1 /* Target-dependent code for Morpho mt processor, for GDB.
3 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
28 #include "arch-utils.h"
30 #include "gdb_string.h"
32 #include "reggroups.h"
34 #include "trad-frame.h"
36 #include "dwarf2-frame.h"
38 #include "gdb_assert.h"
40 enum mt_arch_constants
42 MT_MAX_STRUCT_SIZE = 16
47 MT_R0_REGNUM, /* 32 bit regs. */
49 MT_1ST_ARGREG = MT_R1_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
71 /* Interrupt Enable pseudo-register, exported by SID. */
73 /* End of CPU regs. */
77 /* Co-processor registers. */
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
95 MT_BYPA_REGNUM, /* 32 bit regs. */
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
117 /* Number of real registers. */
120 /* Pseudo-registers. */
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
123 MT_COPRO_PSEUDOREG_ARRAY,
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
140 /* Return name of register number specified by REGNUM. */
143 mt_register_name (struct gdbarch *gdbarch, int regnum)
145 static const char *const register_names[] = {
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 /* Co-processor regs. */
151 "", /* copro register. */
152 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
153 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
154 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
155 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
156 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
157 /* Pseudo-registers. */
160 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
161 * MT_COPRO_PSEUDOREG_DIM_1
162 * MT_COPRO_PSEUDOREG_DIM_2];
166 if (regnum < ARRAY_SIZE (register_names))
167 return register_names[regnum];
168 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
169 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
178 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
179 index = regnum % MT_COPRO_PSEUDOREG_REGS;
180 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
181 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
182 % MT_COPRO_PSEUDOREG_DIM_1);
184 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
185 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
186 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
189 stub = register_names[index + MT_CPR0_REGNUM];
192 array_names[regnum] = stub;
196 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
197 array_names[regnum] = name;
202 /* Return the type of a coprocessor register. */
205 mt_copro_register_type (struct gdbarch *arch, int regnum)
209 case MT_INT_ENABLE_REGNUM:
210 case MT_ICHANNEL_REGNUM:
211 case MT_QCHANNEL_REGNUM:
212 case MT_ISCRAMB_REGNUM:
213 case MT_QSCRAMB_REGNUM:
214 return builtin_type_int32;
223 return builtin_type_int16;
224 case MT_EXMAC_REGNUM:
226 return builtin_type_uint32;
227 case MT_CONTEXT_REGNUM:
228 return builtin_type_long_long;
230 return builtin_type_unsigned_char;
232 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
233 return builtin_type_int16;
234 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
236 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
237 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
238 return builtin_type_uint64;
240 return builtin_type_uint32;
243 return builtin_type_uint32;
247 /* Given ARCH and a register number specified by REGNUM, return the
248 type of that register. */
251 mt_register_type (struct gdbarch *arch, int regnum)
253 static struct type *void_func_ptr = NULL;
254 static struct type *void_ptr = NULL;
255 static struct type *copro_type;
257 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
259 if (void_func_ptr == NULL)
263 void_ptr = lookup_pointer_type (builtin_type_void);
265 lookup_pointer_type (lookup_function_type (builtin_type_void));
266 temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
267 copro_type = create_array_type (NULL, builtin_type_int16, temp);
274 return void_func_ptr;
278 case MT_COPRO_REGNUM:
279 case MT_COPRO_PSEUDOREG_REGNUM:
281 case MT_MAC_PSEUDOREG_REGNUM:
282 return mt_copro_register_type (arch,
284 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
286 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
287 return builtin_type_int32;
288 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
289 return mt_copro_register_type (arch, regnum);
292 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
293 regnum %= MT_COPRO_PSEUDOREG_REGS;
294 regnum += MT_CPR0_REGNUM;
295 return mt_copro_register_type (arch, regnum);
299 internal_error (__FILE__, __LINE__,
300 _("mt_register_type: illegal register number %d"), regnum);
303 /* Return true if register REGNUM is a member of the register group
304 specified by GROUP. */
307 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
308 struct reggroup *group)
310 /* Groups of registers that can be displayed via "info reg". */
311 if (group == all_reggroup)
313 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
314 && mt_register_name (gdbarch, regnum)[0] != '\0');
316 if (group == general_reggroup)
317 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
319 if (group == float_reggroup)
320 return 0; /* No float regs. */
322 if (group == vector_reggroup)
323 return 0; /* No vector regs. */
325 /* For any that are not handled above. */
326 return default_register_reggroup_p (gdbarch, regnum, group);
329 /* Return the return value convention used for a given type TYPE.
