1 /* Target-machine dependent code for Nios II, for GDB.
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Peter Brookes (pbrookes@altera.com)
4 and Andrew Draper (adraper@altera.com).
5 Contributed by Mentor Graphics, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
39 #include "arch-utils.h"
42 #include "target-descriptions.h"
44 /* To get entry_point_address. */
48 /* Nios II specific header. */
49 #include "nios2-tdep.h"
51 #include "features/nios2.c"
53 /* Control debugging information emitted in this file. */
55 static int nios2_debug = 0;
57 /* The following structures are used in the cache for prologue
58 analysis; see the reg_value and reg_saved tables in
59 struct nios2_unwind_cache, respectively. */
61 /* struct reg_value is used to record that a register has the same value
62 as reg at the given offset from the start of a function. */
70 /* struct reg_saved is used to record that a register value has been saved at
71 basereg + addr, for basereg >= 0. If basereg < 0, that indicates
72 that the register is not known to have been saved. Note that when
73 basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
74 addr is an absolute address. */
82 struct nios2_unwind_cache
84 /* The frame's base, optionally used by the high-level debug info. */
87 /* The previous frame's inner most stack address. Used as this
88 frame ID's stack_addr. */
91 /* The address of the first instruction in this function. */
94 /* Which register holds the return address for the frame. */
97 /* Table indicating what changes have been made to each register. */
98 struct reg_value reg_value[NIOS2_NUM_REGS];
100 /* Table indicating where each register has been saved. */
101 struct reg_saved reg_saved[NIOS2_NUM_REGS];
105 /* This array is a mapping from Dwarf-2 register numbering to GDB's. */
107 static int nios2_dwarf2gdb_regno_map[] =
116 NIOS2_GP_REGNUM, /* 26 */
117 NIOS2_SP_REGNUM, /* 27 */
118 NIOS2_FP_REGNUM, /* 28 */
119 NIOS2_EA_REGNUM, /* 29 */
120 NIOS2_BA_REGNUM, /* 30 */
121 NIOS2_RA_REGNUM, /* 31 */
122 NIOS2_PC_REGNUM, /* 32 */
123 NIOS2_STATUS_REGNUM, /* 33 */
124 NIOS2_ESTATUS_REGNUM, /* 34 */
125 NIOS2_BSTATUS_REGNUM, /* 35 */
126 NIOS2_IENABLE_REGNUM, /* 36 */
127 NIOS2_IPENDING_REGNUM, /* 37 */
128 NIOS2_CPUID_REGNUM, /* 38 */
129 39, /* CTL6 */ /* 39 */
130 NIOS2_EXCEPTION_REGNUM, /* 40 */
131 NIOS2_PTEADDR_REGNUM, /* 41 */
132 NIOS2_TLBACC_REGNUM, /* 42 */
133 NIOS2_TLBMISC_REGNUM, /* 43 */
134 NIOS2_ECCINJ_REGNUM, /* 44 */
135 NIOS2_BADADDR_REGNUM, /* 45 */
136 NIOS2_CONFIG_REGNUM, /* 46 */
137 NIOS2_MPUBASE_REGNUM, /* 47 */
138 NIOS2_MPUACC_REGNUM /* 48 */
141 gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
143 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
146 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
148 if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
151 return nios2_dwarf2gdb_regno_map[dw_reg];
154 /* Canonical names for the 49 registers. */
156 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
158 "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
161 "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
163 "status", "estatus", "bstatus", "ienable",
164 "ipending", "cpuid", "ctl6", "exception",
165 "pteaddr", "tlbacc", "tlbmisc", "eccinj",
166 "badaddr", "config", "mpubase", "mpuacc"
169 /* Implement the register_name gdbarch method. */
172 nios2_register_name (struct gdbarch *gdbarch, int regno)
174 /* Use mnemonic aliases for GPRs. */
175 if (regno >= 0 && regno < NIOS2_NUM_REGS)
176 return nios2_reg_names[regno];
178 return tdesc_register_name (gdbarch, regno);
181 /* Implement the register_type gdbarch method. */
184 nios2_register_type (struct gdbarch *gdbarch, int regno)
186 /* If the XML description has register information, use that to
187 determine the register type. */
188 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
189 return tdesc_register_type (gdbarch, regno);
191 if (regno == NIOS2_PC_REGNUM)
192 return builtin_type (gdbarch)->builtin_func_ptr;
193 else if (regno == NIOS2_SP_REGNUM)
194 return builtin_type (gdbarch)->builtin_data_ptr;
196 return builtin_type (gdbarch)->builtin_uint32;
199 /* Given a return value in REGCACHE with a type VALTYPE,
200 extract and copy its value into VALBUF. */
203 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
204 struct regcache *regcache, gdb_byte *valbuf)
206 int len = TYPE_LENGTH (valtype);
208 /* Return values of up to 8 bytes are returned in $r2 $r3. */
209 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
210 regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
213 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
214 + register_size (gdbarch, NIOS2_R3_REGNUM)));
215 regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
216 regcache->cooked_read (NIOS2_R3_REGNUM, valbuf + 4);
220 /* Write into appropriate registers a function return value
221 of type TYPE, given in virtual format. */
224 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
225 struct regcache *regcache, const gdb_byte *valbuf)
227 int len = TYPE_LENGTH (valtype);
229 /* Return values of up to 8 bytes are returned in $r2 $r3. */
230 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
231 regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
234 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
235 + register_size (gdbarch, NIOS2_R3_REGNUM)));
236 regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
237 regcache->cooked_write (NIOS2_R3_REGNUM, valbuf + 4);
242 /* Set up the default values of the registers. */
245 nios2_setup_default (struct nios2_unwind_cache *cache)
249 for (i = 0; i < NIOS2_NUM_REGS; i++)
251 /* All registers start off holding their previous values. */
252 cache->reg_value[i].reg = i;
253 cache->reg_value[i].offset = 0;
255 /* All registers start off not saved. */
256 cache->reg_saved[i].basereg = -1;
257 cache->reg_saved[i].addr = 0;
261 /* Initialize the unwind cache. */
264 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
269 cache->return_regnum = NIOS2_RA_REGNUM;
270 nios2_setup_default (cache);
273 /* Read and identify an instruction at PC. If INSNP is non-null,
274 store the instruction word into that location. Return the opcode
275 pointer or NULL if the memory couldn't be read or disassembled. */
277 static const struct nios2_opcode *
278 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
282 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
285 if (mach == bfd_mach_nios2r2)
287 if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
288 BFD_ENDIAN_LITTLE, &memword)
289 && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
290 BFD_ENDIAN_LITTLE, &memword))
293 else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
294 gdbarch_byte_order (gdbarch), &memword))
297 insn = (unsigned int) memword;
300 return nios2_find_opcode_hash (insn, mach);
304 /* Match and disassemble an ADD-type instruction, with 3 register operands.
