1 /* Target-dependent code for the 32-bit OpenRISC 1000, for the GDB.
2 Copyright (C) 2008-2019 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "safe-ctype.h"
34 #include "reggroups.h"
35 #include "arch-utils.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "dwarf2-frame.h"
39 #include "trad-frame.h"
42 #include "target-descriptions.h"
46 /* OpenRISC specific includes. */
47 #include "or1k-tdep.h"
48 #include "features/or1k.c"
51 /* Global debug flag. */
53 static int or1k_debug = 0;
56 show_or1k_debug (struct ui_file *file, int from_tty,
57 struct cmd_list_element *c, const char *value)
59 fprintf_filtered (file, _("OpenRISC debugging is %s.\n"), value);
63 /* The target-dependent structure for gdbarch. */
68 int bytes_per_address;
69 CGEN_CPU_DESC gdb_cgen_cpu_desc;
72 /* Support functions for the architecture definition. */
74 /* Get an instruction from memory. */
77 or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
79 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
80 gdb_byte buf[OR1K_INSTLEN];
82 if (target_read_code (addr, buf, OR1K_INSTLEN)) {
83 memory_error (TARGET_XFER_E_IO, addr);
86 return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
89 /* Generic function to read bits from an instruction. */
92 or1k_analyse_inst (uint32_t inst, const char *format, ...)
94 /* Break out each field in turn, validating as we go. */
97 int iptr = 0; /* Instruction pointer */
99 va_start (ap, format);
101 for (i = 0; 0 != format[i];)
103 const char *start_ptr;
106 uint32_t bits; /* Bit substring of interest */
107 uint32_t width; /* Substring width */
114 break; /* Formatting: ignored */
117 case '1': /* Constant bit field */
118 bits = (inst >> (OR1K_INSTBITLEN - iptr - 1)) & 0x1;
120 if ((format[i] - '0') != bits)
127 case '%': /* Bit field */
129 start_ptr = &(format[i]);
130 width = strtoul (start_ptr, &end_ptr, 10);
132 /* Check we got something, and if so skip on. */
133 if (start_ptr == end_ptr)
134 error (_("bitstring \"%s\" at offset %d has no length field."),
137 i += end_ptr - start_ptr;
139 /* Look for and skip the terminating 'b'. If it's not there, we
140 still give a fatal error, because these are fixed strings that
141 just should not be wrong. */
142 if ('b' != format[i++])
143 error (_("bitstring \"%s\" at offset %d has no terminating 'b'."),
146 /* Break out the field. There is a special case with a bit width
152 (inst >> (OR1K_INSTBITLEN - iptr - width)) & ((1 << width) - 1);
154 arg_ptr = va_arg (ap, uint32_t *);
160 error (_("invalid character in bitstring \"%s\" at offset %d."),
166 /* Is the length OK? */
167 gdb_assert (OR1K_INSTBITLEN == iptr);
169 return true; /* Success */
172 /* This is used to parse l.addi instructions during various prologue
173 analysis routines. The l.addi instruction has semantics:
175 assembly: l.addi rD,rA,I
176 implementation: rD = rA + sign_extend(Immediate)
178 The rd_ptr, ra_ptr and simm_ptr must be non NULL pointers and are used
179 to store the parse results. Upon successful parsing true is returned,
183 or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
184 unsigned int *ra_ptr, int *simm_ptr)
186 /* Instruction fields */
189 if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
191 /* Found it. Construct the result fields. */
192 *rd_ptr = (unsigned int) rd;
193 *ra_ptr = (unsigned int) ra;
194 *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
196 return true; /* Success */
199 return false; /* Failure */
202 /* This is used to to parse store instructions during various prologue
203 analysis routines. The l.sw instruction has semantics:
205 assembly: l.sw I(rA),rB
206 implementation: store rB contents to memory at effective address of
207 rA + sign_extend(Immediate)
209 The simm_ptr, ra_ptr and rb_ptr must be non NULL pointers and are used
210 to store the parse results. Upon successful parsing true is returned,
214 or1k_analyse_l_sw (uint32_t inst, int *simm_ptr, unsigned int *ra_ptr,
215 unsigned int *rb_ptr)
