1 /* Target-dependent code for Morpho mt processor, for GDB.
3 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* Contributed by Michael Snyder, msnyder@redhat.com. */
25 #include "frame-unwind.h"
26 #include "frame-base.h"
29 #include "arch-utils.h"
31 #include "gdb_string.h"
33 #include "reggroups.h"
35 #include "trad-frame.h"
37 #include "dwarf2-frame.h"
39 #include "gdb_assert.h"
43 enum mt_arch_constants
45 MT_MAX_STRUCT_SIZE = 16
50 MT_R0_REGNUM, /* 32 bit regs. */
52 MT_1ST_ARGREG = MT_R1_REGNUM,
56 MT_LAST_ARGREG = MT_R4_REGNUM,
65 MT_FP_REGNUM = MT_R12_REGNUM,
67 MT_SP_REGNUM = MT_R13_REGNUM,
69 MT_RA_REGNUM = MT_R14_REGNUM,
71 MT_IRA_REGNUM = MT_R15_REGNUM,
74 /* Interrupt Enable pseudo-register, exported by SID. */
76 /* End of CPU regs. */
80 /* Co-processor registers. */
81 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
98 MT_BYPA_REGNUM, /* 32 bit regs. */
102 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
104 MT_MAC_REGNUM, /* 32 bits. */
105 MT_Z1_REGNUM, /* 16 bits. */
106 MT_Z2_REGNUM, /* 16 bits. */
107 MT_ICHANNEL_REGNUM, /* 32 bits. */
108 MT_ISCRAMB_REGNUM, /* 32 bits. */
109 MT_QSCRAMB_REGNUM, /* 32 bits. */
110 MT_OUT_REGNUM, /* 16 bits. */
111 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
112 MT_QCHANNEL_REGNUM, /* 32 bits. */
113 MT_ZI2_REGNUM, /* 16 bits. */
114 MT_ZQ2_REGNUM, /* 16 bits. */
115 MT_CHANNEL2_REGNUM, /* 32 bits. */
116 MT_ISCRAMB2_REGNUM, /* 32 bits. */
117 MT_QSCRAMB2_REGNUM, /* 32 bits. */
118 MT_QCHANNEL2_REGNUM, /* 32 bits. */
120 /* Number of real registers. */
123 /* Pseudo-registers. */
124 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
125 MT_MAC_PSEUDOREG_REGNUM,
126 MT_COPRO_PSEUDOREG_ARRAY,
128 MT_COPRO_PSEUDOREG_DIM_1 = 2,
129 MT_COPRO_PSEUDOREG_DIM_2 = 8,
130 /* The number of pseudo-registers for each coprocessor. These
131 include the real coprocessor registers, the pseudo-registe for
132 the coprocessor number, and the pseudo-register for the MAC. */
133 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
134 /* The register number of the MAC, relative to a given coprocessor. */
135 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
137 /* Two pseudo-regs ('coprocessor' and 'mac'). */
138 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
139 * MT_COPRO_PSEUDOREG_DIM_1
140 * MT_COPRO_PSEUDOREG_DIM_2)
143 /* The tdep structure. */
146 /* ISA-specific types. */
147 struct type *copro_type;
151 /* Return name of register number specified by REGNUM. */
154 mt_register_name (struct gdbarch *gdbarch, int regnum)
156 static const char *const register_names[] = {
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 /* Co-processor regs. */
162 "", /* copro register. */
163 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
164 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
165 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
166 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
167 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
168 /* Pseudo-registers. */
171 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
172 * MT_COPRO_PSEUDOREG_DIM_1
173 * MT_COPRO_PSEUDOREG_DIM_2];
177 if (regnum < ARRAY_SIZE (register_names))
178 return register_names[regnum];
179 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
180 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
189 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
190 index = regnum % MT_COPRO_PSEUDOREG_REGS;
191 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
192 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
193 % MT_COPRO_PSEUDOREG_DIM_1);
195 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
196 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
197 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
200 stub = register_names[index + MT_CPR0_REGNUM];
203 array_names[regnum] = stub;
207 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
208 array_names[regnum] = name;
213 /* Return the type of a coprocessor register. */
216 mt_copro_register_type (struct gdbarch *arch, int regnum)
220 case MT_INT_ENABLE_REGNUM:
221 case MT_ICHANNEL_REGNUM:
222 case MT_QCHANNEL_REGNUM:
223 case MT_ISCRAMB_REGNUM:
224 case MT_QSCRAMB_REGNUM:
225 return builtin_type (arch)->builtin_int32;
234 return builtin_type (arch)->builtin_int16;
235 case MT_EXMAC_REGNUM:
237 return builtin_type (arch)->builtin_uint32;
238 case MT_CONTEXT_REGNUM:
239 return builtin_type (arch)->builtin_long_long;
241 return builtin_type (arch)->builtin_unsigned_char;
243 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
244 return builtin_type (arch)->builtin_int16;
245 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
247 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
248 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
249 return builtin_type (arch)->builtin_uint64;