305 Returns true on success, and fills in the operand pointers. */
308 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
309 unsigned long mach, int *ra, int *rb, int *rc)
311 int is_r2 = (mach == bfd_mach_nios2r2);
313 if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
315 *ra = GET_IW_R_A (insn);
316 *rb = GET_IW_R_B (insn);
317 *rc = GET_IW_R_C (insn);
322 else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
324 *ra = GET_IW_F3X6L5_A (insn);
325 *rb = GET_IW_F3X6L5_B (insn);
326 *rc = GET_IW_F3X6L5_C (insn);
329 else if (op->match == MATCH_R2_ADD_N)
331 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
332 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
333 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
336 else if (op->match == MATCH_R2_MOV_N)
338 *ra = GET_IW_F2_A (insn);
340 *rc = GET_IW_F2_B (insn);
346 /* Match and disassemble a SUB-type instruction, with 3 register operands.
347 Returns true on success, and fills in the operand pointers. */
350 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
351 unsigned long mach, int *ra, int *rb, int *rc)
353 int is_r2 = (mach == bfd_mach_nios2r2);
355 if (!is_r2 && op->match == MATCH_R1_SUB)
357 *ra = GET_IW_R_A (insn);
358 *rb = GET_IW_R_B (insn);
359 *rc = GET_IW_R_C (insn);
364 else if (op->match == MATCH_R2_SUB)
366 *ra = GET_IW_F3X6L5_A (insn);
367 *rb = GET_IW_F3X6L5_B (insn);
368 *rc = GET_IW_F3X6L5_C (insn);
371 else if (op->match == MATCH_R2_SUB_N)
373 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
374 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
375 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
381 /* Match and disassemble an ADDI-type instruction, with 2 register operands
382 and one immediate operand.
383 Returns true on success, and fills in the operand pointers. */
386 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
387 unsigned long mach, int *ra, int *rb, int *imm)
389 int is_r2 = (mach == bfd_mach_nios2r2);
391 if (!is_r2 && op->match == MATCH_R1_ADDI)
393 *ra = GET_IW_I_A (insn);
394 *rb = GET_IW_I_B (insn);
395 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
400 else if (op->match == MATCH_R2_ADDI)
402 *ra = GET_IW_F2I16_A (insn);
403 *rb = GET_IW_F2I16_B (insn);
404 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
407 else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
409 *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
410 *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
411 *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
412 if (op->match == MATCH_R2_SUBI_N)
416 else if (op->match == MATCH_R2_SPADDI_N)
418 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
419 *rb = NIOS2_SP_REGNUM;
420 *imm = GET_IW_T1I7_IMM7 (insn) << 2;
423 else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
425 *ra = NIOS2_SP_REGNUM;
426 *rb = NIOS2_SP_REGNUM;
427 *imm = GET_IW_X1I7_IMM7 (insn) << 2;
428 if (op->match == MATCH_R2_SPDECI_N)
435 /* Match and disassemble an ORHI-type instruction, with 2 register operands
436 and one unsigned immediate operand.
437 Returns true on success, and fills in the operand pointers. */
440 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
441 unsigned long mach, int *ra, int *rb, unsigned int *uimm)
443 int is_r2 = (mach == bfd_mach_nios2r2);
445 if (!is_r2 && op->match == MATCH_R1_ORHI)
447 *ra = GET_IW_I_A (insn);
448 *rb = GET_IW_I_B (insn);
449 *uimm = GET_IW_I_IMM16 (insn);
454 else if (op->match == MATCH_R2_ORHI)
456 *ra = GET_IW_F2I16_A (insn);
457 *rb = GET_IW_F2I16_B (insn);
458 *uimm = GET_IW_F2I16_IMM16 (insn);
464 /* Match and disassemble a STW-type instruction, with 2 register operands
465 and one immediate operand.
466 Returns true on success, and fills in the operand pointers. */
469 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
470 unsigned long mach, int *ra, int *rb, int *imm)
472 int is_r2 = (mach == bfd_mach_nios2r2);
474 if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
476 *ra = GET_IW_I_A (insn);
477 *rb = GET_IW_I_B (insn);
478 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
483 else if (op->match == MATCH_R2_STW)
485 *ra = GET_IW_F2I16_A (insn);
486 *rb = GET_IW_F2I16_B (insn);
487 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
490 else if (op->match == MATCH_R2_STWIO)
492 *ra = GET_IW_F2X4I12_A (insn);
493 *rb = GET_IW_F2X4I12_B (insn);
494 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
497 else if (op->match == MATCH_R2_STW_N)
499 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
500 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
501 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
504 else if (op->match == MATCH_R2_STWSP_N)
506 *ra = NIOS2_SP_REGNUM;
507 *rb = GET_IW_F1I5_B (insn);
508 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
511 else if (op->match == MATCH_R2_STWZ_N)
513 *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
515 *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
521 /* Match and disassemble a LDW-type instruction, with 2 register operands
522 and one immediate operand.
523 Returns true on success, and fills in the operand pointers. */
526 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
527 unsigned long mach, int *ra, int *rb, int *imm)
529 int is_r2 = (mach == bfd_mach_nios2r2);
531 if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
533 *ra = GET_IW_I_A (insn);
534 *rb = GET_IW_I_B (insn);
535 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
540 else if (op->match == MATCH_R2_LDW)
542 *ra = GET_IW_F2I16_A (insn);
543 *rb = GET_IW_F2I16_B (insn);
544 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
547 else if (op->match == MATCH_R2_LDWIO)
549 *ra = GET_IW_F2X4I12_A (insn);
550 *rb = GET_IW_F2X4I12_B (insn);
551 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
554 else if (op->match == MATCH_R2_LDW_N)
556 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
557 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
558 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
561 else if (op->match == MATCH_R2_LDWSP_N)
563 *ra = NIOS2_SP_REGNUM;
564 *rb = GET_IW_F1I5_B (insn);
565 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
571 /* Match and disassemble a RDCTL instruction, with 2 register operands.
572 Returns true on success, and fills in the operand pointers. */
575 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
576 unsigned long mach, int *ra, int *rc)
578 int is_r2 = (mach == bfd_mach_nios2r2);
580 if (!is_r2 && (op->match == MATCH_R1_RDCTL))
582 *ra = GET_IW_R_IMM5 (insn);
583 *rc = GET_IW_R_C (insn);
588 else if (op->match == MATCH_R2_RDCTL)
590 *ra = GET_IW_F3X6L5_IMM5 (insn);
591 *rc = GET_IW_F3X6L5_C (insn);
597 /* Match and disassemble a PUSH.N or STWM instruction.
