* alpha-nat.c, irix4-nat.c, irix5-nat.c, mipsv4-nat.c,
[external/binutils.git] / gdb / mipsv4-nat.c
1 /* Native support for MIPS running SVR4, for GDB.
2    Copyright 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "target.h"
24
25 #include <sys/time.h>
26 #include <sys/procfs.h>
27 #include <setjmp.h>             /* For JB_XXX.  */
28
29 /* Size of elements in jmpbuf */
30
31 #define JB_ELEMENT_SIZE 4
32
33 /*
34  * See the comment in m68k-tdep.c regarding the utility of these functions.
35  *
36  * These definitions are from the MIPS SVR4 ABI, so they may work for
37  * any MIPS SVR4 target.
38  */
39
40 void 
41 supply_gregset (gregsetp)
42      gregset_t *gregsetp;
43 {
44   register int regi;
45   register greg_t *regp = &(*gregsetp)[0];
46   static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
47
48   for (regi = 0; regi <= CXT_RA; regi++)
49     supply_register (regi, (char *)(regp + regi));
50
51   supply_register (PC_REGNUM, (char *)(regp + CXT_EPC));
52   supply_register (HI_REGNUM, (char *)(regp + CXT_MDHI));
53   supply_register (LO_REGNUM, (char *)(regp + CXT_MDLO));
54   supply_register (CAUSE_REGNUM, (char *)(regp + CXT_CAUSE));
55
56   /* Fill inaccessible registers with zero.  */
57   supply_register (PS_REGNUM, zerobuf);
58   supply_register (BADVADDR_REGNUM, zerobuf);
59   supply_register (FP_REGNUM, zerobuf);
60   for (regi = FIRST_EMBED_REGNUM; regi <= LAST_EMBED_REGNUM; regi++)
61     supply_register (regi, zerobuf);
62 }
63
64 void
65 fill_gregset (gregsetp, regno)
66      gregset_t *gregsetp;
67      int regno;
68 {
69   int regi;
70   register greg_t *regp = &(*gregsetp)[0];
71
72   for (regi = 0; regi <= 32; regi++)
73     if ((regno == -1) || (regno == regi))
74       *(regp + regi) = *(greg_t *) &registers[REGISTER_BYTE (regi)];
75
76   if ((regno == -1) || (regno == PC_REGNUM))
77     *(regp + CXT_EPC) = *(greg_t *) &registers[REGISTER_BYTE (PC_REGNUM)];
78
79   if ((regno == -1) || (regno == CAUSE_REGNUM))
80     *(regp + CXT_CAUSE) = *(greg_t *) &registers[REGISTER_BYTE (CAUSE_REGNUM)];
81
82   if ((regno == -1) || (regno == HI_REGNUM))
83     *(regp + CXT_MDHI) = *(greg_t *) &registers[REGISTER_BYTE (HI_REGNUM)];
84
85   if ((regno == -1) || (regno == LO_REGNUM))
86     *(regp + CXT_MDLO) = *(greg_t *) &registers[REGISTER_BYTE (LO_REGNUM)];
87 }
88
89 /*
90  * Now we do the same thing for floating-point registers.
91  * We don't bother to condition on FP0_REGNUM since any
92  * reasonable MIPS configuration has an R3010 in it.
93  *
94  * Again, see the comments in m68k-tdep.c.
95  */
96
97 void
98 supply_fpregset (fpregsetp)
99      fpregset_t *fpregsetp;
100 {
101   register int regi;
102   static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
103
104   for (regi = 0; regi < 32; regi++)
105     supply_register (FP0_REGNUM + regi,
106                      (char *)&fpregsetp->fp_r.fp_regs[regi]);
107
108   supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
109
110   /* FIXME: how can we supply FCRIR_REGNUM?  The ABI doesn't tell us. */
111   supply_register (FCRIR_REGNUM, zerobuf);
112 }
113
114 void
115 fill_fpregset (fpregsetp, regno)
116      fpregset_t *fpregsetp;
117      int regno;
118 {
119   int regi;
120   char *from, *to;
121
122   for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
123     {
124       if ((regno == -1) || (regno == regi))
125         {
126           from = (char *) &registers[REGISTER_BYTE (regi)];
127           to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
128           memcpy(to, from, REGISTER_RAW_SIZE (regi));
129         }
130     }
131
132   if ((regno == -1) || (regno == FCRCS_REGNUM))
133     fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
134 }
135
136
137 /* Figure out where the longjmp will land.
138    We expect the first arg to be a pointer to the jmp_buf structure from which
139    we extract the pc (_JB_PC) that we will land at.  The pc is copied into PC.
140    This routine returns true on success. */
141
142 int
143 get_longjmp_target (pc)
144      CORE_ADDR *pc;
145 {
146   char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
147   CORE_ADDR jb_addr;
148
149   jb_addr = read_register (A0_REGNUM);
150
151   if (target_read_memory (jb_addr + _JB_PC * JB_ELEMENT_SIZE, buf,
152                           TARGET_PTR_BIT / TARGET_CHAR_BIT))
153     return 0;
154
155   *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
156
157   return 1;
158 }