330 Optionally, fetch or set the return value via READBUF or
331 WRITEBUF respectively using REGCACHE for the register
334 static enum return_value_convention
335 mt_return_value (struct gdbarch *gdbarch, struct type *type,
336 struct regcache *regcache, gdb_byte *readbuf,
337 const gdb_byte *writebuf)
339 if (TYPE_LENGTH (type) > 4)
341 /* Return values > 4 bytes are returned in memory,
342 pointed to by R11. */
347 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
348 read_memory (addr, readbuf, TYPE_LENGTH (type));
355 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
356 write_memory (addr, writebuf, TYPE_LENGTH (type));
359 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
367 /* Return values of <= 4 bytes are returned in R11. */
368 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
369 store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
374 if (TYPE_LENGTH (type) < 4)
377 /* Add leading zeros to the value. */
378 memset (buf, 0, sizeof (buf));
379 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
380 writebuf, TYPE_LENGTH (type));
381 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
383 else /* (TYPE_LENGTH (type) == 4 */
384 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
387 return RETURN_VALUE_REGISTER_CONVENTION;
391 /* If the input address, PC, is in a function prologue, return the
392 address of the end of the prologue, otherwise return the input
395 Note: PC is likely to be the function start, since this function
396 is mainly used for advancing a breakpoint to the first line, or
397 stepping to the first line when we have stepped into a function
401 mt_skip_prologue (CORE_ADDR pc)
403 CORE_ADDR func_addr = 0, func_end = 0;
407 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
409 struct symtab_and_line sal;
412 /* Found a function. */
413 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
414 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
416 /* Don't use this trick for assembly source files. */
417 sal = find_pc_line (func_addr, 0);
419 if (sal.end && sal.end < func_end)
421 /* Found a line number, use it as end of prologue. */
427 /* No function symbol, or no line symbol. Use prologue scanning method. */
430 instr = read_memory_unsigned_integer (pc, 4);
431 if (instr == 0x12000000) /* nop */
433 if (instr == 0x12ddc000) /* copy sp into fp */
436 if (instr == 0x05dd) /* subi sp, sp, imm */
438 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
440 /* Not an obvious prologue instruction. */
447 /* The breakpoint instruction must be the same size as the smallest
448 instruction in the instruction set.
450 The BP for ms1 is defined as 0x68000000 (BREAK).
451 The BP for ms2 is defined as 0x69000000 (illegal) */
453 static const gdb_byte *
454 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
457 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
458 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
461 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
462 return ms2_breakpoint;
464 return ms1_breakpoint;
467 /* Select the correct coprocessor register bank. Return the pseudo
468 regnum we really want to read. */
471 mt_select_coprocessor (struct gdbarch *gdbarch,
472 struct regcache *regcache, int regno)
474 unsigned index, base;
477 /* Get the copro pseudo regnum. */
478 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
479 base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
480 + extract_signed_integer (&copro[2], 2));
482 regno -= MT_COPRO_PSEUDOREG_ARRAY;
483 index = regno % MT_COPRO_PSEUDOREG_REGS;
484 regno /= MT_COPRO_PSEUDOREG_REGS;
487 /* Select the correct coprocessor register bank. Invalidate the
488 coprocessor register cache. */
491 store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
492 store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
493 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
495 /* We must flush the cache, as it is now invalid. */
496 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
497 regcache_invalidate (regcache, ix);
503 /* Fetch the pseudo registers:
505 There are two regular pseudo-registers:
506 1) The 'coprocessor' pseudo-register (which mirrors the
507 "real" coprocessor register sent by the target), and
508 2) The 'MAC' pseudo-register (which represents the union
509 of the original 32 bit target MAC register and the new
510 8-bit extended-MAC register).