251 return builtin_type (arch)->builtin_uint32;
254 return builtin_type (arch)->builtin_uint32;
258 /* Given ARCH and a register number specified by REGNUM, return the
259 type of that register. */
262 mt_register_type (struct gdbarch *arch, int regnum)
264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
266 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
273 return builtin_type (arch)->builtin_func_ptr;
276 return builtin_type (arch)->builtin_data_ptr;
277 case MT_COPRO_REGNUM:
278 case MT_COPRO_PSEUDOREG_REGNUM:
279 if (tdep->copro_type == NULL)
281 struct type *elt = builtin_type (arch)->builtin_int16;
282 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
284 return tdep->copro_type;
285 case MT_MAC_PSEUDOREG_REGNUM:
286 return mt_copro_register_type (arch,
288 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
290 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
291 return builtin_type (arch)->builtin_int32;
292 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
293 return mt_copro_register_type (arch, regnum);
296 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
297 regnum %= MT_COPRO_PSEUDOREG_REGS;
298 regnum += MT_CPR0_REGNUM;
299 return mt_copro_register_type (arch, regnum);
303 internal_error (__FILE__, __LINE__,
304 _("mt_register_type: illegal register number %d"), regnum);
307 /* Return true if register REGNUM is a member of the register group
308 specified by GROUP. */
311 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
312 struct reggroup *group)
314 /* Groups of registers that can be displayed via "info reg". */
315 if (group == all_reggroup)
317 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
318 && mt_register_name (gdbarch, regnum)[0] != '\0');
320 if (group == general_reggroup)
321 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
323 if (group == float_reggroup)
324 return 0; /* No float regs. */
326 if (group == vector_reggroup)
327 return 0; /* No vector regs. */
329 /* For any that are not handled above. */
330 return default_register_reggroup_p (gdbarch, regnum, group);
333 /* Return the return value convention used for a given type TYPE.
334 Optionally, fetch or set the return value via READBUF or
335 WRITEBUF respectively using REGCACHE for the register
338 static enum return_value_convention
339 mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
340 struct type *type, struct regcache *regcache,
341 gdb_byte *readbuf, const gdb_byte *writebuf)
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
345 if (TYPE_LENGTH (type) > 4)
347 /* Return values > 4 bytes are returned in memory,
348 pointed to by R11. */
353 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
354 read_memory (addr, readbuf, TYPE_LENGTH (type));
361 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
362 write_memory (addr, writebuf, TYPE_LENGTH (type));
365 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
373 /* Return values of <= 4 bytes are returned in R11. */
374 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
375 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
381 if (TYPE_LENGTH (type) < 4)
384 /* Add leading zeros to the value. */
385 memset (buf, 0, sizeof (buf));
386 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
387 writebuf, TYPE_LENGTH (type));
388 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
390 else /* (TYPE_LENGTH (type) == 4 */
391 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
394 return RETURN_VALUE_REGISTER_CONVENTION;
398 /* If the input address, PC, is in a function prologue, return the
399 address of the end of the prologue, otherwise return the input
402 Note: PC is likely to be the function start, since this function
403 is mainly used for advancing a breakpoint to the first line, or
404 stepping to the first line when we have stepped into a function
408 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411 CORE_ADDR func_addr = 0, func_end = 0;
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
417 struct symtab_and_line sal;
420 /* Found a function. */
421 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
422 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
424 /* Don't use this trick for assembly source files. */
425 sal = find_pc_line (func_addr, 0);
427 if (sal.end && sal.end < func_end)
429 /* Found a line number, use it as end of prologue. */
435 /* No function symbol, or no line symbol. Use prologue scanning method. */
438 instr = read_memory_unsigned_integer (pc, 4, byte_order);
439 if (instr == 0x12000000) /* nop */
441 if (instr == 0x12ddc000) /* copy sp into fp */
444 if (instr == 0x05dd) /* subi sp, sp, imm */
446 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
448 /* Not an obvious prologue instruction. */
455 /* The breakpoint instruction must be the same size as the smallest
456 instruction in the instruction set.
