1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
4 Copyright (C) 2012-2014 Free Software Foundation, Inc.
6 Contributed by Red Hat, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "arch-utils.h"
25 #include "prologue-value.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
42 /* Register Numbers. */
56 MSP430_R10_RAW_REGNUM,
57 MSP430_R11_RAW_REGNUM,
58 MSP430_R12_RAW_REGNUM,
59 MSP430_R13_RAW_REGNUM,
60 MSP430_R14_RAW_REGNUM,
61 MSP430_R15_RAW_REGNUM,
65 MSP430_PC_REGNUM = MSP430_NUM_REGS,
82 MSP430_NUM_TOTAL_REGS,
83 MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
88 /* TI MSP430 Architecture. */
91 /* TI MSP430X Architecture. */
97 /* The small code model limits code addresses to 16 bits. */
100 /* The large code model uses 20 bit addresses for function
101 pointers. These are stored in memory using four bytes (32 bits). */
105 /* Architecture specific data. */
109 /* The ELF header flags specify the multilib used. */
112 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
115 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
116 some point, we support different data models too, we'll probably
117 structure things so that we can combine values using logical
122 /* This structure holds the results of a prologue analysis. */
124 struct msp430_prologue
126 /* The offset from the frame base to the stack pointer --- always
129 Calling this a "size" is a bit misleading, but given that the
130 stack grows downwards, using offsets for everything keeps one
131 from going completely sign-crazy: you never change anything's
132 sign for an ADD instruction; always change the second operand's
133 sign for a SUB instruction; and everything takes care of
137 /* Non-zero if this function has initialized the frame pointer from
138 the stack pointer, zero otherwise. */
141 /* If has_frame_ptr is non-zero, this is the offset from the frame
142 base to where the frame pointer points. This is always zero or
144 int frame_ptr_offset;
146 /* The address of the first instruction at which the frame has been
147 set up and the arguments are where the debug info says they are
148 --- as best as we can tell. */
149 CORE_ADDR prologue_end;
151 /* reg_offset[R] is the offset from the CFA at which register R is
152 saved, or 1 if register R has not been saved. (Real values are
153 always zero or negative.) */
154 int reg_offset[MSP430_NUM_TOTAL_REGS];
157 /* Implement the "register_type" gdbarch method. */
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
162 if (reg_nr < MSP430_NUM_REGS)
163 return builtin_type (gdbarch)->builtin_uint32;
164 else if (reg_nr == MSP430_PC_REGNUM)
165 return builtin_type (gdbarch)->builtin_func_ptr;
167 return builtin_type (gdbarch)->builtin_uint16;
170 /* Implement another version of the "register_type" gdbarch method
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
176 if (reg_nr < MSP430_NUM_REGS)
177 return builtin_type (gdbarch)->builtin_uint32;
178 else if (reg_nr == MSP430_PC_REGNUM)
179 return builtin_type (gdbarch)->builtin_func_ptr;
181 return builtin_type (gdbarch)->builtin_uint32;
184 /* Implement the "register_name" gdbarch method. */
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
189 static const char *const reg_names[] = {
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 /* Pseudo registers. */
194 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
198 return reg_names[regnr];
201 /* Implement the "register_reggroup_p" gdbarch method. */
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 struct reggroup *group)
207 if (group == all_reggroup)
210 /* All other registers are saved and restored. */
211 if (group == save_reggroup || group == restore_reggroup)
212 return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
214 return group == general_reggroup;
217 /* Implement the "pseudo_register_read" gdbarch method. */
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 struct regcache *regcache,
222 int regnum, gdb_byte *buffer)
224 enum register_status status = REG_UNKNOWN;
226 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
230 int regsize = register_size (gdbarch, regnum);
231 int raw_regnum = regnum - MSP430_NUM_REGS;
233 status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
234 if (status == REG_VALID)
235 store_unsigned_integer (buffer, regsize, byte_order, val);
239 gdb_assert_not_reached ("invalid pseudo register number");
244 /* Implement the "pseudo_register_write" gdbarch method. */