217 /* Instruction fields */
218 uint32_t ihi, ilo, ra, rb;
220 if (or1k_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
224 /* Found it. Construct the result fields. */
225 *simm_ptr = (int) ((ihi << 11) | ilo);
226 *simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;
228 *ra_ptr = (unsigned int) ra;
229 *rb_ptr = (unsigned int) rb;
231 return true; /* Success */
234 return false; /* Failure */
238 /* Functions defining the architecture. */
240 /* Implement the return_value gdbarch method. */
242 static enum return_value_convention
243 or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
244 struct type *valtype, struct regcache *regcache,
245 gdb_byte *readbuf, const gdb_byte *writebuf)
247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
248 enum type_code rv_type = TYPE_CODE (valtype);
249 unsigned int rv_size = TYPE_LENGTH (valtype);
250 int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
252 /* Deal with struct/union as addresses. If an array won't fit in a
253 single register it is returned as address. Anything larger than 2
254 registers needs to also be passed as address (matches gcc
255 default_return_in_memory). */
256 if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
257 || ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
258 || (rv_size > 2 * bpw))
264 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
265 read_memory (tmp, readbuf, rv_size);
267 if (writebuf != NULL)
271 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
272 write_memory (tmp, writebuf, rv_size);
275 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
280 /* Up to one word scalars are returned in R11. */
285 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
286 store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
289 if (writebuf != NULL)
291 gdb_byte *buf = XCNEWVEC(gdb_byte, bpw);
293 if (BFD_ENDIAN_BIG == byte_order)
294 memcpy (buf + (sizeof (gdb_byte) * bpw) - rv_size, writebuf,
297 memcpy (buf, writebuf, rv_size);
299 regcache->cooked_write (OR1K_RV_REGNUM, buf);
306 /* 2 word scalars are returned in r11/r12 (with the MS word in r11). */
313 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM,
315 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM + 1,
317 tmp = (tmp_hi << (bpw * 8)) | tmp_lo;
319 store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
321 if (writebuf != NULL)
323 gdb_byte *buf_lo = XCNEWVEC(gdb_byte, bpw);
324 gdb_byte *buf_hi = XCNEWVEC(gdb_byte, bpw);
326 /* This is cheating. We assume that we fit in 2 words exactly,
327 which wouldn't work if we had (say) a 6-byte scalar type on a
328 big endian architecture (with the OpenRISC 1000 usually is). */
329 memcpy (buf_hi, writebuf, rv_size - bpw);
330 memcpy (buf_lo, writebuf + bpw, bpw);
332 regcache->cooked_write (OR1K_RV_REGNUM, buf_hi);
333 regcache->cooked_write (OR1K_RV_REGNUM + 1, buf_lo);
340 return RETURN_VALUE_REGISTER_CONVENTION;
343 /* OR1K always uses a l.trap instruction for breakpoints. */
345 constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};
347 typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;
349 /* Implement the single_step_through_delay gdbarch method. */
352 or1k_single_step_through_delay (struct gdbarch *gdbarch,
353 struct frame_info *this_frame)
358 CGEN_FIELDS tmp_fields;
359 const CGEN_INSN *insn;
360 struct regcache *regcache = get_current_regcache ();
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363 /* Get the previous and current instruction addresses. If they are not
364 adjacent, we cannot be in a delay slot. */
365 regcache_cooked_read_unsigned (regcache, OR1K_PPC_REGNUM, &val);
366 ppc = (CORE_ADDR) val;
367 regcache_cooked_read_unsigned (regcache, OR1K_NPC_REGNUM, &val);
368 npc = (CORE_ADDR) val;
370 if (0x4 != (npc - ppc))
373 insn = cgen_lookup_insn (tdep->gdb_cgen_cpu_desc,
375 or1k_fetch_instruction (gdbarch, ppc),
376 NULL, 32, &tmp_fields, 0);
378 /* NULL here would mean the last instruction was not understood by cgen.