512 Additionally there is an array of coprocessor registers which track
513 the coprocessor registers for each coprocessor. */
516 mt_pseudo_register_read (struct gdbarch *gdbarch,
517 struct regcache *regcache, int regno, gdb_byte *buf)
521 case MT_COPRO_REGNUM:
522 case MT_COPRO_PSEUDOREG_REGNUM:
523 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
526 case MT_MAC_PSEUDOREG_REGNUM:
527 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
528 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
530 ULONGEST oldmac = 0, ext_mac = 0;
533 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
534 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
536 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
537 store_signed_integer (buf, 8, newmac);
540 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
544 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
546 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
547 mt_pseudo_register_read (gdbarch, regcache,
548 MT_MAC_PSEUDOREG_REGNUM, buf);
549 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
550 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
556 /* Write the pseudo registers:
558 Mt pseudo-registers are stored directly to the target. The
559 'coprocessor' register is special, because when it is modified, all
560 the other coprocessor regs must be flushed from the reg cache. */
563 mt_pseudo_register_write (struct gdbarch *gdbarch,
564 struct regcache *regcache,
565 int regno, const gdb_byte *buf)
571 case MT_COPRO_REGNUM:
572 case MT_COPRO_PSEUDOREG_REGNUM:
573 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
574 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
575 regcache_invalidate (regcache, i);
578 case MT_MAC_PSEUDOREG_REGNUM:
579 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
580 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
582 /* The 8-byte MAC pseudo-register must be broken down into two
583 32-byte registers. */
584 unsigned int oldmac, ext_mac;
587 newmac = extract_unsigned_integer (buf, 8);
588 oldmac = newmac & 0xffffffff;
589 ext_mac = (newmac >> 32) & 0xff;
590 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
591 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
594 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
598 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
600 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
601 mt_pseudo_register_write (gdbarch, regcache,
602 MT_MAC_PSEUDOREG_REGNUM, buf);
603 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
604 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
611 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
613 /* Register size is 4 bytes. */
614 return align_down (sp, 4);
617 /* Implements the "info registers" command. When ``all'' is non-zero,
618 the coprocessor registers will be printed in addition to the rest
622 mt_registers_info (struct gdbarch *gdbarch,
623 struct ui_file *file,
624 struct frame_info *frame, int regnum, int all)
630 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
632 for (regnum = 0; regnum < lim; regnum++)
634 /* Don't display the Qchannel register since it will be displayed
635 along with Ichannel. (See below.) */
636 if (regnum == MT_QCHANNEL_REGNUM)
639 mt_registers_info (gdbarch, file, frame, regnum, all);
641 /* Display the Qchannel register immediately after Ichannel. */
642 if (regnum == MT_ICHANNEL_REGNUM)
643 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
648 if (regnum == MT_EXMAC_REGNUM)
650 else if (regnum == MT_CONTEXT_REGNUM)
652 /* Special output handling for 38-bit context register. */
654 unsigned int *bytes, i, regsize;
656 regsize = register_size (gdbarch, regnum);
658 buff = alloca (regsize);
659 bytes = alloca (regsize * sizeof (*bytes));
661 frame_register_read (frame, regnum, buff);
663 fputs_filtered (gdbarch_register_name
664 (gdbarch, regnum), file);
665 print_spaces_filtered (15 - strlen (gdbarch_register_name
668 fputs_filtered ("0x", file);
670 for (i = 0; i < regsize; i++)
671 fprintf_filtered (file, "%02x", (unsigned int)
672 extract_unsigned_integer (buff + i, 1));
673 fputs_filtered ("\t", file);
674 print_longest (file, 'd', 0,
675 extract_unsigned_integer (buff, regsize));
676 fputs_filtered ("\n", file);
678 else if (regnum == MT_COPRO_REGNUM
679 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
681 /* Special output handling for the 'coprocessor' register. */
684 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
