1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
4 Copyright (C) 2012-2018 Free Software Foundation, Inc.
6 Contributed by Red Hat, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "arch-utils.h"
25 #include "prologue-value.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
42 /* Register Numbers. */
56 MSP430_R10_RAW_REGNUM,
57 MSP430_R11_RAW_REGNUM,
58 MSP430_R12_RAW_REGNUM,
59 MSP430_R13_RAW_REGNUM,
60 MSP430_R14_RAW_REGNUM,
61 MSP430_R15_RAW_REGNUM,
65 MSP430_PC_REGNUM = MSP430_NUM_REGS,
82 MSP430_NUM_TOTAL_REGS,
83 MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
88 /* TI MSP430 Architecture. */
91 /* TI MSP430X Architecture. */
97 /* The small code model limits code addresses to 16 bits. */
100 /* The large code model uses 20 bit addresses for function
101 pointers. These are stored in memory using four bytes (32 bits). */
105 /* Architecture specific data. */
109 /* The ELF header flags specify the multilib used. */
112 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
115 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
116 some point, we support different data models too, we'll probably
117 structure things so that we can combine values using logical
122 /* This structure holds the results of a prologue analysis. */
124 struct msp430_prologue
126 /* The offset from the frame base to the stack pointer --- always
129 Calling this a "size" is a bit misleading, but given that the
130 stack grows downwards, using offsets for everything keeps one
131 from going completely sign-crazy: you never change anything's
132 sign for an ADD instruction; always change the second operand's
133 sign for a SUB instruction; and everything takes care of
137 /* Non-zero if this function has initialized the frame pointer from
138 the stack pointer, zero otherwise. */
141 /* If has_frame_ptr is non-zero, this is the offset from the frame
142 base to where the frame pointer points. This is always zero or
144 int frame_ptr_offset;
146 /* The address of the first instruction at which the frame has been
147 set up and the arguments are where the debug info says they are
148 --- as best as we can tell. */
149 CORE_ADDR prologue_end;
151 /* reg_offset[R] is the offset from the CFA at which register R is
152 saved, or 1 if register R has not been saved. (Real values are
153 always zero or negative.) */
154 int reg_offset[MSP430_NUM_TOTAL_REGS];
157 /* Implement the "register_type" gdbarch method. */
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
162 if (reg_nr < MSP430_NUM_REGS)
163 return builtin_type (gdbarch)->builtin_uint32;
164 else if (reg_nr == MSP430_PC_REGNUM)
165 return builtin_type (gdbarch)->builtin_func_ptr;
167 return builtin_type (gdbarch)->builtin_uint16;
170 /* Implement another version of the "register_type" gdbarch method
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
176 if (reg_nr < MSP430_NUM_REGS)
177 return builtin_type (gdbarch)->builtin_uint32;
178 else if (reg_nr == MSP430_PC_REGNUM)
179 return builtin_type (gdbarch)->builtin_func_ptr;
181 return builtin_type (gdbarch)->builtin_uint32;
184 /* Implement the "register_name" gdbarch method. */
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
189 static const char *const reg_names[] = {
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 /* Pseudo registers. */
194 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
198 return reg_names[regnr];
201 /* Implement the "register_reggroup_p" gdbarch method. */
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 struct reggroup *group)
207 if (group == all_reggroup)
210 /* All other registers are saved and restored. */
211 if (group == save_reggroup || group == restore_reggroup)
212 return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
214 return group == general_reggroup;
217 /* Implement the "pseudo_register_read" gdbarch method. */
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 readable_regcache *regcache,
222 int regnum, gdb_byte *buffer)
224 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
226 enum register_status status;
228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
229 int regsize = register_size (gdbarch, regnum);
230 int raw_regnum = regnum - MSP430_NUM_REGS;
232 status = regcache->raw_read (raw_regnum, &val);
233 if (status == REG_VALID)
234 store_unsigned_integer (buffer, regsize, byte_order, val);
239 gdb_assert_not_reached ("invalid pseudo register number");
242 /* Implement the "pseudo_register_write" gdbarch method. */
245 msp430_pseudo_register_write (struct gdbarch *gdbarch,
246 struct regcache *regcache,
247 int regnum, const gdb_byte *buffer)
249 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
254 int regsize = register_size (gdbarch, regnum);
255 int raw_regnum = regnum - MSP430_NUM_REGS;
257 val = extract_unsigned_integer (buffer, regsize, byte_order);
258 regcache_raw_write_unsigned (regcache, raw_regnum, val);
262 gdb_assert_not_reached ("invalid pseudo register number");
265 /* Implement the `register_sim_regno' gdbarch method. */
268 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
270 gdb_assert (regnum < MSP430_NUM_REGS);
272 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
273 just want to override the default here which disallows register
274 numbers which have no names. */
278 constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };
280 typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;
282 /* Define a "handle" struct for fetching the next opcode. */
284 struct msp430_get_opcode_byte_handle
289 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
290 the memory address of the next byte to fetch. If successful,
291 the address in the handle is updated and the byte fetched is
292 returned as the value of the function. If not successful, -1
296 msp430_get_opcode_byte (void *handle)
298 struct msp430_get_opcode_byte_handle *opcdata
299 = (struct msp430_get_opcode_byte_handle *) handle;
303 status = target_read_memory (opcdata->pc, &byte, 1);
313 /* Function for finding saved registers in a 'struct pv_area'; this
314 function is passed to pv_area::scan.
