1 /* Target-dependent code for Morpho mt processor, for GDB.
3 Copyright (C) 2005-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
28 #include "arch-utils.h"
31 #include "reggroups.h"
33 #include "trad-frame.h"
35 #include "dwarf2-frame.h"
40 enum mt_arch_constants
42 MT_MAX_STRUCT_SIZE = 16
47 MT_R0_REGNUM, /* 32 bit regs. */
49 MT_1ST_ARGREG = MT_R1_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
71 /* Interrupt Enable pseudo-register, exported by SID. */
73 /* End of CPU regs. */
77 /* Co-processor registers. */
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
95 MT_BYPA_REGNUM, /* 32 bit regs. */
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
117 /* Number of real registers. */
120 /* Pseudo-registers. */
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
123 MT_COPRO_PSEUDOREG_ARRAY,
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
140 /* The tdep structure. */
143 /* ISA-specific types. */
144 struct type *copro_type;
148 /* Return name of register number specified by REGNUM. */
151 mt_register_name (struct gdbarch *gdbarch, int regnum)
153 static const char *const register_names[] = {
155 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
156 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
158 /* Co-processor regs. */
159 "", /* copro register. */
160 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
161 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
162 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
163 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
164 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
165 /* Pseudo-registers. */
168 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
169 * MT_COPRO_PSEUDOREG_DIM_1
170 * MT_COPRO_PSEUDOREG_DIM_2];
174 if (regnum < ARRAY_SIZE (register_names))
175 return register_names[regnum];
176 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
177 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
186 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
187 index = regnum % MT_COPRO_PSEUDOREG_REGS;
188 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
189 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
190 % MT_COPRO_PSEUDOREG_DIM_1);
192 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
193 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
194 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
197 stub = register_names[index + MT_CPR0_REGNUM];
200 array_names[regnum] = stub;
203 name = (char *) xmalloc (30);
204 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
205 array_names[regnum] = name;
210 /* Return the type of a coprocessor register. */
213 mt_copro_register_type (struct gdbarch *arch, int regnum)
217 case MT_INT_ENABLE_REGNUM:
218 case MT_ICHANNEL_REGNUM:
219 case MT_QCHANNEL_REGNUM:
220 case MT_ISCRAMB_REGNUM:
221 case MT_QSCRAMB_REGNUM:
222 return builtin_type (arch)->builtin_int32;
231 return builtin_type (arch)->builtin_int16;
232 case MT_EXMAC_REGNUM:
234 return builtin_type (arch)->builtin_uint32;
235 case MT_CONTEXT_REGNUM:
236 return builtin_type (arch)->builtin_long_long;
238 return builtin_type (arch)->builtin_unsigned_char;
240 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
241 return builtin_type (arch)->builtin_int16;
242 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
244 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
245 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
246 return builtin_type (arch)->builtin_uint64;
248 return builtin_type (arch)->builtin_uint32;
251 return builtin_type (arch)->builtin_uint32;
255 /* Given ARCH and a register number specified by REGNUM, return the
256 type of that register. */
259 mt_register_type (struct gdbarch *arch, int regnum)
261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
263 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
270 return builtin_type (arch)->builtin_func_ptr;
273 return builtin_type (arch)->builtin_data_ptr;
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
276 if (tdep->copro_type == NULL)
278 struct type *elt = builtin_type (arch)->builtin_int16;
279 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
281 return tdep->copro_type;
282 case MT_MAC_PSEUDOREG_REGNUM:
283 return mt_copro_register_type (arch,
285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
288 return builtin_type (arch)->builtin_int32;
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
300 internal_error (__FILE__, __LINE__,
301 _("mt_register_type: illegal register number %d"), regnum);
304 /* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
308 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
309 struct reggroup *group)
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
