1 /* Target-dependent code for Morpho mt processor, for GDB.
3 Copyright (C) 2005, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
28 #include "arch-utils.h"
30 #include "gdb_string.h"
32 #include "reggroups.h"
34 #include "trad-frame.h"
36 #include "dwarf2-frame.h"
38 #include "gdb_assert.h"
42 enum mt_arch_constants
44 MT_MAX_STRUCT_SIZE = 16
49 MT_R0_REGNUM, /* 32 bit regs. */
51 MT_1ST_ARGREG = MT_R1_REGNUM,
55 MT_LAST_ARGREG = MT_R4_REGNUM,
64 MT_FP_REGNUM = MT_R12_REGNUM,
66 MT_SP_REGNUM = MT_R13_REGNUM,
68 MT_RA_REGNUM = MT_R14_REGNUM,
70 MT_IRA_REGNUM = MT_R15_REGNUM,
73 /* Interrupt Enable pseudo-register, exported by SID. */
75 /* End of CPU regs. */
79 /* Co-processor registers. */
80 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
97 MT_BYPA_REGNUM, /* 32 bit regs. */
101 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
103 MT_MAC_REGNUM, /* 32 bits. */
104 MT_Z1_REGNUM, /* 16 bits. */
105 MT_Z2_REGNUM, /* 16 bits. */
106 MT_ICHANNEL_REGNUM, /* 32 bits. */
107 MT_ISCRAMB_REGNUM, /* 32 bits. */
108 MT_QSCRAMB_REGNUM, /* 32 bits. */
109 MT_OUT_REGNUM, /* 16 bits. */
110 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
111 MT_QCHANNEL_REGNUM, /* 32 bits. */
112 MT_ZI2_REGNUM, /* 16 bits. */
113 MT_ZQ2_REGNUM, /* 16 bits. */
114 MT_CHANNEL2_REGNUM, /* 32 bits. */
115 MT_ISCRAMB2_REGNUM, /* 32 bits. */
116 MT_QSCRAMB2_REGNUM, /* 32 bits. */
117 MT_QCHANNEL2_REGNUM, /* 32 bits. */
119 /* Number of real registers. */
122 /* Pseudo-registers. */
123 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
124 MT_MAC_PSEUDOREG_REGNUM,
125 MT_COPRO_PSEUDOREG_ARRAY,
127 MT_COPRO_PSEUDOREG_DIM_1 = 2,
128 MT_COPRO_PSEUDOREG_DIM_2 = 8,
129 /* The number of pseudo-registers for each coprocessor. These
130 include the real coprocessor registers, the pseudo-registe for
131 the coprocessor number, and the pseudo-register for the MAC. */
132 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
133 /* The register number of the MAC, relative to a given coprocessor. */
134 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
136 /* Two pseudo-regs ('coprocessor' and 'mac'). */
137 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
138 * MT_COPRO_PSEUDOREG_DIM_1
139 * MT_COPRO_PSEUDOREG_DIM_2)
142 /* The tdep structure. */
145 /* ISA-specific types. */
146 struct type *copro_type;
150 /* Return name of register number specified by REGNUM. */
153 mt_register_name (struct gdbarch *gdbarch, int regnum)
155 static const char *const register_names[] = {
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 /* Co-processor regs. */
161 "", /* copro register. */
162 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
163 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
164 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
165 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
166 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
167 /* Pseudo-registers. */
170 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
171 * MT_COPRO_PSEUDOREG_DIM_1
172 * MT_COPRO_PSEUDOREG_DIM_2];
176 if (regnum < ARRAY_SIZE (register_names))
177 return register_names[regnum];
178 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
179 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
188 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
189 index = regnum % MT_COPRO_PSEUDOREG_REGS;
190 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
191 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
192 % MT_COPRO_PSEUDOREG_DIM_1);
194 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
195 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
196 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
199 stub = register_names[index + MT_CPR0_REGNUM];
202 array_names[regnum] = stub;
206 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
207 array_names[regnum] = name;
212 /* Return the type of a coprocessor register. */
215 mt_copro_register_type (struct gdbarch *arch, int regnum)
219 case MT_INT_ENABLE_REGNUM:
220 case MT_ICHANNEL_REGNUM:
221 case MT_QCHANNEL_REGNUM:
222 case MT_ISCRAMB_REGNUM:
223 case MT_QSCRAMB_REGNUM:
224 return builtin_type (arch)->builtin_int32;
233 return builtin_type (arch)->builtin_int16;
234 case MT_EXMAC_REGNUM:
236 return builtin_type (arch)->builtin_uint32;
237 case MT_CONTEXT_REGNUM:
238 return builtin_type (arch)->builtin_long_long;
240 return builtin_type (arch)->builtin_unsigned_char;
242 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
243 return builtin_type (arch)->builtin_int16;
244 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
246 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
247 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
248 return builtin_type (arch)->builtin_uint64;
250 return builtin_type (arch)->builtin_uint32;