458 The BP for ms1 is defined as 0x68000000 (BREAK).
459 The BP for ms2 is defined as 0x69000000 (illegal). */
461 static const gdb_byte *
462 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
465 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
466 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
469 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
470 return ms2_breakpoint;
472 return ms1_breakpoint;
475 /* Select the correct coprocessor register bank. Return the pseudo
476 regnum we really want to read. */
479 mt_select_coprocessor (struct gdbarch *gdbarch,
480 struct regcache *regcache, int regno)
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483 unsigned index, base;
486 /* Get the copro pseudo regnum. */
487 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
488 base = ((extract_signed_integer (&copro[0], 2, byte_order)
489 * MT_COPRO_PSEUDOREG_DIM_2)
490 + extract_signed_integer (&copro[2], 2, byte_order));
492 regno -= MT_COPRO_PSEUDOREG_ARRAY;
493 index = regno % MT_COPRO_PSEUDOREG_REGS;
494 regno /= MT_COPRO_PSEUDOREG_REGS;
497 /* Select the correct coprocessor register bank. Invalidate the
498 coprocessor register cache. */
501 store_signed_integer (&copro[0], 2, byte_order,
502 regno / MT_COPRO_PSEUDOREG_DIM_2);
503 store_signed_integer (&copro[2], 2, byte_order,
504 regno % MT_COPRO_PSEUDOREG_DIM_2);
505 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
507 /* We must flush the cache, as it is now invalid. */
508 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
509 regcache_invalidate (regcache, ix);
515 /* Fetch the pseudo registers:
517 There are two regular pseudo-registers:
518 1) The 'coprocessor' pseudo-register (which mirrors the
519 "real" coprocessor register sent by the target), and
520 2) The 'MAC' pseudo-register (which represents the union
521 of the original 32 bit target MAC register and the new
522 8-bit extended-MAC register).
524 Additionally there is an array of coprocessor registers which track
525 the coprocessor registers for each coprocessor. */
527 static enum register_status
528 mt_pseudo_register_read (struct gdbarch *gdbarch,
529 struct regcache *regcache, int regno, gdb_byte *buf)
531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
535 case MT_COPRO_REGNUM:
536 case MT_COPRO_PSEUDOREG_REGNUM:
537 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
539 case MT_MAC_PSEUDOREG_REGNUM:
540 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
541 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
543 enum register_status status;
544 ULONGEST oldmac = 0, ext_mac = 0;
547 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
548 if (status != REG_VALID)
551 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
552 if (status != REG_VALID)
556 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
557 store_signed_integer (buf, 8, byte_order, newmac);
562 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
566 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
568 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
569 return mt_pseudo_register_read (gdbarch, regcache,
570 MT_MAC_PSEUDOREG_REGNUM, buf);
571 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
572 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
581 /* Write the pseudo registers:
583 Mt pseudo-registers are stored directly to the target. The
584 'coprocessor' register is special, because when it is modified, all
585 the other coprocessor regs must be flushed from the reg cache. */
588 mt_pseudo_register_write (struct gdbarch *gdbarch,
589 struct regcache *regcache,
590 int regno, const gdb_byte *buf)
592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
597 case MT_COPRO_REGNUM:
598 case MT_COPRO_PSEUDOREG_REGNUM:
599 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
600 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
601 regcache_invalidate (regcache, i);
604 case MT_MAC_PSEUDOREG_REGNUM:
605 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
606 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
608 /* The 8-byte MAC pseudo-register must be broken down into two
609 32-byte registers. */
610 unsigned int oldmac, ext_mac;
613 newmac = extract_unsigned_integer (buf, 8, byte_order);
614 oldmac = newmac & 0xffffffff;
615 ext_mac = (newmac >> 32) & 0xff;
616 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
617 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
620 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
624 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
626 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
627 mt_pseudo_register_write (gdbarch, regcache,
628 MT_MAC_PSEUDOREG_REGNUM, buf);
629 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
630 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
637 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
639 /* Register size is 4 bytes. */
640 return align_down (sp, 4);
643 /* Implements the "info registers" command. When ``all'' is non-zero,
644 the coprocessor registers will be printed in addition to the rest
648 mt_registers_info (struct gdbarch *gdbarch,
649 struct ui_file *file,
650 struct frame_info *frame, int regnum, int all)
652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
658 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
660 for (regnum = 0; regnum < lim; regnum++)
662 /* Don't display the Qchannel register since it will be displayed
663 along with Ichannel. (See below.) */
664 if (regnum == MT_QCHANNEL_REGNUM)
667 mt_registers_info (gdbarch, file, frame, regnum, all);
669 /* Display the Qchannel register immediately after Ichannel. */
670 if (regnum == MT_ICHANNEL_REGNUM)