598 Returns true on success, and fills in the operand pointers. */
601 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
602 unsigned long mach, unsigned int *reglist,
603 int *ra, int *imm, int *wb, int *id)
605 int is_r2 = (mach == bfd_mach_nios2r2);
609 else if (op->match == MATCH_R2_PUSH_N)
612 if (GET_IW_L5I4X1_FP (insn))
613 *reglist |= (1 << 28);
614 if (GET_IW_L5I4X1_CS (insn))
616 int val = GET_IW_L5I4X1_REGRANGE (insn);
617 *reglist |= nios2_r2_reg_range_mappings[val];
619 *ra = NIOS2_SP_REGNUM;
620 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
625 else if (op->match == MATCH_R2_STWM)
627 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
628 if (GET_IW_F1X4L17_RS (insn))
630 *reglist = ((rawmask << 14) & 0x00ffc000);
631 if (rawmask & (1 << 10))
632 *reglist |= (1 << 28);
633 if (rawmask & (1 << 11))
634 *reglist |= (1 << 31);
637 *reglist = rawmask << 2;
638 *ra = GET_IW_F1X4L17_A (insn);
640 *wb = GET_IW_F1X4L17_WB (insn);
641 *id = GET_IW_F1X4L17_ID (insn);
647 /* Match and disassemble a POP.N or LDWM instruction.
648 Returns true on success, and fills in the operand pointers. */
651 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
652 unsigned long mach, unsigned int *reglist,
653 int *ra, int *imm, int *wb, int *id, int *ret)
655 int is_r2 = (mach == bfd_mach_nios2r2);
659 else if (op->match == MATCH_R2_POP_N)
662 if (GET_IW_L5I4X1_FP (insn))
663 *reglist |= (1 << 28);
664 if (GET_IW_L5I4X1_CS (insn))
666 int val = GET_IW_L5I4X1_REGRANGE (insn);
667 *reglist |= nios2_r2_reg_range_mappings[val];
669 *ra = NIOS2_SP_REGNUM;
670 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
676 else if (op->match == MATCH_R2_LDWM)
678 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
679 if (GET_IW_F1X4L17_RS (insn))
681 *reglist = ((rawmask << 14) & 0x00ffc000);
682 if (rawmask & (1 << 10))
683 *reglist |= (1 << 28);
684 if (rawmask & (1 << 11))
685 *reglist |= (1 << 31);
688 *reglist = rawmask << 2;
689 *ra = GET_IW_F1X4L17_A (insn);
691 *wb = GET_IW_F1X4L17_WB (insn);
692 *id = GET_IW_F1X4L17_ID (insn);
693 *ret = GET_IW_F1X4L17_PC (insn);
699 /* Match and disassemble a branch instruction, with (potentially)
700 2 register operands and one immediate operand.
701 Returns true on success, and fills in the operand pointers. */
703 enum branch_condition {
714 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
715 unsigned long mach, int *ra, int *rb, int *imm,
716 enum branch_condition *cond)
718 int is_r2 = (mach == bfd_mach_nios2r2);
748 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
749 *ra = GET_IW_I_A (insn);
750 *rb = GET_IW_I_B (insn);
759 *ra = NIOS2_Z_REGNUM;
760 *rb = NIOS2_Z_REGNUM;
761 *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
763 case MATCH_R2_BEQZ_N:
765 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
766 *rb = NIOS2_Z_REGNUM;
767 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
769 case MATCH_R2_BNEZ_N:
771 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
772 *rb = NIOS2_Z_REGNUM;
773 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
799 *ra = GET_IW_F2I16_A (insn);
800 *rb = GET_IW_F2I16_B (insn);
801 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
807 /* Match and disassemble a direct jump instruction, with an
808 unsigned operand. Returns true on success, and fills in the operand
812 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
813 unsigned long mach, unsigned int *uimm)
815 int is_r2 = (mach == bfd_mach_nios2r2);
817 if (!is_r2 && op->match == MATCH_R1_JMPI)
819 *uimm = GET_IW_J_IMM26 (insn) << 2;
824 else if (op->match == MATCH_R2_JMPI)
826 *uimm = GET_IW_L26_IMM26 (insn) << 2;
832 /* Match and disassemble a direct call instruction, with an
833 unsigned operand. Returns true on success, and fills in the operand
837 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
838 unsigned long mach, unsigned int *uimm)
840 int is_r2 = (mach == bfd_mach_nios2r2);
842 if (!is_r2 && op->match == MATCH_R1_CALL)
844 *uimm = GET_IW_J_IMM26 (insn) << 2;
849 else if (op->match == MATCH_R2_CALL)
851 *uimm = GET_IW_L26_IMM26 (insn) << 2;
857 /* Match and disassemble an indirect jump instruction, with a
858 (possibly implicit) register operand. Returns true on success, and fills
859 in the operand pointer. */
862 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
863 unsigned long mach, int *ra)
865 int is_r2 = (mach == bfd_mach_nios2r2);
871 *ra = GET_IW_I_A (insn);
874 *ra = NIOS2_RA_REGNUM;
877 *ra = NIOS2_EA_REGNUM;
880 *ra = NIOS2_BA_REGNUM;
889 *ra = GET_IW_F2I16_A (insn);
891 case MATCH_R2_JMPR_N:
892 *ra = GET_IW_F1X1_A (insn);
896 *ra = NIOS2_RA_REGNUM;
899 *ra = NIOS2_EA_REGNUM;
902 *ra = NIOS2_BA_REGNUM;
910 /* Match and disassemble an indirect call instruction, with a register
911 operand. Returns true on success, and fills in the operand pointer. */
914 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
915 unsigned long mach, int *ra)
917 int is_r2 = (mach == bfd_mach_nios2r2);
919 if (!is_r2 && op->match == MATCH_R1_CALLR)
921 *ra = GET_IW_I_A (insn);
926 else if (op->match == MATCH_R2_CALLR)
928 *ra = GET_IW_F2I16_A (insn);
931 else if (op->match == MATCH_R2_CALLR_N)
933 *ra = GET_IW_F1X1_A (insn);
939 /* Match and disassemble a break instruction, with an unsigned operand.