253 return builtin_type (arch)->builtin_uint32;
257 /* Given ARCH and a register number specified by REGNUM, return the
258 type of that register. */
261 mt_register_type (struct gdbarch *arch, int regnum)
263 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
265 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
272 return builtin_type (arch)->builtin_func_ptr;
275 return builtin_type (arch)->builtin_data_ptr;
276 case MT_COPRO_REGNUM:
277 case MT_COPRO_PSEUDOREG_REGNUM:
278 if (tdep->copro_type == NULL)
280 struct type *elt = builtin_type (arch)->builtin_int16;
281 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
283 return tdep->copro_type;
284 case MT_MAC_PSEUDOREG_REGNUM:
285 return mt_copro_register_type (arch,
287 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
289 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
290 return builtin_type (arch)->builtin_int32;
291 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
292 return mt_copro_register_type (arch, regnum);
295 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
296 regnum %= MT_COPRO_PSEUDOREG_REGS;
297 regnum += MT_CPR0_REGNUM;
298 return mt_copro_register_type (arch, regnum);
302 internal_error (__FILE__, __LINE__,
303 _("mt_register_type: illegal register number %d"), regnum);
306 /* Return true if register REGNUM is a member of the register group
307 specified by GROUP. */
310 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
311 struct reggroup *group)
313 /* Groups of registers that can be displayed via "info reg". */
314 if (group == all_reggroup)
316 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
317 && mt_register_name (gdbarch, regnum)[0] != '\0');
319 if (group == general_reggroup)
320 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
322 if (group == float_reggroup)
323 return 0; /* No float regs. */
325 if (group == vector_reggroup)
326 return 0; /* No vector regs. */
328 /* For any that are not handled above. */
329 return default_register_reggroup_p (gdbarch, regnum, group);
332 /* Return the return value convention used for a given type TYPE.
333 Optionally, fetch or set the return value via READBUF or
334 WRITEBUF respectively using REGCACHE for the register
337 static enum return_value_convention
338 mt_return_value (struct gdbarch *gdbarch, struct value *function,
339 struct type *type, struct regcache *regcache,
340 gdb_byte *readbuf, const gdb_byte *writebuf)
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344 if (TYPE_LENGTH (type) > 4)
346 /* Return values > 4 bytes are returned in memory,
347 pointed to by R11. */
352 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
353 read_memory (addr, readbuf, TYPE_LENGTH (type));
360 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
361 write_memory (addr, writebuf, TYPE_LENGTH (type));
364 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
372 /* Return values of <= 4 bytes are returned in R11. */
373 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
374 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
380 if (TYPE_LENGTH (type) < 4)
383 /* Add leading zeros to the value. */
384 memset (buf, 0, sizeof (buf));
385 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
386 writebuf, TYPE_LENGTH (type));
387 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
389 else /* (TYPE_LENGTH (type) == 4 */
390 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
393 return RETURN_VALUE_REGISTER_CONVENTION;
397 /* If the input address, PC, is in a function prologue, return the
398 address of the end of the prologue, otherwise return the input
401 Note: PC is likely to be the function start, since this function
402 is mainly used for advancing a breakpoint to the first line, or
403 stepping to the first line when we have stepped into a function
407 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
410 CORE_ADDR func_addr = 0, func_end = 0;
411 const char *func_name;
414 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 struct symtab_and_line sal;
419 /* Found a function. */
420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
423 /* Don't use this trick for assembly source files. */
424 sal = find_pc_line (func_addr, 0);
426 if (sal.end && sal.end < func_end)
428 /* Found a line number, use it as end of prologue. */
434 /* No function symbol, or no line symbol. Use prologue scanning method. */
437 instr = read_memory_unsigned_integer (pc, 4, byte_order);
438 if (instr == 0x12000000) /* nop */
440 if (instr == 0x12ddc000) /* copy sp into fp */
443 if (instr == 0x05dd) /* subi sp, sp, imm */
445 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
447 /* Not an obvious prologue instruction. */
454 /* The breakpoint instruction must be the same size as the smallest
455 instruction in the instruction set.
