1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 #include "arch-utils.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "gdbcore.h" /* for write_memory_unsigned_integer */
34 #include "frame-unwind.h"
35 #include "frame-base.h"
36 #include "trad-frame.h"
38 #include "dwarf2-frame.h"
41 #include "mn10300-tdep.h"
44 extern struct trad_frame_cache *mn10300_frame_unwind_cache (struct frame_info*,
47 /* Compute the alignment required by a type. */
50 mn10300_type_align (struct type *type)
54 switch (TYPE_CODE (type))
65 return TYPE_LENGTH (type);
67 case TYPE_CODE_COMPLEX:
68 return TYPE_LENGTH (type) / 2;
70 case TYPE_CODE_STRUCT:
72 for (i = 0; i < TYPE_NFIELDS (type); i++)
74 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
75 while (align < falign)
81 /* HACK! Structures containing arrays, even small ones, are not
82 elligible for returning in registers. */
85 case TYPE_CODE_TYPEDEF:
86 return mn10300_type_align (check_typedef (type));
89 internal_error (__FILE__, __LINE__, _("bad switch"));
93 /* Should call_function allocate stack space for a struct return? */
95 mn10300_use_struct_convention (struct type *type)
97 /* Structures bigger than a pair of words can't be returned in
99 if (TYPE_LENGTH (type) > 8)
102 switch (TYPE_CODE (type))
104 case TYPE_CODE_STRUCT:
105 case TYPE_CODE_UNION:
106 /* Structures with a single field are handled as the field
108 if (TYPE_NFIELDS (type) == 1)
109 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
111 /* Structures with word or double-word size are passed in memory, as
112 long as they require at least word alignment. */
113 if (mn10300_type_align (type) >= 4)
118 /* Arrays are addressable, so they're never returned in
119 registers. This condition can only hold when the array is
120 the only field of a struct or union. */
121 case TYPE_CODE_ARRAY:
124 case TYPE_CODE_TYPEDEF:
125 return mn10300_use_struct_convention (check_typedef (type));
133 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
134 struct regcache *regcache, const void *valbuf)
136 int len = TYPE_LENGTH (type);
139 if (TYPE_CODE (type) == TYPE_CODE_PTR)
144 regsz = register_size (gdbarch, reg);
147 regcache_raw_write_part (regcache, reg, 0, len, valbuf);
148 else if (len <= 2 * regsz)
150 regcache_raw_write (regcache, reg, valbuf);
151 gdb_assert (regsz == register_size (gdbarch, reg + 1));
152 regcache_raw_write_part (regcache, reg+1, 0,
153 len - regsz, (char *) valbuf + regsz);
156 internal_error (__FILE__, __LINE__,
157 _("Cannot store return value %d bytes long."), len);
161 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
162 struct regcache *regcache, void *valbuf)
164 char buf[MAX_REGISTER_SIZE];
165 int len = TYPE_LENGTH (type);
168 if (TYPE_CODE (type) == TYPE_CODE_PTR)
173 regsz = register_size (gdbarch, reg);
176 regcache_raw_read (regcache, reg, buf);
177 memcpy (valbuf, buf, len);
179 else if (len <= 2 * regsz)
181 regcache_raw_read (regcache, reg, buf);
182 memcpy (valbuf, buf, regsz);
183 gdb_assert (regsz == register_size (gdbarch, reg + 1));
184 regcache_raw_read (regcache, reg + 1, buf);
185 memcpy ((char *) valbuf + regsz, buf, len - regsz);
188 internal_error (__FILE__, __LINE__,
189 _("Cannot extract return value %d bytes long."), len);
192 /* Determine, for architecture GDBARCH, how a return value of TYPE
193 should be returned. If it is supposed to be returned in registers,
194 and READBUF is non-zero, read the appropriate value from REGCACHE,
195 and copy it into READBUF. If WRITEBUF is non-zero, write the value
196 from WRITEBUF into REGCACHE. */
198 static enum return_value_convention
199 mn10300_return_value (struct gdbarch *gdbarch, struct type *type,
200 struct regcache *regcache, gdb_byte *readbuf,
201 const gdb_byte *writebuf)
203 if (mn10300_use_struct_convention (type))
204 return RETURN_VALUE_STRUCT_CONVENTION;
207 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
209 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
211 return RETURN_VALUE_REGISTER_CONVENTION;
215 register_name (int reg, char **regs, long sizeof_regs)
217 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
224 mn10300_generic_register_name (int reg)
226 static char *regs[] =
227 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
228 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
229 "", "", "", "", "", "", "", "",
230 "", "", "", "", "", "", "", "fp"
232 return register_name (reg, regs, sizeof regs);
237 am33_register_name (int reg)
239 static char *regs[] =
240 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
241 "sp", "pc", "mdr", "psw", "lir", "lar", "",
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
245 return register_name (reg, regs, sizeof regs);
249 am33_2_register_name (int reg)
251 static char *regs[] =
253 "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
254 "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
255 "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
256 "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
257 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
258 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
259 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
260 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
262 return register_name (reg, regs, sizeof regs);
266 mn10300_register_type (struct gdbarch *gdbarch, int reg)
268 return builtin_type_int;
272 mn10300_read_pc (struct regcache *regcache)
275 regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
280 mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
282 regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
285 /* The breakpoint instruction must be the same size as the smallest
286 instruction in the instruction set.