671 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
676 if (regnum == MT_EXMAC_REGNUM)
678 else if (regnum == MT_CONTEXT_REGNUM)
680 /* Special output handling for 38-bit context register. */
682 unsigned int *bytes, i, regsize;
684 regsize = register_size (gdbarch, regnum);
686 buff = alloca (regsize);
687 bytes = alloca (regsize * sizeof (*bytes));
689 frame_register_read (frame, regnum, buff);
691 fputs_filtered (gdbarch_register_name
692 (gdbarch, regnum), file);
693 print_spaces_filtered (15 - strlen (gdbarch_register_name
696 fputs_filtered ("0x", file);
698 for (i = 0; i < regsize; i++)
699 fprintf_filtered (file, "%02x", (unsigned int)
700 extract_unsigned_integer (buff + i, 1, byte_order));
701 fputs_filtered ("\t", file);
702 print_longest (file, 'd', 0,
703 extract_unsigned_integer (buff, regsize, byte_order));
704 fputs_filtered ("\n", file);
706 else if (regnum == MT_COPRO_REGNUM
707 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
709 /* Special output handling for the 'coprocessor' register. */
711 struct value_print_options opts;
713 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
714 frame_register_read (frame, MT_COPRO_REGNUM, buf);
716 regnum = MT_COPRO_PSEUDOREG_REGNUM;
717 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
719 print_spaces_filtered (15 - strlen (gdbarch_register_name
722 get_raw_print_options (&opts);
724 val_print (register_type (gdbarch, regnum), buf,
726 &opts, current_language);
727 fputs_filtered ("\n", file);
729 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
731 ULONGEST oldmac, ext_mac, newmac;
732 gdb_byte buf[3 * sizeof (LONGEST)];
734 /* Get the two "real" mac registers. */
735 frame_register_read (frame, MT_MAC_REGNUM, buf);
736 oldmac = extract_unsigned_integer
737 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
738 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
739 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
741 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
742 ext_mac = extract_unsigned_integer
743 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
748 /* Add them together. */
749 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
752 regnum = MT_MAC_PSEUDOREG_REGNUM;
753 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
755 print_spaces_filtered (15 - strlen (gdbarch_register_name
758 fputs_filtered ("0x", file);
759 print_longest (file, 'x', 0, newmac);
760 fputs_filtered ("\t", file);
761 print_longest (file, 'u', 0, newmac);
762 fputs_filtered ("\n", file);
765 default_print_registers_info (gdbarch, file, frame, regnum, all);
769 /* Set up the callee's arguments for an inferior function call. The
770 arguments are pushed on the stack or are placed in registers as
771 appropriate. It also sets up the return address (which points to
772 the call dummy breakpoint).
774 Returns the updated (and aligned) stack pointer. */
777 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
778 struct regcache *regcache, CORE_ADDR bp_addr,
779 int nargs, struct value **args, CORE_ADDR sp,
780 int struct_return, CORE_ADDR struct_addr)
783 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
784 gdb_byte buf[MT_MAX_STRUCT_SIZE];
785 int argreg = MT_1ST_ARGREG;
786 int split_param_len = 0;
792 /* First handle however many args we can fit into MT_1ST_ARGREG thru
794 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
797 typelen = TYPE_LENGTH (value_type (args[i]));
804 regcache_cooked_write_unsigned (regcache, argreg++,
805 extract_unsigned_integer
806 (value_contents (args[i]),
807 wordsize, byte_order));
812 val = value_contents (args[i]);
815 if (argreg <= MT_LAST_ARGREG)
817 /* This word of the argument is passed in a register. */
818 regcache_cooked_write_unsigned (regcache, argreg++,
819 extract_unsigned_integer
820 (val, wordsize, byte_order));
826 /* Remainder of this arg must be passed on the stack
827 (deferred to do later). */
828 split_param_len = typelen;
829 memcpy (buf, val, typelen);
830 break; /* No more args can be handled in regs. */
835 /* By reverse engineering of gcc output, args bigger than
836 16 bytes go on the stack, and their address is passed
838 stack_dest -= typelen;
839 write_memory (stack_dest, value_contents (args[i]), typelen);
840 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
845 /* Next, the rest of the arguments go onto the stack, in reverse order. */
846 for (j = nargs - 1; j >= i; j--)
850 /* Right-justify the value in an aligned-length buffer. */
851 typelen = TYPE_LENGTH (value_type (args[j]));
852 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
853 val = alloca (typelen + slacklen);
854 memcpy (val, value_contents (args[j]), typelen);
855 memset (val + typelen, 0, slacklen);
856 /* Now write this data to the stack. */
857 stack_dest -= typelen + slacklen;
858 write_memory (stack_dest, val, typelen + slacklen);
861 /* Finally, if a param needs to be split between registers and stack,
862 write the second half to the stack now. */
863 if (split_param_len != 0)
865 stack_dest -= split_param_len;
866 write_memory (stack_dest, buf, split_param_len);
869 /* Set up return address (provided to us as bp_addr). */
870 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
872 /* Store struct return address, if given. */
873 if (struct_return && struct_addr != 0)
874 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
876 /* Set aside 16 bytes for the callee to save regs 1-4. */
879 /* Update the stack pointer. */
880 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
882 /* And that should do it. Return the new stack pointer. */
887 /* The 'unwind_cache' data structure. */
889 struct mt_unwind_cache
891 /* The previous frame's inner most stack address.
