Copyright year update in most files of the GDB Project.
[external/binutils.git] / gdb / objfiles.h
1 /* Definitions for symbol file management in GDB.
2
3    Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22
23 #include "gdb_obstack.h"        /* For obstack internals.  */
24 #include "symfile.h"            /* For struct psymbol_allocation_list.  */
25 #include "progspace.h"
26
27 struct bcache;
28 struct htab;
29 struct symtab;
30 struct objfile_data;
31
32 /* This structure maintains information on a per-objfile basis about the
33    "entry point" of the objfile, and the scope within which the entry point
34    exists.  It is possible that gdb will see more than one objfile that is
35    executable, each with its own entry point.
36
37    For example, for dynamically linked executables in SVR4, the dynamic linker
38    code is contained within the shared C library, which is actually executable
39    and is run by the kernel first when an exec is done of a user executable
40    that is dynamically linked.  The dynamic linker within the shared C library
41    then maps in the various program segments in the user executable and jumps
42    to the user executable's recorded entry point, as if the call had been made
43    directly by the kernel.
44
45    The traditional gdb method of using this info was to use the
46    recorded entry point to set the entry-file's lowpc and highpc from
47    the debugging information, where these values are the starting
48    address (inclusive) and ending address (exclusive) of the
49    instruction space in the executable which correspond to the
50    "startup file", i.e. crt0.o in most cases.  This file is assumed to
51    be a startup file and frames with pc's inside it are treated as
52    nonexistent.  Setting these variables is necessary so that
53    backtraces do not fly off the bottom of the stack.
54
55    NOTE: cagney/2003-09-09: It turns out that this "traditional"
56    method doesn't work.  Corinna writes: ``It turns out that the call
57    to test for "inside entry file" destroys a meaningful backtrace
58    under some conditions.  E.g. the backtrace tests in the asm-source
59    testcase are broken for some targets.  In this test the functions
60    are all implemented as part of one file and the testcase is not
61    necessarily linked with a start file (depending on the target).
62    What happens is, that the first frame is printed normaly and
63    following frames are treated as being inside the enttry file then.
64    This way, only the #0 frame is printed in the backtrace output.''
65    Ref "frame.c" "NOTE: vinschen/2003-04-01".
66
67    Gdb also supports an alternate method to avoid running off the bottom
68    of the stack.
69
70    There are two frames that are "special", the frame for the function
71    containing the process entry point, since it has no predecessor frame,
72    and the frame for the function containing the user code entry point
73    (the main() function), since all the predecessor frames are for the
74    process startup code.  Since we have no guarantee that the linked
75    in startup modules have any debugging information that gdb can use,
76    we need to avoid following frame pointers back into frames that might
77    have been built in the startup code, as we might get hopelessly 
78    confused.  However, we almost always have debugging information
79    available for main().
80
81    These variables are used to save the range of PC values which are
82    valid within the main() function and within the function containing
83    the process entry point.  If we always consider the frame for
84    main() as the outermost frame when debugging user code, and the
85    frame for the process entry point function as the outermost frame
86    when debugging startup code, then all we have to do is have
87    DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
88    current PC is within the range specified by these variables.  In
89    essence, we set "ceilings" in the frame chain beyond which we will
90    not proceed when following the frame chain back up the stack.
