memory locations involved in the evaluation
1906 However, I don't think that the values returned by inferior
1907 function calls are special in any way. So this function may not
1908 notice that an expression contains an inferior function call.
1911 for (const value_ref_ptr &iter : chain)
1913 struct value *v = iter.get ();
1915 /* Constants and values from the history are fine. */
1916 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1918 else if (VALUE_LVAL (v) == lval_memory)
1920 /* A lazy memory lvalue is one that GDB never needed to fetch;
1921 we either just used its address (e.g., `a' in `a.b') or
1922 we never needed it at all (e.g., `a' in `a,b'). */
1923 if (!value_lazy (v))
1926 /* Other kinds of values are not fine. */
1931 return found_memory_cnt;
1934 /* Verifies whether the expression COND can be implemented using the
1935 DVC (Data Value Compare) register in BookE processors. The expression
1936 must test the watch value for equality with a constant expression.
1937 If the function returns 1, DATA_VALUE will contain the constant against
1938 which the watch value should be compared and LEN will contain the size
1941 check_condition (CORE_ADDR watch_addr, struct expression *cond,
1942 CORE_ADDR *data_value, int *len)
1944 int pc = 1, num_accesses_left, num_accesses_right;
1945 struct value *left_val, *right_val;
1946 std::vector<value_ref_ptr> left_chain, right_chain;
1948 if (cond->elts[0].opcode != BINOP_EQUAL)
1951 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
1952 num_accesses_left = num_memory_accesses (left_chain);
1954 if (left_val == NULL || num_accesses_left < 0)
1957 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
1958 num_accesses_right = num_memory_accesses (right_chain);
1960 if (right_val == NULL || num_accesses_right < 0)
1963 if (num_accesses_left == 1 && num_accesses_right == 0
1964 && VALUE_LVAL (left_val) == lval_memory
1965 && value_address (left_val) == watch_addr)
1967 *data_value = value_as_long (right_val);
1969 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1970 the same type as the memory region referenced by LEFT_VAL. */
1971 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1973 else if (num_accesses_left == 0 && num_accesses_right == 1
1974 && VALUE_LVAL (right_val) == lval_memory
1975 && value_address (right_val) == watch_addr)
1977 *data_value = value_as_long (left_val);
1979 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1980 the same type as the memory region referenced by RIGHT_VAL. */
1981 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1989 /* Return non-zero if the target is capable of using hardware to evaluate
1990 the condition expression, thus only triggering the watchpoint when it is
1993 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
1995 struct expression *cond)
1997 CORE_ADDR data_value;
1999 return (have_ptrace_hwdebug_interface ()
2000 && hwdebug_info.num_condition_regs > 0
2001 && check_condition (addr, cond, &data_value, &len));
2004 /* Set up P with the parameters necessary to request a watchpoint covering
2005 LEN bytes starting at ADDR and if possible with condition expression COND
2006 evaluated by hardware. INSERT tells if we are creating a request for
2007 inserting or removing the watchpoint. */
2010 create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2011 int len, enum target_hw_bp_type type,
2012 struct expression *cond, int insert)
2015 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2018 CORE_ADDR data_value;
2020 use_condition = (insert? can_use_watchpoint_cond_accel ()
2021 : hwdebug_info.num_condition_regs > 0);
2022 if (cond && use_condition && check_condition (addr, cond,
2024 calculate_dvc (addr, len, data_value, &p->condition_mode,
2025 &p->condition_value);
2028 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2029 p->condition_value = 0;
2032 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2037 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2038 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2039 p->condition_value = 0;
2041 /* The watchpoint will trigger if the address of the memory access is
2042 within the defined range, as follows: p->addr <= address < p->addr2.