940 Returns true on success, and fills in the operand pointer. */
943 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
944 unsigned long mach, unsigned int *uimm)
946 int is_r2 = (mach == bfd_mach_nios2r2);
948 if (!is_r2 && op->match == MATCH_R1_BREAK)
950 *uimm = GET_IW_R_IMM5 (insn);
955 else if (op->match == MATCH_R2_BREAK)
957 *uimm = GET_IW_F3X6L5_IMM5 (insn);
960 else if (op->match == MATCH_R2_BREAK_N)
962 *uimm = GET_IW_X2L5_IMM5 (insn);
968 /* Match and disassemble a trap instruction, with an unsigned operand.
969 Returns true on success, and fills in the operand pointer. */
972 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
973 unsigned long mach, unsigned int *uimm)
975 int is_r2 = (mach == bfd_mach_nios2r2);
977 if (!is_r2 && op->match == MATCH_R1_TRAP)
979 *uimm = GET_IW_R_IMM5 (insn);
984 else if (op->match == MATCH_R2_TRAP)
986 *uimm = GET_IW_F3X6L5_IMM5 (insn);
989 else if (op->match == MATCH_R2_TRAP_N)
991 *uimm = GET_IW_X2L5_IMM5 (insn);
997 /* Helper function to identify when we're in a function epilogue;
998 that is, the part of the function from the point at which the
999 stack adjustments are made, to the return or sibcall.
1000 Note that we may have several stack adjustment instructions, and
1001 this function needs to test whether the stack teardown has already
1002 started before current_pc, not whether it has completed. */
1005 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1006 CORE_ADDR current_pc,
1009 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1010 int is_r2 = (mach == bfd_mach_nios2r2);
1011 /* Maximum number of possibly-epilogue instructions to check.
1012 Note that this number should not be too large, else we can
1013 potentially end up iterating through unmapped memory. */
1014 int ninsns, max_insns = 5;
1016 const struct nios2_opcode *op = NULL;
1021 enum branch_condition cond;
1024 /* There has to be a previous instruction in the function. */
1025 if (current_pc <= start_pc)
1028 /* Find the previous instruction before current_pc. For R2, it might
1029 be either a 16-bit or 32-bit instruction; the only way to know for
1030 sure is to scan through from the beginning of the function,
1031 disassembling as we go. */
1033 for (pc = start_pc; ; )
1035 op = nios2_fetch_insn (gdbarch, pc, &insn);
1038 if (pc + op->size < current_pc)
1042 /* We can skip over insns to a forward branch target. Since
1043 the branch offset is relative to the next instruction,
1044 it's correct to do this after incrementing the pc above. */
1045 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1047 && pc + imm < current_pc)
1050 /* Otherwise just go back to the previous 32-bit insn. */
1052 pc = current_pc - NIOS2_OPCODE_SIZE;
1054 /* Beginning with the previous instruction we just located, check whether
1055 we are in a sequence of at least one stack adjustment instruction.
1056 Possible instructions here include:
1062 LDWM {reglist}, (sp)++, wb */
1063 for (ninsns = 0; ninsns < max_insns; ninsns++)
1067 /* Fetch the insn at pc. */
1068 op = nios2_fetch_insn (gdbarch, pc, &insn);
1073 /* Was it a stack adjustment? */
1074 if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1075 ok = (rb == NIOS2_SP_REGNUM);
1076 else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1077 ok = (rc == NIOS2_SP_REGNUM);
1078 else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1079 ok = (rb == NIOS2_SP_REGNUM);
1080 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1081 &imm, &wb, &ret, &id))
1082 ok = (ra == NIOS2_SP_REGNUM && wb && id);
1087 /* No stack adjustments found. */
1091 /* We found more stack adjustments than we expect GCC to be generating.
1092 Since it looks like a stack unwind might be in progress tell GDB to
1093 treat it as such. */
1094 if (ninsns == max_insns)
1097 /* The next instruction following the stack adjustments must be a
1098 return, jump, or unconditional branch, or a CDX pop.n or ldwm
1099 that does an implicit return. */
1100 if (nios2_match_jmpr (insn, op, mach, &ra)
1101 || nios2_match_jmpi (insn, op, mach, &uimm)
1102 || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1104 || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1105 && cond == branch_none))
1111 /* Implement the stack_frame_destroyed_p gdbarch method. */
1114 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1116 CORE_ADDR func_addr;
1118 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1119 return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1124 /* Do prologue analysis, returning the PC of the first instruction
1125 after the function prologue. Assumes CACHE has already been
1126 initialized. THIS_FRAME can be null, in which case we are only
1127 interested in skipping the prologue. Otherwise CACHE is filled in
1128 from the frame information.
1130 The prologue may consist of the following parts:
1131 1) Profiling instrumentation. For non-PIC code it looks like:
1136 2) A stack adjustment and save of R4-R7 for varargs functions.
1137 For R2 CDX this is typically handled with a STWM, otherwise
1138 this is typically merged with item 3.
1140 3) A stack adjustment and save of the callee-saved registers.
1141 For R2 CDX these are typically handled with a PUSH.N or STWM,
1142 otherwise as an explicit SP decrement and individual register
1145 There may also be a stack switch here in an exception handler
1146 in place of a stack adjustment. It looks like:
1147 movhi rx, %hiadj(newstack)
1148 addhi rx, rx, %lo(newstack)
1149 stw sp, constant(rx)
1152 4) A frame pointer save, which can be either a MOV or ADDI.
1154 5) A further stack pointer adjustment. This is normally included
1155 adjustment in step 3 unless the total adjustment is too large
1156 to be done in one step.
1158 7) A stack overflow check, which can take either of these forms:
1162 bltu sp, rx, .Lstack_overflow
1167 Older versions of GCC emitted "break 3" instead of "trap 3" here,
1168 so we check for both cases.
1170 Older GCC versions emitted stack overflow checks after the SP
1171 adjustments in both steps 3 and 4. Starting with GCC 6, there is
1172 at most one overflow check, which is placed before the first
1173 stack adjustment for R2 CDX and after the first stack adjustment
1176 The prologue instructions may be combined or interleaved with other
1179 To cope with all this variability we decode all the instructions
1180 from the start of the prologue until we hit an instruction that
1181 cannot possibly be a prologue instruction, such as a branch, call,
1182 return, or epilogue instruction. The prologue is considered to end
1183 at the last instruction that can definitely be considered a
1184 prologue instruction. */
1187 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1188 const CORE_ADDR current_pc,
1189 struct nios2_unwind_cache *cache,
1190 struct frame_info *this_frame)
1192 /* Maximum number of possibly-prologue instructions to check.
