1 /* PPC GNU/Linux native support.
3 Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdb_string.h"
27 #include "gdb_assert.h"
29 #include "linux-nat.h"
32 #include <sys/types.h>
33 #include <sys/param.h>
36 #include <sys/ioctl.h>
39 #include <sys/procfs.h>
40 #include <sys/ptrace.h>
42 /* Prototypes for supply_gregset etc. */
46 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
47 configure time check. Some older glibc's (for instance 2.2.1)
48 don't have a specific powerpc version of ptrace.h, and fall back on
49 a generic one. In such cases, sys/ptrace.h defines
50 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
51 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
52 PTRACE_SETVRREGS to be. This also makes a configury check pretty
55 /* These definitions should really come from the glibc header files,
56 but Glibc doesn't know about the vrregs yet. */
57 #ifndef PTRACE_GETVRREGS
58 #define PTRACE_GETVRREGS 18
59 #define PTRACE_SETVRREGS 19
63 /* Similarly for the ptrace requests for getting / setting the SPE
64 registers (ev0 -- ev31, acc, and spefscr). See the description of
65 gdb_evrregset_t for details. */
66 #ifndef PTRACE_GETEVRREGS
67 #define PTRACE_GETEVRREGS 20
68 #define PTRACE_SETEVRREGS 21
71 /* Similarly for the hardware watchpoint support. */
72 #ifndef PTRACE_GET_DEBUGREG
73 #define PTRACE_GET_DEBUGREG 25
75 #ifndef PTRACE_SET_DEBUGREG
76 #define PTRACE_SET_DEBUGREG 26
78 #ifndef PTRACE_GETSIGINFO
79 #define PTRACE_GETSIGINFO 0x4202
82 /* This oddity is because the Linux kernel defines elf_vrregset_t as
83 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
84 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
85 the vrsave as an extra 4 bytes at the end. I opted for creating a
86 flat array of chars, so that it is easier to manipulate for gdb.
88 There are 32 vector registers 16 bytes longs, plus a VSCR register
89 which is only 4 bytes long, but is fetched as a 16 bytes
90 quantity. Up to here we have the elf_vrregset_t structure.
91 Appended to this there is space for the VRSAVE register: 4 bytes.
92 Even though this vrsave register is not included in the regset
93 typedef, it is handled by the ptrace requests.
95 Note that GNU/Linux doesn't support little endian PPC hardware,
96 therefore the offset at which the real value of the VSCR register
97 is located will be always 12 bytes.
99 The layout is like this (where x is the actual value of the vscr reg): */
103 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
104 <-------> <-------><-------><->
109 #define SIZEOF_VRREGS 33*16+4
111 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
114 /* On PPC processors that support the the Signal Processing Extension
115 (SPE) APU, the general-purpose registers are 64 bits long.
116 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
117 ptrace calls only access the lower half of each register, to allow
118 them to behave the same way they do on non-SPE systems. There's a
119 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
120 read and write the top halves of all the general-purpose registers
121 at once, along with some SPE-specific registers.
123 GDB itself continues to claim the general-purpose registers are 32
124 bits long. It has unnamed raw registers that hold the upper halves
125 of the gprs, and the the full 64-bit SIMD views of the registers,
126 'ev0' -- 'ev31', are pseudo-registers that splice the top and
127 bottom halves together.
