1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
4 Copyright (C) 2012-2015 Free Software Foundation, Inc.
6 Contributed by Red Hat, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "arch-utils.h"
25 #include "prologue-value.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
42 /* Register Numbers. */
56 MSP430_R10_RAW_REGNUM,
57 MSP430_R11_RAW_REGNUM,
58 MSP430_R12_RAW_REGNUM,
59 MSP430_R13_RAW_REGNUM,
60 MSP430_R14_RAW_REGNUM,
61 MSP430_R15_RAW_REGNUM,
65 MSP430_PC_REGNUM = MSP430_NUM_REGS,
82 MSP430_NUM_TOTAL_REGS,
83 MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
88 /* TI MSP430 Architecture. */
91 /* TI MSP430X Architecture. */
97 /* The small code model limits code addresses to 16 bits. */
100 /* The large code model uses 20 bit addresses for function
101 pointers. These are stored in memory using four bytes (32 bits). */
105 /* Architecture specific data. */
109 /* The ELF header flags specify the multilib used. */
112 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
115 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
116 some point, we support different data models too, we'll probably
117 structure things so that we can combine values using logical
122 /* This structure holds the results of a prologue analysis. */
124 struct msp430_prologue
126 /* The offset from the frame base to the stack pointer --- always
129 Calling this a "size" is a bit misleading, but given that the
130 stack grows downwards, using offsets for everything keeps one
131 from going completely sign-crazy: you never change anything's
132 sign for an ADD instruction; always change the second operand's
133 sign for a SUB instruction; and everything takes care of
137 /* Non-zero if this function has initialized the frame pointer from
138 the stack pointer, zero otherwise. */
141 /* If has_frame_ptr is non-zero, this is the offset from the frame
142 base to where the frame pointer points. This is always zero or
144 int frame_ptr_offset;
146 /* The address of the first instruction at which the frame has been
147 set up and the arguments are where the debug info says they are
148 --- as best as we can tell. */
149 CORE_ADDR prologue_end;
151 /* reg_offset[R] is the offset from the CFA at which register R is
152 saved, or 1 if register R has not been saved. (Real values are
153 always zero or negative.) */
154 int reg_offset[MSP430_NUM_TOTAL_REGS];
157 /* Implement the "register_type" gdbarch method. */
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
162 if (reg_nr < MSP430_NUM_REGS)
163 return builtin_type (gdbarch)->builtin_uint32;
164 else if (reg_nr == MSP430_PC_REGNUM)
165 return builtin_type (gdbarch)->builtin_func_ptr;
167 return builtin_type (gdbarch)->builtin_uint16;
170 /* Implement another version of the "register_type" gdbarch method
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
176 if (reg_nr < MSP430_NUM_REGS)
177 return builtin_type (gdbarch)->builtin_uint32;
178 else if (reg_nr == MSP430_PC_REGNUM)
179 return builtin_type (gdbarch)->builtin_func_ptr;
181 return builtin_type (gdbarch)->builtin_uint32;
184 /* Implement the "register_name" gdbarch method. */
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
189 static const char *const reg_names[] = {
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 /* Pseudo registers. */
194 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
198 return reg_names[regnr];
201 /* Implement the "register_reggroup_p" gdbarch method. */
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 struct reggroup *group)
207 if (group == all_reggroup)
210 /* All other registers are saved and restored. */
211 if (group == save_reggroup || group == restore_reggroup)
212 return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
214 return group == general_reggroup;
217 /* Implement the "pseudo_register_read" gdbarch method. */
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 struct regcache *regcache,
222 int regnum, gdb_byte *buffer)
224 enum register_status status = REG_UNKNOWN;
226 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
230 int regsize = register_size (gdbarch, regnum);
231 int raw_regnum = regnum - MSP430_NUM_REGS;
233 status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
234 if (status == REG_VALID)
235 store_unsigned_integer (buffer, regsize, byte_order, val);
239 gdb_assert_not_reached ("invalid pseudo register number");
244 /* Implement the "pseudo_register_write" gdbarch method. */
247 msp430_pseudo_register_write (struct gdbarch *gdbarch,
248 struct regcache *regcache,
249 int regnum, const gdb_byte *buffer)
