1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
39 #include "arch-utils.h"
42 #include "mips-tdep.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
49 #include "sim-regno.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
55 #include "floatformat.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
61 static const struct objfile_data *mips_pdr_data;
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
69 /* The sizes of floating point registers. */
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
83 static const char *mips_abi_string;
85 static const char *mips_abi_strings[] = {
96 /* The standard register names, and all the valid aliases for them. */
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
130 /* k0 and k1 are sometimes called these instead (for "kernel
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
145 /* Some MIPS boards don't support floating point while others only
146 support single-precision floating-point operations. */
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
161 static int mips_debug = 0;
163 /* Properties (for struct target_desc) describing the g/G packet
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
171 /* MIPS specific per-architecture information */
174 /* from the elf header */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
203 n32n64_floatformat_always_valid (const struct floatformat *fmt,
209 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
220 static const struct floatformat floatformat_n32n64_long_double_big =
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
224 "floatformat_n32n64_long_double_big",
225 n32n64_floatformat_always_valid
228 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
234 const struct mips_regnum *
235 mips_regnum (struct gdbarch *gdbarch)
237 return gdbarch_tdep (gdbarch)->regnum;
241 mips_fpa0_regnum (struct gdbarch *gdbarch)
243 return mips_regnum (gdbarch)->fp0 + 12;
246 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
249 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
251 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
253 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
255 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
259 is_mips16_addr (CORE_ADDR addr)
265 unmake_mips16_addr (CORE_ADDR addr)
267 return ((addr) & ~(CORE_ADDR) 1);
270 /* Return the MIPS ABI associated with GDBARCH. */
272 mips_abi (struct gdbarch *gdbarch)
274 return gdbarch_tdep (gdbarch)->mips_abi;
278 mips_isa_regsize (struct gdbarch *gdbarch)
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
286 /* Fall back to the previous behavior. */
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
291 /* Return the currently configured (or set) saved register size. */
294 mips_abi_regsize (struct gdbarch *gdbarch)
296 switch (mips_abi (gdbarch))
298 case MIPS_ABI_EABI32:
304 case MIPS_ABI_EABI64:
306 case MIPS_ABI_UNKNOWN:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
313 /* Functions for setting and testing a bit in a minimal symbol that
314 marks it as 16-bit function. The MSB of the minimal symbol's
315 "info" field is used for this purpose.
317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
324 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
335 msymbol_is_special (struct minimal_symbol *msym)
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
340 /* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
346 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
351 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
352 /* Need to transfer the left or right part of the register, based on
353 the targets byte order. */
357 reg_offset = register_size (current_gdbarch, reg_num) - length;
359 case BFD_ENDIAN_LITTLE:
362 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
366 internal_error (__FILE__, __LINE__, _("bad switch"));
369 fprintf_unfiltered (gdb_stderr,
370 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
371 reg_num, reg_offset, buf_offset, length);
372 if (mips_debug && out != NULL)
375 fprintf_unfiltered (gdb_stdlog, "out ");
376 for (i = 0; i < length; i++)
377 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
380 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
383 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
385 if (mips_debug && in != NULL)
388 fprintf_unfiltered (gdb_stdlog, "in ");
389 for (i = 0; i < length; i++)
390 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
393 fprintf_unfiltered (gdb_stdlog, "\n");
396 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
397 compatiblity mode. A return value of 1 means that we have
398 physical 64-bit registers, but should treat them as 32-bit registers. */
401 mips2_fp_compat (struct frame_info *frame)
403 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
405 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
410 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
411 in all the places we deal with FP registers. PR gdb/413. */
412 /* Otherwise check the FR bit in the status register - it controls
413 the FP compatiblity mode. If it is clear we are in compatibility
415 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
422 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
424 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
426 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
428 static struct type *mips_float_register_type (void);
429 static struct type *mips_double_register_type (void);
431 /* The list of available "set mips " and "show mips " commands */
433 static struct cmd_list_element *setmipscmdlist = NULL;
434 static struct cmd_list_element *showmipscmdlist = NULL;
436 /* Integer registers 0 thru 31 are handled explicitly by
437 mips_register_name(). Processor specific registers 32 and above
438 are listed in the following tables. */
441 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
445 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "" /*"fp" */ , "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
456 /* Names of IDT R3041 registers. */
458 static const char *mips_r3041_reg_names[] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
464 "fsr", "fir", "", /*"fp" */ "",
465 "", "", "bus", "ccfg", "", "", "", "",
466 "", "", "port", "cmp", "", "", "epc", "prid",
469 /* Names of tx39 registers. */
471 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
472 "sr", "lo", "hi", "bad", "cause", "pc",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "config", "cache", "debug", "depc", "epc", ""
482 /* Names of IRIX registers. */
483 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
484 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
485 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
486 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
487 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
488 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
492 /* Return the name of the register corresponding to REGNO. */
494 mips_register_name (int regno)
496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
497 /* GPR names for all ABIs other than n32/n64. */
498 static char *mips_gpr_names[] = {
499 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
500 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
501 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
502 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
505 /* GPR names for n32 and n64 ABIs. */
506 static char *mips_n32_n64_gpr_names[] = {
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
513 enum mips_abi abi = mips_abi (current_gdbarch);
515 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
516 but then don't make the raw register names visible. */
517 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
518 if (regno < gdbarch_num_regs (current_gdbarch))
521 /* The MIPS integer registers are always mapped from 0 to 31. The
522 names of the registers (which reflects the conventions regarding
523 register use) vary depending on the ABI. */
524 if (0 <= rawnum && rawnum < 32)
526 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
527 return mips_n32_n64_gpr_names[rawnum];
529 return mips_gpr_names[rawnum];
531 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
532 return tdesc_register_name (rawnum);
533 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
535 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
536 return tdep->mips_processor_reg_names[rawnum - 32];
539 internal_error (__FILE__, __LINE__,
540 _("mips_register_name: bad register number %d"), rawnum);
543 /* Return the groups that a MIPS register can be categorised into. */
546 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
547 struct reggroup *reggroup)
552 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
553 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
554 if (reggroup == all_reggroup)
556 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
557 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
558 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
559 (gdbarch), as not all architectures are multi-arch. */
560 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
561 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
562 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
564 if (reggroup == float_reggroup)
565 return float_p && pseudo;
566 if (reggroup == vector_reggroup)
567 return vector_p && pseudo;
568 if (reggroup == general_reggroup)
569 return (!vector_p && !float_p) && pseudo;
570 /* Save the pseudo registers. Need to make certain that any code
571 extracting register values from a saved register cache also uses
573 if (reggroup == save_reggroup)
574 return raw_p && pseudo;
575 /* Restore the same pseudo register. */
576 if (reggroup == restore_reggroup)
577 return raw_p && pseudo;
581 /* Return the groups that a MIPS register can be categorised into.