129 This is the structure filled in by PTRACE_GETEVRREGS and written to
130 the inferior's registers by PTRACE_SETEVRREGS. */
131 struct gdb_evrregset_t
133 unsigned long evr[32];
134 unsigned long long acc;
135 unsigned long spefscr;
139 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
140 PTRACE_SETVRREGS requests, for reading and writing the Altivec
141 registers. Zero if we've tried one of them and gotten an
143 int have_ptrace_getvrregs = 1;
145 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
146 PTRACE_SETEVRREGS requests, for reading and writing the SPE
147 registers. Zero if we've tried one of them and gotten an
149 int have_ptrace_getsetevrregs = 1;
152 /* registers layout, as presented by the ptrace interface:
153 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
154 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
155 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
156 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
157 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
158 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
159 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
160 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
161 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
165 ppc_register_u_addr (int regno)
168 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
169 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
170 interface, and not the wordsize of the program's ABI. */
171 int wordsize = sizeof (long);
173 /* General purpose registers occupy 1 slot each in the buffer */
174 if (regno >= tdep->ppc_gp0_regnum
175 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
176 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
178 /* Floating point regs: eight bytes each in both 32- and 64-bit
179 ptrace interfaces. Thus, two slots each in 32-bit interface, one
180 slot each in 64-bit interface. */
181 if (tdep->ppc_fp0_regnum >= 0
182 && regno >= tdep->ppc_fp0_regnum
183 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
184 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
186 /* UISA special purpose registers: 1 slot each */
187 if (regno == gdbarch_pc_regnum (current_gdbarch))
188 u_addr = PT_NIP * wordsize;
189 if (regno == tdep->ppc_lr_regnum)
190 u_addr = PT_LNK * wordsize;
191 if (regno == tdep->ppc_cr_regnum)
192 u_addr = PT_CCR * wordsize;
193 if (regno == tdep->ppc_xer_regnum)
194 u_addr = PT_XER * wordsize;
195 if (regno == tdep->ppc_ctr_regnum)
196 u_addr = PT_CTR * wordsize;
198 if (regno == tdep->ppc_mq_regnum)
199 u_addr = PT_MQ * wordsize;
201 if (regno == tdep->ppc_ps_regnum)
202 u_addr = PT_MSR * wordsize;
203 if (tdep->ppc_fpscr_regnum >= 0
204 && regno == tdep->ppc_fpscr_regnum)
206 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
207 kernel headers incorrectly contained the 32-bit definition of
208 PT_FPSCR. For the 32-bit definition, floating-point
209 registers occupy two 32-bit "slots", and the FPSCR lives in
210 the secondhalf of such a slot-pair (hence +1). For 64-bit,
211 the FPSCR instead occupies the full 64-bit 2-word-slot and
212 hence no adjustment is necessary. Hack around this. */
213 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
214 u_addr = (48 + 32) * wordsize;
216 u_addr = PT_FPSCR * wordsize;
221 /* The Linux kernel ptrace interface for AltiVec registers uses the
222 registers set mechanism, as opposed to the interface for all the
223 other registers, that stores/fetches each register individually. */
225 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
230 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
231 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
233 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
238 have_ptrace_getvrregs = 0;
241 perror_with_name (_("Unable to fetch AltiVec register"));
244 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
245 long on the hardware. We deal only with the lower 4 bytes of the
246 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
247 there is no need to define an offset for it. */
248 if (regno == (tdep->ppc_vrsave_regnum - 1))
249 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
251 regcache_raw_supply (regcache, regno,
252 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
255 /* Fetch the top 32 bits of TID's general-purpose registers and the
256 SPE-specific registers, and place the results in EVRREGSET. If we
257 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
260 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
261 PTRACE_SETEVRREGS requests are supported is isolated here, and in
262 set_spe_registers. */
264 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
266 if (have_ptrace_getsetevrregs)
268 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
272 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
273 we just return zeros. */
275 have_ptrace_getsetevrregs = 0;
277 /* Anything else needs to be reported. */
278 perror_with_name (_("Unable to fetch SPE registers"));
282 memset (evrregset, 0, sizeof (*evrregset));
285 /* Supply values from TID for SPE-specific raw registers: the upper
286 halves of the GPRs, the accumulator, and the spefscr. REGNO must
287 be the number of an upper half register, acc, spefscr, or -1 to
288 supply the values of all registers. */
290 fetch_spe_register (struct regcache *regcache, int tid, int regno)
292 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
293 struct gdb_evrregset_t evrregs;
295 gdb_assert (sizeof (evrregs.evr[0])
296 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
297 gdb_assert (sizeof (evrregs.acc)
298 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
299 gdb_assert (sizeof (evrregs.spefscr)
300 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
302 get_spe_registers (tid, &evrregs);
308 for (i = 0; i < ppc_num_gprs; i++)
309 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
312 else if (tdep->ppc_ev0_upper_regnum <= regno
313 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
314 regcache_raw_supply (regcache, regno,
315 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
318 || regno == tdep->ppc_acc_regnum)
319 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
322 || regno == tdep->ppc_spefscr_regnum)