379 This should not usually happen, but if does its not a delay slot. */
383 /* TODO: we should add a delay slot flag to the CGEN_INSN and remove
384 this hard coded test. */
385 return ((CGEN_INSN_NUM (insn) == OR1K_INSN_L_J)
386 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JAL)
387 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JR)
388 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JALR)
389 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BNF)
390 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BF));
393 /* Name for or1k general registers. */
395 static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
396 /* general purpose registers */
397 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
398 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
399 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
400 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
402 /* previous program counter, next program counter and status register */
407 or1k_is_arg_reg (unsigned int regnum)
409 return (OR1K_FIRST_ARG_REGNUM <= regnum)
410 && (regnum <= OR1K_LAST_ARG_REGNUM);
414 or1k_is_callee_saved_reg (unsigned int regnum)
416 return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
419 /* Implement the skip_prologue gdbarch method. */
422 or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
428 unsigned int ra, rb, rd; /* for instruction analysis */
433 /* Try using SAL first if we have symbolic information available. This
434 only works for DWARF 2, not STABS. */
436 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
438 CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
440 if (0 != prologue_end)
442 struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
443 struct compunit_symtab *compunit
444 = SYMTAB_COMPUNIT (prologue_sal.symtab);
445 const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);
447 if ((NULL != debug_format)
448 && (strlen ("dwarf") <= strlen (debug_format))
449 && (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
450 return (prologue_end > pc) ? prologue_end : pc;
454 /* Look to see if we can find any of the standard prologue sequence. All
455 quite difficult, since any or all of it may be missing. So this is
456 just a best guess! */
458 addr = pc; /* Where we have got to */
459 inst = or1k_fetch_instruction (gdbarch, addr);
461 /* Look for the new stack pointer being set up. */
462 if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
463 && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
464 && (simm < 0) && (0 == (simm % 4)))
467 addr += OR1K_INSTLEN;
468 inst = or1k_fetch_instruction (gdbarch, addr);
471 /* Look for the frame pointer being manipulated. */
472 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
473 && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
474 && (simm >= 0) && (0 == (simm % 4)))
476 addr += OR1K_INSTLEN;
477 inst = or1k_fetch_instruction (gdbarch, addr);
479 gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
480 && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
481 && (simm == frame_size));
483 addr += OR1K_INSTLEN;
484 inst = or1k_fetch_instruction (gdbarch, addr);
487 /* Look for the link register being saved. */
488 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
489 && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
490 && (simm >= 0) && (0 == (simm % 4)))
492 addr += OR1K_INSTLEN;
493 inst = or1k_fetch_instruction (gdbarch, addr);
496 /* Look for arguments or callee-saved register being saved. The register
497 must be one of the arguments (r3-r8) or the 10 callee saved registers
498 (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
499 register must be the FP (for the args) or the SP (for the callee_saved
503 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
504 && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
505 || ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
506 && (0 == (simm % 4)))
508 addr += OR1K_INSTLEN;
509 inst = or1k_fetch_instruction (gdbarch, addr);
513 /* Nothing else to look for. We have found the end of the
521 /* Implement the frame_align gdbarch method. */
524 or1k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
526 return align_down (sp, OR1K_STACK_ALIGN);
529 /* Implement the unwind_pc gdbarch method. */
532 or1k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
537 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, next_frame=%d\n",
538 frame_relative_level (next_frame));
540 pc = frame_unwind_register_unsigned (next_frame, OR1K_NPC_REGNUM);
543 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, pc=%s\n",
544 paddress (gdbarch, pc));
549 /* Implement the unwind_sp gdbarch method. */
552 or1k_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
557 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, next_frame=%d\n",
558 frame_relative_level (next_frame));
560 sp = frame_unwind_register_unsigned (next_frame, OR1K_SP_REGNUM);
563 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, sp=%s\n",
564 paddress (gdbarch, sp));
569 /* Implement the push_dummy_code gdbarch method. */
572 or1k_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
573 CORE_ADDR function, struct value **args, int nargs,
574 struct type *value_type, CORE_ADDR * real_pc,
575 CORE_ADDR * bp_addr, struct regcache *regcache)
579 /* Reserve enough room on the stack for our breakpoint instruction. */
581 /* Store the address of that breakpoint. */
583 /* keeping the stack aligned. */