288 The Matsushita mn10x00 processors have single byte instructions
289 so we need a single byte breakpoint. Matsushita hasn't defined
290 one, so we defined it ourselves. */
292 const static unsigned char *
293 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
295 static char breakpoint[] = {0xff};
300 /* Set offsets of saved registers.
301 This is a helper function for mn10300_analyze_prologue. */
304 set_reg_offsets (struct frame_info *fi,
308 int stack_extra_size,
311 struct trad_frame_cache *cache;
315 if (fi == NULL || this_cache == NULL)
318 cache = mn10300_frame_unwind_cache (fi, this_cache);
324 base = frame_unwind_register_unsigned (fi, E_A3_REGNUM);
328 base = frame_unwind_register_unsigned (fi, E_SP_REGNUM) + stack_extra_size;
331 trad_frame_set_this_base (cache, base);
335 /* If bit N is set in fpregmask, fsN is saved on the stack.
336 The floating point registers are saved in ascending order.
337 For example: fs16 <- Frame Pointer
338 fs17 Frame Pointer + 4 */
342 for (i = 0; i < 32; i++)
344 if (fpregmask & (1 << i))
346 trad_frame_set_reg_addr (cache, E_FS0_REGNUM + i, base + offset);
354 if (movm_args & movm_other_bit)
356 /* The `other' bit leaves a blank area of four bytes at the
357 beginning of its block of saved registers, making it 32 bytes
359 trad_frame_set_reg_addr (cache, E_LAR_REGNUM, base + offset + 4);
360 trad_frame_set_reg_addr (cache, E_LIR_REGNUM, base + offset + 8);
361 trad_frame_set_reg_addr (cache, E_MDR_REGNUM, base + offset + 12);
362 trad_frame_set_reg_addr (cache, E_A0_REGNUM + 1, base + offset + 16);
363 trad_frame_set_reg_addr (cache, E_A0_REGNUM, base + offset + 20);
364 trad_frame_set_reg_addr (cache, E_D0_REGNUM + 1, base + offset + 24);
365 trad_frame_set_reg_addr (cache, E_D0_REGNUM, base + offset + 28);
369 if (movm_args & movm_a3_bit)
371 trad_frame_set_reg_addr (cache, E_A3_REGNUM, base + offset);
374 if (movm_args & movm_a2_bit)
376 trad_frame_set_reg_addr (cache, E_A2_REGNUM, base + offset);
379 if (movm_args & movm_d3_bit)
381 trad_frame_set_reg_addr (cache, E_D3_REGNUM, base + offset);
384 if (movm_args & movm_d2_bit)
386 trad_frame_set_reg_addr (cache, E_D2_REGNUM, base + offset);
391 if (movm_args & movm_exother_bit)
393 trad_frame_set_reg_addr (cache, E_MCVF_REGNUM, base + offset);
394 trad_frame_set_reg_addr (cache, E_MCRL_REGNUM, base + offset + 4);
395 trad_frame_set_reg_addr (cache, E_MCRH_REGNUM, base + offset + 8);
396 trad_frame_set_reg_addr (cache, E_MDRQ_REGNUM, base + offset + 12);
397 trad_frame_set_reg_addr (cache, E_E1_REGNUM, base + offset + 16);
398 trad_frame_set_reg_addr (cache, E_E0_REGNUM, base + offset + 20);
401 if (movm_args & movm_exreg1_bit)
403 trad_frame_set_reg_addr (cache, E_E7_REGNUM, base + offset);
404 trad_frame_set_reg_addr (cache, E_E6_REGNUM, base + offset + 4);
405 trad_frame_set_reg_addr (cache, E_E5_REGNUM, base + offset + 8);
406 trad_frame_set_reg_addr (cache, E_E4_REGNUM, base + offset + 12);
409 if (movm_args & movm_exreg0_bit)
411 trad_frame_set_reg_addr (cache, E_E3_REGNUM, base + offset);
412 trad_frame_set_reg_addr (cache, E_E2_REGNUM, base + offset + 4);
416 /* The last (or first) thing on the stack will be the PC. */
417 trad_frame_set_reg_addr (cache, E_PC_REGNUM, base + offset);
418 /* Save the SP in the 'traditional' way.