685 frame_register_read (frame, MT_COPRO_REGNUM, buf);
687 regnum = MT_COPRO_PSEUDOREG_REGNUM;
688 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
690 print_spaces_filtered (15 - strlen (gdbarch_register_name
693 val_print (register_type (gdbarch, regnum), buf,
694 0, 0, file, 0, 1, 0, Val_no_prettyprint);
695 fputs_filtered ("\n", file);
697 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
699 ULONGEST oldmac, ext_mac, newmac;
700 gdb_byte buf[3 * sizeof (LONGEST)];
702 /* Get the two "real" mac registers. */
703 frame_register_read (frame, MT_MAC_REGNUM, buf);
704 oldmac = extract_unsigned_integer
705 (buf, register_size (gdbarch, MT_MAC_REGNUM));
706 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
707 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
709 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
710 ext_mac = extract_unsigned_integer
711 (buf, register_size (gdbarch, MT_EXMAC_REGNUM));
716 /* Add them together. */
717 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
720 regnum = MT_MAC_PSEUDOREG_REGNUM;
721 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
723 print_spaces_filtered (15 - strlen (gdbarch_register_name
726 fputs_filtered ("0x", file);
727 print_longest (file, 'x', 0, newmac);
728 fputs_filtered ("\t", file);
729 print_longest (file, 'u', 0, newmac);
730 fputs_filtered ("\n", file);
733 default_print_registers_info (gdbarch, file, frame, regnum, all);
737 /* Set up the callee's arguments for an inferior function call. The
738 arguments are pushed on the stack or are placed in registers as
739 appropriate. It also sets up the return address (which points to
740 the call dummy breakpoint).
742 Returns the updated (and aligned) stack pointer. */
745 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
746 struct regcache *regcache, CORE_ADDR bp_addr,
747 int nargs, struct value **args, CORE_ADDR sp,
748 int struct_return, CORE_ADDR struct_addr)
751 gdb_byte buf[MT_MAX_STRUCT_SIZE];
752 int argreg = MT_1ST_ARGREG;
753 int split_param_len = 0;
759 /* First handle however many args we can fit into MT_1ST_ARGREG thru
761 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
764 typelen = TYPE_LENGTH (value_type (args[i]));
771 regcache_cooked_write_unsigned (regcache, argreg++,
772 extract_unsigned_integer
773 (value_contents (args[i]),
779 val = value_contents (args[i]);
782 if (argreg <= MT_LAST_ARGREG)
784 /* This word of the argument is passed in a register. */
785 regcache_cooked_write_unsigned (regcache, argreg++,
786 extract_unsigned_integer
793 /* Remainder of this arg must be passed on the stack
794 (deferred to do later). */
795 split_param_len = typelen;
796 memcpy (buf, val, typelen);
797 break; /* No more args can be handled in regs. */
802 /* By reverse engineering of gcc output, args bigger than
803 16 bytes go on the stack, and their address is passed
805 stack_dest -= typelen;
806 write_memory (stack_dest, value_contents (args[i]), typelen);
807 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
812 /* Next, the rest of the arguments go onto the stack, in reverse order. */
813 for (j = nargs - 1; j >= i; j--)
817 /* Right-justify the value in an aligned-length buffer. */
818 typelen = TYPE_LENGTH (value_type (args[j]));
819 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
820 val = alloca (typelen + slacklen);
821 memcpy (val, value_contents (args[j]), typelen);
822 memset (val + typelen, 0, slacklen);
823 /* Now write this data to the stack. */
824 stack_dest -= typelen + slacklen;
825 write_memory (stack_dest, val, typelen + slacklen);
828 /* Finally, if a param needs to be split between registers and stack,
829 write the second half to the stack now. */
830 if (split_param_len != 0)
832 stack_dest -= split_param_len;
833 write_memory (stack_dest, buf, split_param_len);
836 /* Set up return address (provided to us as bp_addr). */
837 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
839 /* Store struct return address, if given. */
840 if (struct_return && struct_addr != 0)
841 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
843 /* Set aside 16 bytes for the callee to save regs 1-4. */
846 /* Update the stack pointer. */
847 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
849 /* And that should do it. Return the new stack pointer. */
854 /* The 'unwind_cache' data structure. */
856 struct mt_unwind_cache
858 /* The previous frame's inner most stack address.