584 sp = or1k_frame_align (gdbarch, bp_slot);
585 /* The call starts at the callee's entry point. */
591 /* Implement the push_dummy_call gdbarch method. */
594 or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
595 struct regcache *regcache, CORE_ADDR bp_addr,
596 int nargs, struct value **args, CORE_ADDR sp,
597 function_call_return_method return_method,
598 CORE_ADDR struct_addr)
604 int stack_offset = 0;
606 CORE_ADDR heap_sp = sp - 128;
607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
608 int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
609 int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
610 struct type *func_type = value_type (function);
613 regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);
615 /* Register for the next argument. */
616 argreg = OR1K_FIRST_ARG_REGNUM;
618 /* Location for a returned structure. This is passed as a silent first
620 if (return_method == return_method_struct)
622 regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
627 /* Put as many args as possible in registers. */
628 for (argnum = 0; argnum < nargs; argnum++)
631 gdb_byte valbuf[sizeof (ULONGEST)];
633 struct value *arg = args[argnum];
634 struct type *arg_type = check_typedef (value_type (arg));
635 int len = TYPE_LENGTH (arg_type);
636 enum type_code typecode = TYPE_CODE (arg_type);
638 if (TYPE_VARARGS (func_type) && argnum >= TYPE_NFIELDS (func_type))
639 break; /* end or regular args, varargs go to stack. */
641 /* Extract the value, either a reference or the data. */
642 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
645 CORE_ADDR valaddr = value_address (arg);
647 /* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
651 /* The argument needs to be copied into the target space.
652 Since the bottom of the stack is reserved for function
653 arguments we store this at the these at the top growing
655 heap_offset += align_up (len, bpw);
656 valaddr = heap_sp + heap_offset;
658 write_memory (valaddr, value_contents (arg), len);
661 /* The ABI passes all structures by reference, so get its
663 store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
669 /* Everything else, we just get the value. */
670 val = value_contents (arg);
673 /* Stick the value in a register. */
676 /* Big scalars use two registers, but need NOT be pair aligned. */
678 if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
680 ULONGEST regval = extract_unsigned_integer (val, len,
683 unsigned int bits_per_word = bpw * 8;
684 ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
685 ULONGEST lo = regval & mask;
686 ULONGEST hi = regval >> bits_per_word;
688 regcache_cooked_write_unsigned (regcache, argreg, hi);
689 regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
694 /* Run out of regs */
698 else if (argreg <= OR1K_LAST_ARG_REGNUM)
700 /* Smaller scalars fit in a single register. */
701 regcache_cooked_write_unsigned
702 (regcache, argreg, extract_unsigned_integer (val, len,
708 /* Ran out of regs. */
713 first_stack_arg = argnum;
715 /* If we get here with argnum < nargs, then arguments remain to be
716 placed on the stack. This is tricky, since they must be pushed in
717 reverse order and the stack in the end must be aligned. The only
718 solution is to do it in two stages, the first to compute the stack
719 size, the second to save the args. */
721 for (argnum = first_stack_arg; argnum < nargs; argnum++)
723 struct value *arg = args[argnum];
724 struct type *arg_type = check_typedef (value_type (arg));
725 int len = TYPE_LENGTH (arg_type);
726 enum type_code typecode = TYPE_CODE (arg_type);
728 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
731 /* Structures are passed as addresses. */
736 /* Big scalars use more than one word. Code here allows for
737 future quad-word entities (e.g. long double.) */
738 sp -= align_up (len, bpw);
741 /* Ensure our dummy heap doesn't touch the stack, this could only
742 happen if we have many arguments including fabricated arguments. */
743 gdb_assert (heap_offset == 0 || ((heap_sp + heap_offset) < sp));
746 sp = gdbarch_frame_align (gdbarch, sp);
749 /* Push the remaining args on the stack. */
750 for (argnum = first_stack_arg; argnum < nargs; argnum++)
753 gdb_byte valbuf[sizeof (ULONGEST)];
755 struct value *arg = args[argnum];
756 struct type *arg_type = check_typedef (value_type (arg));
757 int len = TYPE_LENGTH (arg_type);
758 enum type_code typecode = TYPE_CODE (arg_type);
759 /* The EABI passes structures that do not fit in a register by
760 reference. In all other cases, pass the structure by value. */
761 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
764 store_unsigned_integer (valbuf, bpa, byte_order,
765 value_address (arg));
770 val = value_contents (arg);
774 int partial_len = (len < bpw ? len : bpw);
776 write_memory (sp + stack_offset, val, partial_len);
777 stack_offset += align_up (partial_len, bpw);
783 /* Save the updated stack pointer. */
784 regcache_cooked_write_unsigned (regcache, OR1K_SP_REGNUM, sp);
792 /* Implement the dummy_id gdbarch method. */
794 static struct frame_id
795 or1k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
797 return frame_id_build (get_frame_sp (this_frame),
798 get_frame_pc (this_frame));
802 /* Support functions for frame handling. */
804 /* Initialize a prologue cache
806 We build a cache, saying where registers of the prev frame can be found
807 from the data so far set up in this this.