1193 Note that this number should not be too large, else we can
1194 potentially end up iterating through unmapped memory. */
1195 int ninsns, max_insns = 50;
1196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1197 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1199 /* Does the frame set up the FP register? */
1202 struct reg_value *value = cache->reg_value;
1203 struct reg_value temp_value[NIOS2_NUM_REGS];
1207 /* Save the starting PC so we can correct the pc after running
1208 through the prolog, using symbol info. */
1209 CORE_ADDR pc = start_pc;
1211 /* Is this an exception handler? */
1212 int exception_handler = 0;
1214 /* What was the original value of SP (or fake original value for
1215 functions which switch stacks? */
1216 CORE_ADDR frame_high;
1218 /* The last definitely-prologue instruction seen. */
1219 CORE_ADDR prologue_end;
1221 /* Is this the innermost function? */
1222 int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1225 fprintf_unfiltered (gdb_stdlog,
1226 "{ nios2_analyze_prologue start=%s, current=%s ",
1227 paddress (gdbarch, start_pc),
1228 paddress (gdbarch, current_pc));
1230 /* Set up the default values of the registers. */
1231 nios2_setup_default (cache);
1233 /* Find the prologue instructions. */
1234 prologue_end = start_pc;
1235 for (ninsns = 0; ninsns < max_insns; ninsns++)
1237 /* Present instruction. */
1239 const struct nios2_opcode *op;
1240 int ra, rb, rc, imm;
1242 unsigned int reglist;
1244 enum branch_condition cond;
1246 if (pc == current_pc)
1248 /* When we reach the current PC we must save the current
1249 register state (for the backtrace) but keep analysing
1250 because there might be more to find out (eg. is this an
1251 exception handler). */
1252 memcpy (temp_value, value, sizeof (temp_value));
1255 fprintf_unfiltered (gdb_stdlog, "*");
1258 op = nios2_fetch_insn (gdbarch, pc, &insn);
1260 /* Unknown opcode? Stop scanning. */
1268 fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1270 fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1273 /* The following instructions can appear in the prologue. */
1275 if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1277 /* ADD rc, ra, rb (also used for MOV) */
1278 if (rc == NIOS2_SP_REGNUM
1280 && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1282 /* If the previous value of SP is available somewhere
1283 near the new stack pointer value then this is a
1286 /* If any registers were saved on the stack before then
1287 we can't backtrace into them now. */
1288 for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
1290 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1291 cache->reg_saved[i].basereg = -1;
1292 if (value[i].reg == NIOS2_SP_REGNUM)
1296 /* Create a fake "high water mark" 4 bytes above where SP
1297 was stored and fake up the registers to be consistent
1299 value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1300 value[NIOS2_SP_REGNUM].offset
1302 - cache->reg_saved[NIOS2_SP_REGNUM].addr
1304 cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1305 cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1308 else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1309 /* This is setting SP from FP. This only happens in the
1310 function epilogue. */
1315 if (value[rb].reg == 0)
1316 value[rc].reg = value[ra].reg;
1317 else if (value[ra].reg == 0)
1318 value[rc].reg = value[rb].reg;
1321 value[rc].offset = value[ra].offset + value[rb].offset;
1324 /* The add/move is only considered a prologue instruction
1325 if the destination is SP or FP. */
1326 if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1330 else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1332 /* SUB rc, ra, rb */
1333 if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1334 && value[rc].reg != 0)
1335 /* If we are decrementing the SP by a non-constant amount,
1336 this is alloca, not part of the prologue. */
1340 if (value[rb].reg == 0)
1341 value[rc].reg = value[ra].reg;
1344 value[rc].offset = value[ra].offset - value[rb].offset;
1348 else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1350 /* ADDI rb, ra, imm */
1352 /* A positive stack adjustment has to be part of the epilogue. */
1353 if (rb == NIOS2_SP_REGNUM
1354 && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1357 /* Likewise restoring SP from FP. */
1358 else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1363 value[rb].reg = value[ra].reg;
1364 value[rb].offset = value[ra].offset + imm;
1367 /* The add is only considered a prologue instruction
1368 if the destination is SP or FP. */
1369 if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1373 else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1375 /* ORHI rb, ra, uimm (also used for MOVHI) */
1378 value[rb].reg = (value[ra].reg == 0) ? 0 : -1;
1379 value[rb].offset = value[ra].offset | (uimm << 16);
1383 else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1385 /* STW rb, imm(ra) */
1387 /* Are we storing the original value of a register to the stack?
1388 For exception handlers the value of EA-4 (return
1389 address from interrupts etc) is sometimes stored. */
1390 int orig = value[rb].reg;
1392 && (value[rb].offset == 0
1393 || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1394 && value[ra].reg == NIOS2_SP_REGNUM)
1396 if (pc < current_pc)
1398 /* Save off callee saved registers. */
1399 cache->reg_saved[orig].basereg = value[ra].reg;
1400 cache->reg_saved[orig].addr = value[ra].offset + imm;
1405 if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1406 exception_handler = 1;
1409 /* Non-stack memory writes cannot appear in the prologue. */
1413 else if (nios2_match_stwm (insn, op, mach,
1414 ®list, &ra, &imm, &wb, &id))
1416 /* PUSH.N {reglist}, adjust
1418 STWM {reglist}, --(SP)[, writeback] */
1422 if (ra != NIOS2_SP_REGNUM || id != 0)
1423 /* This is a non-stack-push memory write and cannot be
1424 part of the prologue. */
1427 for (i = 31; i >= 0; i--)
1428 if (reglist & (1 << i))
1430 int orig = value[i].reg;
1433 if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1435 cache->reg_saved[orig].basereg
1436 = value[NIOS2_SP_REGNUM].reg;
1437 cache->reg_saved[orig].addr
1438 = value[NIOS2_SP_REGNUM].offset - off;
1443 value[NIOS2_SP_REGNUM].offset -= off;
1444 value[NIOS2_SP_REGNUM].offset -= imm;
1449 else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1452 This can appear in exception handlers in combination with
1453 a subsequent save to the stack frame. */
1456 value[rc].reg = NIOS2_STATUS_REGNUM + ra;
1457 value[rc].offset = 0;
1461 else if (nios2_match_calli (insn, op, mach, &uimm))
1463 if (value[8].reg == NIOS2_RA_REGNUM
1464 && value[8].offset == 0
1465 && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1466 && value[NIOS2_SP_REGNUM].offset == 0)
1468 /* A CALL instruction. This is treated as a call to mcount
1469 if ra has been stored into r8 beforehand and if it's
1470 before the stack adjust.