316 If VALUE is a saved register, ADDR says it was saved at a constant
317 offset from the frame base, and SIZE indicates that the whole
318 register was saved, record its offset. */
321 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
323 struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
325 if (value.kind == pvk_register
327 && pv_is_register (addr, MSP430_SP_REGNUM)
328 && size == register_size (target_gdbarch (), value.reg))
329 result->reg_offset[value.reg] = addr.k;
332 /* Analyze a prologue starting at START_PC, going no further than
333 LIMIT_PC. Fill in RESULT as appropriate. */
336 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
337 CORE_ADDR limit_pc, struct msp430_prologue *result)
339 CORE_ADDR pc, next_pc;
341 pv_t reg[MSP430_NUM_TOTAL_REGS];
342 CORE_ADDR after_last_frame_setup_insn = start_pc;
343 int code_model = gdbarch_tdep (gdbarch)->code_model;
346 memset (result, 0, sizeof (*result));
348 for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
350 reg[rn] = pv_register (rn, 0);
351 result->reg_offset[rn] = 1;
354 pv_area stack (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
356 /* The call instruction has saved the return address on the stack. */
357 sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
358 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
359 stack.store (reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
362 while (pc < limit_pc)
365 struct msp430_get_opcode_byte_handle opcode_handle;
366 MSP430_Opcode_Decoded opc;
368 opcode_handle.pc = pc;
369 bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
371 next_pc = pc + bytes_read;
373 if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
375 int rsrc = opc.op[0].reg;
377 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
378 stack.store (reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
379 after_last_frame_setup_insn = next_pc;
381 else if (opc.id == MSO_push /* PUSHM */
382 && opc.op[0].type == MSP430_Operand_None
383 && opc.op[1].type == MSP430_Operand_Register)
385 int rsrc = opc.op[1].reg;
386 int count = opc.repeats + 1;
387 int size = opc.size == 16 ? 2 : 4;
391 reg[MSP430_SP_REGNUM]
392 = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
393 stack.store (reg[MSP430_SP_REGNUM], size, reg[rsrc]);
397 after_last_frame_setup_insn = next_pc;
399 else if (opc.id == MSO_sub
400 && opc.op[0].type == MSP430_Operand_Register
401 && opc.op[0].reg == MSR_SP
402 && opc.op[1].type == MSP430_Operand_Immediate)
404 int addend = opc.op[1].addend;
406 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
408 after_last_frame_setup_insn = next_pc;
410 else if (opc.id == MSO_mov
411 && opc.op[0].type == MSP430_Operand_Immediate
412 && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
413 after_last_frame_setup_insn = next_pc;
416 /* Terminate the prologue scan. */
423 /* Is the frame size (offset, really) a known constant? */
424 if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
425 result->frame_size = reg[MSP430_SP_REGNUM].k;
427 /* Record where all the registers were saved. */
428 stack.scan (check_for_saved, result);
430 result->prologue_end = after_last_frame_setup_insn;
433 /* Implement the "skip_prologue" gdbarch method. */
436 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
439 CORE_ADDR func_addr, func_end;
440 struct msp430_prologue p;
442 /* Try to find the extent of the function that contains PC. */
443 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
446 msp430_analyze_prologue (gdbarch, pc, func_end, &p);
447 return p.prologue_end;
450 /* Implement the "unwind_pc" gdbarch method. */
453 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
455 return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
458 /* Implement the "unwind_sp" gdbarch method. */
461 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
463 return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
466 /* Given a frame described by THIS_FRAME, decode the prologue of its