582 This version is only used if we have a target description which
583 describes real registers (and their groups). */
586 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
587 struct reggroup *reggroup)
589 int rawnum = regnum % gdbarch_num_regs (gdbarch);
590 int pseudo = regnum / gdbarch_num_regs (gdbarch);
593 /* Only save, restore, and display the pseudo registers. Need to
594 make certain that any code extracting register values from a
595 saved register cache also uses pseudo registers.
597 Note: saving and restoring the pseudo registers is slightly
598 strange; if we have 64 bits, we should save and restore all
599 64 bits. But this is hard and has little benefit. */
603 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
607 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
610 /* Map the symbol table registers which live in the range [1 *
611 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
612 registers. Take care of alignment and size problems. */
615 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
616 int cookednum, gdb_byte *buf)
618 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
619 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
620 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
621 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
622 regcache_raw_read (regcache, rawnum, buf);
623 else if (register_size (gdbarch, rawnum) >
624 register_size (gdbarch, cookednum))
626 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
627 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
628 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
630 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
633 internal_error (__FILE__, __LINE__, _("bad register size"));
637 mips_pseudo_register_write (struct gdbarch *gdbarch,
638 struct regcache *regcache, int cookednum,
641 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
642 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
643 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
644 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
645 regcache_raw_write (regcache, rawnum, buf);
646 else if (register_size (gdbarch, rawnum) >
647 register_size (gdbarch, cookednum))
649 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
650 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
651 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
653 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
656 internal_error (__FILE__, __LINE__, _("bad register size"));
659 /* Table to translate MIPS16 register field to actual register number. */
660 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
662 /* Heuristic_proc_start may hunt through the text section for a long
663 time across a 2400 baud serial line. Allows the user to limit this
666 static unsigned int heuristic_fence_post = 0;
668 /* Number of bytes of storage in the actual machine representation for
669 register N. NOTE: This defines the pseudo register type so need to
670 rebuild the architecture vector. */
672 static int mips64_transfers_32bit_regs_p = 0;
675 set_mips64_transfers_32bit_regs (char *args, int from_tty,
676 struct cmd_list_element *c)
678 struct gdbarch_info info;
679 gdbarch_info_init (&info);
680 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
681 instead of relying on globals. Doing that would let generic code
682 handle the search for this specific architecture. */
683 if (!gdbarch_update_p (info))
685 mips64_transfers_32bit_regs_p = 0;
686 error (_("32-bit compatibility mode not supported"));
690 /* Convert to/from a register and the corresponding memory value. */
693 mips_convert_register_p (int regnum, struct type *type)
695 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
696 && register_size (current_gdbarch, regnum) == 4
697 && (regnum % gdbarch_num_regs (current_gdbarch))
698 >= mips_regnum (current_gdbarch)->fp0
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 < mips_regnum (current_gdbarch)->fp0 + 32
701 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
705 mips_register_to_value (struct frame_info *frame, int regnum,
706 struct type *type, gdb_byte *to)
708 get_frame_register (frame, regnum + 0, to + 4);
709 get_frame_register (frame, regnum + 1, to + 0);
713 mips_value_to_register (struct frame_info *frame, int regnum,
714 struct type *type, const gdb_byte *from)
716 put_frame_register (frame, regnum + 0, from + 4);
717 put_frame_register (frame, regnum + 1, from + 0);
720 /* Return the GDB type object for the "standard" data type of data in
724 mips_register_type (struct gdbarch *gdbarch, int regnum)
726 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
727 if ((regnum % gdbarch_num_regs (current_gdbarch))
728 >= mips_regnum (current_gdbarch)->fp0
729 && (regnum % gdbarch_num_regs (current_gdbarch))
730 < mips_regnum (current_gdbarch)->fp0 + 32)
732 /* The floating-point registers raw, or cooked, always match
733 mips_isa_regsize(), and also map 1:1, byte for byte. */
734 if (mips_isa_regsize (gdbarch) == 4)
735 return builtin_type_ieee_single;
737 return builtin_type_ieee_double;
739 else if (regnum < gdbarch_num_regs (current_gdbarch))
741 /* The raw or ISA registers. These are all sized according to
743 if (mips_isa_regsize (gdbarch) == 4)
744 return builtin_type_int32;
746 return builtin_type_int64;
750 /* The cooked or ABI registers. These are sized according to
751 the ABI (with a few complications). */
752 if (regnum >= (gdbarch_num_regs (current_gdbarch)
753 + mips_regnum (current_gdbarch)->fp_control_status)
754 && regnum <= gdbarch_num_regs (current_gdbarch)
755 + MIPS_LAST_EMBED_REGNUM)
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
767 return builtin_type_int32;
770 return builtin_type_int64;
774 /* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
780 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
824 /* For all other registers, pass through the hardware type. */
828 /* Should the upper word of 64-bit addresses be zeroed? */
829 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
832 mips_mask_address_p (struct gdbarch_tdep *tdep)
834 switch (mask_address_var)
836 case AUTO_BOOLEAN_TRUE:
838 case AUTO_BOOLEAN_FALSE:
841 case AUTO_BOOLEAN_AUTO:
842 return tdep->default_mask_address_p;
844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
850 show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
855 deprecated_show_value_hack (file, from_tty, c, value);
856 switch (mask_address_var)
858 case AUTO_BOOLEAN_TRUE:
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
861 case AUTO_BOOLEAN_FALSE:
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