1471 Note mcount corrupts r2-r3, r9-r15 & ra. */
1472 for (i = 2 ; i <= 3 ; i++)
1474 for (i = 9 ; i <= 15 ; i++)
1476 value[NIOS2_RA_REGNUM].reg = -1;
1481 /* Other calls are not part of the prologue. */
1486 else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1488 /* Branches not involving a stack overflow check aren't part of
1490 if (ra != NIOS2_SP_REGNUM)
1492 else if (cond == branch_geu)
1496 This instruction sequence is used in stack checking;
1497 we can ignore it. */
1498 unsigned int next_insn;
1499 const struct nios2_opcode *next_op
1500 = nios2_fetch_insn (gdbarch, pc, &next_insn);
1502 && (nios2_match_trap (next_insn, op, mach, &uimm)
1503 || nios2_match_break (next_insn, op, mach, &uimm)))
1504 pc += next_op->size;
1508 else if (cond == branch_ltu)
1510 /* BLTU sp, rx, .Lstackoverflow
1511 If the location branched to holds a TRAP or BREAK
1512 instruction then this is also stack overflow detection. */
1513 unsigned int next_insn;
1514 const struct nios2_opcode *next_op
1515 = nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1517 && (nios2_match_trap (next_insn, op, mach, &uimm)
1518 || nios2_match_break (next_insn, op, mach, &uimm)))
1527 /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1529 else if (nios2_match_callr (insn, op, mach, &ra)
1530 || nios2_match_jmpr (insn, op, mach, &ra)
1531 || nios2_match_jmpi (insn, op, mach, &uimm)
1532 || (nios2_match_ldwm (insn, op, mach, ®list, &ra,
1533 &imm, &wb, &id, &ret)
1535 || nios2_match_trap (insn, op, mach, &uimm)
1536 || nios2_match_break (insn, op, mach, &uimm))
1540 /* If THIS_FRAME is NULL, we are being called from skip_prologue
1541 and are only interested in the PROLOGUE_END value, so just
1542 return that now and skip over the cache updates, which depend
1543 on having frame information. */
1544 if (this_frame == NULL)
1545 return prologue_end;
1547 /* If we are in the function epilogue and have already popped
1548 registers off the stack in preparation for returning, then we
1549 want to go back to the original register values. */
1550 if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1551 nios2_setup_default (cache);
1553 /* Exception handlers use a different return address register. */
1554 if (exception_handler)
1555 cache->return_regnum = NIOS2_EA_REGNUM;
1558 fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1560 if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1561 /* If the FP now holds an offset from the CFA then this is a
1562 normal frame which uses the frame pointer. */
1563 base_reg = NIOS2_FP_REGNUM;
1564 else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1565 /* FP doesn't hold an offset from the CFA. If SP still holds an
1566 offset from the CFA then we might be in a function which omits
1567 the frame pointer, or we might be partway through the prologue.
1568 In both cases we can find the CFA using SP. */
1569 base_reg = NIOS2_SP_REGNUM;
1572 /* Somehow the stack pointer has been corrupted.
1575 fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1579 if (cache->reg_value[base_reg].offset == 0
1580 || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1581 || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1583 /* If the frame didn't adjust the stack, didn't save RA or
1584 didn't save EA in an exception handler then it must either
1585 be a leaf function (doesn't call any other functions) or it
1586 can't return. If it has called another function then it
1587 can't be a leaf, so set base == 0 to indicate that we can't
1588 backtrace past it. */
1592 /* If it isn't the innermost function then it can't be a
1593 leaf, unless it was interrupted. Check whether RA for
1594 this frame is the same as PC. If so then it probably
1595 wasn't interrupted. */
1597 = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1599 if (ra == current_pc)
1604 "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1605 paddress (gdbarch, cache->reg_value[base_reg].offset),
1606 cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1607 cache->return_regnum,
1608 cache->reg_saved[cache->return_regnum].basereg);
1614 /* Get the value of whichever register we are using for the
1616 cache->base = get_frame_register_unsigned (this_frame, base_reg);
1618 /* What was the value of SP at the start of this function (or just
1619 after the stack switch). */
1620 frame_high = cache->base - cache->reg_value[base_reg].offset;
1622 /* Adjust all the saved registers such that they contain addresses
1623 instead of offsets. */
1624 for (i = 0; i < NIOS2_NUM_REGS; i++)
1625 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1627 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1628 cache->reg_saved[i].addr += frame_high;
1631 for (i = 0; i < NIOS2_NUM_REGS; i++)
1632 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1634 CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1637 for ( ; i < NIOS2_NUM_REGS; i++)
1638 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1640 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1641 cache->reg_saved[i].addr += gp;
1645 /* Work out what the value of SP was on the first instruction of
1646 this function. If we didn't switch stacks then this can be
1647 trivially computed from the base address. */
1648 if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1650 = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1653 cache->cfa = frame_high;
1655 /* Exception handlers restore ESTATUS into STATUS. */
1656 if (exception_handler)
1658 cache->reg_saved[NIOS2_STATUS_REGNUM]
1659 = cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1660 cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1664 fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1665 paddress (gdbarch, cache->cfa));
1667 return prologue_end;
1670 /* Implement the skip_prologue gdbarch hook. */
1673 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1675 CORE_ADDR func_addr;
1677 struct nios2_unwind_cache cache;
1679 /* See if we can determine the end of the prologue via the symbol
1680 table. If so, then return either PC, or the PC after the
1681 prologue, whichever is greater. */
1682 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1684 CORE_ADDR post_prologue_pc
1685 = skip_prologue_using_sal (gdbarch, func_addr);
1687 if (post_prologue_pc != 0)
1688 return std::max (start_pc, post_prologue_pc);
1691 /* Prologue analysis does the rest.... */
1692 nios2_init_cache (&cache, start_pc);
1693 return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1696 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1699 nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1701 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1703 if (mach == bfd_mach_nios2r2)
1706 const struct nios2_opcode *op
1707 = nios2_fetch_insn (gdbarch, *pcptr, &insn);
1709 if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1710 return NIOS2_CDX_OPCODE_SIZE;
1712 return NIOS2_OPCODE_SIZE;
1715 return NIOS2_OPCODE_SIZE;
1718 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1720 static const gdb_byte *
1721 nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1723 /* The Nios II ABI for Linux says: "Userspace programs should not use
1724 the break instruction and userspace debuggers should not insert
1725 one." and "Userspace breakpoints are accomplished using the trap
1726 instruction with immediate operand 31 (all ones)."