457 The BP for ms1 is defined as 0x68000000 (BREAK).
458 The BP for ms2 is defined as 0x69000000 (illegal). */
460 static const gdb_byte *
461 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
464 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
465 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
468 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
469 return ms2_breakpoint;
471 return ms1_breakpoint;
474 /* Select the correct coprocessor register bank. Return the pseudo
475 regnum we really want to read. */
478 mt_select_coprocessor (struct gdbarch *gdbarch,
479 struct regcache *regcache, int regno)
481 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
482 unsigned index, base;
485 /* Get the copro pseudo regnum. */
486 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
487 base = ((extract_signed_integer (&copro[0], 2, byte_order)
488 * MT_COPRO_PSEUDOREG_DIM_2)
489 + extract_signed_integer (&copro[2], 2, byte_order));
491 regno -= MT_COPRO_PSEUDOREG_ARRAY;
492 index = regno % MT_COPRO_PSEUDOREG_REGS;
493 regno /= MT_COPRO_PSEUDOREG_REGS;
496 /* Select the correct coprocessor register bank. Invalidate the
497 coprocessor register cache. */
500 store_signed_integer (&copro[0], 2, byte_order,
501 regno / MT_COPRO_PSEUDOREG_DIM_2);
502 store_signed_integer (&copro[2], 2, byte_order,
503 regno % MT_COPRO_PSEUDOREG_DIM_2);
504 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
506 /* We must flush the cache, as it is now invalid. */
507 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
508 regcache_invalidate (regcache, ix);
514 /* Fetch the pseudo registers:
516 There are two regular pseudo-registers:
517 1) The 'coprocessor' pseudo-register (which mirrors the
518 "real" coprocessor register sent by the target), and
519 2) The 'MAC' pseudo-register (which represents the union
520 of the original 32 bit target MAC register and the new
521 8-bit extended-MAC register).
523 Additionally there is an array of coprocessor registers which track
524 the coprocessor registers for each coprocessor. */
526 static enum register_status
527 mt_pseudo_register_read (struct gdbarch *gdbarch,
528 struct regcache *regcache, int regno, gdb_byte *buf)
530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
534 case MT_COPRO_REGNUM:
535 case MT_COPRO_PSEUDOREG_REGNUM:
536 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
538 case MT_MAC_PSEUDOREG_REGNUM:
539 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
540 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
542 enum register_status status;
543 ULONGEST oldmac = 0, ext_mac = 0;
546 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
547 if (status != REG_VALID)
550 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
551 if (status != REG_VALID)
555 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
556 store_signed_integer (buf, 8, byte_order, newmac);
561 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
565 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
567 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
568 return mt_pseudo_register_read (gdbarch, regcache,
569 MT_MAC_PSEUDOREG_REGNUM, buf);
570 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
571 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
580 /* Write the pseudo registers:
582 Mt pseudo-registers are stored directly to the target. The
583 'coprocessor' register is special, because when it is modified, all
584 the other coprocessor regs must be flushed from the reg cache. */
587 mt_pseudo_register_write (struct gdbarch *gdbarch,
588 struct regcache *regcache,
589 int regno, const gdb_byte *buf)
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
596 case MT_COPRO_REGNUM:
597 case MT_COPRO_PSEUDOREG_REGNUM:
598 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
599 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
600 regcache_invalidate (regcache, i);
603 case MT_MAC_PSEUDOREG_REGNUM:
604 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
605 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
607 /* The 8-byte MAC pseudo-register must be broken down into two
608 32-byte registers. */
609 unsigned int oldmac, ext_mac;
612 newmac = extract_unsigned_integer (buf, 8, byte_order);
613 oldmac = newmac & 0xffffffff;
614 ext_mac = (newmac >> 32) & 0xff;
615 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
616 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
619 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
623 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
625 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
626 mt_pseudo_register_write (gdbarch, regcache,
627 MT_MAC_PSEUDOREG_REGNUM, buf);
628 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
629 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
636 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
638 /* Register size is 4 bytes. */
639 return align_down (sp, 4);
642 /* Implements the "info registers" command. When ``all'' is non-zero,
643 the coprocessor registers will be printed in addition to the rest
647 mt_registers_info (struct gdbarch *gdbarch,
648 struct ui_file *file,
649 struct frame_info *frame, int regnum, int all)
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
657 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
659 for (regnum = 0; regnum < lim; regnum++)
661 /* Don't display the Qchannel register since it will be displayed
662 along with Ichannel. (See below.) */
663 if (regnum == MT_QCHANNEL_REGNUM)
666 mt_registers_info (gdbarch, file, frame, regnum, all);
668 /* Display the Qchannel register immediately after Ichannel. */
669 if (regnum == MT_ICHANNEL_REGNUM)