859 Used as this frame ID's stack_addr. */
861 CORE_ADDR frame_base;
865 /* Table indicating the location of each and every register. */
866 struct trad_frame_saved_reg *saved_regs;
869 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
872 static struct mt_unwind_cache *
873 mt_frame_unwind_cache (struct frame_info *next_frame,
874 void **this_prologue_cache)
876 struct gdbarch *gdbarch;
877 struct mt_unwind_cache *info;
878 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
879 unsigned long instr, upper_half, delayed_store = 0;
883 if ((*this_prologue_cache))
884 return (*this_prologue_cache);
886 gdbarch = get_frame_arch (next_frame);
887 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
888 (*this_prologue_cache) = info;
892 info->frame_base = 0;
893 info->frameless_p = 1;
894 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
896 /* Grab the frame-relative values of SP and FP, needed below.
897 The frame_saved_register function will find them on the
898 stack or in the registers as appropriate. */
899 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
900 fp = frame_unwind_register_unsigned (next_frame, MT_FP_REGNUM);
902 start_addr = frame_func_unwind (next_frame, NORMAL_FRAME);
904 /* Return early if GDB couldn't find the function. */
908 end_addr = frame_pc_unwind (next_frame);
909 prologue_end_addr = skip_prologue_using_sal (start_addr);
911 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
913 instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
914 if (delayed_store) /* previous instr was a push */
916 upper_half = delayed_store >> 16;
917 regnum = upper_half & 0xf;
918 offset = delayed_store & 0xffff;
919 switch (upper_half & 0xfff0)
921 case 0x43c0: /* push using frame pointer */
922 info->saved_regs[regnum].addr = offset;
924 case 0x43d0: /* push using stack pointer */
925 info->saved_regs[regnum].addr = offset;
935 case 0x12000000: /* NO-OP */
937 case 0x12ddc000: /* copy sp into fp */
938 info->frameless_p = 0; /* Record that the frame pointer is in use. */
941 upper_half = instr >> 16;
942 if (upper_half == 0x05dd || /* subi sp, sp, imm */
943 upper_half == 0x07dd) /* subui sp, sp, imm */
945 /* Record the frame size. */
946 info->framesize = instr & 0xffff;
949 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
950 (upper_half & 0xfff0) == 0x43d0) /* stack push */
952 /* Save this instruction, but don't record the
953 pushed register as 'saved' until we see the
954 next instruction. That's because of deferred stores
955 on this target -- GDB won't be able to read the register
956 from the stack until one instruction later. */
957 delayed_store = instr;
960 /* Not a prologue instruction. Is this the end of the prologue?
961 This is the most difficult decision; when to stop scanning.
963 If we have no line symbol, then the best thing we can do
964 is to stop scanning when we encounter an instruction that
965 is not likely to be a part of the prologue.
967 But if we do have a line symbol, then we should
968 keep scanning until we reach it (or we reach end_addr). */
970 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
971 continue; /* Keep scanning, recording saved_regs etc. */
973 break; /* Quit scanning: breakpoint can be set here. */
977 /* Special handling for the "saved" address of the SP:
978 The SP is of course never saved on the stack at all, so
979 by convention what we put here is simply the previous
980 _value_ of the SP (as opposed to an address where the
981 previous value would have been pushed). This will also
982 give us the frame base address. */
984 if (info->frameless_p)
986 info->frame_base = sp + info->framesize;
987 info->prev_sp = sp + info->framesize;
991 info->frame_base = fp + info->framesize;
992 info->prev_sp = fp + info->framesize;
994 /* Save prev_sp in saved_regs as a value, not as an address. */
995 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
997 /* Now convert frame offsets to actual addresses (not offsets). */
998 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
999 if (trad_frame_addr_p (info->saved_regs, regnum))
1000 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1002 /* The call instruction moves the caller's PC in the callee's RA reg.