864 case AUTO_BOOLEAN_AUTO:
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
875 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
878 mips_pc_is_mips16 (CORE_ADDR memaddr)
880 struct minimal_symbol *sym;
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
883 if (is_mips16_addr (memaddr))
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
891 return msymbol_is_special (sym);
896 /* MIPS believes that the PC has a sign extended value. Perhaps the
897 all registers should be sign extended for simplicity? */
900 mips_read_pc (struct regcache *regcache)
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
909 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
911 return frame_unwind_register_signed (next_frame,
912 gdbarch_num_regs (current_gdbarch)
913 + mips_regnum (gdbarch)->pc);
917 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
919 return frame_unwind_register_signed (next_frame,
920 gdbarch_num_regs (current_gdbarch)
924 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
925 dummy frame. The frame ID's base needs to match the TOS value
926 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
929 static struct frame_id
930 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
932 return frame_id_build
933 (frame_unwind_register_signed (next_frame,
934 gdbarch_num_regs (current_gdbarch)
936 frame_pc_unwind (next_frame));
940 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
942 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
943 regcache_cooked_write_unsigned (regcache, regnum, pc);
946 /* Fetch and return instruction from the specified location. If the PC
947 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
950 mips_fetch_instruction (CORE_ADDR addr)
952 gdb_byte buf[MIPS_INSN32_SIZE];
956 if (mips_pc_is_mips16 (addr))
958 instlen = MIPS_INSN16_SIZE;
959 addr = unmake_mips16_addr (addr);
962 instlen = MIPS_INSN32_SIZE;
963 status = read_memory_nobpt (addr, buf, instlen);
965 memory_error (status, addr);
966 return extract_unsigned_integer (buf, instlen);
969 /* These the fields of 32 bit mips instructions */
970 #define mips32_op(x) (x >> 26)
971 #define itype_op(x) (x >> 26)
972 #define itype_rs(x) ((x >> 21) & 0x1f)
973 #define itype_rt(x) ((x >> 16) & 0x1f)
974 #define itype_immediate(x) (x & 0xffff)
976 #define jtype_op(x) (x >> 26)
977 #define jtype_target(x) (x & 0x03ffffff)
979 #define rtype_op(x) (x >> 26)
980 #define rtype_rs(x) ((x >> 21) & 0x1f)
981 #define rtype_rt(x) ((x >> 16) & 0x1f)
982 #define rtype_rd(x) ((x >> 11) & 0x1f)
983 #define rtype_shamt(x) ((x >> 6) & 0x1f)
984 #define rtype_funct(x) (x & 0x3f)
987 mips32_relative_offset (ULONGEST inst)
989 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
992 /* Determine where to set a single step breakpoint while considering
993 branch prediction. */
995 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
999 inst = mips_fetch_instruction (pc);
1000 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1002 if (itype_op (inst) >> 2 == 5)
1003 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1005 op = (itype_op (inst) & 0x03);
1015 goto greater_branch;
1020 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1021 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1023 int tf = itype_rt (inst) & 0x01;
1024 int cnum = itype_rt (inst) >> 2;
1026 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1028 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1030 if (((cond >> cnum) & 0x01) == tf)
1031 pc += mips32_relative_offset (inst) + 4;
1036 pc += 4; /* Not a branch, next instruction is easy */
1039 { /* This gets way messy */
1041 /* Further subdivide into SPECIAL, REGIMM and other */
1042 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1044 case 0: /* SPECIAL */
1045 op = rtype_funct (inst);
1050 /* Set PC to that address */
1051 pc = get_frame_register_signed (frame, rtype_rs (inst));
1057 break; /* end SPECIAL */
1058 case 1: /* REGIMM */
1060 op = itype_rt (inst); /* branch condition */
1065 case 16: /* BLTZAL */
1066 case 18: /* BLTZALL */
1068 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1069 pc += mips32_relative_offset (inst) + 4;
1071 pc += 8; /* after the delay slot */
1075 case 17: /* BGEZAL */
1076 case 19: /* BGEZALL */
1077 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1078 pc += mips32_relative_offset (inst) + 4;
1080 pc += 8; /* after the delay slot */
1082 /* All of the other instructions in the REGIMM category */
1087 break; /* end REGIMM */
1092 reg = jtype_target (inst) << 2;
1093 /* Upper four bits get never changed... */
1094 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1097 /* FIXME case JALX : */
1100 reg = jtype_target (inst) << 2;
1101 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1102 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1104 break; /* The new PC will be alternate mode */
1105 case 4: /* BEQ, BEQL */
1107 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1108 get_frame_register_signed (frame, itype_rt (inst)))
1109 pc += mips32_relative_offset (inst) + 4;
1113 case 5: /* BNE, BNEL */
1115 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1116 get_frame_register_signed (frame, itype_rt (inst)))
1117 pc += mips32_relative_offset (inst) + 4;
1121 case 6: /* BLEZ, BLEZL */
1122 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1123 pc += mips32_relative_offset (inst) + 4;
1129 greater_branch: /* BGTZ, BGTZL */
1130 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1131 pc += mips32_relative_offset (inst) + 4;
1138 } /* mips32_next_pc */
1140 /* Decoding the next place to set a breakpoint is irregular for the
1141 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1142 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1143 We dont want to set a single step instruction on the extend instruction
1147 /* Lots of mips16 instruction formats */
1148 /* Predicting jumps requires itype,ritype,i8type
1149 and their extensions extItype,extritype,extI8type
1151 enum mips16_inst_fmts
1153 itype, /* 0 immediate 5,10 */
1154 ritype, /* 1 5,3,8 */
1155 rrtype, /* 2 5,3,3,5 */
1156 rritype, /* 3 5,3,3,5 */
1157 rrrtype, /* 4 5,3,3,3,2 */
1158 rriatype, /* 5 5,3,3,1,4 */
1159 shifttype, /* 6 5,3,3,3,2 */
1160 i8type, /* 7 5,3,8 */
1161 i8movtype, /* 8 5,3,3,5 */
1162 i8mov32rtype, /* 9 5,3,5,3 */
1163 i64type, /* 10 5,3,8 */
1164 ri64type, /* 11 5,3,3,5 */
1165 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1166 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1167 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1168 extRRItype, /* 15 5,5,5,5,3,3,5 */