251 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
252 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
257 int regsize = register_size (gdbarch, regnum);
258 int raw_regnum = regnum - MSP430_NUM_REGS;
260 val = extract_unsigned_integer (buffer, regsize, byte_order);
261 regcache_raw_write_unsigned (regcache, raw_regnum, val);
265 gdb_assert_not_reached ("invalid pseudo register number");
268 /* Implement the `register_sim_regno' gdbarch method. */
271 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
273 gdb_assert (regnum < MSP430_NUM_REGS);
275 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
276 just want to override the default here which disallows register
277 numbers which have no names. */
281 /* Implement the "breakpoint_from_pc" gdbarch method. */
283 static const gdb_byte *
284 msp430_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
287 static gdb_byte breakpoint[] = { 0x43, 0x43 };
289 *lenptr = sizeof breakpoint;
293 /* Define a "handle" struct for fetching the next opcode. */
295 struct msp430_get_opcode_byte_handle
300 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
301 the memory address of the next byte to fetch. If successful,
302 the address in the handle is updated and the byte fetched is
303 returned as the value of the function. If not successful, -1
307 msp430_get_opcode_byte (void *handle)
309 struct msp430_get_opcode_byte_handle *opcdata
310 = (struct msp430_get_opcode_byte_handle *) handle;
314 status = target_read_memory (opcdata->pc, &byte, 1);
324 /* Function for finding saved registers in a 'struct pv_area'; this
325 function is passed to pv_area_scan.
327 If VALUE is a saved register, ADDR says it was saved at a constant
328 offset from the frame base, and SIZE indicates that the whole
329 register was saved, record its offset. */
332 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
334 struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
336 if (value.kind == pvk_register
338 && pv_is_register (addr, MSP430_SP_REGNUM)
339 && size == register_size (target_gdbarch (), value.reg))
340 result->reg_offset[value.reg] = addr.k;
343 /* Analyze a prologue starting at START_PC, going no further than
344 LIMIT_PC. Fill in RESULT as appropriate. */
347 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
348 CORE_ADDR limit_pc, struct msp430_prologue *result)
350 CORE_ADDR pc, next_pc;
352 pv_t reg[MSP430_NUM_TOTAL_REGS];
353 struct pv_area *stack;
354 struct cleanup *back_to;
355 CORE_ADDR after_last_frame_setup_insn = start_pc;
356 int code_model = gdbarch_tdep (gdbarch)->code_model;
359 memset (result, 0, sizeof (*result));
361 for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
363 reg[rn] = pv_register (rn, 0);
364 result->reg_offset[rn] = 1;
367 stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
368 back_to = make_cleanup_free_pv_area (stack);
370 /* The call instruction has saved the return address on the stack. */
371 sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
372 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
373 pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
376 while (pc < limit_pc)
379 struct msp430_get_opcode_byte_handle opcode_handle;
380 MSP430_Opcode_Decoded opc;
382 opcode_handle.pc = pc;
383 bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
385 next_pc = pc + bytes_read;
387 if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
389 int rsrc = opc.op[0].reg;
391 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
392 pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
393 after_last_frame_setup_insn = next_pc;
395 else if (opc.id == MSO_push /* PUSHM */
396 && opc.op[0].type == MSP430_Operand_None
397 && opc.op[1].type == MSP430_Operand_Register)
399 int rsrc = opc.op[1].reg;
400 int count = opc.repeats + 1;
401 int size = opc.size == 16 ? 2 : 4;
405 reg[MSP430_SP_REGNUM]
406 = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
407 pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
411 after_last_frame_setup_insn = next_pc;
413 else if (opc.id == MSO_sub
414 && opc.op[0].type == MSP430_Operand_Register
415 && opc.op[0].reg == MSR_SP
416 && opc.op[1].type == MSP430_Operand_Immediate)
418 int addend = opc.op[1].addend;
420 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
422 after_last_frame_setup_insn = next_pc;
424 else if (opc.id == MSO_mov
425 && opc.op[0].type == MSP430_Operand_Immediate
426 && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
427 after_last_frame_setup_insn = next_pc;
430 /* Terminate the prologue scan. */