91
92    A nice side effect is that we can still debug startup code without
93    running off the end of the frame chain, assuming that we have usable
94    debugging information in the startup modules, and if we choose to not
95    use the block at main, or can't find it for some reason, everything
96    still works as before.  And if we have no startup code debugging
97    information but we do have usable information for main(), backtraces
98    from user code don't go wandering off into the startup code.  */
99
100 struct entry_info
101   {
102     /* The relocated value we should use for this objfile entry point.  */
103     CORE_ADDR entry_point;
104
105     /* Set to 1 iff ENTRY_POINT contains a valid value.  */
106     unsigned entry_point_p : 1;
107   };
108
109 /* Sections in an objfile.  The section offsets are stored in the
110    OBJFILE.  */
111
112 struct obj_section
113   {
114     struct bfd_section *the_bfd_section;        /* BFD section pointer */
115
116     /* Objfile this section is part of.  */
117     struct objfile *objfile;
118
119     /* True if this "overlay section" is mapped into an "overlay region".  */
120     int ovly_mapped;
121   };
122
123 /* Relocation offset applied to S.  */
124 #define obj_section_offset(s)                                           \
125   (((s)->objfile->section_offsets)->offsets[(s)->the_bfd_section->index])
126
127 /* The memory address of section S (vma + offset).  */
128 #define obj_section_addr(s)                                             \
129   (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section)         \
130    + obj_section_offset (s))
131
132 /* The one-passed-the-end memory address of section S
133    (vma + size + offset).  */
134 #define obj_section_endaddr(s)                                          \
135   (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section)         \
136    + bfd_get_section_size ((s)->the_bfd_section)                        \
137    + obj_section_offset (s))
138
139 /* The "objstats" structure provides a place for gdb to record some
140    interesting information about its internal state at runtime, on a
141    per objfile basis, such as information about the number of symbols
142    read, size of string table (if any), etc.  */
143
144 struct objstats
145   {
146     int n_minsyms;              /* Number of minimal symbols read */
147     int n_psyms;                /* Number of partial symbols read */
148     int n_syms;                 /* Number of full symbols read */
149     int n_stabs;                /* Number of ".stabs" read (if applicable) */
150     int n_types;                /* Number of types */
151     int sz_strtab;              /* Size of stringtable, (if applicable) */
152   };
153
154 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
155 #define OBJSTATS struct objstats stats
156 extern void print_objfile_statistics (void);
157 extern void print_symbol_bcache_statistics (void);
158
159 /* Number of entries in the minimal symbol hash table.  */
160 #define MINIMAL_SYMBOL_HASH_SIZE 2039
161
162 /* Master structure for keeping track of each file from which
163    gdb reads symbols.  There are several ways these get allocated: 1.
164    The main symbol file, symfile_objfile, set by the symbol-file command,
165    2.  Additional symbol files added by the add-symbol-file command,
166    3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
167    for modules that were loaded when GDB attached to a remote system
168    (see remote-vx.c).  */
169
170 struct objfile
171   {
172
173     /* All struct objfile's are chained together by their next pointers.
174        The program space field "objfiles"  (frequently referenced via
175        the macro "object_files") points to the first link in this
176        chain.  */
177
178     struct objfile *next;
179
180     /* The object file's name, tilde-expanded and absolute.  Malloc'd; free it
181        if you free this struct.  This pointer is never NULL.  */
182
183     char *name;
184
185     CORE_ADDR addr_low;
186
187     /* Some flag bits for this objfile.
188        The values are defined by OBJF_*.  */
189
190     unsigned short flags;
191
192     /* The program space associated with this objfile.  */
193
194     struct program_space *pspace;
195
196     /* Each objfile points to a linked list of symtabs derived from this file,
197        one symtab structure for each compilation unit (source file).  Each link
198        in the symtab list contains a backpointer to this objfile.  */
199
200     struct symtab *symtabs;
201
202     /* Each objfile points to a linked list of partial symtabs derived from
203        this file, one partial symtab structure for each compilation unit
204        (source file).  */
205
206     struct partial_symtab *psymtabs;
207
208     /* Map addresses to the entries of PSYMTABS.  It would be more efficient to
209        have a map per the whole process but ADDRMAP cannot selectively remove
210        its items during FREE_OBJFILE.  This mapping is already present even for
211        PARTIAL_SYMTABs which still have no corresponding full SYMTABs read.  */
212
213     struct addrmap *psymtabs_addrmap;
214
215     /* List of freed partial symtabs, available for re-use.  */
216
217     struct partial_symtab *free_psymtabs;
218
219     /* The object file's BFD.  Can be null if the objfile contains only
220        minimal symbols, e.g. the run time common symbols for SunOS4.  */
221
222     bfd *obfd;
223
224     /* The gdbarch associated with the BFD.  Note that this gdbarch is
225        determined solely from BFD information, without looking at target
226        information.  The gdbarch determined from a running target may