247 msp430_pseudo_register_write (struct gdbarch *gdbarch,
248 struct regcache *regcache,
249 int regnum, const gdb_byte *buffer)
251 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
252 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
257 int regsize = register_size (gdbarch, regnum);
258 int raw_regnum = regnum - MSP430_NUM_REGS;
260 val = extract_unsigned_integer (buffer, regsize, byte_order);
261 regcache_raw_write_unsigned (regcache, raw_regnum, val);
265 gdb_assert_not_reached ("invalid pseudo register number");
268 /* Implement the `register_sim_regno' gdbarch method. */
271 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
273 gdb_assert (regnum < MSP430_NUM_REGS);
275 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
276 just want to override the default here which disallows register
277 numbers which have no names. */
281 /* Implement the "breakpoint_from_pc" gdbarch method. */
283 static const gdb_byte *
284 msp430_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
287 static gdb_byte breakpoint[] = { 0x43, 0x43 };
289 *lenptr = sizeof breakpoint;
293 /* Define a "handle" struct for fetching the next opcode. */
295 struct msp430_get_opcode_byte_handle
300 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
301 the memory address of the next byte to fetch. If successful,
302 the address in the handle is updated and the byte fetched is
303 returned as the value of the function. If not successful, -1
307 msp430_get_opcode_byte (void *handle)
309 struct msp430_get_opcode_byte_handle *opcdata = handle;
313 status = target_read_memory (opcdata->pc, &byte, 1);
323 /* Function for finding saved registers in a 'struct pv_area'; this
324 function is passed to pv_area_scan.
326 If VALUE is a saved register, ADDR says it was saved at a constant
327 offset from the frame base, and SIZE indicates that the whole
328 register was saved, record its offset. */
331 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
333 struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
335 if (value.kind == pvk_register
337 && pv_is_register (addr, MSP430_SP_REGNUM)
338 && size == register_size (target_gdbarch (), value.reg))
339 result->reg_offset[value.reg] = addr.k;
342 /* Analyze a prologue starting at START_PC, going no further than
343 LIMIT_PC. Fill in RESULT as appropriate. */
346 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
347 CORE_ADDR limit_pc, struct msp430_prologue *result)
349 CORE_ADDR pc, next_pc;
351 pv_t reg[MSP430_NUM_TOTAL_REGS];
352 struct pv_area *stack;
353 struct cleanup *back_to;
354 CORE_ADDR after_last_frame_setup_insn = start_pc;
355 int code_model = gdbarch_tdep (gdbarch)->code_model;
358 memset (result, 0, sizeof (*result));
360 for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
362 reg[rn] = pv_register (rn, 0);
363 result->reg_offset[rn] = 1;
366 stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
367 back_to = make_cleanup_free_pv_area (stack);
369 /* The call instruction has saved the return address on the stack. */
370 sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
371 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
372 pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
375 while (pc < limit_pc)
378 struct msp430_get_opcode_byte_handle opcode_handle;
379 MSP430_Opcode_Decoded opc;
381 opcode_handle.pc = pc;
382 bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
384 next_pc = pc + bytes_read;
386 if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
388 int rsrc = opc.op[0].reg;
390 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
391 pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
392 after_last_frame_setup_insn = next_pc;
394 else if (opc.id == MSO_push /* PUSHM */
395 && opc.op[0].type == MSP430_Operand_None
396 && opc.op[1].type == MSP430_Operand_Register)
398 int rsrc = opc.op[1].reg;
399 int count = opc.repeats + 1;
400 int size = opc.size == 16 ? 2 : 4;
404 reg[MSP430_SP_REGNUM]
405 = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
406 pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
410 after_last_frame_setup_insn = next_pc;
412 else if (opc.id == MSO_sub
413 && opc.op[0].type == MSP430_Operand_Register
414 && opc.op[0].reg == MSR_SP
415 && opc.op[1].type == MSP430_Operand_Immediate)
417 int addend = opc.op[1].addend;
419 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
421 after_last_frame_setup_insn = next_pc;