419 This will be the same location where the PC is saved. */
420 trad_frame_set_reg_value (cache, E_SP_REGNUM, base + offset);
423 /* The main purpose of this file is dealing with prologues to extract
424 information about stack frames and saved registers.
426 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
427 function is pretty readable, and has a nice explanation of how the
428 prologue is generated. The prologues generated by that code will
429 have the following form (NOTE: the current code doesn't handle all
432 + If this is an old-style varargs function, then its arguments
433 need to be flushed back to the stack:
438 + If we use any of the callee-saved registers, save them now.
440 movm [some callee-saved registers],(sp)
442 + If we have any floating-point registers to save:
444 - Decrement the stack pointer to reserve space for the registers.
445 If the function doesn't need a frame pointer, we may combine
446 this with the adjustment that reserves space for the frame.
450 - Save the floating-point registers. We have two possible
453 . Save them at fixed offset from the SP:
455 fmov fsN,(OFFSETN,sp)
456 fmov fsM,(OFFSETM,sp)
459 Note that, if OFFSETN happens to be zero, you'll get the
460 different opcode: fmov fsN,(sp)
462 . Or, set a0 to the start of the save area, and then use
463 post-increment addressing to save the FP registers.
471 + If the function needs a frame pointer, we set it here.
475 + Now we reserve space for the stack frame proper. This could be
476 merged into the `add -SIZE, sp' instruction for FP saves up
477 above, unless we needed to set the frame pointer in the previous
478 step, or the frame is so large that allocating the whole thing at
479 once would put the FP register save slots out of reach of the
480 addressing mode (128 bytes).
484 One day we might keep the stack pointer constant, that won't
485 change the code for prologues, but it will make the frame
486 pointerless case much more common. */
488 /* Analyze the prologue to determine where registers are saved,
489 the end of the prologue, etc etc. Return the end of the prologue
492 We store into FI (if non-null) several tidbits of information:
494 * stack_size -- size of this stack frame. Note that if we stop in
495 certain parts of the prologue/epilogue we may claim the size of the
496 current frame is zero. This happens when the current frame has
497 not been allocated yet or has already been deallocated.
499 * fsr -- Addresses of registers saved in the stack by this frame.
501 * status -- A (relatively) generic status indicator. It's a bitmask
502 with the following bits:
504 MY_FRAME_IN_SP: The base of the current frame is actually in
505 the stack pointer. This can happen for frame pointerless
506 functions, or cases where we're stopped in the prologue/epilogue
507 itself. For these cases mn10300_analyze_prologue will need up
508 update fi->frame before returning or analyzing the register
511 MY_FRAME_IN_FP: The base of the current frame is in the
512 frame pointer register ($a3).
514 NO_MORE_FRAMES: Set this if the current frame is "start" or
515 if the first instruction looks like mov <imm>,sp. This tells
516 frame chain to not bother trying to unwind past this frame. */
519 mn10300_analyze_prologue (struct frame_info *fi,
523 CORE_ADDR func_addr, func_end, addr, stop;
524 long stack_extra_size = 0;
526 unsigned char buf[4];
533 /* Use the PC in the frame if it's provided to look up the
534 start of this function.