323 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
328 fetch_register (struct regcache *regcache, int tid, int regno)
330 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
331 /* This isn't really an address. But ptrace thinks of it as one. */
332 CORE_ADDR regaddr = ppc_register_u_addr (regno);
333 int bytes_transferred;
334 unsigned int offset; /* Offset of registers within the u area. */
335 char buf[MAX_REGISTER_SIZE];
337 if (altivec_register_p (regno))
339 /* If this is the first time through, or if it is not the first
340 time through, and we have comfirmed that there is kernel
341 support for such a ptrace request, then go and fetch the
343 if (have_ptrace_getvrregs)
345 fetch_altivec_register (regcache, tid, regno);
348 /* If we have discovered that there is no ptrace support for
349 AltiVec registers, fall through and return zeroes, because
350 regaddr will be -1 in this case. */
352 else if (spe_register_p (regno))
354 fetch_spe_register (regcache, tid, regno);
360 memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
361 regcache_raw_supply (regcache, regno, buf);
365 /* Read the raw register using sizeof(long) sized chunks. On a
366 32-bit platform, 64-bit floating-point registers will require two
368 for (bytes_transferred = 0;
369 bytes_transferred < register_size (current_gdbarch, regno);
370 bytes_transferred += sizeof (long))
373 *(long *) &buf[bytes_transferred]
374 = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
375 regaddr += sizeof (long);
379 sprintf (message, "reading register %s (#%d)",
380 gdbarch_register_name (current_gdbarch, regno), regno);
381 perror_with_name (message);
385 /* Now supply the register. Keep in mind that the regcache's idea
386 of the register's size may not be a multiple of sizeof
388 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
390 /* Little-endian values are always found at the left end of the
391 bytes transferred. */
392 regcache_raw_supply (regcache, regno, buf);
394 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
396 /* Big-endian values are found at the right end of the bytes
398 size_t padding = (bytes_transferred
399 - register_size (current_gdbarch, regno));
400 regcache_raw_supply (regcache, regno, buf + padding);
403 internal_error (__FILE__, __LINE__,
404 _("fetch_register: unexpected byte order: %d"),
405 gdbarch_byte_order (current_gdbarch));
409 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
412 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
413 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
414 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
415 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
417 for (i = 0; i < num_of_vrregs; i++)
419 /* The last 2 registers of this set are only 32 bit long, not
420 128. However an offset is necessary only for VSCR because it
421 occupies a whole vector, while VRSAVE occupies a full 4 bytes
423 if (i == (num_of_vrregs - 2))
424 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
425 *vrregsetp + i * vrregsize + offset);
427 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
428 *vrregsetp + i * vrregsize);
433 fetch_altivec_registers (struct regcache *regcache, int tid)
438 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
443 have_ptrace_getvrregs = 0;
446 perror_with_name (_("Unable to fetch AltiVec registers"));
448 supply_vrregset (regcache, ®s);
452 fetch_ppc_registers (struct regcache *regcache, int tid)
455 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
457 for (i = 0; i < ppc_num_gprs; i++)
458 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
459 if (tdep->ppc_fp0_regnum >= 0)
460 for (i = 0; i < ppc_num_fprs; i++)
461 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
462 fetch_register (regcache, tid, gdbarch_pc_regnum (current_gdbarch));
463 if (tdep->ppc_ps_regnum != -1)
464 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
465 if (tdep->ppc_cr_regnum != -1)
466 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
467 if (tdep->ppc_lr_regnum != -1)
468 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
469 if (tdep->ppc_ctr_regnum != -1)
470 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
471 if (tdep->ppc_xer_regnum != -1)
472 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
473 if (tdep->ppc_mq_regnum != -1)
474 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
475 if (tdep->ppc_fpscr_regnum != -1)
476 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
477 if (have_ptrace_getvrregs)
478 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
479 fetch_altivec_registers (regcache, tid);
480 if (tdep->ppc_ev0_upper_regnum >= 0)
481 fetch_spe_register (regcache, tid, -1);
484 /* Fetch registers from the child process. Fetch all registers if
485 regno == -1, otherwise fetch all general registers or all floating
486 point registers depending upon the value of regno. */
488 ppc_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
490 /* Overload thread id onto process id */
491 int tid = TIDGET (inferior_ptid);
493 /* No thread id, just use process id */
495 tid = PIDGET (inferior_ptid);
498 fetch_ppc_registers (regcache, tid);
500 fetch_register (regcache, tid, regno);
503 /* Store one register. */
505 store_altivec_register (const struct regcache *regcache, int tid, int regno)
510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
511 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
513 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
518 have_ptrace_getvrregs = 0;
521 perror_with_name (_("Unable to fetch AltiVec register"));
524 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
525 long on the hardware. */
526 if (regno == (tdep->ppc_vrsave_regnum - 1))
527 offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
529 regcache_raw_collect (regcache, regno,
530 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
532 ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
534 perror_with_name (_("Unable to store AltiVec register"));
537 /* Assuming TID referrs to an SPE process, set the top halves of TID's
538 general-purpose registers and its SPE-specific registers to the
539 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
542 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