315 && mt_register_name (gdbarch, regnum)[0] != '\0');
317 if (group == general_reggroup)
318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
330 /* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
335 static enum return_value_convention
336 mt_return_value (struct gdbarch *gdbarch, struct value *function,
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
342 if (TYPE_LENGTH (type) > 4)
344 /* Return values > 4 bytes are returned in memory,
345 pointed to by R11. */
350 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
351 read_memory (addr, readbuf, TYPE_LENGTH (type));
358 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
359 write_memory (addr, writebuf, TYPE_LENGTH (type));
362 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
370 /* Return values of <= 4 bytes are returned in R11. */
371 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
372 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
378 if (TYPE_LENGTH (type) < 4)
381 /* Add leading zeros to the value. */
382 memset (buf, 0, sizeof (buf));
383 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
384 writebuf, TYPE_LENGTH (type));
385 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
387 else /* (TYPE_LENGTH (type) == 4 */
388 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
391 return RETURN_VALUE_REGISTER_CONVENTION;
395 /* If the input address, PC, is in a function prologue, return the
396 address of the end of the prologue, otherwise return the input
399 Note: PC is likely to be the function start, since this function
400 is mainly used for advancing a breakpoint to the first line, or
401 stepping to the first line when we have stepped into a function
405 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
408 CORE_ADDR func_addr = 0, func_end = 0;
409 const char *func_name;
412 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
414 struct symtab_and_line sal;
417 /* Found a function. */
418 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
419 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
421 /* Don't use this trick for assembly source files. */
422 sal = find_pc_line (func_addr, 0);
424 if (sal.end && sal.end < func_end)
426 /* Found a line number, use it as end of prologue. */
432 /* No function symbol, or no line symbol. Use prologue scanning method. */
435 instr = read_memory_unsigned_integer (pc, 4, byte_order);
436 if (instr == 0x12000000) /* nop */
438 if (instr == 0x12ddc000) /* copy sp into fp */
441 if (instr == 0x05dd) /* subi sp, sp, imm */
443 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
445 /* Not an obvious prologue instruction. */
452 /* The breakpoint instruction must be the same size as the smallest
453 instruction in the instruction set.
455 The BP for ms1 is defined as 0x68000000 (BREAK).
456 The BP for ms2 is defined as 0x69000000 (illegal). */
458 static const gdb_byte *
459 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
462 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
463 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
466 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
467 return ms2_breakpoint;
469 return ms1_breakpoint;
472 /* Select the correct coprocessor register bank. Return the pseudo
473 regnum we really want to read. */
476 mt_select_coprocessor (struct gdbarch *gdbarch,
477 struct regcache *regcache, int regno)
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
480 unsigned index, base;
483 /* Get the copro pseudo regnum. */
484 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
485 base = ((extract_signed_integer (&copro[0], 2, byte_order)
486 * MT_COPRO_PSEUDOREG_DIM_2)
487 + extract_signed_integer (&copro[2], 2, byte_order));
489 regno -= MT_COPRO_PSEUDOREG_ARRAY;
490 index = regno % MT_COPRO_PSEUDOREG_REGS;
491 regno /= MT_COPRO_PSEUDOREG_REGS;
494 /* Select the correct coprocessor register bank. Invalidate the
495 coprocessor register cache. */
498 store_signed_integer (&copro[0], 2, byte_order,
499 regno / MT_COPRO_PSEUDOREG_DIM_2);
500 store_signed_integer (&copro[2], 2, byte_order,
501 regno % MT_COPRO_PSEUDOREG_DIM_2);
502 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
504 /* We must flush the cache, as it is now invalid. */
505 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
506 regcache_invalidate (regcache, ix);
512 /* Fetch the pseudo registers:
514 There are two regular pseudo-registers:
515 1) The 'coprocessor' pseudo-register (which mirrors the
516 "real" coprocessor register sent by the target), and
517 2) The 'MAC' pseudo-register (which represents the union
518 of the original 32 bit target MAC register and the new
519 8-bit extended-MAC register).