467 associated function if there is not cache entry as specified by
468 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
469 return that struct as the value of this function. */
471 static struct msp430_prologue *
472 msp430_analyze_frame_prologue (struct frame_info *this_frame,
473 void **this_prologue_cache)
475 if (!*this_prologue_cache)
477 CORE_ADDR func_start, stop_addr;
479 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
481 func_start = get_frame_func (this_frame);
482 stop_addr = get_frame_pc (this_frame);
484 /* If we couldn't find any function containing the PC, then
485 just initialize the prologue cache, but don't do anything. */
487 stop_addr = func_start;
489 msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
491 (struct msp430_prologue *) *this_prologue_cache);
494 return (struct msp430_prologue *) *this_prologue_cache;
497 /* Given a frame and a prologue cache, return this frame's base. */
500 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
502 struct msp430_prologue *p
503 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
504 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
506 return sp - p->frame_size;
509 /* Implement the "frame_this_id" method for unwinding frames. */
512 msp430_this_id (struct frame_info *this_frame,
513 void **this_prologue_cache, struct frame_id *this_id)
515 *this_id = frame_id_build (msp430_frame_base (this_frame,
516 this_prologue_cache),
517 get_frame_func (this_frame));
520 /* Implement the "frame_prev_register" method for unwinding frames. */
522 static struct value *
523 msp430_prev_register (struct frame_info *this_frame,
524 void **this_prologue_cache, int regnum)
526 struct msp430_prologue *p
527 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
528 CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
530 if (regnum == MSP430_SP_REGNUM)
531 return frame_unwind_got_constant (this_frame, regnum, frame_base);
533 /* If prologue analysis says we saved this register somewhere,
534 return a description of the stack slot holding it. */
535 else if (p->reg_offset[regnum] != 1)
537 struct value *rv = frame_unwind_got_memory (this_frame, regnum,
539 p->reg_offset[regnum]);
541 if (regnum == MSP430_PC_REGNUM)
543 ULONGEST pc = value_as_long (rv);
545 return frame_unwind_got_constant (this_frame, regnum, pc);
550 /* Otherwise, presume we haven't changed the value of this
551 register, and get it from the next frame. */
553 return frame_unwind_got_register (this_frame, regnum, regnum);
556 static const struct frame_unwind msp430_unwind = {
558 default_frame_unwind_stop_reason,
560 msp430_prev_register,
562 default_frame_sniffer
565 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
568 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
570 if (reg >= 0 && reg < MSP430_NUM_REGS)
571 return reg + MSP430_NUM_REGS;
575 /* Implement the "return_value" gdbarch method. */
577 static enum return_value_convention
578 msp430_return_value (struct gdbarch *gdbarch,
579 struct value *function,
580 struct type *valtype,
581 struct regcache *regcache,
582 gdb_byte *readbuf, const gdb_byte *writebuf)
584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
585 LONGEST valtype_len = TYPE_LENGTH (valtype);
586 int code_model = gdbarch_tdep (gdbarch)->code_model;
588 if (TYPE_LENGTH (valtype) > 8
589 || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
590 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
591 return RETURN_VALUE_STRUCT_CONVENTION;
596 int argreg = MSP430_R12_REGNUM;
599 while (valtype_len > 0)
603 if (code_model == MSP_LARGE_CODE_MODEL
604 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
609 regcache_cooked_read_unsigned (regcache, argreg, &u);
610 store_unsigned_integer (readbuf + offset, size, byte_order, u);
620 int argreg = MSP430_R12_REGNUM;
623 while (valtype_len > 0)
627 if (code_model == MSP_LARGE_CODE_MODEL
628 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
633 u = extract_unsigned_integer (writebuf + offset, size, byte_order);