2044 Note that the above sentence just documents how ptrace interprets
2045 its arguments; the watchpoint is set to watch the range defined by
2046 the user _inclusively_, as specified by the user interface. */
2047 p->addr2 = (uint64_t) addr + len;
2050 p->version = PPC_DEBUG_CURRENT_VERSION;
2051 p->trigger_type = get_trigger_type (type);
2052 p->addr = (uint64_t) addr;
2056 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2057 enum target_hw_bp_type type,
2058 struct expression *cond)
2060 struct lwp_info *lp;
2063 if (have_ptrace_hwdebug_interface ())
2065 struct ppc_hw_breakpoint p;
2067 create_watchpoint_request (&p, addr, len, type, cond, 1);
2070 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
2077 long read_mode, write_mode;
2079 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2081 /* PowerPC 440 requires only the read/write flags to be passed
2088 /* PowerPC 970 and other DABR-based processors are required to pass
2089 the Breakpoint Translation bit together with the flags. */
2094 dabr_value = addr & ~(read_mode | write_mode);
2098 /* Set read and translate bits. */
2099 dabr_value |= read_mode;
2102 /* Set write and translate bits. */
2103 dabr_value |= write_mode;
2106 /* Set read, write and translate bits. */
2107 dabr_value |= read_mode | write_mode;
2111 saved_dabr_value = dabr_value;
2114 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2115 saved_dabr_value) < 0)
2125 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2126 enum target_hw_bp_type type,
2127 struct expression *cond)
2129 struct lwp_info *lp;
2132 if (have_ptrace_hwdebug_interface ())
2134 struct ppc_hw_breakpoint p;
2136 create_watchpoint_request (&p, addr, len, type, cond, 0);
2139 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
2145 saved_dabr_value = 0;
2147 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
2148 saved_dabr_value) < 0)
2158 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
2160 int tid = ptid_get_lwp (lp->ptid);
2162 if (have_ptrace_hwdebug_interface ())
2165 struct thread_points *p;
2166 struct hw_break_tuple *hw_breaks;
2168 if (VEC_empty (thread_points_p, ppc_threads))
2171 /* Get a list of breakpoints from any thread. */
2172 p = VEC_last (thread_points_p, ppc_threads);
2173 hw_breaks = p->hw_breaks;
2175 /* Copy that thread's breakpoints and watchpoints to the new thread. */
2176 for (i = 0; i < max_slots_number; i++)
2177 if (hw_breaks[i].hw_break)
2179 /* Older kernels did not make new threads inherit their parent
2180 thread's debug state, so we always clear the slot and replicate
2181 the debug state ourselves, ensuring compatibility with all
2184 /* The ppc debug resource accounting is done through "slots".
2185 Ask the kernel the deallocate this specific *point's slot. */
2186 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2188 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
2192 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2196 ppc_linux_thread_exit (struct thread_info *tp, int silent)
2199 int tid = ptid_get_lwp (tp->ptid);
2200 struct hw_break_tuple *hw_breaks;
2201 struct thread_points *t = NULL, *p;
2203 if (!have_ptrace_hwdebug_interface ())
2206 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2216 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2218 hw_breaks = t->hw_breaks;
2220 for (i = 0; i < max_slots_number; i++)
2221 if (hw_breaks[i].hw_break)
2222 xfree (hw_breaks[i].hw_break);
2224 xfree (t->hw_breaks);
2229 ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2233 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2236 if (siginfo.si_signo != SIGTRAP
2237 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2240 if (have_ptrace_hwdebug_interface ())
2243 struct thread_points *t;
2244 struct hw_break_tuple *hw_breaks;
2245 /* The index (or slot) of the *point is passed in the si_errno field. */
2246 int slot = siginfo.si_errno;
2248 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
2250 /* Find out if this *point is a hardware breakpoint.