543 PTRACE_SETEVRREGS requests are supported is isolated here, and in
544 get_spe_registers. */
546 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
548 if (have_ptrace_getsetevrregs)
550 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
554 /* EIO means that the PTRACE_SETEVRREGS request isn't
555 supported; we fail silently, and don't try the call
558 have_ptrace_getsetevrregs = 0;
560 /* Anything else needs to be reported. */
561 perror_with_name (_("Unable to set SPE registers"));
566 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
567 If REGNO is -1, write the values of all the SPE-specific
570 store_spe_register (const struct regcache *regcache, int tid, int regno)
572 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
573 struct gdb_evrregset_t evrregs;
575 gdb_assert (sizeof (evrregs.evr[0])
576 == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
577 gdb_assert (sizeof (evrregs.acc)
578 == register_size (current_gdbarch, tdep->ppc_acc_regnum));
579 gdb_assert (sizeof (evrregs.spefscr)
580 == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
583 /* Since we're going to write out every register, the code below
584 should store to every field of evrregs; if that doesn't happen,
585 make it obvious by initializing it with suspicious values. */
586 memset (&evrregs, 42, sizeof (evrregs));
588 /* We can only read and write the entire EVR register set at a
589 time, so to write just a single register, we do a
590 read-modify-write maneuver. */
591 get_spe_registers (tid, &evrregs);
597 for (i = 0; i < ppc_num_gprs; i++)
598 regcache_raw_collect (regcache,
599 tdep->ppc_ev0_upper_regnum + i,
602 else if (tdep->ppc_ev0_upper_regnum <= regno
603 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
604 regcache_raw_collect (regcache, regno,
605 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
608 || regno == tdep->ppc_acc_regnum)
609 regcache_raw_collect (regcache,
610 tdep->ppc_acc_regnum,
614 || regno == tdep->ppc_spefscr_regnum)
615 regcache_raw_collect (regcache,
616 tdep->ppc_spefscr_regnum,
619 /* Write back the modified register set. */
620 set_spe_registers (tid, &evrregs);
624 store_register (const struct regcache *regcache, int tid, int regno)
626 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
627 /* This isn't really an address. But ptrace thinks of it as one. */
628 CORE_ADDR regaddr = ppc_register_u_addr (regno);
630 size_t bytes_to_transfer;
631 char buf[MAX_REGISTER_SIZE];
633 if (altivec_register_p (regno))
635 store_altivec_register (regcache, tid, regno);
638 else if (spe_register_p (regno))
640 store_spe_register (regcache, tid, regno);
647 /* First collect the register. Keep in mind that the regcache's
648 idea of the register's size may not be a multiple of sizeof
650 memset (buf, 0, sizeof buf);
651 bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
653 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
655 /* Little-endian values always sit at the left end of the buffer. */
656 regcache_raw_collect (regcache, regno, buf);
658 else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
660 /* Big-endian values sit at the right end of the buffer. */
661 size_t padding = (bytes_to_transfer
662 - register_size (current_gdbarch, regno));
663 regcache_raw_collect (regcache, regno, buf + padding);
666 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
669 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
671 regaddr += sizeof (long);
674 && regno == tdep->ppc_fpscr_regnum)
676 /* Some older kernel versions don't allow fpscr to be written. */
683 sprintf (message, "writing register %s (#%d)",
684 gdbarch_register_name (current_gdbarch, regno), regno);
685 perror_with_name (message);
691 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
694 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
695 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
696 int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
697 int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
699 for (i = 0; i < num_of_vrregs; i++)
701 /* The last 2 registers of this set are only 32 bit long, not
702 128, but only VSCR is fetched as a 16 bytes quantity. */
703 if (i == (num_of_vrregs - 2))
704 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
705 *vrregsetp + i * vrregsize + offset);
707 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
708 *vrregsetp + i * vrregsize);
713 store_altivec_registers (const struct regcache *regcache, int tid)
718 ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
723 have_ptrace_getvrregs = 0;
726 perror_with_name (_("Couldn't get AltiVec registers"));
729 fill_vrregset (regcache, ®s);
731 if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
732 perror_with_name (_("Couldn't write AltiVec registers"));
736 store_ppc_registers (const struct regcache *regcache, int tid)
739 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
741 for (i = 0; i < ppc_num_gprs; i++)
742 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
743 if (tdep->ppc_fp0_regnum >= 0)
744 for (i = 0; i < ppc_num_fprs; i++)
745 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
746 store_register (regcache, tid, gdbarch_pc_regnum (current_gdbarch));
747 if (tdep->ppc_ps_regnum != -1)
748 store_register (regcache, tid, tdep->ppc_ps_regnum);
749 if (tdep->ppc_cr_regnum != -1)
750 store_register (regcache, tid, tdep->ppc_cr_regnum);
751 if (tdep->ppc_lr_regnum != -1)
752 store_register (regcache, tid, tdep->ppc_lr_regnum);
753 if (tdep->ppc_ctr_regnum != -1)
754 store_register (regcache, tid, tdep->ppc_ctr_regnum);
755 if (tdep->ppc_xer_regnum != -1)
756 store_register (regcache, tid, tdep->ppc_xer_regnum);
757 if (tdep->ppc_mq_regnum != -1)
758 store_register (regcache, tid, tdep->ppc_mq_regnum);
759 if (tdep->ppc_fpscr_regnum != -1)
760 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
761 if (have_ptrace_getvrregs)
762 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
763 store_altivec_registers (regcache, tid);
764 if (tdep->ppc_ev0_upper_regnum >= 0)
765 store_spe_register (regcache, tid, -1);
769 ppc_linux_check_watch_resources (int type, int cnt, int ot)
772 ptid_t ptid = inferior_ptid;
774 /* DABR (data address breakpoint register) is optional for PPC variants.