521 Additionally there is an array of coprocessor registers which track
522 the coprocessor registers for each coprocessor. */
524 static enum register_status
525 mt_pseudo_register_read (struct gdbarch *gdbarch,
526 struct regcache *regcache, int regno, gdb_byte *buf)
528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
532 case MT_COPRO_REGNUM:
533 case MT_COPRO_PSEUDOREG_REGNUM:
534 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
536 case MT_MAC_PSEUDOREG_REGNUM:
537 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
538 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
540 enum register_status status;
541 ULONGEST oldmac = 0, ext_mac = 0;
544 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
545 if (status != REG_VALID)
548 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
549 if (status != REG_VALID)
553 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
554 store_signed_integer (buf, 8, byte_order, newmac);
559 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
563 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
565 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
566 return mt_pseudo_register_read (gdbarch, regcache,
567 MT_MAC_PSEUDOREG_REGNUM, buf);
568 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
569 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
578 /* Write the pseudo registers:
580 Mt pseudo-registers are stored directly to the target. The
581 'coprocessor' register is special, because when it is modified, all
582 the other coprocessor regs must be flushed from the reg cache. */
585 mt_pseudo_register_write (struct gdbarch *gdbarch,
586 struct regcache *regcache,
587 int regno, const gdb_byte *buf)
589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
594 case MT_COPRO_REGNUM:
595 case MT_COPRO_PSEUDOREG_REGNUM:
596 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
597 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
598 regcache_invalidate (regcache, i);
601 case MT_MAC_PSEUDOREG_REGNUM:
602 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
603 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
605 /* The 8-byte MAC pseudo-register must be broken down into two
606 32-byte registers. */
607 unsigned int oldmac, ext_mac;
610 newmac = extract_unsigned_integer (buf, 8, byte_order);
611 oldmac = newmac & 0xffffffff;
612 ext_mac = (newmac >> 32) & 0xff;
613 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
614 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
617 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
621 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
623 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
624 mt_pseudo_register_write (gdbarch, regcache,
625 MT_MAC_PSEUDOREG_REGNUM, buf);
626 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
627 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
634 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
636 /* Register size is 4 bytes. */
637 return align_down (sp, 4);
640 /* Implements the "info registers" command. When ``all'' is non-zero,
641 the coprocessor registers will be printed in addition to the rest
645 mt_registers_info (struct gdbarch *gdbarch,
646 struct ui_file *file,
647 struct frame_info *frame, int regnum, int all)
649 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
655 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
657 for (regnum = 0; regnum < lim; regnum++)
659 /* Don't display the Qchannel register since it will be displayed
660 along with Ichannel. (See below.) */
661 if (regnum == MT_QCHANNEL_REGNUM)
664 mt_registers_info (gdbarch, file, frame, regnum, all);
666 /* Display the Qchannel register immediately after Ichannel. */
667 if (regnum == MT_ICHANNEL_REGNUM)
668 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
673 if (regnum == MT_EXMAC_REGNUM)
675 else if (regnum == MT_CONTEXT_REGNUM)
677 /* Special output handling for 38-bit context register. */
679 unsigned int i, regsize;
681 regsize = register_size (gdbarch, regnum);
683 buff = (unsigned char *) alloca (regsize);
685 deprecated_frame_register_read (frame, regnum, buff);
687 fputs_filtered (gdbarch_register_name
688 (gdbarch, regnum), file);
689 print_spaces_filtered (15 - strlen (gdbarch_register_name
692 fputs_filtered ("0x", file);
694 for (i = 0; i < regsize; i++)
695 fprintf_filtered (file, "%02x", (unsigned int)
696 extract_unsigned_integer (buff + i, 1, byte_order));
697 fputs_filtered ("\t", file);
698 print_longest (file, 'd', 0,
699 extract_unsigned_integer (buff, regsize, byte_order));
700 fputs_filtered ("\n", file);
702 else if (regnum == MT_COPRO_REGNUM
703 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
705 /* Special output handling for the 'coprocessor' register. */
707 struct value_print_options opts;