536 Note: kevinb/2003-07-16: We used to do the following here:
537 pc = (fi ? get_frame_pc (fi) : pc);
538 But this is (now) badly broken when called from analyze_dummy_frame().
542 pc = (pc ? pc : get_frame_pc (fi));
545 /* Find the start of this function. */
546 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
548 /* Do nothing if we couldn't find the start of this function
550 MVS: comment went on to say "or if we're stopped at the first
551 instruction in the prologue" -- but code doesn't reflect that,
552 and I don't want to do that anyway. */
556 goto finish_prologue;
559 /* If we're in start, then give up. */
560 if (strcmp (name, "start") == 0)
563 goto finish_prologue;
566 /* Figure out where to stop scanning. */
567 stop = fi ? pc : func_end;
569 /* Don't walk off the end of the function. */
570 stop = stop > func_end ? func_end : stop;
572 /* Start scanning on the first instruction of this function. */
575 /* Suck in two bytes. */
576 if (addr + 2 > stop || !safe_frame_unwind_memory (fi, addr, buf, 2))
577 goto finish_prologue;
579 /* First see if this insn sets the stack pointer from a register; if
580 so, it's probably the initialization of the stack pointer in _start,
581 so mark this as the bottom-most frame. */
582 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
584 goto finish_prologue;
587 /* Now look for movm [regs],sp, which saves the callee saved registers.
589 At this time we don't know if fi->frame is valid, so we only note
590 that we encountered a movm instruction. Later, we'll set the entries
591 in fsr.regs as needed. */
594 /* Extract the register list for the movm instruction. */
599 /* Quit now if we're beyond the stop point. */
601 goto finish_prologue;
603 /* Get the next two bytes so the prologue scan can continue. */
604 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
605 goto finish_prologue;
610 /* Determine if any floating point registers are to be saved.
611 Look for one of the following three prologue formats:
613 [movm [regs],(sp)] [movm [regs],(sp)] [movm [regs],(sp)]
615 add -SIZE,sp add -SIZE,sp add -SIZE,sp
616 fmov fs#,(sp) mov sp,a0/a1 mov sp,a0/a1
617 fmov fs#,(#,sp) fmov fs#,(a0/a1+) add SIZE2,a0/a1
618 ... ... fmov fs#,(a0/a1+)
620 fmov fs#,(#,sp) fmov fs#,(a0/a1+) fmov fs#,(a0/a1+)
622 [mov sp,a3] [mov sp,a3]
623 [add -SIZE2,sp] [add -SIZE2,sp] */
625 /* Remember the address at which we started in the event that we
626 don't ultimately find an fmov instruction. Once we're certain
627 that we matched one of the above patterns, we'll set
628 ``restore_addr'' to the appropriate value. Note: At one time
629 in the past, this code attempted to not adjust ``addr'' until
630 there was a fair degree of certainty that the pattern would be
631 matched. However, that code did not wait until an fmov instruction
632 was actually encountered. As a consequence, ``addr'' would
633 sometimes be advanced even when no fmov instructions were found. */
634 CORE_ADDR restore_addr = addr;
636 /* First, look for add -SIZE,sp (i.e. add imm8,sp (0xf8feXX)
637 or add imm16,sp (0xfafeXXXX)
638 or add imm32,sp (0xfcfeXXXXXXXX)) */
640 if (buf[0] == 0xf8 && buf[1] == 0xfe)
642 else if (buf[0] == 0xfa && buf[1] == 0xfe)
644 else if (buf[0] == 0xfc && buf[1] == 0xfe)
648 /* An "add -#,sp" instruction has been found. "addr + 2 + imm_size"
649 is the address of the next instruction. Don't modify "addr" until
650 the next "floating point prologue" instruction is found. If this
651 is not a prologue that saves floating point registers we need to
652 be able to back out of this bit of code and continue with the
653 prologue analysis. */
654 if (addr + 2 + imm_size < stop)
656 if (!safe_frame_unwind_memory (fi, addr + 2 + imm_size, buf, 3))
657 goto finish_prologue;
658 if ((buf[0] & 0xfc) == 0x3c)
660 /* Occasionally, especially with C++ code, the "fmov"
661 instructions will be preceded by "mov sp,aN"
662 (aN => a0, a1, a2, or a3).
664 This is a one byte instruction: mov sp,aN = 0011 11XX
665 where XX is the register number.