1169 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1170 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1171 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1172 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1173 extRi64type, /* 20 5,6,5,5,3,3,5 */
1174 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1176 /* I am heaping all the fields of the formats into one structure and
1177 then, only the fields which are involved in instruction extension */
1181 unsigned int regx; /* Function in i8 type */
1186 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1187 for the bits which make up the immediatate extension. */
1190 extended_offset (unsigned int extension)
1193 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1195 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1197 value |= extension & 0x01f; /* extract 4:0 */
1201 /* Only call this function if you know that this is an extendable
1202 instruction. It won't malfunction, but why make excess remote memory
1203 references? If the immediate operands get sign extended or something,
1204 do it after the extension is performed. */
1205 /* FIXME: Every one of these cases needs to worry about sign extension
1206 when the offset is to be used in relative addressing. */
1209 fetch_mips_16 (CORE_ADDR pc)
1212 pc &= 0xfffffffe; /* clear the low order bit */
1213 target_read_memory (pc, buf, 2);
1214 return extract_unsigned_integer (buf, 2);
1218 unpack_mips16 (CORE_ADDR pc,
1219 unsigned int extension,
1221 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1226 switch (insn_format)
1233 value = extended_offset (extension);
1234 value = value << 11; /* rom for the original value */
1235 value |= inst & 0x7ff; /* eleven bits from instruction */
1239 value = inst & 0x7ff;
1240 /* FIXME : Consider sign extension */
1249 { /* A register identifier and an offset */
1250 /* Most of the fields are the same as I type but the
1251 immediate value is of a different length */
1255 value = extended_offset (extension);
1256 value = value << 8; /* from the original instruction */
1257 value |= inst & 0xff; /* eleven bits from instruction */
1258 regx = (extension >> 8) & 0x07; /* or i8 funct */
1259 if (value & 0x4000) /* test the sign bit , bit 26 */
1261 value &= ~0x3fff; /* remove the sign bit */
1267 value = inst & 0xff; /* 8 bits */
1268 regx = (inst >> 8) & 0x07; /* or i8 funct */
1269 /* FIXME: Do sign extension , this format needs it */
1270 if (value & 0x80) /* THIS CONFUSES ME */
1272 value &= 0xef; /* remove the sign bit */
1282 unsigned long value;
1283 unsigned int nexthalf;
1284 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1285 value = value << 16;
1286 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1294 internal_error (__FILE__, __LINE__, _("bad switch"));
1296 upk->offset = offset;
1303 add_offset_16 (CORE_ADDR pc, int offset)
1305 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1309 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1310 unsigned int extension, unsigned int insn)
1312 int op = (insn >> 11);
1315 case 2: /* Branch */
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1326 pc += (offset << 1) + 2;
1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1342 struct upk_mips16 upk;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = get_frame_register_signed (frame, upk.regx);
1347 pc += (upk.offset << 1) + 2;
1354 struct upk_mips16 upk;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
1357 reg = get_frame_register_signed (frame, upk.regx);
1359 pc += (upk.offset << 1) + 2;
1364 case 12: /* I8 Formats btez btnez */
1366 struct upk_mips16 upk;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
1370 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1379 case 29: /* RR Formats JR, JALR, JALR-RA */
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1396 break; /* Function return instruction */
1402 break; /* BOGUS Guess */
1404 pc = get_frame_register_signed (frame, reg);
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1416 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1429 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1431 unsigned int insn = fetch_mips_16 (pc);
1432 return extended_mips16_next_pc (frame, pc, 0, insn);
1435 /* The mips_next_pc function supports single_step when the remote
1436 target monitor or stub is not developed enough to do a single_step.
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
1439 The MIPS32 and MIPS16 variants are quite different. */
1441 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1443 if (is_mips16_addr (pc))
1444 return mips16_next_pc (frame, pc);
1446 return mips32_next_pc (frame, pc);
1449 struct mips_frame_cache
1452 struct trad_frame_saved_reg *saved_regs;
1455 /* Set a register's saved stack address in temp_saved_regs. If an
1456 address has already been set for this register, do nothing; this
1457 way we will only recognize the first save of a given register in a
1460 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1461 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1462 Strictly speaking, only the second range is used as it is only second
1463 range (the ABI instead of ISA registers) that comes into play when finding
1464 saved registers in a frame. */
1467 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1470 if (this_cache != NULL
1471 && this_cache->saved_regs[regnum].addr == -1)
1473 this_cache->saved_regs[regnum
1474 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1476 this_cache->saved_regs[regnum
1477 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1483 /* Fetch the immediate value from a MIPS16 instruction.
1484 If the previous instruction was an EXTEND, use it to extend
1485 the upper bits of the immediate value. This is a helper function
1486 for mips16_scan_prologue. */
1489 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1490 unsigned short inst, /* current instruction */
1491 int nbits, /* number of bits in imm field */
1492 int scale, /* scale factor to be applied to imm */
1493 int is_signed) /* is the imm field signed? */
1497 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1499 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1500 if (offset & 0x8000) /* check for negative extend */
1501 offset = 0 - (0x10000 - (offset & 0xffff));
1502 return offset | (inst & 0x1f);
1506 int max_imm = 1 << nbits;
1507 int mask = max_imm - 1;
1508 int sign_bit = max_imm >> 1;
1510 offset = inst & mask;
1511 if (is_signed && (offset & sign_bit))
1512 offset = 0 - (max_imm - offset);
1513 return offset * scale;
1518 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1519 the associated FRAME_CACHE if not null.