809 We also compute a unique ID for this frame, based on the function start
810 address and the stack pointer (as it will be, even if it has yet to be
816 The OR1K has a falling stack frame and a simple prolog. The Stack
817 pointer is R1 and the frame pointer R2. The frame base is therefore the
818 address held in R2 and the stack pointer (R1) is the frame base of the
821 l.addi r1,r1,-frame_size # SP now points to end of new stack frame
823 The stack pointer may not be set up in a frameless function (e.g. a
824 simple leaf function).
826 l.sw fp_loc(r1),r2 # old FP saved in new stack frame
827 l.addi r2,r1,frame_size # FP now points to base of new stack frame
829 The frame pointer is not necessarily saved right at the end of the stack
830 frame - OR1K saves enough space for any args to called functions right
831 at the end (this is a difference from the Architecture Manual).
833 l.sw lr_loc(r1),r9 # Link (return) address
835 The link register is usally saved at fp_loc - 4. It may not be saved at
836 all in a leaf function.
838 l.sw reg_loc(r1),ry # Save any callee saved regs
840 The offsets x for the callee saved registers generally (always?) rise in
841 increments of 4, starting at fp_loc + 4. If the frame pointer is
842 omitted (an option to GCC), then it may not be saved at all. There may
843 be no callee saved registers.
845 So in summary none of this may be present. However what is present
846 seems always to follow this fixed order, and occur before any
847 substantive code (it is possible for GCC to have more flexible
848 scheduling of the prologue, but this does not seem to occur for OR1K).
853 This prolog is used, even for -O3 with GCC.
855 All this analysis must allow for the possibility that the PC is in the
856 middle of the prologue. Data in the cache should only be set up insofar
857 as it has been computed.
859 HOWEVER. The frame_id must be created with the SP *as it will be* at
860 the end of the Prologue. Otherwise a recursive call, checking the frame
861 with the PC at the start address will end up with the same frame_id as
864 A suite of "helper" routines are used, allowing reuse for
865 or1k_skip_prologue().
867 Reportedly, this is only valid for frames less than 0x7fff in size. */
869 static struct trad_frame_cache *
870 or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
872 struct gdbarch *gdbarch;
873 struct trad_frame_cache *info;
877 CORE_ADDR this_sp_for_id;
880 CORE_ADDR start_addr;
884 fprintf_unfiltered (gdb_stdlog,
885 "or1k_frame_cache, prologue_cache = %s\n",
886 host_address_to_string (*prologue_cache));
888 /* Nothing to do if we already have this info. */
889 if (NULL != *prologue_cache)
890 return (struct trad_frame_cache *) *prologue_cache;
892 /* Get a new prologue cache and populate it with default values. */
893 info = trad_frame_cache_zalloc (this_frame);
894 *prologue_cache = info;
896 /* Find the start address of this function (which is a normal frame, even
897 if the next frame is the sentinel frame) and the end of its prologue. */
898 this_pc = get_frame_pc (this_frame);
899 find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
901 /* Get the stack pointer if we have one (if there's no process executing
902 yet we won't have a frame. */
903 this_sp = (NULL == this_frame) ? 0 :
904 get_frame_register_unsigned (this_frame, OR1K_SP_REGNUM);
906 /* Return early if GDB couldn't find the function. */
910 fprintf_unfiltered (gdb_stdlog, " couldn't find function\n");
912 /* JPB: 28-Apr-11. This is a temporary patch, to get round GDB
913 crashing right at the beginning. Build the frame ID as best we
915 trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
920 /* The default frame base of this frame (for ID purposes only - frame
921 base is an overloaded term) is its stack pointer. For now we use the
922 value of the SP register in this frame. However if the PC is in the