670 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
675 if (regnum == MT_EXMAC_REGNUM)
677 else if (regnum == MT_CONTEXT_REGNUM)
679 /* Special output handling for 38-bit context register. */
681 unsigned int *bytes, i, regsize;
683 regsize = register_size (gdbarch, regnum);
685 buff = alloca (regsize);
686 bytes = alloca (regsize * sizeof (*bytes));
688 frame_register_read (frame, regnum, buff);
690 fputs_filtered (gdbarch_register_name
691 (gdbarch, regnum), file);
692 print_spaces_filtered (15 - strlen (gdbarch_register_name
695 fputs_filtered ("0x", file);
697 for (i = 0; i < regsize; i++)
698 fprintf_filtered (file, "%02x", (unsigned int)
699 extract_unsigned_integer (buff + i, 1, byte_order));
700 fputs_filtered ("\t", file);
701 print_longest (file, 'd', 0,
702 extract_unsigned_integer (buff, regsize, byte_order));
703 fputs_filtered ("\n", file);
705 else if (regnum == MT_COPRO_REGNUM
706 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
708 /* Special output handling for the 'coprocessor' register. */
710 struct value_print_options opts;
712 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
713 frame_register_read (frame, MT_COPRO_REGNUM, buf);
715 regnum = MT_COPRO_PSEUDOREG_REGNUM;
716 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
718 print_spaces_filtered (15 - strlen (gdbarch_register_name
721 get_raw_print_options (&opts);
723 val_print (register_type (gdbarch, regnum), buf,
725 &opts, current_language);
726 fputs_filtered ("\n", file);
728 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
730 ULONGEST oldmac, ext_mac, newmac;
731 gdb_byte buf[3 * sizeof (LONGEST)];
733 /* Get the two "real" mac registers. */
734 frame_register_read (frame, MT_MAC_REGNUM, buf);
735 oldmac = extract_unsigned_integer
736 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
737 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
738 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
740 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
741 ext_mac = extract_unsigned_integer
742 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
747 /* Add them together. */
748 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
751 regnum = MT_MAC_PSEUDOREG_REGNUM;
752 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
754 print_spaces_filtered (15 - strlen (gdbarch_register_name
757 fputs_filtered ("0x", file);
758 print_longest (file, 'x', 0, newmac);
759 fputs_filtered ("\t", file);
760 print_longest (file, 'u', 0, newmac);
761 fputs_filtered ("\n", file);
764 default_print_registers_info (gdbarch, file, frame, regnum, all);
768 /* Set up the callee's arguments for an inferior function call. The
769 arguments are pushed on the stack or are placed in registers as
770 appropriate. It also sets up the return address (which points to
771 the call dummy breakpoint).
773 Returns the updated (and aligned) stack pointer. */
776 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
777 struct regcache *regcache, CORE_ADDR bp_addr,
778 int nargs, struct value **args, CORE_ADDR sp,
779 int struct_return, CORE_ADDR struct_addr)
782 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
783 gdb_byte buf[MT_MAX_STRUCT_SIZE];
784 int argreg = MT_1ST_ARGREG;
785 int split_param_len = 0;
791 /* First handle however many args we can fit into MT_1ST_ARGREG thru
793 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
796 typelen = TYPE_LENGTH (value_type (args[i]));
803 regcache_cooked_write_unsigned (regcache, argreg++,
804 extract_unsigned_integer
805 (value_contents (args[i]),
806 wordsize, byte_order));
811 val = value_contents (args[i]);
814 if (argreg <= MT_LAST_ARGREG)
816 /* This word of the argument is passed in a register. */
817 regcache_cooked_write_unsigned (regcache, argreg++,
818 extract_unsigned_integer
819 (val, wordsize, byte_order));
825 /* Remainder of this arg must be passed on the stack
826 (deferred to do later). */
827 split_param_len = typelen;
828 memcpy (buf, val, typelen);
829 break; /* No more args can be handled in regs. */
834 /* By reverse engineering of gcc output, args bigger than
835 16 bytes go on the stack, and their address is passed
837 stack_dest -= typelen;
838 write_memory (stack_dest, value_contents (args[i]), typelen);
839 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
844 /* Next, the rest of the arguments go onto the stack, in reverse order. */
845 for (j = nargs - 1; j >= i; j--)
849 /* Right-justify the value in an aligned-length buffer. */
850 typelen = TYPE_LENGTH (value_type (args[j]));
851 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
852 val = alloca (typelen + slacklen);
853 memcpy (val, value_contents (args[j]), typelen);
854 memset (val + typelen, 0, slacklen);
855 /* Now write this data to the stack. */
856 stack_dest -= typelen + slacklen;
857 write_memory (stack_dest, val, typelen + slacklen);
860 /* Finally, if a param needs to be split between registers and stack,
861 write the second half to the stack now. */
862 if (split_param_len != 0)
864 stack_dest -= split_param_len;
865 write_memory (stack_dest, buf, split_param_len);
868 /* Set up return address (provided to us as bp_addr). */
869 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
871 /* Store struct return address, if given. */
872 if (struct_return && struct_addr != 0)
873 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
875 /* Set aside 16 bytes for the callee to save regs 1-4. */
878 /* Update the stack pointer. */
879 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
881 /* And that should do it. Return the new stack pointer. */
886 /* The 'unwind_cache' data structure. */
888 struct mt_unwind_cache
890 /* The previous frame's inner most stack address.