667 Skip this instruction by incrementing addr. The "fmov"
668 instructions will have the form "fmov fs#,(aN+)" in this
669 case, but that will not necessitate a change in the
670 "fmov" parsing logic below. */
674 if ((buf[1] & 0xfc) == 0x20)
676 /* Occasionally, especially with C++ code compiled with
677 the -fomit-frame-pointer or -O3 options, the
678 "mov sp,aN" instruction will be followed by an
679 "add #,aN" instruction. This indicates the
680 "stack_size", the size of the portion of the stack
681 containing the arguments. This instruction format is:
682 add #,aN = 0010 00XX YYYY YYYY
683 where XX is the register number
684 YYYY YYYY is the constant.
685 Note the size of the stack (as a negative number) in
686 the frame info structure. */
688 stack_extra_size += -buf[2];
694 if ((buf[0] & 0xfc) == 0x3c ||
695 buf[0] == 0xf9 || buf[0] == 0xfb)
697 /* An "fmov" instruction has been found indicating that this
698 prologue saves floating point registers (or, as described
699 above, a "mov sp,aN" and possible "add #,aN" have been
700 found and we will assume an "fmov" follows). Process the
701 consecutive "fmov" instructions. */
702 for (addr += 2 + imm_size;;addr += imm_size)
706 /* Read the "fmov" instruction. */
708 !safe_frame_unwind_memory (fi, addr, buf, 4))
709 goto finish_prologue;
711 if (buf[0] != 0xf9 && buf[0] != 0xfb)
714 /* An fmov instruction has just been seen. We can
715 now really commit to the pattern match. Set the
716 address to restore at the end of this speculative
717 bit of code to the actually address that we've
718 been incrementing (or not) throughout the
722 /* Get the floating point register number from the
723 2nd and 3rd bytes of the "fmov" instruction:
724 Machine Code: 0000 00X0 YYYY 0000 =>
726 regnum = (buf[1] & 0x02) << 3;
727 regnum |= ((buf[2] & 0xf0) >> 4) & 0x0f;
729 /* Add this register number to the bit mask of floating
730 point registers that have been saved. */
731 fpregmask |= 1 << regnum;
733 /* Determine the length of this "fmov" instruction.
734 fmov fs#,(sp) => 3 byte instruction
735 fmov fs#,(#,sp) => 4 byte instruction */
736 imm_size = (buf[0] == 0xf9) ? 3 : 4;
741 /* No "fmov" was found. Reread the two bytes at the original
742 "addr" to reset the state. */
744 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
745 goto finish_prologue;
748 /* else the prologue consists entirely of an "add -SIZE,sp"
749 instruction. Handle this below. */
751 /* else no "add -SIZE,sp" was found indicating no floating point
752 registers are saved in this prologue. */
754 /* In the pattern match code contained within this block, `restore_addr'
755 is set to the starting address at the very beginning and then
756 iteratively to the next address to start scanning at once the
757 pattern match has succeeded. Thus `restore_addr' will contain
758 the address to rewind to if the pattern match failed. If the
759 match succeeded, `restore_addr' and `addr' will already have the
764 /* Now see if we set up a frame pointer via "mov sp,a3" */
769 /* The frame pointer is now valid. */
775 /* Quit now if we're beyond the stop point. */
777 goto finish_prologue;
779 /* Get two more bytes so scanning can continue. */
780 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
781 goto finish_prologue;
784 /* Next we should allocate the local frame. No more prologue insns
785 are found after allocating the local frame.
787 Search for add imm8,sp (0xf8feXX)
788 or add imm16,sp (0xfafeXXXX)
789 or add imm32,sp (0xfcfeXXXXXXXX).
791 If none of the above was found, then this prologue has no
795 if (buf[0] == 0xf8 && buf[1] == 0xfe)
797 else if (buf[0] == 0xfa && buf[1] == 0xfe)
799 else if (buf[0] == 0xfc && buf[1] == 0xfe)
804 /* Suck in imm_size more bytes, they'll hold the size of the
806 if (!safe_frame_unwind_memory (fi, addr + 2, buf, imm_size))
807 goto finish_prologue;
809 /* Note the size of the stack. */
810 stack_extra_size -= extract_signed_integer (buf, imm_size);
812 /* We just consumed 2 + imm_size bytes. */
813 addr += 2 + imm_size;
815 /* No more prologue insns follow, so begin preparation to return. */
816 goto finish_prologue;
818 /* Do the essentials and get out of here. */
820 /* Note if/where callee saved registers were saved. */
822 set_reg_offsets (fi, this_cache, movm_args, fpregmask, stack_extra_size, frame_in_fp);
826 /* Function: skip_prologue
827 Return the address of the first inst past the prologue of the function. */
830 mn10300_skip_prologue (CORE_ADDR pc)
832 return mn10300_analyze_prologue (NULL, NULL, pc);
835 /* Simple frame_unwind_cache.