437 /* Is the frame size (offset, really) a known constant? */
438 if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
439 result->frame_size = reg[MSP430_SP_REGNUM].k;
441 /* Record where all the registers were saved. */
442 pv_area_scan (stack, check_for_saved, result);
444 result->prologue_end = after_last_frame_setup_insn;
446 do_cleanups (back_to);
449 /* Implement the "skip_prologue" gdbarch method. */
452 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
455 CORE_ADDR func_addr, func_end;
456 struct msp430_prologue p;
458 /* Try to find the extent of the function that contains PC. */
459 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
462 msp430_analyze_prologue (gdbarch, pc, func_end, &p);
463 return p.prologue_end;
466 /* Implement the "unwind_pc" gdbarch method. */
469 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
471 return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
474 /* Implement the "unwind_sp" gdbarch method. */
477 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
479 return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
482 /* Given a frame described by THIS_FRAME, decode the prologue of its
483 associated function if there is not cache entry as specified by
484 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
485 return that struct as the value of this function. */
487 static struct msp430_prologue *
488 msp430_analyze_frame_prologue (struct frame_info *this_frame,
489 void **this_prologue_cache)
491 if (!*this_prologue_cache)
493 CORE_ADDR func_start, stop_addr;
495 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
497 func_start = get_frame_func (this_frame);
498 stop_addr = get_frame_pc (this_frame);
500 /* If we couldn't find any function containing the PC, then
501 just initialize the prologue cache, but don't do anything. */
503 stop_addr = func_start;
505 msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
507 (struct msp430_prologue *) *this_prologue_cache);
510 return (struct msp430_prologue *) *this_prologue_cache;
513 /* Given a frame and a prologue cache, return this frame's base. */
516 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
518 struct msp430_prologue *p
519 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
520 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
522 return sp - p->frame_size;
525 /* Implement the "frame_this_id" method for unwinding frames. */
528 msp430_this_id (struct frame_info *this_frame,
529 void **this_prologue_cache, struct frame_id *this_id)
531 *this_id = frame_id_build (msp430_frame_base (this_frame,
532 this_prologue_cache),
533 get_frame_func (this_frame));
536 /* Implement the "frame_prev_register" method for unwinding frames. */
538 static struct value *
539 msp430_prev_register (struct frame_info *this_frame,
540 void **this_prologue_cache, int regnum)
542 struct msp430_prologue *p
543 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
544 CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
546 if (regnum == MSP430_SP_REGNUM)
547 return frame_unwind_got_constant (this_frame, regnum, frame_base);
549 /* If prologue analysis says we saved this register somewhere,
550 return a description of the stack slot holding it. */
551 else if (p->reg_offset[regnum] != 1)
553 struct value *rv = frame_unwind_got_memory (this_frame, regnum,
555 p->reg_offset[regnum]);
557 if (regnum == MSP430_PC_REGNUM)
559 ULONGEST pc = value_as_long (rv);
561 return frame_unwind_got_constant (this_frame, regnum, pc);
566 /* Otherwise, presume we haven't changed the value of this
567 register, and get it from the next frame. */
569 return frame_unwind_got_register (this_frame, regnum, regnum);
572 static const struct frame_unwind msp430_unwind = {
574 default_frame_unwind_stop_reason,
576 msp430_prev_register,
578 default_frame_sniffer
581 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
584 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
586 if (reg < MSP430_NUM_REGS)
587 return reg + MSP430_NUM_REGS;
590 warning (_("Unmapped DWARF Register #%d encountered."), reg);
595 /* Implement the "return_value" gdbarch method. */
597 static enum return_value_convention
598 msp430_return_value (struct gdbarch *gdbarch,
599 struct value *function,
600 struct type *valtype,
601 struct regcache *regcache,
602 gdb_byte *readbuf, const gdb_byte *writebuf)
604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
605 LONGEST valtype_len = TYPE_LENGTH (valtype);
606 int code_model = gdbarch_tdep (gdbarch)->code_model;
608 if (TYPE_LENGTH (valtype) > 8
609 || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