891 Used as this frame ID's stack_addr. */
893 CORE_ADDR frame_base;
897 /* Table indicating the location of each and every register. */
898 struct trad_frame_saved_reg *saved_regs;
901 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
904 static struct mt_unwind_cache *
905 mt_frame_unwind_cache (struct frame_info *this_frame,
906 void **this_prologue_cache)
908 struct gdbarch *gdbarch;
909 struct mt_unwind_cache *info;
910 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
911 unsigned long instr, upper_half, delayed_store = 0;
915 if ((*this_prologue_cache))
916 return (*this_prologue_cache);
918 gdbarch = get_frame_arch (this_frame);
919 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
920 (*this_prologue_cache) = info;
924 info->frame_base = 0;
925 info->frameless_p = 1;
926 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
928 /* Grab the frame-relative values of SP and FP, needed below.
929 The frame_saved_register function will find them on the
930 stack or in the registers as appropriate. */
931 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
932 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
934 start_addr = get_frame_func (this_frame);
936 /* Return early if GDB couldn't find the function. */
940 end_addr = get_frame_pc (this_frame);
941 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
943 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
945 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
946 if (delayed_store) /* Previous instr was a push. */
948 upper_half = delayed_store >> 16;
949 regnum = upper_half & 0xf;
950 offset = delayed_store & 0xffff;
951 switch (upper_half & 0xfff0)
953 case 0x43c0: /* push using frame pointer. */
954 info->saved_regs[regnum].addr = offset;
956 case 0x43d0: /* push using stack pointer. */
957 info->saved_regs[regnum].addr = offset;
967 case 0x12000000: /* NO-OP */
969 case 0x12ddc000: /* copy sp into fp */
970 info->frameless_p = 0; /* Record that the frame
971 pointer is in use. */
974 upper_half = instr >> 16;
975 if (upper_half == 0x05dd || /* subi sp, sp, imm */
976 upper_half == 0x07dd) /* subui sp, sp, imm */
978 /* Record the frame size. */
979 info->framesize = instr & 0xffff;
982 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
983 (upper_half & 0xfff0) == 0x43d0) /* stack push */
985 /* Save this instruction, but don't record the
986 pushed register as 'saved' until we see the
987 next instruction. That's because of deferred stores
988 on this target -- GDB won't be able to read the register
989 from the stack until one instruction later. */
990 delayed_store = instr;
993 /* Not a prologue instruction. Is this the end of the prologue?
994 This is the most difficult decision; when to stop scanning.
996 If we have no line symbol, then the best thing we can do
997 is to stop scanning when we encounter an instruction that
998 is not likely to be a part of the prologue.
1000 But if we do have a line symbol, then we should
1001 keep scanning until we reach it (or we reach end_addr). */
1003 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
1004 continue; /* Keep scanning, recording saved_regs etc. */
1006 break; /* Quit scanning: breakpoint can be set here. */
1010 /* Special handling for the "saved" address of the SP:
1011 The SP is of course never saved on the stack at all, so
1012 by convention what we put here is simply the previous
1013 _value_ of the SP (as opposed to an address where the
1014 previous value would have been pushed). This will also
1015 give us the frame base address. */
1017 if (info->frameless_p)
1019 info->frame_base = sp + info->framesize;
1020 info->prev_sp = sp + info->framesize;
1024 info->frame_base = fp + info->framesize;
1025 info->prev_sp = fp + info->framesize;
1027 /* Save prev_sp in saved_regs as a value, not as an address. */
1028 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1030 /* Now convert frame offsets to actual addresses (not offsets). */
1031 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1032 if (trad_frame_addr_p (info->saved_regs, regnum))
1033 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1035 /* The call instruction moves the caller's PC in the callee's RA reg.