1003 Since this is an unwind, do the reverse. Copy the location of RA
1004 into PC (the address / regnum) so that a request for PC will be
1005 converted into a request for the RA. */
1006 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1012 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1016 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1021 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1025 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1029 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1030 dummy frame. The frame ID's base needs to match the TOS value
1031 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1034 static struct frame_id
1035 mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1037 return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
1038 frame_pc_unwind (next_frame));
1041 /* Given a GDB frame, determine the address of the calling function's
1042 frame. This will be used to create a new GDB frame struct. */
1045 mt_frame_this_id (struct frame_info *next_frame,
1046 void **this_prologue_cache, struct frame_id *this_id)
1048 struct mt_unwind_cache *info =
1049 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1051 if (!(info == NULL || info->prev_sp == 0))
1052 (*this_id) = frame_id_build (info->prev_sp,
1053 frame_func_unwind (next_frame, NORMAL_FRAME));
1059 mt_frame_prev_register (struct frame_info *next_frame,
1060 void **this_prologue_cache,
1061 int regnum, int *optimizedp,
1062 enum lval_type *lvalp, CORE_ADDR *addrp,
1063 int *realnump, gdb_byte *bufferp)
1065 struct mt_unwind_cache *info =
1066 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1068 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1069 optimizedp, lvalp, addrp, realnump, bufferp);
1073 mt_frame_base_address (struct frame_info *next_frame,
1074 void **this_prologue_cache)
1076 struct mt_unwind_cache *info =
1077 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1079 return info->frame_base;
1082 /* This is a shared interface: the 'frame_unwind' object is what's
1083 returned by the 'sniffer' function, and in turn specifies how to
1084 get a frame's ID and prev_regs.
1086 This exports the 'prev_register' and 'this_id' methods. */
1088 static const struct frame_unwind mt_frame_unwind = {
1091 mt_frame_prev_register
1094 /* The sniffer is a registered function that identifies our family of
1095 frame unwind functions (this_id and prev_register). */
1097 static const struct frame_unwind *
1098 mt_frame_sniffer (struct frame_info *next_frame)
1100 return &mt_frame_unwind;
1103 /* Another shared interface: the 'frame_base' object specifies how to
1104 unwind a frame and secure the base addresses for frame objects
1107 static struct frame_base mt_frame_base = {
1109 mt_frame_base_address,
1110 mt_frame_base_address,
1111 mt_frame_base_address
1114 static struct gdbarch *
1115 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1117 struct gdbarch *gdbarch;
1119 /* Find a candidate among the list of pre-declared architectures. */
1120 arches = gdbarch_list_lookup_by_info (arches, &info);
1122 return arches->gdbarch;
1124 /* None found, create a new architecture from the information
1126 gdbarch = gdbarch_alloc (&info, NULL);
1128 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1129 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1130 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1132 set_gdbarch_register_name (gdbarch, mt_register_name);
1133 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1134 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1135 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1136 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1137 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1138 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1139 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1140 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1141 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1142 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1143 set_gdbarch_frame_args_skip (gdbarch, 0);
1144 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1145 set_gdbarch_register_type (gdbarch, mt_register_type);
1146 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1148 set_gdbarch_return_value (gdbarch, mt_return_value);
1149 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1151 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1153 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1155 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1157 /* Target builtin data types. */
1158 set_gdbarch_short_bit (gdbarch, 16);
1159 set_gdbarch_int_bit (gdbarch, 32);
1160 set_gdbarch_long_bit (gdbarch, 32);
1161 set_gdbarch_long_long_bit (gdbarch, 64);
1162 set_gdbarch_float_bit (gdbarch, 32);
1163 set_gdbarch_double_bit (gdbarch, 64);
1164 set_gdbarch_long_double_bit (gdbarch, 64);
1165 set_gdbarch_ptr_bit (gdbarch, 32);
1167 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1169 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1170 frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
1171 frame_base_set_default (gdbarch, &mt_frame_base);
1173 /* Register the 'unwind_pc' method. */
1174 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1175 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1177 /* Methods for saving / extracting a dummy frame's ID.
1178 The ID's stack address must match the SP value returned by
1179 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1180 set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
1186 _initialize_mt_tdep (void)
1188 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);