423 else if (opc.id == MSO_mov
424 && opc.op[0].type == MSP430_Operand_Immediate
425 && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
426 after_last_frame_setup_insn = next_pc;
429 /* Terminate the prologue scan. */
436 /* Is the frame size (offset, really) a known constant? */
437 if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
438 result->frame_size = reg[MSP430_SP_REGNUM].k;
440 /* Record where all the registers were saved. */
441 pv_area_scan (stack, check_for_saved, result);
443 result->prologue_end = after_last_frame_setup_insn;
445 do_cleanups (back_to);
448 /* Implement the "skip_prologue" gdbarch method. */
451 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
454 CORE_ADDR func_addr, func_end;
455 struct msp430_prologue p;
457 /* Try to find the extent of the function that contains PC. */
458 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
461 msp430_analyze_prologue (gdbarch, pc, func_end, &p);
462 return p.prologue_end;
465 /* Implement the "unwind_pc" gdbarch method. */
468 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
470 return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
473 /* Implement the "unwind_sp" gdbarch method. */
476 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
478 return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
481 /* Given a frame described by THIS_FRAME, decode the prologue of its
482 associated function if there is not cache entry as specified by
483 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
484 return that struct as the value of this function. */
486 static struct msp430_prologue *
487 msp430_analyze_frame_prologue (struct frame_info *this_frame,
488 void **this_prologue_cache)
490 if (!*this_prologue_cache)
492 CORE_ADDR func_start, stop_addr;
494 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
496 func_start = get_frame_func (this_frame);
497 stop_addr = get_frame_pc (this_frame);
499 /* If we couldn't find any function containing the PC, then
500 just initialize the prologue cache, but don't do anything. */
502 stop_addr = func_start;
504 msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
505 stop_addr, *this_prologue_cache);
508 return *this_prologue_cache;
511 /* Given a frame and a prologue cache, return this frame's base. */
514 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
516 struct msp430_prologue *p
517 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
518 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
520 return sp - p->frame_size;
523 /* Implement the "frame_this_id" method for unwinding frames. */
526 msp430_this_id (struct frame_info *this_frame,
527 void **this_prologue_cache, struct frame_id *this_id)
529 *this_id = frame_id_build (msp430_frame_base (this_frame,
530 this_prologue_cache),
531 get_frame_func (this_frame));
534 /* Implement the "frame_prev_register" method for unwinding frames. */
536 static struct value *
537 msp430_prev_register (struct frame_info *this_frame,
538 void **this_prologue_cache, int regnum)
540 struct msp430_prologue *p
541 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
542 CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
544 if (regnum == MSP430_SP_REGNUM)
545 return frame_unwind_got_constant (this_frame, regnum, frame_base);
547 /* If prologue analysis says we saved this register somewhere,
548 return a description of the stack slot holding it. */
549 else if (p->reg_offset[regnum] != 1)
551 struct value *rv = frame_unwind_got_memory (this_frame, regnum,
553 p->reg_offset[regnum]);
555 if (regnum == MSP430_PC_REGNUM)
557 ULONGEST pc = value_as_long (rv);
559 return frame_unwind_got_constant (this_frame, regnum, pc);
564 /* Otherwise, presume we haven't changed the value of this
565 register, and get it from the next frame. */
567 return frame_unwind_got_register (this_frame, regnum, regnum);
570 static const struct frame_unwind msp430_unwind = {
572 default_frame_unwind_stop_reason,
574 msp430_prev_register,
576 default_frame_sniffer
579 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
582 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
584 if (reg < MSP430_NUM_REGS)
585 return reg + MSP430_NUM_REGS;
588 warning (_("Unmapped DWARF Register #%d encountered."), reg);
593 /* Implement the "return_value" gdbarch method. */
595 static enum return_value_convention
596 msp430_return_value (struct gdbarch *gdbarch,
597 struct value *function,