1036 Since this is an unwind, do the reverse. Copy the location of RA
1037 into PC (the address / regnum) so that a request for PC will be
1038 converted into a request for the RA. */
1039 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1045 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1049 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1054 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1058 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1062 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1063 frame. The frame ID's base needs to match the TOS value saved by
1064 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1066 static struct frame_id
1067 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1069 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1070 return frame_id_build (sp, get_frame_pc (this_frame));
1073 /* Given a GDB frame, determine the address of the calling function's
1074 frame. This will be used to create a new GDB frame struct. */
1077 mt_frame_this_id (struct frame_info *this_frame,
1078 void **this_prologue_cache, struct frame_id *this_id)
1080 struct mt_unwind_cache *info =
1081 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1083 if (!(info == NULL || info->prev_sp == 0))
1084 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1089 static struct value *
1090 mt_frame_prev_register (struct frame_info *this_frame,
1091 void **this_prologue_cache, int regnum)
1093 struct mt_unwind_cache *info =
1094 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1096 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1100 mt_frame_base_address (struct frame_info *this_frame,
1101 void **this_prologue_cache)
1103 struct mt_unwind_cache *info =
1104 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1106 return info->frame_base;
1109 /* This is a shared interface: the 'frame_unwind' object is what's
1110 returned by the 'sniffer' function, and in turn specifies how to
1111 get a frame's ID and prev_regs.
1113 This exports the 'prev_register' and 'this_id' methods. */
1115 static const struct frame_unwind mt_frame_unwind = {
1117 default_frame_unwind_stop_reason,
1119 mt_frame_prev_register,
1121 default_frame_sniffer
1124 /* Another shared interface: the 'frame_base' object specifies how to
1125 unwind a frame and secure the base addresses for frame objects
1128 static struct frame_base mt_frame_base = {
1130 mt_frame_base_address,
1131 mt_frame_base_address,
1132 mt_frame_base_address
1135 static struct gdbarch *
1136 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1138 struct gdbarch *gdbarch;
1139 struct gdbarch_tdep *tdep;
1141 /* Find a candidate among the list of pre-declared architectures. */
1142 arches = gdbarch_list_lookup_by_info (arches, &info);
1144 return arches->gdbarch;
1146 /* None found, create a new architecture from the information
1148 tdep = XCALLOC (1, struct gdbarch_tdep);
1149 gdbarch = gdbarch_alloc (&info, tdep);
1151 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1152 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1153 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1155 set_gdbarch_register_name (gdbarch, mt_register_name);
1156 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1157 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1158 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1159 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1160 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1161 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1162 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1163 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1164 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1165 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1166 set_gdbarch_frame_args_skip (gdbarch, 0);
1167 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1168 set_gdbarch_register_type (gdbarch, mt_register_type);
1169 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1171 set_gdbarch_return_value (gdbarch, mt_return_value);
1172 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1174 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1176 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1178 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1180 /* Target builtin data types. */
1181 set_gdbarch_short_bit (gdbarch, 16);
1182 set_gdbarch_int_bit (gdbarch, 32);
1183 set_gdbarch_long_bit (gdbarch, 32);
1184 set_gdbarch_long_long_bit (gdbarch, 64);
1185 set_gdbarch_float_bit (gdbarch, 32);
1186 set_gdbarch_double_bit (gdbarch, 64);
1187 set_gdbarch_long_double_bit (gdbarch, 64);
1188 set_gdbarch_ptr_bit (gdbarch, 32);
1190 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1192 dwarf2_append_unwinders (gdbarch);
1193 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1194 frame_base_set_default (gdbarch, &mt_frame_base);
1196 /* Register the 'unwind_pc' method. */
1197 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1198 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1200 /* Methods for saving / extracting a dummy frame's ID.
1201 The ID's stack address must match the SP value returned by
1202 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1203 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1208 /* Provide a prototype to silence -Wmissing-prototypes. */
1209 extern initialize_file_ftype _initialize_mt_tdep;
1212 _initialize_mt_tdep (void)
1214 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);