1728 So, we use "trap 31" consistently as the breakpoint on bare-metal
1729 as well as Linux targets. */
1731 /* R2 trap encoding:
1732 ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1734 CDX trap.n encoding:
1735 ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1737 Note that code is always little-endian on R2. */
1740 if (kind == NIOS2_CDX_OPCODE_SIZE)
1742 static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1744 return cdx_breakpoint_le;
1748 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1750 if (mach == bfd_mach_nios2r2)
1752 static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1754 return r2_breakpoint_le;
1758 enum bfd_endian byte_order_for_code
1759 = gdbarch_byte_order_for_code (gdbarch);
1760 /* R1 trap encoding:
1761 ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1763 static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1764 static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1766 if (byte_order_for_code == BFD_ENDIAN_BIG)
1767 return r1_breakpoint_be;
1769 return r1_breakpoint_le;
1774 /* Implement the frame_align gdbarch method. */
1777 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1779 return align_down (addr, 4);
1783 /* Implement the return_value gdbarch method. */
1785 static enum return_value_convention
1786 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1787 struct type *type, struct regcache *regcache,
1788 gdb_byte *readbuf, const gdb_byte *writebuf)
1790 if (TYPE_LENGTH (type) > 8)
1791 return RETURN_VALUE_STRUCT_CONVENTION;
1794 nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1796 nios2_store_return_value (gdbarch, type, regcache, writebuf);
1798 return RETURN_VALUE_REGISTER_CONVENTION;
1801 /* Implement the dummy_id gdbarch method. */
1803 static struct frame_id
1804 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1806 return frame_id_build
1807 (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1808 get_frame_pc (this_frame));
1811 /* Implement the push_dummy_call gdbarch method. */
1814 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1815 struct regcache *regcache, CORE_ADDR bp_addr,
1816 int nargs, struct value **args, CORE_ADDR sp,
1817 int struct_return, CORE_ADDR struct_addr)
1822 int stack_offset = 0;
1823 CORE_ADDR func_addr = find_function_addr (function, NULL);
1824 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1826 /* Set the return address register to point to the entry point of
1827 the program, where a breakpoint lies in wait. */
1828 regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1830 /* Now make space on the stack for the args. */
1831 for (argnum = 0; argnum < nargs; argnum++)
1832 len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1835 /* Initialize the register pointer. */
1836 argreg = NIOS2_FIRST_ARGREG;
1838 /* The struct_return pointer occupies the first parameter-passing
1841 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1843 /* Now load as many as possible of the first arguments into
1844 registers, and push the rest onto the stack. Loop through args
1845 from first to last. */
1846 for (argnum = 0; argnum < nargs; argnum++)
1848 const gdb_byte *val;
1849 struct value *arg = args[argnum];
1850 struct type *arg_type = check_typedef (value_type (arg));
1851 int len = TYPE_LENGTH (arg_type);
1853 val = value_contents (arg);
1855 /* Copy the argument to general registers or the stack in
1856 register-sized pieces. Large arguments are split between
1857 registers and stack. */
1860 int partial_len = (len < 4 ? len : 4);
1862 if (argreg <= NIOS2_LAST_ARGREG)
1864 /* The argument is being passed in a register. */
1865 CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1868 regcache_cooked_write_unsigned (regcache, argreg, regval);
1873 /* The argument is being passed on the stack. */
1874 CORE_ADDR addr = sp + stack_offset;
1876 write_memory (addr, val, partial_len);
1877 stack_offset += align_up (partial_len, 4);
1885 regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1887 /* Return adjusted stack pointer. */
1891 /* Implement the unwind_pc gdbarch method. */
1894 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1898 frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1899 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1902 /* Implement the unwind_sp gdbarch method. */
1905 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1907 return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1910 /* Use prologue analysis to fill in the register cache
1911 *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes
1912 *THIS_PROLOGUE_CACHE first. */
1914 static struct nios2_unwind_cache *
1915 nios2_frame_unwind_cache (struct frame_info *this_frame,
1916 void **this_prologue_cache)
1918 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1919 CORE_ADDR current_pc;
1920 struct nios2_unwind_cache *cache;
1922 if (*this_prologue_cache)
1923 return (struct nios2_unwind_cache *) *this_prologue_cache;
1925 cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1926 *this_prologue_cache = cache;
1928 /* Zero all fields. */
1929 nios2_init_cache (cache, get_frame_func (this_frame));
1931 /* Prologue analysis does the rest... */
1932 current_pc = get_frame_pc (this_frame);
1934 nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1939 /* Implement the this_id function for the normal unwinder. */
1942 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1943 struct frame_id *this_id)
1945 struct nios2_unwind_cache *cache =
1946 nios2_frame_unwind_cache (this_frame, this_cache);
1948 /* This marks the outermost frame. */
1949 if (cache->base == 0)
1952 *this_id = frame_id_build (cache->cfa, cache->pc);
1955 /* Implement the prev_register function for the normal unwinder. */
1957 static struct value *
1958 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1961 struct nios2_unwind_cache *cache =
1962 nios2_frame_unwind_cache (this_frame, this_cache);
1964 gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1966 /* The PC of the previous frame is stored in the RA register of
1967 the current frame. Frob regnum so that we pull the value from
1968 the correct place. */
1969 if (regnum == NIOS2_PC_REGNUM)
1970 regnum = cache->return_regnum;
1972 if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1973 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1975 /* If we've worked out where a register is stored then load it from
1977 if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1978 return frame_unwind_got_memory (this_frame, regnum,
1979 cache->reg_saved[regnum].addr);
1981 return frame_unwind_got_register (this_frame, regnum, regnum);
1984 /* Implement the this_base, this_locals, and this_args hooks
1985 for the normal unwinder. */
1988 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1990 struct nios2_unwind_cache *info
1991 = nios2_frame_unwind_cache (this_frame, this_cache);
1996 /* Data structures for the normal prologue-analysis-based
1999 static const struct frame_unwind nios2_frame_unwind =
2002 default_frame_unwind_stop_reason,
2003 nios2_frame_this_id,
2004 nios2_frame_prev_register,
2006 default_frame_sniffer
2009 static const struct frame_base nios2_frame_base =
2011 &nios2_frame_unwind,
2012 nios2_frame_base_address,
2013 nios2_frame_base_address,
2014 nios2_frame_base_address
2017 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2018 in the stub unwinder. */
2020 static struct trad_frame_cache *
2021 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2024 CORE_ADDR start_addr;
2025 CORE_ADDR stack_addr;
2026 struct trad_frame_cache *this_trad_cache;
2027 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2029 if (*this_cache != NULL)
2030 return (struct trad_frame_cache *) *this_cache;
2031 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2032 *this_cache = this_trad_cache;
2034 /* The return address is in the link register. */
2035 trad_frame_set_reg_realreg (this_trad_cache,
2036 gdbarch_pc_regnum (gdbarch),
2039 /* Frame ID, since it's a frameless / stackless function, no stack
2040 space is allocated and SP on entry is the current SP. */
2041 pc = get_frame_pc (this_frame);
2042 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2043 stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2044 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2045 /* Assume that the frame's base is the same as the stack pointer. */
2046 trad_frame_set_this_base (this_trad_cache, stack_addr);
2048 return this_trad_cache;
2051 /* Implement the this_id function for the stub unwinder. */
2054 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2055 struct frame_id *this_id)
2057 struct trad_frame_cache *this_trad_cache
2058 = nios2_stub_frame_cache (this_frame, this_cache);
2060 trad_frame_get_id (this_trad_cache, this_id);
2063 /* Implement the prev_register function for the stub unwinder. */
2065 static struct value *
2066 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2067 void **this_cache, int regnum)
2069 struct trad_frame_cache *this_trad_cache
2070 = nios2_stub_frame_cache (this_frame, this_cache);
2072 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2075 /* Implement the sniffer function for the stub unwinder.