598 struct type *valtype,
599 struct regcache *regcache,
600 gdb_byte *readbuf, const gdb_byte *writebuf)
602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
603 LONGEST valtype_len = TYPE_LENGTH (valtype);
604 int code_model = gdbarch_tdep (gdbarch)->code_model;
606 if (TYPE_LENGTH (valtype) > 8
607 || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
608 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
609 return RETURN_VALUE_STRUCT_CONVENTION;
614 int argreg = MSP430_R12_REGNUM;
617 while (valtype_len > 0)
621 if (code_model == MSP_LARGE_CODE_MODEL
622 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
627 regcache_cooked_read_unsigned (regcache, argreg, &u);
628 store_unsigned_integer (readbuf + offset, size, byte_order, u);
638 int argreg = MSP430_R12_REGNUM;
641 while (valtype_len > 0)
645 if (code_model == MSP_LARGE_CODE_MODEL
646 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
651 u = extract_unsigned_integer (writebuf + offset, size, byte_order);
652 regcache_cooked_write_unsigned (regcache, argreg, u);
659 return RETURN_VALUE_REGISTER_CONVENTION;
663 /* Implement the "frame_align" gdbarch method. */
666 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
668 return align_down (sp, 2);
672 /* Implement the "dummy_id" gdbarch method. */
674 static struct frame_id
675 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
678 frame_id_build (get_frame_register_unsigned
679 (this_frame, MSP430_SP_REGNUM),
680 get_frame_pc (this_frame));
684 /* Implement the "push_dummy_call" gdbarch method. */
687 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
696 int code_model = gdbarch_tdep (gdbarch)->code_model;
698 struct type *func_type = value_type (function);
700 /* Dereference function pointer types. */
701 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
702 func_type = TYPE_TARGET_TYPE (func_type);
704 /* The end result had better be a function or a method. */
705 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
706 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
708 /* We make two passes; the first does the stack allocation,
709 the second actually stores the arguments. */
710 for (write_pass = 0; write_pass <= 1; write_pass++)
713 int arg_reg = MSP430_R12_REGNUM;
714 int args_on_stack = 0;
717 sp = align_down (sp - sp_off, 4);
723 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
727 /* Push the arguments. */
728 for (i = 0; i < nargs; i++)
730 struct value *arg = args[i];
731 const gdb_byte *arg_bits = value_contents_all (arg);
732 struct type *arg_type = check_typedef (value_type (arg));
733 ULONGEST arg_size = TYPE_LENGTH (arg_type);
735 int current_arg_on_stack;
737 current_arg_on_stack = 0;
739 if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
740 || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
742 /* Aggregates of any size are passed by reference. */
743 gdb_byte struct_addr[4];
745 store_unsigned_integer (struct_addr, 4, byte_order,
746 value_address (arg));
747 arg_bits = struct_addr;
748 arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
752 /* Scalars bigger than 8 bytes such as complex doubles are passed
755 current_arg_on_stack = 1;
759 for (offset = 0; offset < arg_size; offset += 2)
761 /* The condition below prevents 8 byte scalars from being split
762 between registers and memory (stack). It also prevents other
763 splits once the stack has been written to. */
764 if (!current_arg_on_stack
766 + ((arg_size == 8 || args_on_stack)
767 ? ((arg_size - offset) / 2 - 1)
768 : 0) <= MSP430_R15_REGNUM))
772 if (code_model == MSP_LARGE_CODE_MODEL
773 && TYPE_CODE (arg_type) == TYPE_CODE_PTR)
775 /* Pointer arguments using large memory model are passed
776 using entire register. */
783 regcache_cooked_write_unsigned (regcache, arg_reg,
784 extract_unsigned_integer
785 (arg_bits + offset, size,
793 write_memory (sp + sp_off, arg_bits + offset, 2);
797 current_arg_on_stack = 1;
803 /* Keep track of the stack address prior to pushing the return address.
804 This is the value that we'll return. */
807 /* Push the return address. */
809 int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
812 write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
815 /* Update the stack pointer. */
816 regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
821 /* In order to keep code size small, the compiler may create epilogue
822 code through which more than one function epilogue is routed. I.e.