1520 Return the address of the first instruction past the prologue. */
1523 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1524 struct frame_info *next_frame,
1525 struct mips_frame_cache *this_cache)
1528 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1530 long frame_offset = 0; /* Size of stack frame. */
1531 long frame_adjust = 0; /* Offset of FP from SP. */
1532 int frame_reg = MIPS_SP_REGNUM;
1533 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1534 unsigned inst = 0; /* current instruction */
1535 unsigned entry_inst = 0; /* the entry instruction */
1538 int extend_bytes = 0;
1539 int prev_extend_bytes;
1540 CORE_ADDR end_prologue_addr = 0;
1542 /* Can be called when there's no process, and hence when there's no
1544 if (next_frame != NULL)
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (current_gdbarch)
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1570 extend_bytes = MIPS_INSN16_SIZE;
1574 prev_extend_bytes = extend_bytes;
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1611 else if (inst == 0x673d) /* move $s1, $sp */
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1621 frame_adjust = offset;
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
1666 /* The entry instruction always subtracts 32 from the SP. */
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (current_gdbarch);
1680 /* Check if the ra register was pushed on the stack. */
1682 if (entry_inst & 0x20)
1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1685 offset -= mips_abi_regsize (current_gdbarch);
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (current_gdbarch);
1696 if (this_cache != NULL)
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (current_gdbarch)
1702 + frame_offset - frame_adjust);
1703 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1704 be able to get rid of the assignment below, evetually. But it's
1705 still needed for now. */
1706 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1707 + mips_regnum (current_gdbarch)->pc]
1708 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1712 /* If we didn't reach the end of the prologue when scanning the function
1713 instructions, then set end_prologue_addr to the address of the
1714 instruction immediately after the last one we scanned. */
1715 if (end_prologue_addr == 0)
1716 end_prologue_addr = cur_pc;
1718 return end_prologue_addr;
1721 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1722 Procedures that use the 32-bit instruction set are handled by the
1723 mips_insn32 unwinder. */
1725 static struct mips_frame_cache *
1726 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1728 struct mips_frame_cache *cache;
1730 if ((*this_cache) != NULL)
1731 return (*this_cache);
1732 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1733 (*this_cache) = cache;
1734 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1736 /* Analyze the function prologue. */
1738 const CORE_ADDR pc =
1739 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1740 CORE_ADDR start_addr;
1742 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1743 if (start_addr == 0)
1744 start_addr = heuristic_proc_start (pc);
1745 /* We can't analyze the prologue if we couldn't find the begining
1747 if (start_addr == 0)
1750 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1753 /* gdbarch_sp_regnum contains the value and not the address. */
1754 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1755 + MIPS_SP_REGNUM, cache->base);
1757 return (*this_cache);
1761 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
1771 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
1775 int *realnump, gdb_byte *valuep)
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
1783 static const struct frame_unwind mips_insn16_frame_unwind =
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
1790 static const struct frame_unwind *
1791 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
1794 if (mips_pc_is_mips16 (pc))
1795 return &mips_insn16_frame_unwind;
1800 mips_insn16_frame_base_address (struct frame_info *next_frame,
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1808 static const struct frame_base mips_insn16_frame_base =
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
1816 static const struct frame_base *
1817 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
1825 /* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1829 reset_saved_regs (struct mips_frame_cache *this_cache)
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
1838 for (i = 0; i < num_regs; i++)
1840 this_cache->saved_regs[i].addr = -1;
1845 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
1850 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1858 int frame_reg = MIPS_SP_REGNUM;
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
1864 /* Can be called when there's no process, and hence when there's no
1866 if (next_frame != NULL)
1867 sp = frame_unwind_register_signed (next_frame,
1868 gdbarch_num_regs (current_gdbarch)
1873 if (limit_pc > start_pc + 200)
1874 limit_pc = start_pc + 200;
1879 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1881 unsigned long inst, high_word, low_word;
1884 /* Fetch the instruction. */
1885 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1887 /* Save some code by pre-extracting some useful fields. */
1888 high_word = (inst >> 16) & 0xffff;
1889 low_word = inst & 0xffff;
1890 reg = high_word & 0x1f;
1892 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1893 || high_word == 0x23bd /* addi $sp,$sp,-i */
1894 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1896 if (low_word & 0x8000) /* negative stack adjustment? */
1897 frame_offset += 0x10000 - low_word;
1899 /* Exit loop if a positive stack adjustment is found, which
1900 usually means that the stack cleanup code in the function
1901 epilogue is reached. */
1905 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1907 set_reg_offset (this_cache, reg, sp + low_word);
1909 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1911 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1912 set_reg_offset (this_cache, reg, sp + low_word);
1914 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1916 /* Old gcc frame, r30 is virtual frame pointer. */
1917 if ((long) low_word != frame_offset)
1918 frame_addr = sp + low_word;
1919 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1921 unsigned alloca_adjust;
1924 frame_addr = frame_unwind_register_signed
1926 gdbarch_num_regs (current_gdbarch) + 30);
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1939 reset_saved_regs (this_cache);
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1952 unsigned alloca_adjust;
1955 frame_addr = frame_unwind_register_signed
1957 gdbarch_num_regs (current_gdbarch) + 30);
1959 alloca_adjust = (unsigned) (frame_addr - sp);
1960 if (alloca_adjust > 0)
1962 /* FP > SP + frame_size. This may be because of
1963 an alloca or somethings similar. Fix sp to
1964 "pre-alloca" value, and try again. */
1966 /* Need to reset the status of all registers. Otherwise,
1967 we will hit a guard that prevents the new address
1968 for each register to be recomputed during the second
1970 reset_saved_regs (this_cache);
1975 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1977 set_reg_offset (this_cache, reg, frame_addr + low_word);
1979 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1980 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1981 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1982 || high_word == 0x3c1c /* lui $gp,n */
1983 || high_word == 0x279c /* addiu $gp,$gp,n */
1984 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1985 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1988 /* These instructions are part of the prologue, but we don't
1989 need to do anything special to handle them. */
1991 /* The instructions below load $at or $t0 with an immediate
1992 value in preparation for a stack adjustment via
1993 subu $sp,$sp,[$at,$t0]. These instructions could also
1994 initialize a local variable, so we accept them only before
1995 a stack adjustment instruction was seen. */
1996 else if (!seen_sp_adjust
1997 && (high_word == 0x3c01 /* lui $at,n */
1998 || high_word == 0x3c08 /* lui $t0,n */
1999 || high_word == 0x3421 /* ori $at,$at,n */
2000 || high_word == 0x3508 /* ori $t0,$t0,n */
2001 || high_word == 0x3401 /* ori $at,$zero,n */
2002 || high_word == 0x3408 /* ori $t0,$zero,n */