923 prologue of this frame, before the SP has been set up, then the value
924 will actually be that of the prev frame, and we'll need to adjust it
926 trad_frame_set_this_base (info, this_sp);
927 this_sp_for_id = this_sp;
929 /* The default is to find the PC of the previous frame in the link
930 register of this frame. This may be changed if we find the link
931 register was saved on the stack. */
932 trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);
934 /* We should only examine code that is in the prologue. This is all code
935 up to (but not including) end_addr. We should only populate the cache
936 while the address is up to (but not including) the PC or end_addr,
937 whichever is first. */
938 gdbarch = get_frame_arch (this_frame);
939 end_addr = or1k_skip_prologue (gdbarch, start_addr);
941 /* All the following analysis only occurs if we are in the prologue and
942 have executed the code. Check we have a sane prologue size, and if
943 zero we are frameless and can give up here. */
944 if (end_addr < start_addr)
945 error (_("end addr %s is less than start addr %s"),
946 paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));
948 if (end_addr == start_addr)
952 /* We have a frame. Look for the various components. */
953 CORE_ADDR addr = start_addr; /* Where we have got to */
954 uint32_t inst = or1k_fetch_instruction (gdbarch, addr);
956 unsigned int ra, rb, rd; /* for instruction analysis */
959 /* Look for the new stack pointer being set up. */
960 if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
961 && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
962 && (simm < 0) && (0 == (simm % 4)))
965 addr += OR1K_INSTLEN;
966 inst = or1k_fetch_instruction (gdbarch, addr);
968 /* If the PC has not actually got to this point, then the frame
969 base will be wrong, and we adjust it.
971 If we are past this point, then we need to populate the stack
975 /* Only do if executing. */
978 this_sp_for_id = this_sp + frame_size;
979 trad_frame_set_this_base (info, this_sp_for_id);
984 /* We are past this point, so the stack pointer of the prev
985 frame is frame_size greater than the stack pointer of this
987 trad_frame_set_reg_value (info, OR1K_SP_REGNUM,
988 this_sp + frame_size);
992 /* From now on we are only populating the cache, so we stop once we
993 get to either the end OR the current PC. */
994 end_addr = (this_pc < end_addr) ? this_pc : end_addr;
996 /* Look for the frame pointer being manipulated. */
997 if ((addr < end_addr)
998 && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
999 && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
1000 && (simm >= 0) && (0 == (simm % 4)))
1002 addr += OR1K_INSTLEN;
1003 inst = or1k_fetch_instruction (gdbarch, addr);
1005 /* At this stage, we can find the frame pointer of the previous
1006 frame on the stack of the current frame. */
1007 trad_frame_set_reg_addr (info, OR1K_FP_REGNUM, this_sp + simm);
1009 /* Look for the new frame pointer being set up. */
1010 if ((addr < end_addr)
1011 && or1k_analyse_l_addi (inst, &rd, &ra, &simm)
1012 && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
1013 && (simm == frame_size))
1015 addr += OR1K_INSTLEN;
1016 inst = or1k_fetch_instruction (gdbarch, addr);
1018 /* If we have got this far, the stack pointer of the previous
1019 frame is the frame pointer of this frame. */
1020 trad_frame_set_reg_realreg (info, OR1K_SP_REGNUM,
1025 /* Look for the link register being saved. */
1026 if ((addr < end_addr)
1027 && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
1028 && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
1029 && (simm >= 0) && (0 == (simm % 4)))
1031 addr += OR1K_INSTLEN;
1032 inst = or1k_fetch_instruction (gdbarch, addr);
1034 /* If the link register is saved in the this frame, it holds the
1035 value of the PC in the previous frame. This overwrites the
1036 previous information about finding the PC in the link