610 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
611 return RETURN_VALUE_STRUCT_CONVENTION;
616 int argreg = MSP430_R12_REGNUM;
619 while (valtype_len > 0)
623 if (code_model == MSP_LARGE_CODE_MODEL
624 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
629 regcache_cooked_read_unsigned (regcache, argreg, &u);
630 store_unsigned_integer (readbuf + offset, size, byte_order, u);
640 int argreg = MSP430_R12_REGNUM;
643 while (valtype_len > 0)
647 if (code_model == MSP_LARGE_CODE_MODEL
648 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
653 u = extract_unsigned_integer (writebuf + offset, size, byte_order);
654 regcache_cooked_write_unsigned (regcache, argreg, u);
661 return RETURN_VALUE_REGISTER_CONVENTION;
665 /* Implement the "frame_align" gdbarch method. */
668 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
670 return align_down (sp, 2);
674 /* Implement the "dummy_id" gdbarch method. */
676 static struct frame_id
677 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
680 frame_id_build (get_frame_register_unsigned
681 (this_frame, MSP430_SP_REGNUM),
682 get_frame_pc (this_frame));
686 /* Implement the "push_dummy_call" gdbarch method. */
689 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
690 struct regcache *regcache, CORE_ADDR bp_addr,
691 int nargs, struct value **args, CORE_ADDR sp,
692 int struct_return, CORE_ADDR struct_addr)
694 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
698 int code_model = gdbarch_tdep (gdbarch)->code_model;
700 struct type *func_type = value_type (function);
702 /* Dereference function pointer types. */
703 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
704 func_type = TYPE_TARGET_TYPE (func_type);
706 /* The end result had better be a function or a method. */
707 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
708 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
710 /* We make two passes; the first does the stack allocation,
711 the second actually stores the arguments. */
712 for (write_pass = 0; write_pass <= 1; write_pass++)
715 int arg_reg = MSP430_R12_REGNUM;
716 int args_on_stack = 0;
719 sp = align_down (sp - sp_off, 4);
725 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
729 /* Push the arguments. */
730 for (i = 0; i < nargs; i++)
732 struct value *arg = args[i];
733 const gdb_byte *arg_bits = value_contents_all (arg);
734 struct type *arg_type = check_typedef (value_type (arg));
735 ULONGEST arg_size = TYPE_LENGTH (arg_type);
737 int current_arg_on_stack;
739 current_arg_on_stack = 0;
741 if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
742 || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
744 /* Aggregates of any size are passed by reference. */
745 gdb_byte struct_addr[4];
747 store_unsigned_integer (struct_addr, 4, byte_order,
748 value_address (arg));
749 arg_bits = struct_addr;
750 arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
754 /* Scalars bigger than 8 bytes such as complex doubles are passed
757 current_arg_on_stack = 1;
761 for (offset = 0; offset < arg_size; offset += 2)
763 /* The condition below prevents 8 byte scalars from being split
764 between registers and memory (stack). It also prevents other
765 splits once the stack has been written to. */
766 if (!current_arg_on_stack
768 + ((arg_size == 8 || args_on_stack)
769 ? ((arg_size - offset) / 2 - 1)
770 : 0) <= MSP430_R15_REGNUM))
774 if (code_model == MSP_LARGE_CODE_MODEL
775 && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
776 || TYPE_CODE (arg_type) == TYPE_CODE_REF
777 || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
778 || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
780 /* When using the large memory model, pointer,
781 reference, struct, and union arguments are
782 passed using the entire register. (As noted
783 earlier, aggregates are always passed by
791 regcache_cooked_write_unsigned (regcache, arg_reg,
792 extract_unsigned_integer
793 (arg_bits + offset, size,
801 write_memory (sp + sp_off, arg_bits + offset, 2);
805 current_arg_on_stack = 1;
811 /* Keep track of the stack address prior to pushing the return address.
812 This is the value that we'll return. */
815 /* Push the return address. */
817 int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
820 write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
823 /* Update the stack pointer. */
824 regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
829 /* In order to keep code size small, the compiler may create epilogue
830 code through which more than one function epilogue is routed. I.e.