2005 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2009 /* This instruction is not an instruction typically found
2010 in a prologue, so we must have reached the end of the
2012 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2013 loop now? Why would we need to continue scanning the function
2015 if (end_prologue_addr == 0)
2016 end_prologue_addr = cur_pc;
2020 if (this_cache != NULL)
2023 (frame_unwind_register_signed (next_frame,
2024 gdbarch_num_regs (current_gdbarch)
2027 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2028 this assignment below, eventually. But it's still needed
2030 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2031 + mips_regnum (current_gdbarch)->pc]
2032 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2036 /* If we didn't reach the end of the prologue when scanning the function
2037 instructions, then set end_prologue_addr to the address of the
2038 instruction immediately after the last one we scanned. */
2039 /* brobecker/2004-10-10: I don't think this would ever happen, but
2040 we may as well be careful and do our best if we have a null
2041 end_prologue_addr. */
2042 if (end_prologue_addr == 0)
2043 end_prologue_addr = cur_pc;
2045 /* In a frameless function, we might have incorrectly
2046 skipped some load immediate instructions. Undo the skipping
2047 if the load immediate was not followed by a stack adjustment. */
2048 if (load_immediate_bytes && !seen_sp_adjust)
2049 end_prologue_addr -= load_immediate_bytes;
2051 return end_prologue_addr;
2054 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2055 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2056 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2059 static struct mips_frame_cache *
2060 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2062 struct mips_frame_cache *cache;
2064 if ((*this_cache) != NULL)
2065 return (*this_cache);
2067 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2068 (*this_cache) = cache;
2069 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2071 /* Analyze the function prologue. */
2073 const CORE_ADDR pc =
2074 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2075 CORE_ADDR start_addr;
2077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2078 if (start_addr == 0)
2079 start_addr = heuristic_proc_start (pc);
2080 /* We can't analyze the prologue if we couldn't find the begining
2082 if (start_addr == 0)
2085 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2088 /* gdbarch_sp_regnum contains the value and not the address. */
2089 trad_frame_set_value (cache->saved_regs,
2090 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2093 return (*this_cache);
2097 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2098 struct frame_id *this_id)
2100 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2102 (*this_id) = frame_id_build (info->base,
2103 frame_func_unwind (next_frame, NORMAL_FRAME));
2107 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2109 int regnum, int *optimizedp,
2110 enum lval_type *lvalp, CORE_ADDR *addrp,
2111 int *realnump, gdb_byte *valuep)
2113 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
2119 static const struct frame_unwind mips_insn32_frame_unwind =
2122 mips_insn32_frame_this_id,
2123 mips_insn32_frame_prev_register
2126 static const struct frame_unwind *
2127 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
2130 if (! mips_pc_is_mips16 (pc))
2131 return &mips_insn32_frame_unwind;
2136 mips_insn32_frame_base_address (struct frame_info *next_frame,
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2144 static const struct frame_base mips_insn32_frame_base =
2146 &mips_insn32_frame_unwind,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address,
2149 mips_insn32_frame_base_address
2152 static const struct frame_base *
2153 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2155 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2156 return &mips_insn32_frame_base;
2161 static struct trad_frame_cache *
2162 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2165 CORE_ADDR start_addr;
2166 CORE_ADDR stack_addr;
2167 struct trad_frame_cache *this_trad_cache;
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
2174 /* The return address is in the link register. */
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (current_gdbarch),
2177 (gdbarch_num_regs (current_gdbarch)
2180 /* Frame ID, since it's a frameless / stackless function, no stack
2181 space is allocated and SP on entry is the current SP. */
2182 pc = frame_pc_unwind (next_frame);
2183 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2184 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2185 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2187 /* Assume that the frame's base is the same as the
2189 trad_frame_set_this_base (this_trad_cache, stack_addr);
2191 return this_trad_cache;
2195 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2196 struct frame_id *this_id)
2198 struct trad_frame_cache *this_trad_cache
2199 = mips_stub_frame_cache (next_frame, this_cache);
2200 trad_frame_get_id (this_trad_cache, this_id);
2204 mips_stub_frame_prev_register (struct frame_info *next_frame,
2206 int regnum, int *optimizedp,
2207 enum lval_type *lvalp, CORE_ADDR *addrp,
2208 int *realnump, gdb_byte *valuep)
2210 struct trad_frame_cache *this_trad_cache
2211 = mips_stub_frame_cache (next_frame, this_cache);
2212 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2213 lvalp, addrp, realnump, valuep);
2216 static const struct frame_unwind mips_stub_frame_unwind =
2219 mips_stub_frame_this_id,
2220 mips_stub_frame_prev_register
2223 static const struct frame_unwind *
2224 mips_stub_frame_sniffer (struct frame_info *next_frame)
2227 struct obj_section *s;
2228 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2230 /* Use the stub unwinder for unreadable code. */
2231 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2232 return &mips_stub_frame_unwind;
2234 if (in_plt_section (pc, NULL))
2235 return &mips_stub_frame_unwind;
2237 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2238 s = find_pc_section (pc);
2241 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2242 ".MIPS.stubs") == 0)
2243 return &mips_stub_frame_unwind;
2249 mips_stub_frame_base_address (struct frame_info *next_frame,
2252 struct trad_frame_cache *this_trad_cache
2253 = mips_stub_frame_cache (next_frame, this_cache);
2254 return trad_frame_get_this_base (this_trad_cache);
2257 static const struct frame_base mips_stub_frame_base =
2259 &mips_stub_frame_unwind,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address,
2262 mips_stub_frame_base_address
2265 static const struct frame_base *
2266 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2268 if (mips_stub_frame_sniffer (next_frame) != NULL)
2269 return &mips_stub_frame_base;
2274 /* mips_addr_bits_remove - remove useless address bits */
2277 mips_addr_bits_remove (CORE_ADDR addr)
2279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2280 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2281 /* This hack is a work-around for existing boards using PMON, the
2282 simulator, and any other 64-bit targets that doesn't have true
2283 64-bit addressing. On these targets, the upper 32 bits of
2284 addresses are ignored by the hardware. Thus, the PC or SP are
2285 likely to have been sign extended to all 1s by instruction
2286 sequences that load 32-bit addresses. For example, a typical
2287 piece of code that loads an address is this:
2289 lui $r2, <upper 16 bits>
2290 ori $r2, <lower 16 bits>
2292 But the lui sign-extends the value such that the upper 32 bits
2293 may be all 1s. The workaround is simply to mask off these
2294 bits. In the future, gcc may be changed to support true 64-bit
2295 addressing, and this masking will have to be disabled. */
2296 return addr &= 0xffffffffUL;
2301 /* mips_software_single_step() is called just before we want to resume
2302 the inferior, if we want to single-step it but there is no hardware
2303 or kernel single-step support (MIPS on GNU/Linux for example). We find
2304 the target of the coming instruction and breakpoint it. */
2307 mips_software_single_step (struct frame_info *frame)
2309 CORE_ADDR pc, next_pc;
2311 pc = get_frame_pc (frame);
2312 next_pc = mips_next_pc (frame, pc);
2314 insert_single_step_breakpoint (next_pc);
2318 /* Test whether the PC points to the return instruction at the