775 Some variants have one DABR, others have none. So CNT can't be larger
780 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
781 the target has DABR. If either answer is no, the ptrace call will
782 return -1. Fail in that case. */
787 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
793 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
795 /* Handle sub-8-byte quantities. */
799 /* addr+len must fall in the 8 byte watchable region. */
800 if ((addr + len) > (addr & ~7) + 8)
806 /* The cached DABR value, to install in new threads. */
807 static long saved_dabr_value;
809 /* Set a watchpoint of type TYPE at address ADDR. */
811 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
817 dabr_value = addr & ~7;
821 /* Set read and translate bits. */
825 /* Set write and translate bits. */
829 /* Set read, write and translate bits. */
835 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
837 saved_dabr_value = dabr_value;
842 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
848 saved_dabr_value = 0;
850 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
856 ppc_linux_new_thread (ptid_t ptid)
858 ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value);
862 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
864 struct siginfo *siginfo_p;
866 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
868 if (siginfo_p->si_signo != SIGTRAP
869 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
872 *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
877 ppc_linux_stopped_by_watchpoint (void)
880 return ppc_linux_stopped_data_address (¤t_target, &addr);
884 ppc_linux_store_inferior_registers (struct regcache *regcache, int regno)
886 /* Overload thread id onto process id */
887 int tid = TIDGET (inferior_ptid);
889 /* No thread id, just use process id */
891 tid = PIDGET (inferior_ptid);
894 store_register (regcache, tid, regno);
896 store_ppc_registers (regcache, tid);
899 /* Functions for transferring registers between a gregset_t or fpregset_t
900 (see sys/ucontext.h) and gdb's regcache. The word size is that used
901 by the ptrace interface, not the current program's ABI. eg. If a
902 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
903 read or write 64-bit gregsets. This is to suit the host libthread_db. */
906 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
908 const struct regset *regset = ppc_linux_gregset (sizeof (long));
910 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
914 fill_gregset (const struct regcache *regcache,
915 gdb_gregset_t *gregsetp, int regno)
917 const struct regset *regset = ppc_linux_gregset (sizeof (long));
920 memset (gregsetp, 0, sizeof (*gregsetp));
921 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
925 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
927 const struct regset *regset = ppc_linux_fpregset ();
929 ppc_supply_fpregset (regset, regcache, -1,
930 fpregsetp, sizeof (*fpregsetp));
934 fill_fpregset (const struct regcache *regcache,
935 gdb_fpregset_t *fpregsetp, int regno)
937 const struct regset *regset = ppc_linux_fpregset ();
939 ppc_collect_fpregset (regset, regcache, regno,
940 fpregsetp, sizeof (*fpregsetp));
943 void _initialize_ppc_linux_nat (void);
946 _initialize_ppc_linux_nat (void)
948 struct target_ops *t;
950 /* Fill in the generic GNU/Linux methods. */
953 /* Add our register access methods. */
954 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
955 t->to_store_registers = ppc_linux_store_inferior_registers;
957 /* Add our watchpoint methods. */
958 t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
959 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
960 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
961 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
962 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
963 t->to_stopped_data_address = ppc_linux_stopped_data_address;
965 /* Register the target. */
966 linux_nat_add_target (t);
967 linux_nat_set_new_thread (t, ppc_linux_new_thread);