227        differ from this e.g. with respect to register types and names.  */
228
229     struct gdbarch *gdbarch;
230
231     /* The modification timestamp of the object file, as of the last time
232        we read its symbols.  */
233
234     long mtime;
235
236     /* Cached 32-bit CRC as computed by gnu_debuglink_crc32.  CRC32 is valid
237        iff CRC32_P.  */
238     unsigned long crc32;
239     int crc32_p;
240
241     /* Obstack to hold objects that should be freed when we load a new symbol
242        table from this object file.  */
243
244     struct obstack objfile_obstack; 
245
246     /* A byte cache where we can stash arbitrary "chunks" of bytes that
247        will not change.  */
248
249     struct psymbol_bcache *psymbol_cache; /* Byte cache for partial syms.  */
250     struct bcache *macro_cache;           /* Byte cache for macros.  */
251     struct bcache *filename_cache;        /* Byte cache for file names.  */
252
253     /* Hash table for mapping symbol names to demangled names.  Each
254        entry in the hash table is actually two consecutive strings,
255        both null-terminated; the first one is a mangled or linkage
256        name, and the second is the demangled name or just a zero byte
257        if the name doesn't demangle.  */
258     struct htab *demangled_names_hash;
259
260     /* Vectors of all partial symbols read in from file.  The actual data
261        is stored in the objfile_obstack.  */
262
263     struct psymbol_allocation_list global_psymbols;
264     struct psymbol_allocation_list static_psymbols;
265
266     /* Each file contains a pointer to an array of minimal symbols for all
267        global symbols that are defined within the file.  The array is
268        terminated by a "null symbol", one that has a NULL pointer for the
269        name and a zero value for the address.  This makes it easy to walk
270        through the array when passed a pointer to somewhere in the middle
271        of it.  There is also a count of the number of symbols, which does
272        not include the terminating null symbol.  The array itself, as well
273        as all the data that it points to, should be allocated on the
274        objfile_obstack for this file.  */
275
276     struct minimal_symbol *msymbols;
277     int minimal_symbol_count;
278
279     /* This is a hash table used to index the minimal symbols by name.  */
280
281     struct minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE];
282
283     /* This hash table is used to index the minimal symbols by their
284        demangled names.  */
285
286     struct minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE];
287
288     /* Structure which keeps track of functions that manipulate objfile's
289        of the same type as this objfile.  I.e. the function to read partial
290        symbols for example.  Note that this structure is in statically
291        allocated memory, and is shared by all objfiles that use the
292        object module reader of this type.  */
293
294     const struct sym_fns *sf;
295
296     /* The per-objfile information about the entry point, the scope (file/func)
297        containing the entry point, and the scope of the user's main() func.  */
298
299     struct entry_info ei;
300
301     /* Information about stabs.  Will be filled in with a dbx_symfile_info
302        struct by those readers that need it.  */
303     /* NOTE: cagney/2004-10-23: This has been replaced by per-objfile
304        data points implemented using "data" and "num_data" below.  For
305        an example of how to use this replacement, see "objfile_data"
306        in "mips-tdep.c".  */
307
308     struct dbx_symfile_info *deprecated_sym_stab_info;
309
310     /* Hook for information for use by the symbol reader (currently used
311        for information shared by sym_init and sym_read).  It is
312        typically a pointer to malloc'd memory.  The symbol reader's finish
313        function is responsible for freeing the memory thusly allocated.  */
314     /* NOTE: cagney/2004-10-23: This has been replaced by per-objfile
315        data points implemented using "data" and "num_data" below.  For
316        an example of how to use this replacement, see "objfile_data"
317        in "mips-tdep.c".  */
318
319     void *deprecated_sym_private;
320
321     /* Per objfile data-pointers required by other GDB modules.  */
322     /* FIXME: kettenis/20030711: This mechanism could replace
323        deprecated_sym_stab_info and deprecated_sym_private
324        entirely.  */
325
326     void **data;
327     unsigned num_data;
328
329     /* Set of relocation offsets to apply to each section.
330        Currently on the objfile_obstack (which makes no sense, but I'm
331        not sure it's harming anything).
332
333        These offsets indicate that all symbols (including partial and
334        minimal symbols) which have been read have been relocated by this
335        much.  Symbols which are yet to be read need to be relocated by
336        it.  */
337
338     struct section_offsets *section_offsets;
339     int num_sections;
340
341     /* Indexes in the section_offsets array.  These are initialized by the
342        *_symfile_offsets() family of functions (som_symfile_offsets,
343        xcoff_symfile_offsets, default_symfile_offsets).  In theory they
344        should correspond to the section indexes used by bfd for the
345        current objfile.  The exception to this for the time being is the
346        SOM version.  */
347
348     int sect_index_text;
349     int sect_index_data;
350     int sect_index_bss;
351     int sect_index_rodata;
352
353     /* These pointers are used to locate the section table, which
354        among other things, is used to map pc addresses into sections.