831 the epilogue and return may just be a branch to some common piece of
832 code which is responsible for tearing down the frame and performing
833 the return. These epilog (label) names will have the common prefix
836 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
838 /* Implement the "in_return_stub" gdbarch method. */
841 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
845 && startswith (name, msp430_epilog_name_prefix));
848 /* Implement the "skip_trampoline_code" gdbarch method. */
850 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
852 struct bound_minimal_symbol bms;
853 const char *stub_name;
854 struct gdbarch *gdbarch = get_frame_arch (frame);
856 bms = lookup_minimal_symbol_by_pc (pc);
860 stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
862 if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
863 && msp430_in_return_stub (gdbarch, pc, stub_name))
865 CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
867 return read_memory_integer
868 (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
869 2, gdbarch_byte_order (gdbarch));
875 /* Allocate and initialize a gdbarch object. */
877 static struct gdbarch *
878 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
880 struct gdbarch *gdbarch;
881 struct gdbarch_tdep *tdep;
882 int elf_flags, isa, code_model;
884 /* Extract the elf_flags if available. */
885 if (info.abfd != NULL
886 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
887 elf_flags = elf_elfheader (info.abfd)->e_flags;
891 if (info.abfd != NULL)
892 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
893 OFBA_MSPABI_Tag_ISA))
896 isa = MSP_ISA_MSP430;
897 code_model = MSP_SMALL_CODE_MODEL;
900 isa = MSP_ISA_MSP430X;
901 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
902 OFBA_MSPABI_Tag_Code_Model))
905 code_model = MSP_SMALL_CODE_MODEL;
908 code_model = MSP_LARGE_CODE_MODEL;
911 internal_error (__FILE__, __LINE__,
912 _("Unknown msp430x code memory model"));
917 /* This can happen when loading a previously dumped data structure.
918 Use the ISA and code model from the current architecture, provided
921 struct gdbarch *ca = get_current_arch ();
922 if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
924 struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
926 elf_flags = ca_tdep->elf_flags;
928 code_model = ca_tdep->code_model;
931 /* Otherwise, fall through... */
934 error (_("Unknown msp430 isa"));
939 isa = MSP_ISA_MSP430;
940 code_model = MSP_SMALL_CODE_MODEL;
944 /* Try to find the architecture in the list of already defined
946 for (arches = gdbarch_list_lookup_by_info (arches, &info);
948 arches = gdbarch_list_lookup_by_info (arches->next, &info))
950 struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
952 if (candidate_tdep->elf_flags != elf_flags
953 || candidate_tdep->isa != isa
954 || candidate_tdep->code_model != code_model)
957 return arches->gdbarch;
960 /* None found, create a new architecture from the information
962 tdep = XNEW (struct gdbarch_tdep);
963 gdbarch = gdbarch_alloc (&info, tdep);
964 tdep->elf_flags = elf_flags;
966 tdep->code_model = code_model;
969 set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
970 set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
971 set_gdbarch_register_name (gdbarch, msp430_register_name);
972 if (isa == MSP_ISA_MSP430)
973 set_gdbarch_register_type (gdbarch, msp430_register_type);
975 set_gdbarch_register_type (gdbarch, msp430x_register_type);
976 set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
977 set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
978 set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
979 set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
980 set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
981 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
982 set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
985 set_gdbarch_char_signed (gdbarch, 0);
986 set_gdbarch_short_bit (gdbarch, 16);
987 set_gdbarch_int_bit (gdbarch, 16);
988 set_gdbarch_long_bit (gdbarch, 32);
989 set_gdbarch_long_long_bit (gdbarch, 64);
990 if (code_model == MSP_SMALL_CODE_MODEL)
992 set_gdbarch_ptr_bit (gdbarch, 16);
993 set_gdbarch_addr_bit (gdbarch, 16);
995 else /* MSP_LARGE_CODE_MODEL */
997 set_gdbarch_ptr_bit (gdbarch, 32);
998 set_gdbarch_addr_bit (gdbarch, 32);
1000 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1001 set_gdbarch_float_bit (gdbarch, 32);
1002 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1003 set_gdbarch_double_bit (gdbarch, 64);
1004 set_gdbarch_long_double_bit (gdbarch, 64);
1005 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1006 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1009 set_gdbarch_breakpoint_from_pc (gdbarch, msp430_breakpoint_from_pc);
1010 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1013 set_gdbarch_print_insn (gdbarch, print_insn_msp430);
1015 /* Frames, prologues, etc. */
1016 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1017 set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
1018 set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
1019 set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1020 set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1021 dwarf2_append_unwinders (gdbarch);
1022 frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1024 /* Dummy frames, return values. */
1025 set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1026 set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1027 set_gdbarch_return_value (gdbarch, msp430_return_value);
1030 set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1031 set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1033 /* Virtual tables. */
1034 set_gdbarch_vbit_in_delta (gdbarch, 0);
1039 /* -Wmissing-prototypes */
1040 extern initialize_file_ftype _initialize_msp430_tdep;
1042 /* Register the initialization routine. */
1045 _initialize_msp430_tdep (void)
1047 register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);