2319 end of a function. */
2322 mips_about_to_return (CORE_ADDR pc)
2324 if (mips_pc_is_mips16 (pc))
2325 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2326 generates a "jr $ra"; other times it generates code to load
2327 the return address from the stack to an accessible register (such
2328 as $a3), then a "jr" using that register. This second case
2329 is almost impossible to distinguish from an indirect jump
2330 used for switch statements, so we don't even try. */
2331 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2333 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2337 /* This fencepost looks highly suspicious to me. Removing it also
2338 seems suspicious as it could affect remote debugging across serial
2342 heuristic_proc_start (CORE_ADDR pc)
2349 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2351 fence = start_pc - heuristic_fence_post;
2355 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2356 fence = VM_MIN_ADDRESS;
2358 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2360 /* search back for previous return */
2361 for (start_pc -= instlen;; start_pc -= instlen)
2362 if (start_pc < fence)
2364 /* It's not clear to me why we reach this point when
2365 stop_soon, but with this test, at least we
2366 don't print out warnings for every child forked (eg, on
2367 decstation). 22apr93 rich@cygnus.com. */
2368 if (stop_soon == NO_STOP_QUIETLY)
2370 static int blurb_printed = 0;
2372 warning (_("GDB can't find the start of the function at 0x%s."),
2377 /* This actually happens frequently in embedded
2378 development, when you first connect to a board
2379 and your stack pointer and pc are nowhere in
2380 particular. This message needs to give people
2381 in that situation enough information to
2382 determine that it's no big deal. */
2383 printf_filtered ("\n\
2384 GDB is unable to find the start of the function at 0x%s\n\
2385 and thus can't determine the size of that function's stack frame.\n\
2386 This means that GDB may be unable to access that stack frame, or\n\
2387 the frames below it.\n\
2388 This problem is most likely caused by an invalid program counter or\n\
2390 However, if you think GDB should simply search farther back\n\
2391 from 0x%s for code which looks like the beginning of a\n\
2392 function, you can increase the range of the search using the `set\n\
2393 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2400 else if (mips_pc_is_mips16 (start_pc))
2402 unsigned short inst;
2404 /* On MIPS16, any one of the following is likely to be the
2405 start of a function:
2411 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2412 inst = mips_fetch_instruction (start_pc);
2413 if ((inst & 0xff80) == 0x6480) /* save */
2415 if (start_pc - instlen >= fence)
2417 inst = mips_fetch_instruction (start_pc - instlen);
2418 if ((inst & 0xf800) == 0xf000) /* extend */
2419 start_pc -= instlen;
2423 else if (((inst & 0xf81f) == 0xe809
2424 && (inst & 0x700) != 0x700) /* entry */
2425 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2426 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2427 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2429 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2430 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2435 else if (mips_about_to_return (start_pc))
2437 /* Skip return and its delay slot. */
2438 start_pc += 2 * MIPS_INSN32_SIZE;
2445 struct mips_objfile_private
2451 /* According to the current ABI, should the type be passed in a
2452 floating-point register (assuming that there is space)? When there
2453 is no FPU, FP are not even considered as possible candidates for
2454 FP registers and, consequently this returns false - forces FP
2455 arguments into integer registers. */
2458 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2460 return ((typecode == TYPE_CODE_FLT
2462 && (typecode == TYPE_CODE_STRUCT
2463 || typecode == TYPE_CODE_UNION)
2464 && TYPE_NFIELDS (arg_type) == 1
2465 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2467 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2470 /* On o32, argument passing in GPRs depends on the alignment of the type being
2471 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2474 mips_type_needs_double_align (struct type *type)
2476 enum type_code typecode = TYPE_CODE (type);
2478 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2480 else if (typecode == TYPE_CODE_STRUCT)
2482 if (TYPE_NFIELDS (type) < 1)
2484 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2486 else if (typecode == TYPE_CODE_UNION)
2490 n = TYPE_NFIELDS (type);
2491 for (i = 0; i < n; i++)
2492 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2499 /* Adjust the address downward (direction of stack growth) so that it
2500 is correctly aligned for a new stack frame. */
2502 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2504 return align_down (addr, 16);
2508 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2509 struct regcache *regcache, CORE_ADDR bp_addr,
2510 int nargs, struct value **args, CORE_ADDR sp,
2511 int struct_return, CORE_ADDR struct_addr)
2517 int stack_offset = 0;
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2519 CORE_ADDR func_addr = find_function_addr (function, NULL);
2520 int regsize = mips_abi_regsize (gdbarch);
2522 /* For shared libraries, "t9" needs to point at the function
2524 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2526 /* Set the return address register to point to the entry point of
2527 the program, where a breakpoint lies in wait. */
2528 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2530 /* First ensure that the stack and structure return address (if any)
2531 are properly aligned. The stack has to be at least 64-bit
2532 aligned even on 32-bit machines, because doubles must be 64-bit
2533 aligned. For n32 and n64, stack frames need to be 128-bit
2534 aligned, so we round to this widest known alignment. */
2536 sp = align_down (sp, 16);
2537 struct_addr = align_down (struct_addr, 16);
2539 /* Now make space on the stack for the args. We allocate more
2540 than necessary for EABI, because the first few arguments are
2541 passed in registers, but that's OK. */
2542 for (argnum = 0; argnum < nargs; argnum++)
2543 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2544 sp -= align_up (len, 16);
2547 fprintf_unfiltered (gdb_stdlog,
2548 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2549 paddr_nz (sp), (long) align_up (len, 16));
2551 /* Initialize the integer and float register pointers. */
2552 argreg = MIPS_A0_REGNUM;
2553 float_argreg = mips_fpa0_regnum (current_gdbarch);
2555 /* The struct_return pointer occupies the first parameter-passing reg. */
2559 fprintf_unfiltered (gdb_stdlog,
2560 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2561 argreg, paddr_nz (struct_addr));
2562 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2565 /* Now load as many as possible of the first arguments into
2566 registers, and push the rest onto the stack. Loop thru args
2567 from first to last. */
2568 for (argnum = 0; argnum < nargs; argnum++)
2570 const gdb_byte *val;
2571 gdb_byte valbuf[MAX_REGISTER_SIZE];
2572 struct value *arg = args[argnum];
2573 struct type *arg_type = check_typedef (value_type (arg));
2574 int len = TYPE_LENGTH (arg_type);
2575 enum type_code typecode = TYPE_CODE (arg_type);
2578 fprintf_unfiltered (gdb_stdlog,
2579 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2580 argnum + 1, len, (int) typecode);
2582 /* The EABI passes structures that do not fit in a register by
2585 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2587 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2588 typecode = TYPE_CODE_PTR;
2592 fprintf_unfiltered (gdb_stdlog, " push");
2595 val = value_contents (arg);
2597 /* 32-bit ABIs always start floating point arguments in an
2598 even-numbered floating point register. Round the FP register
2599 up before the check to see if there are any FP registers
2600 left. Non MIPS_EABI targets also pass the FP in the integer
2601 registers so also round up normal registers. */
2602 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2604 if ((float_argreg & 1))
2608 /* Floating point arguments passed in registers have to be
2609 treated specially. On 32-bit architectures, doubles
2610 are passed in register pairs; the even register gets
2611 the low word, and the odd register gets the high word.