634 regcache_cooked_write_unsigned (regcache, argreg, u);
641 return RETURN_VALUE_REGISTER_CONVENTION;
645 /* Implement the "frame_align" gdbarch method. */
648 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
650 return align_down (sp, 2);
654 /* Implement the "dummy_id" gdbarch method. */
656 static struct frame_id
657 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
660 frame_id_build (get_frame_register_unsigned
661 (this_frame, MSP430_SP_REGNUM),
662 get_frame_pc (this_frame));
666 /* Implement the "push_dummy_call" gdbarch method. */
669 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
670 struct regcache *regcache, CORE_ADDR bp_addr,
671 int nargs, struct value **args, CORE_ADDR sp,
672 function_call_return_method return_method,
673 CORE_ADDR struct_addr)
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
679 int code_model = gdbarch_tdep (gdbarch)->code_model;
681 struct type *func_type = value_type (function);
683 /* Dereference function pointer types. */
684 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
685 func_type = TYPE_TARGET_TYPE (func_type);
687 /* The end result had better be a function or a method. */
688 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
689 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
691 /* We make two passes; the first does the stack allocation,
692 the second actually stores the arguments. */
693 for (write_pass = 0; write_pass <= 1; write_pass++)
696 int arg_reg = MSP430_R12_REGNUM;
697 int args_on_stack = 0;
700 sp = align_down (sp - sp_off, 4);
703 if (return_method == return_method_struct)
706 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
710 /* Push the arguments. */
711 for (i = 0; i < nargs; i++)
713 struct value *arg = args[i];
714 const gdb_byte *arg_bits = value_contents_all (arg);
715 struct type *arg_type = check_typedef (value_type (arg));
716 ULONGEST arg_size = TYPE_LENGTH (arg_type);
718 int current_arg_on_stack;
719 gdb_byte struct_addr_buf[4];
721 current_arg_on_stack = 0;
723 if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
724 || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
726 /* Aggregates of any size are passed by reference. */
727 store_unsigned_integer (struct_addr_buf, 4, byte_order,
728 value_address (arg));
729 arg_bits = struct_addr_buf;
730 arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
734 /* Scalars bigger than 8 bytes such as complex doubles are passed
737 current_arg_on_stack = 1;
741 for (offset = 0; offset < arg_size; offset += 2)
743 /* The condition below prevents 8 byte scalars from being split
744 between registers and memory (stack). It also prevents other
745 splits once the stack has been written to. */
746 if (!current_arg_on_stack
748 + ((arg_size == 8 || args_on_stack)
749 ? ((arg_size - offset) / 2 - 1)
750 : 0) <= MSP430_R15_REGNUM))
754 if (code_model == MSP_LARGE_CODE_MODEL
755 && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
756 || TYPE_IS_REFERENCE (arg_type)
757 || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
758 || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
760 /* When using the large memory model, pointer,
761 reference, struct, and union arguments are
762 passed using the entire register. (As noted
763 earlier, aggregates are always passed by
771 regcache_cooked_write_unsigned (regcache, arg_reg,
772 extract_unsigned_integer
773 (arg_bits + offset, size,
781 write_memory (sp + sp_off, arg_bits + offset, 2);
785 current_arg_on_stack = 1;
791 /* Keep track of the stack address prior to pushing the return address.
792 This is the value that we'll return. */
795 /* Push the return address. */
797 int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
800 write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
803 /* Update the stack pointer. */
804 regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
809 /* In order to keep code size small, the compiler may create epilogue
810 code through which more than one function epilogue is routed. I.e.