709 buf = (gdb_byte *) alloca (register_size (gdbarch, MT_COPRO_REGNUM));
710 deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf);
712 regnum = MT_COPRO_PSEUDOREG_REGNUM;
713 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
715 print_spaces_filtered (15 - strlen (gdbarch_register_name
718 get_no_prettyformat_print_options (&opts);
720 val_print (register_type (gdbarch, regnum), buf,
722 &opts, current_language);
723 fputs_filtered ("\n", file);
725 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
727 ULONGEST oldmac, ext_mac, newmac;
728 gdb_byte buf[3 * sizeof (LONGEST)];
730 /* Get the two "real" mac registers. */
731 deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf);
732 oldmac = extract_unsigned_integer
733 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
734 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
735 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
737 deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf);
738 ext_mac = extract_unsigned_integer
739 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
744 /* Add them together. */
745 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
748 regnum = MT_MAC_PSEUDOREG_REGNUM;
749 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
751 print_spaces_filtered (15 - strlen (gdbarch_register_name
754 fputs_filtered ("0x", file);
755 print_longest (file, 'x', 0, newmac);
756 fputs_filtered ("\t", file);
757 print_longest (file, 'u', 0, newmac);
758 fputs_filtered ("\n", file);
761 default_print_registers_info (gdbarch, file, frame, regnum, all);
765 /* Set up the callee's arguments for an inferior function call. The
766 arguments are pushed on the stack or are placed in registers as
767 appropriate. It also sets up the return address (which points to
768 the call dummy breakpoint).
770 Returns the updated (and aligned) stack pointer. */
773 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
774 struct regcache *regcache, CORE_ADDR bp_addr,
775 int nargs, struct value **args, CORE_ADDR sp,
776 int struct_return, CORE_ADDR struct_addr)
779 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
780 gdb_byte buf[MT_MAX_STRUCT_SIZE];
781 int argreg = MT_1ST_ARGREG;
782 int split_param_len = 0;
788 /* First handle however many args we can fit into MT_1ST_ARGREG thru
790 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
793 typelen = TYPE_LENGTH (value_type (args[i]));
800 regcache_cooked_write_unsigned (regcache, argreg++,
801 extract_unsigned_integer
802 (value_contents (args[i]),
803 wordsize, byte_order));
808 val = value_contents (args[i]);
811 if (argreg <= MT_LAST_ARGREG)
813 /* This word of the argument is passed in a register. */
814 regcache_cooked_write_unsigned (regcache, argreg++,
815 extract_unsigned_integer
816 (val, wordsize, byte_order));
822 /* Remainder of this arg must be passed on the stack
823 (deferred to do later). */
824 split_param_len = typelen;
825 memcpy (buf, val, typelen);
826 break; /* No more args can be handled in regs. */
831 /* By reverse engineering of gcc output, args bigger than
832 16 bytes go on the stack, and their address is passed
834 stack_dest -= typelen;
835 write_memory (stack_dest, value_contents (args[i]), typelen);
836 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
841 /* Next, the rest of the arguments go onto the stack, in reverse order. */
842 for (j = nargs - 1; j >= i; j--)
845 struct cleanup *back_to;
846 const gdb_byte *contents = value_contents (args[j]);
848 /* Right-justify the value in an aligned-length buffer. */
849 typelen = TYPE_LENGTH (value_type (args[j]));
850 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
851 val = (gdb_byte *) xmalloc (typelen + slacklen);
852 back_to = make_cleanup (xfree, val);
853 memcpy (val, contents, typelen);
854 memset (val + typelen, 0, slacklen);
855 /* Now write this data to the stack. */
856 stack_dest -= typelen + slacklen;
857 write_memory (stack_dest, val, typelen + slacklen);
858 do_cleanups (back_to);
861 /* Finally, if a param needs to be split between registers and stack,
862 write the second half to the stack now. */
863 if (split_param_len != 0)
865 stack_dest -= split_param_len;
866 write_memory (stack_dest, buf, split_param_len);
869 /* Set up return address (provided to us as bp_addr). */
870 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
872 /* Store struct return address, if given. */
873 if (struct_return && struct_addr != 0)
874 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
876 /* Set aside 16 bytes for the callee to save regs 1-4. */
879 /* Update the stack pointer. */
880 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
882 /* And that should do it. Return the new stack pointer. */
887 /* The 'unwind_cache' data structure. */
889 struct mt_unwind_cache
891 /* The previous frame's inner most stack address.