892 Used as this frame ID's stack_addr. */
894 CORE_ADDR frame_base;
898 /* Table indicating the location of each and every register. */
899 struct trad_frame_saved_reg *saved_regs;
902 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
905 static struct mt_unwind_cache *
906 mt_frame_unwind_cache (struct frame_info *this_frame,
907 void **this_prologue_cache)
909 struct gdbarch *gdbarch;
910 struct mt_unwind_cache *info;
911 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
912 unsigned long instr, upper_half, delayed_store = 0;
916 if ((*this_prologue_cache))
917 return (*this_prologue_cache);
919 gdbarch = get_frame_arch (this_frame);
920 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
921 (*this_prologue_cache) = info;
925 info->frame_base = 0;
926 info->frameless_p = 1;
927 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
929 /* Grab the frame-relative values of SP and FP, needed below.
930 The frame_saved_register function will find them on the
931 stack or in the registers as appropriate. */
932 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
933 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
935 start_addr = get_frame_func (this_frame);
937 /* Return early if GDB couldn't find the function. */
941 end_addr = get_frame_pc (this_frame);
942 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
944 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
946 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
947 if (delayed_store) /* Previous instr was a push. */
949 upper_half = delayed_store >> 16;
950 regnum = upper_half & 0xf;
951 offset = delayed_store & 0xffff;
952 switch (upper_half & 0xfff0)
954 case 0x43c0: /* push using frame pointer. */
955 info->saved_regs[regnum].addr = offset;
957 case 0x43d0: /* push using stack pointer. */
958 info->saved_regs[regnum].addr = offset;
968 case 0x12000000: /* NO-OP */
970 case 0x12ddc000: /* copy sp into fp */
971 info->frameless_p = 0; /* Record that the frame
972 pointer is in use. */
975 upper_half = instr >> 16;
976 if (upper_half == 0x05dd || /* subi sp, sp, imm */
977 upper_half == 0x07dd) /* subui sp, sp, imm */
979 /* Record the frame size. */
980 info->framesize = instr & 0xffff;
983 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
984 (upper_half & 0xfff0) == 0x43d0) /* stack push */
986 /* Save this instruction, but don't record the
987 pushed register as 'saved' until we see the
988 next instruction. That's because of deferred stores
989 on this target -- GDB won't be able to read the register
990 from the stack until one instruction later. */
991 delayed_store = instr;
994 /* Not a prologue instruction. Is this the end of the prologue?
995 This is the most difficult decision; when to stop scanning.
997 If we have no line symbol, then the best thing we can do
998 is to stop scanning when we encounter an instruction that
999 is not likely to be a part of the prologue.
1001 But if we do have a line symbol, then we should
1002 keep scanning until we reach it (or we reach end_addr). */
1004 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
1005 continue; /* Keep scanning, recording saved_regs etc. */
1007 break; /* Quit scanning: breakpoint can be set here. */
1011 /* Special handling for the "saved" address of the SP:
1012 The SP is of course never saved on the stack at all, so
1013 by convention what we put here is simply the previous
1014 _value_ of the SP (as opposed to an address where the
1015 previous value would have been pushed). This will also
1016 give us the frame base address. */
1018 if (info->frameless_p)
1020 info->frame_base = sp + info->framesize;
1021 info->prev_sp = sp + info->framesize;
1025 info->frame_base = fp + info->framesize;
1026 info->prev_sp = fp + info->framesize;
1028 /* Save prev_sp in saved_regs as a value, not as an address. */
1029 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1031 /* Now convert frame offsets to actual addresses (not offsets). */
1032 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1033 if (trad_frame_addr_p (info->saved_regs, regnum))
1034 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1036 /* The call instruction moves the caller's PC in the callee's RA reg.