355        SECTIONS points to the first entry in the table, and
356        SECTIONS_END points to the first location past the last entry
357        in the table.  Currently the table is stored on the
358        objfile_obstack (which makes no sense, but I'm not sure it's
359        harming anything).  */
360
361     struct obj_section
362      *sections, *sections_end;
363
364     /* GDB allows to have debug symbols in separate object files.  This is
365        used by .gnu_debuglink, ELF build id note and Mach-O OSO.
366        Although this is a tree structure, GDB only support one level
367        (ie a separate debug for a separate debug is not supported).  Note that
368        separate debug object are in the main chain and therefore will be
369        visited by ALL_OBJFILES & co iterators.  Separate debug objfile always
370        has a non-nul separate_debug_objfile_backlink.  */
371
372     /* Link to the first separate debug object, if any.  */
373     struct objfile *separate_debug_objfile;
374
375     /* If this is a separate debug object, this is used as a link to the
376        actual executable objfile.  */
377     struct objfile *separate_debug_objfile_backlink;
378
379     /* If this is a separate debug object, this is a link to the next one
380        for the same executable objfile.  */
381     struct objfile *separate_debug_objfile_link;
382
383     /* Place to stash various statistics about this objfile.  */
384       OBJSTATS;
385
386     /* A linked list of symbols created when reading template types or
387        function templates.  These symbols are not stored in any symbol
388        table, so we have to keep them here to relocate them
389        properly.  */
390     struct symbol *template_symbols;
391   };
392
393 /* Defines for the objfile flag word.  */
394
395 /* When an object file has its functions reordered (currently Irix-5.2
396    shared libraries exhibit this behaviour), we will need an expensive
397    algorithm to locate a partial symtab or symtab via an address.
398    To avoid this penalty for normal object files, we use this flag,
399    whose setting is determined upon symbol table read in.  */
400
401 #define OBJF_REORDERED  (1 << 0)        /* Functions are reordered */
402
403 /* Distinguish between an objfile for a shared library and a "vanilla"
404    objfile.  (If not set, the objfile may still actually be a solib.
405    This can happen if the user created the objfile by using the
406    add-symbol-file command.  GDB doesn't in that situation actually
407    check whether the file is a solib.  Rather, the target's
408    implementation of the solib interface is responsible for setting
409    this flag when noticing solibs used by an inferior.)  */
410
411 #define OBJF_SHARED     (1 << 1)        /* From a shared library */
412
413 /* User requested that this objfile be read in it's entirety.  */
414
415 #define OBJF_READNOW    (1 << 2)        /* Immediate full read */
416
417 /* This objfile was created because the user explicitly caused it
418    (e.g., used the add-symbol-file command).  This bit offers a way
419    for run_command to remove old objfile entries which are no longer
420    valid (i.e., are associated with an old inferior), but to preserve
421    ones that the user explicitly loaded via the add-symbol-file
422    command.  */
423
424 #define OBJF_USERLOADED (1 << 3)        /* User loaded */
425
426 /* Set if we have tried to read partial symtabs for this objfile.