892 Used as this frame ID's stack_addr. */
894 CORE_ADDR frame_base;
898 /* Table indicating the location of each and every register. */
899 struct trad_frame_saved_reg *saved_regs;
902 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
905 static struct mt_unwind_cache *
906 mt_frame_unwind_cache (struct frame_info *this_frame,
907 void **this_prologue_cache)
909 struct gdbarch *gdbarch;
910 struct mt_unwind_cache *info;
911 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
912 unsigned long instr, upper_half, delayed_store = 0;
916 if ((*this_prologue_cache))
917 return (struct mt_unwind_cache *) (*this_prologue_cache);
919 gdbarch = get_frame_arch (this_frame);
920 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
921 (*this_prologue_cache) = info;
925 info->frame_base = 0;
926 info->frameless_p = 1;
927 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
929 /* Grab the frame-relative values of SP and FP, needed below.
930 The frame_saved_register function will find them on the
931 stack or in the registers as appropriate. */
932 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
933 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
935 start_addr = get_frame_func (this_frame);
937 /* Return early if GDB couldn't find the function. */
941 end_addr = get_frame_pc (this_frame);
942 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
944 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
946 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
947 if (delayed_store) /* Previous instr was a push. */
949 upper_half = delayed_store >> 16;
950 regnum = upper_half & 0xf;
951 offset = delayed_store & 0xffff;
952 switch (upper_half & 0xfff0)
954 case 0x43c0: /* push using frame pointer. */
955 info->saved_regs[regnum].addr = offset;
957 case 0x43d0: /* push using stack pointer. */
958 info->saved_regs[regnum].addr = offset;
968 case 0x12000000: /* NO-OP */
970 case 0x12ddc000: /* copy sp into fp */
971 info->frameless_p = 0; /* Record that the frame
972 pointer is in use. */
975 upper_half = instr >> 16;
976 if (upper_half == 0x05dd || /* subi sp, sp, imm */
977 upper_half == 0x07dd) /* subui sp, sp, imm */
979 /* Record the frame size. */
980 info->framesize = instr & 0xffff;
983 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
984 (upper_half & 0xfff0) == 0x43d0) /* stack push */
986 /* Save this instruction, but don't record the
987 pushed register as 'saved' until we see the
988 next instruction. That's because of deferred stores
989 on this target -- GDB won't be able to read the register
990 from the stack until one instruction later. */
991 delayed_store = instr;
994 /* Not a prologue instruction. Is this the end of the prologue?
995 This is the most difficult decision; when to stop scanning.
997 If we have no line symbol, then the best thing we can do
998 is to stop scanning when we encounter an instruction that
999 is not likely to be a part of the prologue.
1001 But if we do have a line symbol, then we should
1002 keep scanning until we reach it (or we reach end_addr). */
1004 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
1005 continue; /* Keep scanning, recording saved_regs etc. */
1007 break; /* Quit scanning: breakpoint can be set here. */
1011 /* Special handling for the "saved" address of the SP:
1012 The SP is of course never saved on the stack at all, so
1013 by convention what we put here is simply the previous
1014 _value_ of the SP (as opposed to an address where the
1015 previous value would have been pushed). This will also
1016 give us the frame base address. */
1018 if (info->frameless_p)
1020 info->frame_base = sp + info->framesize;
1021 info->prev_sp = sp + info->framesize;
1025 info->frame_base = fp + info->framesize;
1026 info->prev_sp = fp + info->framesize;
1028 /* Save prev_sp in saved_regs as a value, not as an address. */
1029 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1031 /* Now convert frame offsets to actual addresses (not offsets). */
1032 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1033 if (trad_frame_addr_p (info->saved_regs, regnum))
1034 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1036 /* The call instruction moves the caller's PC in the callee's RA reg.