823 the epilogue and return may just be a branch to some common piece of
824 code which is responsible for tearing down the frame and performing
825 the return. These epilog (label) names will have the common prefix
828 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
830 /* Implement the "in_return_stub" gdbarch method. */
833 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
837 && strncmp (msp430_epilog_name_prefix, name,
838 strlen (msp430_epilog_name_prefix)) == 0);
841 /* Implement the "skip_trampoline_code" gdbarch method. */
843 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
845 struct bound_minimal_symbol bms;
846 const char *stub_name;
847 struct gdbarch *gdbarch = get_frame_arch (frame);
849 bms = lookup_minimal_symbol_by_pc (pc);
853 stub_name = SYMBOL_LINKAGE_NAME (bms.minsym);
855 if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
856 && msp430_in_return_stub (gdbarch, pc, stub_name))
858 CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
860 return read_memory_integer
861 (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
862 2, gdbarch_byte_order (gdbarch));
868 /* Allocate and initialize a gdbarch object. */
870 static struct gdbarch *
871 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
873 struct gdbarch *gdbarch;
874 struct gdbarch_tdep *tdep;
875 int elf_flags, isa, code_model;
877 /* Extract the elf_flags if available. */
878 if (info.abfd != NULL
879 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
880 elf_flags = elf_elfheader (info.abfd)->e_flags;
884 if (info.abfd != NULL)
885 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
886 OFBA_MSPABI_Tag_ISA))
889 isa = MSP_ISA_MSP430;
890 code_model = MSP_SMALL_CODE_MODEL;
893 isa = MSP_ISA_MSP430X;
894 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
895 OFBA_MSPABI_Tag_Code_Model))
898 code_model = MSP_SMALL_CODE_MODEL;
901 code_model = MSP_LARGE_CODE_MODEL;
904 internal_error (__FILE__, __LINE__,
905 _("Unknown msp430x code memory model"));
910 /* This can happen when loading a previously dumped data structure.
911 Use the ISA and code model from the current architecture, provided
914 struct gdbarch *ca = get_current_arch ();
915 if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
917 struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
919 elf_flags = ca_tdep->elf_flags;
921 code_model = ca_tdep->code_model;
924 /* Otherwise, fall through... */
927 error (_("Unknown msp430 isa"));
932 isa = MSP_ISA_MSP430;
933 code_model = MSP_SMALL_CODE_MODEL;
937 /* Try to find the architecture in the list of already defined
939 for (arches = gdbarch_list_lookup_by_info (arches, &info);
941 arches = gdbarch_list_lookup_by_info (arches->next, &info))
943 struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
945 if (candidate_tdep->elf_flags != elf_flags
946 || candidate_tdep->isa != isa
947 || candidate_tdep->code_model != code_model)
950 return arches->gdbarch;
953 /* None found, create a new architecture from the information
955 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
956 gdbarch = gdbarch_alloc (&info, tdep);
957 tdep->elf_flags = elf_flags;
959 tdep->code_model = code_model;
962 set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
963 set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
964 set_gdbarch_register_name (gdbarch, msp430_register_name);
965 if (isa == MSP_ISA_MSP430)
966 set_gdbarch_register_type (gdbarch, msp430_register_type);
968 set_gdbarch_register_type (gdbarch, msp430x_register_type);
969 set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
970 set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
971 set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
972 set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
973 set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
974 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
975 set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
978 set_gdbarch_char_signed (gdbarch, 0);
979 set_gdbarch_short_bit (gdbarch, 16);
980 set_gdbarch_int_bit (gdbarch, 16);
981 set_gdbarch_long_bit (gdbarch, 32);
982 set_gdbarch_long_long_bit (gdbarch, 64);
983 if (code_model == MSP_SMALL_CODE_MODEL)
985 set_gdbarch_ptr_bit (gdbarch, 16);
986 set_gdbarch_addr_bit (gdbarch, 16);
988 else /* MSP_LARGE_CODE_MODEL */
990 set_gdbarch_ptr_bit (gdbarch, 32);
991 set_gdbarch_addr_bit (gdbarch, 32);
993 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
994 set_gdbarch_float_bit (gdbarch, 32);
995 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
996 set_gdbarch_double_bit (gdbarch, 64);
997 set_gdbarch_long_double_bit (gdbarch, 64);
998 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
999 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1002 set_gdbarch_breakpoint_from_pc (gdbarch, msp430_breakpoint_from_pc);
1003 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1006 set_gdbarch_print_insn (gdbarch, print_insn_msp430);
1008 /* Frames, prologues, etc. */
1009 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1010 set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
1011 set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
1012 set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1013 set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1014 dwarf2_append_unwinders (gdbarch);
1015 frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1017 /* Dummy frames, return values. */
1018 set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1019 set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1020 set_gdbarch_return_value (gdbarch, msp430_return_value);
1023 set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1024 set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1026 /* Virtual tables. */
1027 set_gdbarch_vbit_in_delta (gdbarch, 0);
1032 /* -Wmissing-prototypes */
1033 extern initialize_file_ftype _initialize_msp430_tdep;
1035 /* Register the initialization routine. */
1038 _initialize_msp430_tdep (void)
1040 register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);