2076 This unwinder is used for cases where the normal
2077 prologue-analysis-based unwinder can't work,
2078 such as PLT stubs. */
2081 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2082 struct frame_info *this_frame, void **cache)
2085 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2087 /* Use the stub unwinder for unreadable code. */
2088 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2091 if (in_plt_section (pc))
2097 /* Define the data structures for the stub unwinder. */
2099 static const struct frame_unwind nios2_stub_frame_unwind =
2102 default_frame_unwind_stop_reason,
2103 nios2_stub_frame_this_id,
2104 nios2_stub_frame_prev_register,
2106 nios2_stub_frame_sniffer
2111 /* Determine where to set a single step breakpoint while considering
2112 branch prediction. */
2115 nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
2117 struct gdbarch *gdbarch = regcache->arch ();
2118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2119 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2121 const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2127 enum branch_condition cond;
2129 /* Do something stupid if we can't disassemble the insn at pc. */
2131 return pc + NIOS2_OPCODE_SIZE;
2133 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2135 int ras = regcache_raw_get_signed (regcache, ra);
2136 int rbs = regcache_raw_get_signed (regcache, rb);
2137 unsigned int rau = regcache_raw_get_unsigned (regcache, ra);
2138 unsigned int rbu = regcache_raw_get_unsigned (regcache, rb);
2175 else if (nios2_match_jmpi (insn, op, mach, &uimm)
2176 || nios2_match_calli (insn, op, mach, &uimm))
2177 pc = (pc & 0xf0000000) | uimm;
2179 else if (nios2_match_jmpr (insn, op, mach, &ra)
2180 || nios2_match_callr (insn, op, mach, &ra))
2181 pc = regcache_raw_get_unsigned (regcache, ra);
2183 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2186 /* If ra is in the reglist, we have to use the value saved in the
2187 stack frame rather than the current value. */
2188 if (uimm & (1 << NIOS2_RA_REGNUM))
2189 pc = nios2_unwind_pc (gdbarch, get_current_frame ());
2191 pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM);
2194 else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2196 if (tdep->syscall_next_pc != NULL)
2197 return tdep->syscall_next_pc (get_current_frame (), op);
2206 /* Implement the software_single_step gdbarch method. */
2208 static std::vector<CORE_ADDR>
2209 nios2_software_single_step (struct regcache *regcache)
2211 CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache));
2216 /* Implement the get_longjump_target gdbarch method. */
2219 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2221 struct gdbarch *gdbarch = get_frame_arch (frame);
2222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2223 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2224 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2227 if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2230 *pc = extract_unsigned_integer (buf, 4, byte_order);
2234 /* Initialize the Nios II gdbarch. */
2236 static struct gdbarch *
2237 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2239 struct gdbarch *gdbarch;
2240 struct gdbarch_tdep *tdep;
2242 struct tdesc_arch_data *tdesc_data = NULL;
2243 const struct target_desc *tdesc = info.target_desc;
2245 if (!tdesc_has_registers (tdesc))
2246 /* Pick a default target description. */
2247 tdesc = tdesc_nios2;
2249 /* Check any target description for validity. */
2250 if (tdesc_has_registers (tdesc))
2252 const struct tdesc_feature *feature;
2255 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2256 if (feature == NULL)
2259 tdesc_data = tdesc_data_alloc ();
2263 for (i = 0; i < NIOS2_NUM_REGS; i++)
2264 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2265 nios2_reg_names[i]);
2269 tdesc_data_cleanup (tdesc_data);
2274 /* Find a candidate among the list of pre-declared architectures. */
2275 arches = gdbarch_list_lookup_by_info (arches, &info);
2277 return arches->gdbarch;
2279 /* None found, create a new architecture from the information
2281 tdep = XCNEW (struct gdbarch_tdep);
2282 gdbarch = gdbarch_alloc (&info, tdep);
2284 /* longjmp support not enabled by default. */
2287 /* Data type sizes. */
2288 set_gdbarch_ptr_bit (gdbarch, 32);
2289 set_gdbarch_addr_bit (gdbarch, 32);
2290 set_gdbarch_short_bit (gdbarch, 16);
2291 set_gdbarch_int_bit (gdbarch, 32);
2292 set_gdbarch_long_bit (gdbarch, 32);
2293 set_gdbarch_long_long_bit (gdbarch, 64);
2294 set_gdbarch_float_bit (gdbarch, 32);
2295 set_gdbarch_double_bit (gdbarch, 64);
2297 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2298 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2300 /* The register set. */
2301 set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2302 set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2303 set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */
2305 set_gdbarch_register_name (gdbarch, nios2_register_name);
2306 set_gdbarch_register_type (gdbarch, nios2_register_type);
2308 /* Provide register mappings for stabs and dwarf2. */
2309 set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2310 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2312 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2314 /* Call dummy code. */
2315 set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2317 set_gdbarch_return_value (gdbarch, nios2_return_value);
2319 set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2320 set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2321 set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc);
2322 set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind);
2324 set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2325 set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2326 set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2328 /* The dwarf2 unwinder will normally produce the best results if
2329 the debug information is available, so register it first. */
2330 dwarf2_append_unwinders (gdbarch);
2331 frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2332 frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2334 /* Single stepping. */
2335 set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2337 /* Hook in ABI-specific overrides, if they have been registered. */
2338 gdbarch_init_osabi (info, gdbarch);
2340 if (tdep->jb_pc >= 0)
2341 set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2343 frame_base_set_default (gdbarch, &nios2_frame_base);
2345 /* Enable inferior call support. */
2346 set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2349 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2355 _initialize_nios2_tdep (void)
2357 gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2358 initialize_tdesc_nios2 ();
2360 /* Allow debugging this file's internals. */
2361 add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2362 _("Set Nios II debugging."),
2363 _("Show Nios II debugging."),
2364 _("When on, Nios II specific debugging is enabled."),
2367 &setdebuglist, &showdebuglist);