1037 Since this is an unwind, do the reverse. Copy the location of RA
1038 into PC (the address / regnum) so that a request for PC will be
1039 converted into a request for the RA. */
1040 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1046 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1050 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1055 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1059 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1063 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1064 frame. The frame ID's base needs to match the TOS value saved by
1065 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1067 static struct frame_id
1068 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1070 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1071 return frame_id_build (sp, get_frame_pc (this_frame));
1074 /* Given a GDB frame, determine the address of the calling function's
1075 frame. This will be used to create a new GDB frame struct. */
1078 mt_frame_this_id (struct frame_info *this_frame,
1079 void **this_prologue_cache, struct frame_id *this_id)
1081 struct mt_unwind_cache *info =
1082 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1084 if (!(info == NULL || info->prev_sp == 0))
1085 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1090 static struct value *
1091 mt_frame_prev_register (struct frame_info *this_frame,
1092 void **this_prologue_cache, int regnum)
1094 struct mt_unwind_cache *info =
1095 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1097 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1101 mt_frame_base_address (struct frame_info *this_frame,
1102 void **this_prologue_cache)
1104 struct mt_unwind_cache *info =
1105 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1107 return info->frame_base;
1110 /* This is a shared interface: the 'frame_unwind' object is what's
1111 returned by the 'sniffer' function, and in turn specifies how to
1112 get a frame's ID and prev_regs.
1114 This exports the 'prev_register' and 'this_id' methods. */
1116 static const struct frame_unwind mt_frame_unwind = {
1118 default_frame_unwind_stop_reason,
1120 mt_frame_prev_register,
1122 default_frame_sniffer
1125 /* Another shared interface: the 'frame_base' object specifies how to
1126 unwind a frame and secure the base addresses for frame objects
1129 static struct frame_base mt_frame_base = {
1131 mt_frame_base_address,
1132 mt_frame_base_address,
1133 mt_frame_base_address
1136 static struct gdbarch *
1137 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1139 struct gdbarch *gdbarch;
1140 struct gdbarch_tdep *tdep;
1142 /* Find a candidate among the list of pre-declared architectures. */
1143 arches = gdbarch_list_lookup_by_info (arches, &info);
1145 return arches->gdbarch;
1147 /* None found, create a new architecture from the information
1149 tdep = XCNEW (struct gdbarch_tdep);
1150 gdbarch = gdbarch_alloc (&info, tdep);
1152 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1153 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1154 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1156 set_gdbarch_register_name (gdbarch, mt_register_name);
1157 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1158 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1159 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1160 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1161 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1162 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1163 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1164 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1165 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1166 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1167 set_gdbarch_frame_args_skip (gdbarch, 0);
1168 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1169 set_gdbarch_register_type (gdbarch, mt_register_type);
1170 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1172 set_gdbarch_return_value (gdbarch, mt_return_value);
1173 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1175 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1177 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1179 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1181 /* Target builtin data types. */
1182 set_gdbarch_short_bit (gdbarch, 16);
1183 set_gdbarch_int_bit (gdbarch, 32);
1184 set_gdbarch_long_bit (gdbarch, 32);
1185 set_gdbarch_long_long_bit (gdbarch, 64);
1186 set_gdbarch_float_bit (gdbarch, 32);
1187 set_gdbarch_double_bit (gdbarch, 64);
1188 set_gdbarch_long_double_bit (gdbarch, 64);
1189 set_gdbarch_ptr_bit (gdbarch, 32);
1191 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1193 dwarf2_append_unwinders (gdbarch);
1194 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1195 frame_base_set_default (gdbarch, &mt_frame_base);
1197 /* Register the 'unwind_pc' method. */
1198 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1199 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1201 /* Methods for saving / extracting a dummy frame's ID.
1202 The ID's stack address must match the SP value returned by
1203 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1204 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1209 /* Provide a prototype to silence -Wmissing-prototypes. */
1210 extern initialize_file_ftype _initialize_mt_tdep;
1213 _initialize_mt_tdep (void)
1215 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);