427    This is used to allow lazy reading of partial symtabs.  */
428
429 #define OBJF_PSYMTABS_READ (1 << 4)
430
431 /* Set if this is the main symbol file
432    (as opposed to symbol file for dynamically loaded code).  */
433
434 #define OBJF_MAINLINE (1 << 5)
435
436 /* The object file that contains the runtime common minimal symbols
437    for SunOS4.  Note that this objfile has no associated BFD.  */
438
439 extern struct objfile *rt_common_objfile;
440
441 /* Declarations for functions defined in objfiles.c */
442
443 extern struct objfile *allocate_objfile (bfd *, int);
444
445 extern struct gdbarch *get_objfile_arch (struct objfile *);
446
447 extern void init_entry_point_info (struct objfile *);
448
449 extern int entry_point_address_query (CORE_ADDR *entry_p);
450
451 extern CORE_ADDR entry_point_address (void);
452
453 extern int build_objfile_section_table (struct objfile *);
454
455 extern void terminate_minimal_symbol_table (struct objfile *objfile);
456
457 extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
458                                                        const struct objfile *);
459
460 extern void put_objfile_before (struct objfile *, struct objfile *);
461
462 extern void objfile_to_front (struct objfile *);
463
464 extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
465
466 extern void unlink_objfile (struct objfile *);
467
468 extern void free_objfile (struct objfile *);
469
470 extern void free_objfile_separate_debug (struct objfile *);
471
472 extern struct cleanup *make_cleanup_free_objfile (struct objfile *);
473
474 extern void free_all_objfiles (void);
475
476 extern void objfile_relocate (struct objfile *, struct section_offsets *);
477
478 extern int objfile_has_partial_symbols (struct objfile *objfile);
479
480 extern int objfile_has_full_symbols (struct objfile *objfile);
481
482 extern int objfile_has_symbols (struct objfile *objfile);
483
484 extern int have_partial_symbols (void);
485
486 extern int have_full_symbols (void);
487
488 extern void objfiles_changed (void);
489
490 /* This operation deletes all objfile entries that represent solibs that
491    weren't explicitly loaded by the user, via e.g., the add-symbol-file
492    command.  */
493
494 extern void objfile_purge_solibs (void);
495
496 /* Functions for dealing with the minimal symbol table, really a misc
497    address<->symbol mapping for things we don't have debug symbols for.  */
498
499 extern int have_minimal_symbols (void);
500
501 extern struct obj_section *find_pc_section (CORE_ADDR pc);
502
503 extern int in_plt_section (CORE_ADDR, char *);
504
505 /* Keep a registry of per-objfile data-pointers required by other GDB
506    modules.  */
507
508 /* Allocate an entry in the per-objfile registry.  */
509 extern const struct objfile_data *register_objfile_data (void);
510
511 /* Allocate an entry in the per-objfile registry.
512    SAVE and FREE are called when clearing objfile data.
513    First all registered SAVE functions are called.
514    Then all registered FREE functions are called.
515    Either or both of SAVE, FREE may be NULL.  */
516 extern const struct objfile_data *register_objfile_data_with_cleanup
517   (void (*save) (struct objfile *, void *),
518    void (*free) (struct objfile *, void *));
519
520 extern void clear_objfile_data (struct objfile *objfile);
521 extern void set_objfile_data (struct objfile *objfile,
522                               const struct objfile_data *data, void *value);
523 extern void *objfile_data (struct objfile *objfile,
524                            const struct objfile_data *data);
525
526 extern struct bfd *gdb_bfd_ref (struct bfd *abfd);
527 extern void gdb_bfd_unref (struct bfd *abfd);
528 extern int gdb_bfd_close_or_warn (struct bfd *abfd);
529 \f
530
531 /* Traverse all object files in the current program space.
532    ALL_OBJFILES_SAFE works even if you delete the objfile during the
533    traversal.  */
534
535 /* Traverse all object files in program space SS.  */
536
537 #define ALL_PSPACE_OBJFILES(ss, obj)                                    \
538   for ((obj) = ss->objfiles; (obj) != NULL; (obj) = (obj)->next)        \
539
540 #define ALL_PSPACE_OBJFILES_SAFE(ss, obj, nxt)          \
541   for ((obj) = ss->objfiles;                    \
542        (obj) != NULL? ((nxt)=(obj)->next,1) :0; \
543        (obj) = (nxt))
544
545 #define ALL_OBJFILES(obj)                           \
546   for ((obj) = current_program_space->objfiles; \
547        (obj) != NULL;                               \
548        (obj) = (obj)->next)
549
550 #define ALL_OBJFILES_SAFE(obj,nxt)                      \
551   for ((obj) = current_program_space->objfiles; \
552        (obj) != NULL? ((nxt)=(obj)->next,1) :0; \
553        (obj) = (nxt))
554
555 /* Traverse all symtabs in one objfile.  */
556
557 #define ALL_OBJFILE_SYMTABS(objfile, s) \
558     for ((s) = (objfile) -> symtabs; (s) != NULL; (s) = (s) -> next)