836 This finds the "extra info" for the frame. */
837 struct trad_frame_cache *
838 mn10300_frame_unwind_cache (struct frame_info *next_frame,
839 void **this_prologue_cache)
841 struct trad_frame_cache *cache;
842 CORE_ADDR pc, start, end;
844 if (*this_prologue_cache)
845 return (*this_prologue_cache);
847 cache = trad_frame_cache_zalloc (next_frame);
848 pc = gdbarch_unwind_pc (current_gdbarch, next_frame);
849 mn10300_analyze_prologue (next_frame, (void **) &cache, pc);
850 if (find_pc_partial_function (pc, NULL, &start, &end))
851 trad_frame_set_id (cache,
852 frame_id_build (trad_frame_get_this_base (cache),
856 start = frame_func_unwind (next_frame, NORMAL_FRAME);
857 trad_frame_set_id (cache,
858 frame_id_build (trad_frame_get_this_base (cache),
862 (*this_prologue_cache) = cache;
866 /* Here is a dummy implementation. */
867 static struct frame_id
868 mn10300_unwind_dummy_id (struct gdbarch *gdbarch,
869 struct frame_info *next_frame)
871 return frame_id_build (frame_sp_unwind (next_frame),
872 frame_pc_unwind (next_frame));
875 /* Trad frame implementation. */
877 mn10300_frame_this_id (struct frame_info *next_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
881 struct trad_frame_cache *cache =
882 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
884 trad_frame_get_id (cache, this_id);
888 mn10300_frame_prev_register (struct frame_info *next_frame,
889 void **this_prologue_cache,
890 int regnum, int *optimizedp,
891 enum lval_type *lvalp, CORE_ADDR *addrp,
892 int *realnump, gdb_byte *bufferp)
894 struct trad_frame_cache *cache =
895 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
897 trad_frame_get_register (cache, next_frame, regnum, optimizedp,
898 lvalp, addrp, realnump, bufferp);
900 trad_frame_get_prev_register (next_frame, cache->prev_regs, regnum,
901 optimizedp, lvalp, addrp, realnump, bufferp);
905 static const struct frame_unwind mn10300_frame_unwind = {
907 mn10300_frame_this_id,
908 mn10300_frame_prev_register
912 mn10300_frame_base_address (struct frame_info *next_frame,
913 void **this_prologue_cache)
915 struct trad_frame_cache *cache =
916 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
918 return trad_frame_get_this_base (cache);
921 static const struct frame_unwind *
922 mn10300_frame_sniffer (struct frame_info *next_frame)
924 return &mn10300_frame_unwind;
927 static const struct frame_base mn10300_frame_base = {
928 &mn10300_frame_unwind,
929 mn10300_frame_base_address,
930 mn10300_frame_base_address,
931 mn10300_frame_base_address
935 mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
939 frame_unwind_unsigned_register (next_frame, E_PC_REGNUM, &pc);
944 mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
948 frame_unwind_unsigned_register (next_frame, E_SP_REGNUM, &sp);
953 mn10300_frame_unwind_init (struct gdbarch *gdbarch)
955 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
956 frame_unwind_append_sniffer (gdbarch, mn10300_frame_sniffer);
957 frame_base_set_default (gdbarch, &mn10300_frame_base);
958 set_gdbarch_unwind_dummy_id (gdbarch, mn10300_unwind_dummy_id);
959 set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
960 set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
963 /* Function: push_dummy_call
965 * Set up machine state for a target call, including
966 * function arguments, stack, return address, etc.
971 mn10300_push_dummy_call (struct gdbarch *gdbarch,
972 struct value *target_func,
973 struct regcache *regcache,
975 int nargs, struct value **args,
978 CORE_ADDR struct_addr)
980 const int push_size = register_size (gdbarch, E_PC_REGNUM);
983 int stack_offset = 0;
985 char *val, valbuf[MAX_REGISTER_SIZE];
987 /* This should be a nop, but align the stack just in case something
988 went wrong. Stacks are four byte aligned on the mn10300. */
991 /* Now make space on the stack for the args.