2251 If so, we should return 0. */
2254 hw_breaks = t->hw_breaks;
2255 for (i = 0; i < max_slots_number; i++)
2256 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2257 && hw_breaks[i].hw_break->trigger_type
2258 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2263 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2268 ppc_linux_nat_target::stopped_by_watchpoint ()
2271 return stopped_data_address (&addr);
2275 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
2281 if (have_ptrace_hwdebug_interface ()
2282 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2283 return start <= addr && start + length >= addr;
2284 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2291 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
2292 return start <= addr + mask && start + length - 1 >= addr;
2295 /* Return the number of registers needed for a masked hardware watchpoint. */
2298 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
2300 if (!have_ptrace_hwdebug_interface ()
2301 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2303 else if ((mask & 0xC0000000) != 0xC0000000)
2305 warning (_("The given mask covers kernel address space "
2306 "and cannot be used.\n"));
2315 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
2317 pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache));
2320 store_register (regcache, tid, regno);
2322 store_ppc_registers (regcache, tid);
2325 /* Functions for transferring registers between a gregset_t or fpregset_t
2326 (see sys/ucontext.h) and gdb's regcache. The word size is that used
2327 by the ptrace interface, not the current program's ABI. Eg. if a
2328 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2329 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2332 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
2334 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2336 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
2340 fill_gregset (const struct regcache *regcache,
2341 gdb_gregset_t *gregsetp, int regno)
2343 const struct regset *regset = ppc_linux_gregset (sizeof (long));
2346 memset (gregsetp, 0, sizeof (*gregsetp));
2347 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
2351 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
2353 const struct regset *regset = ppc_linux_fpregset ();
2355 ppc_supply_fpregset (regset, regcache, -1,
2356 fpregsetp, sizeof (*fpregsetp));
2360 fill_fpregset (const struct regcache *regcache,
2361 gdb_fpregset_t *fpregsetp, int regno)
2363 const struct regset *regset = ppc_linux_fpregset ();
2365 ppc_collect_fpregset (regset, regcache, regno,
2366 fpregsetp, sizeof (*fpregsetp));
2370 ppc_linux_target_wordsize (void)
2374 /* Check for 64-bit inferior process. This is the case when the host is
2375 64-bit, and in addition the top bit of the MSR register is set. */
2376 #ifdef __powerpc64__
2379 int tid = ptid_get_lwp (inferior_ptid);
2381 tid = ptid_get_pid (inferior_ptid);
2384 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2385 if (errno == 0 && ppc64_64bit_inferior_p (msr))
2393 ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
2394 gdb_byte *endptr, CORE_ADDR *typep,
2397 int sizeof_auxv_field = ppc_linux_target_wordsize ();
2398 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2399 gdb_byte *ptr = *readptr;
2404 if (endptr - ptr < sizeof_auxv_field * 2)
2407 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2408 ptr += sizeof_auxv_field;
2409 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
2410 ptr += sizeof_auxv_field;
2416 const struct target_desc *
2417 ppc_linux_nat_target::read_description ()
2424 int tid = ptid_get_lwp (inferior_ptid);
2426 tid = ptid_get_pid (inferior_ptid);
2428 if (have_ptrace_getsetevrregs)
2430 struct gdb_evrregset_t evrregset;
2432 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
2433 return tdesc_powerpc_e500l;
2435 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2436 Anything else needs to be reported. */
2437 else if (errno != EIO)
2438 perror_with_name (_("Unable to fetch SPE registers"));
2441 if (have_ptrace_getsetvsxregs
2442 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX))
2444 gdb_vsxregset_t vsxregset;
2446 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2449 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2450 Anything else needs to be reported. */
2451 else if (errno != EIO)
2452 perror_with_name (_("Unable to fetch VSX registers"));
2455 if (have_ptrace_getvrregs
2456 && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC))
2458 gdb_vrregset_t vrregset;
2460 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2463 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2464 Anything else needs to be reported. */
2465 else if (errno != EIO)
2466 perror_with_name (_("Unable to fetch AltiVec registers"));
2469 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
2470 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
2471 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2472 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2473 half of the register are for Decimal Floating Point, we check if that
2474 feature is available to decide the size of the FPSCR. */
2475 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
2478 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2481 if (ppc_linux_target_wordsize () == 8)
2484 return tdesc_powerpc_cell64l;
2486 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2489 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
2491 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2495 return tdesc_powerpc_cell32l;
2497 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
2499 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
2501 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
2505 _initialize_ppc_linux_nat (void)
2507 linux_target = &the_ppc_linux_nat_target;
2509 gdb::observers::thread_exit.attach (ppc_linux_thread_exit);
2511 /* Register the target. */
2512 add_target (linux_target);