559
560 /* Traverse all minimal symbols in one objfile.  */
561
562 #define ALL_OBJFILE_MSYMBOLS(objfile, m) \
563     for ((m) = (objfile) -> msymbols; SYMBOL_LINKAGE_NAME(m) != NULL; (m)++)
564
565 /* Traverse all symtabs in all objfiles in the current symbol
566    space.  */
567
568 #define ALL_SYMTABS(objfile, s) \
569   ALL_OBJFILES (objfile)         \
570     ALL_OBJFILE_SYMTABS (objfile, s)
571
572 #define ALL_PSPACE_SYMTABS(ss, objfile, s)              \
573   ALL_PSPACE_OBJFILES (ss, objfile)                     \
574     ALL_OBJFILE_SYMTABS (objfile, s)
575
576 /* Traverse all symtabs in all objfiles in the current program space,
577    skipping included files (which share a blockvector with their
578    primary symtab).  */
579
580 #define ALL_PRIMARY_SYMTABS(objfile, s) \
581   ALL_OBJFILES (objfile)                \
582     ALL_OBJFILE_SYMTABS (objfile, s)    \
583       if ((s)->primary)
584
585 #define ALL_PSPACE_PRIMARY_SYMTABS(pspace, objfile, s)  \
586   ALL_PSPACE_OBJFILES (ss, objfile)                     \
587     ALL_OBJFILE_SYMTABS (objfile, s)                    \
588       if ((s)->primary)
589
590 /* Traverse all minimal symbols in all objfiles in the current symbol
591    space.  */
592
593 #define ALL_MSYMBOLS(objfile, m) \
594   ALL_OBJFILES (objfile)         \
595     ALL_OBJFILE_MSYMBOLS (objfile, m)
596
597 #define ALL_OBJFILE_OSECTIONS(objfile, osect)   \
598   for (osect = objfile->sections; osect < objfile->sections_end; osect++)
599
600 /* Traverse all obj_sections in all objfiles in the current program
601    space.
602
603    Note that this detects a "break" in the inner loop, and exits
604    immediately from the outer loop as well, thus, client code doesn't
605    need to know that this is implemented with a double for.  The extra
606    hair is to make sure that a "break;" stops the outer loop iterating
607    as well, and both OBJFILE and OSECT are left unmodified:
608
609     - The outer loop learns about the inner loop's end condition, and
610       stops iterating if it detects the inner loop didn't reach its
611       end.  In other words, the outer loop keeps going only if the
612       inner loop reached its end cleanly [(osect) ==
613       (objfile)->sections_end].
614
615     - OSECT is initialized in the outer loop initialization
616       expressions, such as if the inner loop has reached its end, so
617       the check mentioned above succeeds the first time.
618
619     - The trick to not clearing OBJFILE on a "break;" is, in the outer
620       loop's loop expression, advance OBJFILE, but iff the inner loop
621       reached its end.  If not, there was a "break;", so leave OBJFILE
622       as is; the outer loop's conditional will break immediately as
623       well (as OSECT will be different from OBJFILE->sections_end).  */
624
625 #define ALL_OBJSECTIONS(objfile, osect)                                 \
626   for ((objfile) = current_program_space->objfiles,                     \
627          (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0;   \
628        (objfile) != NULL                                                \
629          && (osect) == (objfile)->sections_end;                         \
630        ((osect) == (objfile)->sections_end                              \
631         ? ((objfile) = (objfile)->next,                                 \
632            (objfile) != NULL ? (osect) = (objfile)->sections_end : 0)   \
633         : 0))                                                           \
634     for ((osect) = (objfile)->sections;                                 \
635          (osect) < (objfile)->sections_end;                             \
636          (osect)++)
637
638 #define SECT_OFF_DATA(objfile) \
639      ((objfile->sect_index_data == -1) \
640       ? (internal_error (__FILE__, __LINE__, \
641                          _("sect_index_data not initialized")), -1)     \
642       : objfile->sect_index_data)
643
644 #define SECT_OFF_RODATA(objfile) \
645      ((objfile->sect_index_rodata == -1) \
646       ? (internal_error (__FILE__, __LINE__, \
647                          _("sect_index_rodata not initialized")), -1)   \
648       : objfile->sect_index_rodata)
649
650 #define SECT_OFF_TEXT(objfile) \
651      ((objfile->sect_index_text == -1) \
652       ? (internal_error (__FILE__, __LINE__, \
653                          _("sect_index_text not initialized")), -1)     \
654       : objfile->sect_index_text)
655
656 /* Sometimes the .bss section is missing from the objfile, so we don't
657    want to die here.  Let the users of SECT_OFF_BSS deal with an
658    uninitialized section index.  */
659 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
660
661 /* Answer whether there is more than one object file loaded.  */
662
663 #define MULTI_OBJFILE_P() (object_files && object_files->next)
664
665 #endif /* !defined (OBJFILES_H) */