1038 trad_frame_set_reg_addr (info, OR1K_NPC_REGNUM, this_sp + simm);
1041 /* Look for arguments or callee-saved register being saved. The
1042 register must be one of the arguments (r3-r8) or the 10 callee
1043 saved registers (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28,
1044 r30). The base register must be the FP (for the args) or the SP
1045 (for the callee_saved registers). */
1046 while (addr < end_addr)
1048 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
1049 && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
1050 || ((OR1K_SP_REGNUM == ra)
1051 && or1k_is_callee_saved_reg (rb)))
1052 && (0 == (simm % 4)))
1054 addr += OR1K_INSTLEN;
1055 inst = or1k_fetch_instruction (gdbarch, addr);
1057 /* The register in the previous frame can be found at this
1058 location in this frame. */
1059 trad_frame_set_reg_addr (info, rb, this_sp + simm);
1062 break; /* Not a register save instruction. */
1066 /* Build the frame ID */
1067 trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
1071 fprintf_unfiltered (gdb_stdlog, " this_sp_for_id = %s\n",
1072 paddress (gdbarch, this_sp_for_id));
1073 fprintf_unfiltered (gdb_stdlog, " start_addr = %s\n",
1074 paddress (gdbarch, start_addr));
1080 /* Implement the this_id function for the stub unwinder. */
1083 or1k_frame_this_id (struct frame_info *this_frame,
1084 void **prologue_cache, struct frame_id *this_id)
1086 struct trad_frame_cache *info = or1k_frame_cache (this_frame,
1089 trad_frame_get_id (info, this_id);
1092 /* Implement the prev_register function for the stub unwinder. */
1094 static struct value *
1095 or1k_frame_prev_register (struct frame_info *this_frame,
1096 void **prologue_cache, int regnum)
1098 struct trad_frame_cache *info = or1k_frame_cache (this_frame,
1101 return trad_frame_get_register (info, this_frame, regnum);
1104 /* Data structures for the normal prologue-analysis-based unwinder. */
1106 static const struct frame_unwind or1k_frame_unwind = {
1108 default_frame_unwind_stop_reason,
1110 or1k_frame_prev_register,
1112 default_frame_sniffer,
1116 /* Architecture initialization for OpenRISC 1000. */
1118 static struct gdbarch *
1119 or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1121 struct gdbarch *gdbarch;
1122 struct gdbarch_tdep *tdep;
1123 const struct bfd_arch_info *binfo;
1124 struct tdesc_arch_data *tdesc_data = NULL;
1125 const struct target_desc *tdesc = info.target_desc;
1127 /* Find a candidate among the list of pre-declared architectures. */
1128 arches = gdbarch_list_lookup_by_info (arches, &info);
1130 return arches->gdbarch;
1132 /* None found, create a new architecture from the information
1133 provided. Can't initialize all the target dependencies until we
1134 actually know which target we are talking to, but put in some defaults
1136 binfo = info.bfd_arch_info;
1137 tdep = XCNEW (struct gdbarch_tdep);
1138 tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
1139 tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
1140 gdbarch = gdbarch_alloc (&info, tdep);
1142 /* Target data types */
1143 set_gdbarch_short_bit (gdbarch, 16);
1144 set_gdbarch_int_bit (gdbarch, 32);
1145 set_gdbarch_long_bit (gdbarch, 32);
1146 set_gdbarch_long_long_bit (gdbarch, 64);
1147 set_gdbarch_float_bit (gdbarch, 32);
1148 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1149 set_gdbarch_double_bit (gdbarch, 64);
1150 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1151 set_gdbarch_long_double_bit (gdbarch, 64);
1152 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1153 set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
1154 set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
1155 set_gdbarch_char_signed (gdbarch, 1);
1157 /* Information about the target architecture */
1158 set_gdbarch_return_value (gdbarch, or1k_return_value);
1159 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1160 or1k_breakpoint::kind_from_pc);