993 XXX This doesn't appear to handle pass-by-invisible reference
995 regs_used = struct_return ? 1 : 0;
996 for (len = 0, argnum = 0; argnum < nargs; argnum++)
998 arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
999 while (regs_used < 2 && arg_len > 0)
1002 arg_len -= push_size;
1007 /* Allocate stack space. */
1013 regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
1018 /* Push all arguments onto the stack. */
1019 for (argnum = 0; argnum < nargs; argnum++)
1021 /* FIXME what about structs? Unions? */
1022 if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
1023 && TYPE_LENGTH (value_type (*args)) > 8)
1025 /* Change to pointer-to-type. */
1026 arg_len = push_size;
1027 store_unsigned_integer (valbuf, push_size,
1028 VALUE_ADDRESS (*args));
1033 arg_len = TYPE_LENGTH (value_type (*args));
1034 val = (char *) value_contents (*args);
1037 while (regs_used < 2 && arg_len > 0)
1039 regcache_cooked_write_unsigned (regcache, regs_used,
1040 extract_unsigned_integer (val, push_size));
1042 arg_len -= push_size;
1048 write_memory (sp + stack_offset, val, push_size);
1049 arg_len -= push_size;
1051 stack_offset += push_size;
1057 /* Make space for the flushback area. */
1060 /* Push the return address that contains the magic breakpoint. */
1062 write_memory_unsigned_integer (sp, push_size, bp_addr);
1064 /* The CPU also writes the return address always into the
1065 MDR register on "call". */
1066 regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
1069 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1073 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1074 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1075 register number. Why don't Dwarf2 and GDB use the same numbering?
1076 Who knows? But since people have object files lying around with
1077 the existing Dwarf2 numbering, and other people have written stubs
1078 to work with the existing GDB, neither of them can change. So we
1079 just have to cope. */
1081 mn10300_dwarf2_reg_to_regnum (int dwarf2)
1083 /* This table is supposed to be shaped like the gdbarch_register_name
1084 initializer in gcc/config/mn10300/mn10300.h. Registers which
1085 appear in GCC's numbering, but have no counterpart in GDB's
1086 world, are marked with a -1. */
1087 static int dwarf2_to_gdb[] = {
1088 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
1089 15, 16, 17, 18, 19, 20, 21, 22,
1090 32, 33, 34, 35, 36, 37, 38, 39,
1091 40, 41, 42, 43, 44, 45, 46, 47,
1092 48, 49, 50, 51, 52, 53, 54, 55,
1093 56, 57, 58, 59, 60, 61, 62, 63
1097 || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb)
1098 || dwarf2_to_gdb[dwarf2] == -1)
1100 warning (_("Bogus register number in debug info: %d"), dwarf2);
1104 return dwarf2_to_gdb[dwarf2];
1107 static struct gdbarch *
1108 mn10300_gdbarch_init (struct gdbarch_info info,
1109 struct gdbarch_list *arches)
1111 struct gdbarch *gdbarch;
1112 struct gdbarch_tdep *tdep;
1115 arches = gdbarch_list_lookup_by_info (arches, &info);
1117 return arches->gdbarch;
1119 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1120 gdbarch = gdbarch_alloc (&info, tdep);
1122 switch (info.bfd_arch_info->mach)
1125 case bfd_mach_mn10300:
1126 set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
1127 tdep->am33_mode = 0;
1131 set_gdbarch_register_name (gdbarch, am33_register_name);
1132 tdep->am33_mode = 1;
1135 case bfd_mach_am33_2:
1136 set_gdbarch_register_name (gdbarch, am33_2_register_name);
1137 tdep->am33_mode = 2;
1139 set_gdbarch_fp0_regnum (gdbarch, 32);
1142 internal_error (__FILE__, __LINE__,
1143 _("mn10300_gdbarch_init: Unknown mn10300 variant"));
1148 set_gdbarch_num_regs (gdbarch, num_regs);
1149 set_gdbarch_register_type (gdbarch, mn10300_register_type);
1150 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1151 set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
1152 set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
1153 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1154 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1155 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1157 /* Stack unwinding. */
1158 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1160 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1161 /* decr_pc_after_break? */
1163 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1166 set_gdbarch_return_value (gdbarch, mn10300_return_value);
1168 /* Stage 3 -- get target calls working. */
1169 set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
1170 /* set_gdbarch_return_value (store, extract) */
1173 mn10300_frame_unwind_init (gdbarch);
1175 /* Hook in ABI-specific overrides, if they have been registered. */
1176 gdbarch_init_osabi (info, gdbarch);
1181 /* Dump out the mn10300 specific architecture information. */
1184 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1186 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1187 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1192 _initialize_mn10300_tdep (void)
1194 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);