811 the epilogue and return may just be a branch to some common piece of
812 code which is responsible for tearing down the frame and performing
813 the return. These epilog (label) names will have the common prefix
816 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
818 /* Implement the "in_return_stub" gdbarch method. */
821 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
825 && startswith (name, msp430_epilog_name_prefix));
828 /* Implement the "skip_trampoline_code" gdbarch method. */
830 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
832 struct bound_minimal_symbol bms;
833 const char *stub_name;
834 struct gdbarch *gdbarch = get_frame_arch (frame);
836 bms = lookup_minimal_symbol_by_pc (pc);
840 stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
842 if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
843 && msp430_in_return_stub (gdbarch, pc, stub_name))
845 CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
847 return read_memory_integer
848 (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
849 2, gdbarch_byte_order (gdbarch));
855 /* Allocate and initialize a gdbarch object. */
857 static struct gdbarch *
858 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
860 struct gdbarch *gdbarch;
861 struct gdbarch_tdep *tdep;
862 int elf_flags, isa, code_model;
864 /* Extract the elf_flags if available. */
865 if (info.abfd != NULL
866 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
867 elf_flags = elf_elfheader (info.abfd)->e_flags;
871 if (info.abfd != NULL)
872 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
873 OFBA_MSPABI_Tag_ISA))
876 isa = MSP_ISA_MSP430;
877 code_model = MSP_SMALL_CODE_MODEL;
880 isa = MSP_ISA_MSP430X;
881 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
882 OFBA_MSPABI_Tag_Code_Model))
885 code_model = MSP_SMALL_CODE_MODEL;
888 code_model = MSP_LARGE_CODE_MODEL;
891 internal_error (__FILE__, __LINE__,
892 _("Unknown msp430x code memory model"));
897 /* This can happen when loading a previously dumped data structure.
898 Use the ISA and code model from the current architecture, provided
901 struct gdbarch *ca = get_current_arch ();
902 if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
904 struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
906 elf_flags = ca_tdep->elf_flags;
908 code_model = ca_tdep->code_model;
914 error (_("Unknown msp430 isa"));
919 isa = MSP_ISA_MSP430;
920 code_model = MSP_SMALL_CODE_MODEL;
924 /* Try to find the architecture in the list of already defined
926 for (arches = gdbarch_list_lookup_by_info (arches, &info);
928 arches = gdbarch_list_lookup_by_info (arches->next, &info))
930 struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
932 if (candidate_tdep->elf_flags != elf_flags
933 || candidate_tdep->isa != isa
934 || candidate_tdep->code_model != code_model)
937 return arches->gdbarch;
940 /* None found, create a new architecture from the information
942 tdep = XCNEW (struct gdbarch_tdep);
943 gdbarch = gdbarch_alloc (&info, tdep);
944 tdep->elf_flags = elf_flags;
946 tdep->code_model = code_model;
949 set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
950 set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
951 set_gdbarch_register_name (gdbarch, msp430_register_name);
952 if (isa == MSP_ISA_MSP430)
953 set_gdbarch_register_type (gdbarch, msp430_register_type);
955 set_gdbarch_register_type (gdbarch, msp430x_register_type);
956 set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
957 set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
958 set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
959 set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
960 set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
961 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
962 set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
965 set_gdbarch_char_signed (gdbarch, 0);
966 set_gdbarch_short_bit (gdbarch, 16);
967 set_gdbarch_int_bit (gdbarch, 16);
968 set_gdbarch_long_bit (gdbarch, 32);
969 set_gdbarch_long_long_bit (gdbarch, 64);
970 if (code_model == MSP_SMALL_CODE_MODEL)
972 set_gdbarch_ptr_bit (gdbarch, 16);
973 set_gdbarch_addr_bit (gdbarch, 16);
975 else /* MSP_LARGE_CODE_MODEL */
977 set_gdbarch_ptr_bit (gdbarch, 32);
978 set_gdbarch_addr_bit (gdbarch, 32);
980 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
981 set_gdbarch_float_bit (gdbarch, 32);
982 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
983 set_gdbarch_double_bit (gdbarch, 64);
984 set_gdbarch_long_double_bit (gdbarch, 64);
985 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
986 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
989 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
990 msp430_breakpoint::kind_from_pc);
991 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
992 msp430_breakpoint::bp_from_kind);
993 set_gdbarch_decr_pc_after_break (gdbarch, 1);
995 /* Frames, prologues, etc. */
996 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
997 set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
998 set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
999 set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1000 set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1001 dwarf2_append_unwinders (gdbarch);
1002 frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1004 /* Dummy frames, return values. */
1005 set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1006 set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1007 set_gdbarch_return_value (gdbarch, msp430_return_value);
1010 set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1011 set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1013 /* Virtual tables. */
1014 set_gdbarch_vbit_in_delta (gdbarch, 0);
1019 /* Register the initialization routine. */
1022 _initialize_msp430_tdep (void)
1024 register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);