1161 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1162 or1k_breakpoint::bp_from_kind);
1163 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
1165 /* Register architecture */
1166 set_gdbarch_num_regs (gdbarch, OR1K_NUM_REGS);
1167 set_gdbarch_num_pseudo_regs (gdbarch, OR1K_NUM_PSEUDO_REGS);
1168 set_gdbarch_sp_regnum (gdbarch, OR1K_SP_REGNUM);
1169 set_gdbarch_pc_regnum (gdbarch, OR1K_NPC_REGNUM);
1170 set_gdbarch_ps_regnum (gdbarch, OR1K_SR_REGNUM);
1171 set_gdbarch_deprecated_fp_regnum (gdbarch, OR1K_FP_REGNUM);
1173 /* Functions to analyse frames */
1174 set_gdbarch_skip_prologue (gdbarch, or1k_skip_prologue);
1175 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1176 set_gdbarch_frame_align (gdbarch, or1k_frame_align);
1177 set_gdbarch_frame_red_zone_size (gdbarch, OR1K_FRAME_RED_ZONE_SIZE);
1179 /* Functions to access frame data */
1180 set_gdbarch_unwind_pc (gdbarch, or1k_unwind_pc);
1181 set_gdbarch_unwind_sp (gdbarch, or1k_unwind_sp);
1183 /* Functions handling dummy frames */
1184 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1185 set_gdbarch_push_dummy_code (gdbarch, or1k_push_dummy_code);
1186 set_gdbarch_push_dummy_call (gdbarch, or1k_push_dummy_call);
1187 set_gdbarch_dummy_id (gdbarch, or1k_dummy_id);
1189 /* Frame unwinders. Use DWARF debug info if available, otherwise use our
1191 dwarf2_append_unwinders (gdbarch);
1192 frame_unwind_append_unwinder (gdbarch, &or1k_frame_unwind);
1194 /* Get a CGEN CPU descriptor for this architecture. */
1197 const char *mach_name = binfo->printable_name;
1198 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
1199 ? CGEN_ENDIAN_BIG : CGEN_ENDIAN_LITTLE);
1201 tdep->gdb_cgen_cpu_desc =
1202 or1k_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
1203 CGEN_CPU_OPEN_ENDIAN, endian, CGEN_CPU_OPEN_END);
1205 or1k_cgen_init_asm (tdep->gdb_cgen_cpu_desc);
1208 /* If this mach has a delay slot. */
1209 if (binfo->mach == bfd_mach_or1k)
1210 set_gdbarch_single_step_through_delay (gdbarch,
1211 or1k_single_step_through_delay);
1213 if (!tdesc_has_registers (info.target_desc))
1214 /* Pick a default target description. */
1217 /* Check any target description for validity. */
1218 if (tdesc_has_registers (tdesc))
1220 const struct tdesc_feature *feature;
1224 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.or1k.group0");
1225 if (feature == NULL)
1228 tdesc_data = tdesc_data_alloc ();
1232 for (i = 0; i < OR1K_NUM_REGS; i++)
1233 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1238 tdesc_data_cleanup (tdesc_data);
1243 if (tdesc_data != NULL)
1245 /* If we are using tdesc, register our own reggroups, otherwise we
1246 will used the defaults. */
1247 reggroup_add (gdbarch, general_reggroup);
1248 reggroup_add (gdbarch, system_reggroup);
1249 reggroup_add (gdbarch, float_reggroup);
1250 reggroup_add (gdbarch, vector_reggroup);
1251 reggroup_add (gdbarch, all_reggroup);
1252 reggroup_add (gdbarch, save_reggroup);
1253 reggroup_add (gdbarch, restore_reggroup);
1255 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1258 /* Hook in ABI-specific overrides, if they have been registered. */
1259 gdbarch_init_osabi (info, gdbarch);
1264 /* Dump the target specific data for this architecture. */
1267 or1k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1272 return; /* Nothing to report */
1274 fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per word\n",
1275 tdep->bytes_per_word);
1276 fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per address\n",
1277 tdep->bytes_per_address);
1282 _initialize_or1k_tdep (void)
1284 /* Register this architecture. */
1285 gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);
1287 initialize_tdesc_or1k ();
1289 /* Debugging flag. */
1290 add_setshow_boolean_cmd ("or1k", class_maintenance, &or1k_debug,
1291 _("Set OpenRISC debugging."),
1292 _("Show OpenRISC debugging."),
1293 _("When on, OpenRISC specific debugging is enabled."),
1296 &setdebuglist, &showdebuglist);