1037 Since this is an unwind, do the reverse. Copy the location of RA
1038 into PC (the address / regnum) so that a request for PC will be
1039 converted into a request for the RA. */
1040 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1046 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1050 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1055 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1059 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1063 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1064 frame. The frame ID's base needs to match the TOS value saved by
1065 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1067 static struct frame_id
1068 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1070 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1071 return frame_id_build (sp, get_frame_pc (this_frame));
1074 /* Given a GDB frame, determine the address of the calling function's
1075 frame. This will be used to create a new GDB frame struct. */
1078 mt_frame_this_id (struct frame_info *this_frame,
1079 void **this_prologue_cache, struct frame_id *this_id)
1081 struct mt_unwind_cache *info =
1082 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1084 if (!(info == NULL || info->prev_sp == 0))
1085 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1090 static struct value *
1091 mt_frame_prev_register (struct frame_info *this_frame,
1092 void **this_prologue_cache, int regnum)
1094 struct mt_unwind_cache *info =
1095 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1097 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1101 mt_frame_base_address (struct frame_info *this_frame,
1102 void **this_prologue_cache)
1104 struct mt_unwind_cache *info =
1105 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1107 return info->frame_base;
1110 /* This is a shared interface: the 'frame_unwind' object is what's
1111 returned by the 'sniffer' function, and in turn specifies how to
1112 get a frame's ID and prev_regs.
1114 This exports the 'prev_register' and 'this_id' methods. */
1116 static const struct frame_unwind mt_frame_unwind = {
1118 default_frame_unwind_stop_reason,
1120 mt_frame_prev_register,
1122 default_frame_sniffer
1125 /* Another shared interface: the 'frame_base' object specifies how to
1126 unwind a frame and secure the base addresses for frame objects
1129 static struct frame_base mt_frame_base = {
1131 mt_frame_base_address,
1132 mt_frame_base_address,
1133 mt_frame_base_address
1136 static struct gdbarch *
1137 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1139 struct gdbarch *gdbarch;
1140 struct gdbarch_tdep *tdep;
1142 /* Find a candidate among the list of pre-declared architectures. */
1143 arches = gdbarch_list_lookup_by_info (arches, &info);
1145 return arches->gdbarch;
1147 /* None found, create a new architecture from the information
1149 tdep = XCALLOC (1, struct gdbarch_tdep);
1150 gdbarch = gdbarch_alloc (&info, tdep);
1152 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1153 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1154 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1156 set_gdbarch_register_name (gdbarch, mt_register_name);
1157 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1158 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1159 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1160 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1161 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1162 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1163 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1164 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1165 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1166 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1167 set_gdbarch_frame_args_skip (gdbarch, 0);
1168 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1169 set_gdbarch_register_type (gdbarch, mt_register_type);
1170 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1172 set_gdbarch_return_value (gdbarch, mt_return_value);
1173 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1175 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1177 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1179 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1181 /* Target builtin data types. */
1182 set_gdbarch_short_bit (gdbarch, 16);
1183 set_gdbarch_int_bit (gdbarch, 32);
1184 set_gdbarch_long_bit (gdbarch, 32);
1185 set_gdbarch_long_long_bit (gdbarch, 64);
1186 set_gdbarch_float_bit (gdbarch, 32);
1187 set_gdbarch_double_bit (gdbarch, 64);
1188 set_gdbarch_long_double_bit (gdbarch, 64);
1189 set_gdbarch_ptr_bit (gdbarch, 32);
1191 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1193 dwarf2_append_unwinders (gdbarch);
1194 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1195 frame_base_set_default (gdbarch, &mt_frame_base);
1197 /* Register the 'unwind_pc' method. */
1198 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1199 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1201 /* Methods for saving / extracting a dummy frame's ID.
1202 The ID's stack address must match the SP value returned by
1203 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1204 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1209 /* Provide a prototype to silence -Wmissing-prototypes. */
1210 extern initialize_file_ftype _initialize_mt_tdep;
1213 _initialize_mt_tdep (void)
1215 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);