2612 On non-EABI processors, the first two floating point arguments are
2613 also copied to general registers, because MIPS16 functions
2614 don't use float registers for arguments. This duplication of
2615 arguments in general registers can't hurt non-MIPS16 functions
2616 because those registers are normally skipped. */
2617 /* MIPS_EABI squeezes a struct that contains a single floating
2618 point value into an FP register instead of pushing it onto the
2620 if (fp_register_arg_p (typecode, arg_type)
2621 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2623 /* EABI32 will pass doubles in consecutive registers, even on
2624 64-bit cores. At one time, we used to check the size of
2625 `float_argreg' to determine whether or not to pass doubles
2626 in consecutive registers, but this is not sufficient for
2627 making the ABI determination. */
2628 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2630 int low_offset = gdbarch_byte_order (current_gdbarch)
2631 == BFD_ENDIAN_BIG ? 4 : 0;
2632 unsigned long regval;
2634 /* Write the low word of the double to the even register(s). */
2635 regval = extract_unsigned_integer (val + low_offset, 4);
2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2638 float_argreg, phex (regval, 4));
2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2641 /* Write the high word of the double to the odd register(s). */
2642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2645 float_argreg, phex (regval, 4));
2646 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2650 /* This is a floating point value that fits entirely
2651 in a single register. */
2652 /* On 32 bit ABI's the float_argreg is further adjusted
2653 above to ensure that it is even register aligned. */
2654 LONGEST regval = extract_unsigned_integer (val, len);
2656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2657 float_argreg, phex (regval, len));
2658 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2663 /* Copy the argument to general registers or the stack in
2664 register-sized pieces. Large arguments are split between
2665 registers and stack. */
2666 /* Note: structs whose size is not a multiple of regsize
2667 are treated specially: Irix cc passes
2668 them in registers where gcc sometimes puts them on the
2669 stack. For maximum compatibility, we will put them in
2671 int odd_sized_struct = (len > regsize && len % regsize != 0);
2673 /* Note: Floating-point values that didn't fit into an FP
2674 register are only written to memory. */
2677 /* Remember if the argument was written to the stack. */
2678 int stack_used_p = 0;
2679 int partial_len = (len < regsize ? len : regsize);
2682 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2685 /* Write this portion of the argument to the stack. */
2686 if (argreg > MIPS_LAST_ARG_REGNUM
2688 || fp_register_arg_p (typecode, arg_type))
2690 /* Should shorter than int integer values be
2691 promoted to int before being stored? */
2692 int longword_offset = 0;
2695 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2698 && (typecode == TYPE_CODE_INT
2699 || typecode == TYPE_CODE_PTR
2700 || typecode == TYPE_CODE_FLT) && len <= 4)
2701 longword_offset = regsize - len;
2702 else if ((typecode == TYPE_CODE_STRUCT
2703 || typecode == TYPE_CODE_UNION)
2704 && TYPE_LENGTH (arg_type) < regsize)
2705 longword_offset = regsize - len;
2710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2711 paddr_nz (stack_offset));
2712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2713 paddr_nz (longword_offset));
2716 addr = sp + stack_offset + longword_offset;
2721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2723 for (i = 0; i < partial_len; i++)
2725 fprintf_unfiltered (gdb_stdlog, "%02x",
2729 write_memory (addr, val, partial_len);
2732 /* Note!!! This is NOT an else clause. Odd sized
2733 structs may go thru BOTH paths. Floating point
2734 arguments will not. */
2735 /* Write this portion of the argument to a general
2736 purpose register. */
2737 if (argreg <= MIPS_LAST_ARG_REGNUM
2738 && !fp_register_arg_p (typecode, arg_type))
2741 extract_unsigned_integer (val, partial_len);
2744 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2746 phex (regval, regsize));
2747 regcache_cooked_write_unsigned (regcache, argreg, regval);
2754 /* Compute the the offset into the stack at which we
2755 will copy the next parameter.
2757 In the new EABI (and the NABI32), the stack_offset
2758 only needs to be adjusted when it has been used. */
2761 stack_offset += align_up (partial_len, regsize);
2765 fprintf_unfiltered (gdb_stdlog, "\n");
2768 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2770 /* Return adjusted stack pointer. */
2774 /* Determine the return value convention being used. */
2776 static enum return_value_convention
2777 mips_eabi_return_value (struct gdbarch *gdbarch,
2778 struct type *type, struct regcache *regcache,
2779 gdb_byte *readbuf, const gdb_byte *writebuf)
2781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2782 return RETURN_VALUE_STRUCT_CONVENTION;
2784 memset (readbuf, 0, TYPE_LENGTH (type));
2785 return RETURN_VALUE_REGISTER_CONVENTION;
2789 /* N32/N64 ABI stuff. */
2791 /* Search for a naturally aligned double at OFFSET inside a struct
2792 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2796 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2800 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2803 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2806 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2809 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2812 struct type *field_type;
2814 /* We're only looking at normal fields. */
2815 if (TYPE_FIELD_STATIC (arg_type, i)
2816 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2819 /* If we have gone past the offset, there is no double to pass. */
2820 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2824 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2826 /* If this field is entirely before the requested offset, go
2827 on to the next one. */
2828 if (pos + TYPE_LENGTH (field_type) <= offset)
2831 /* If this is our special aligned double, we can stop. */
2832 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2833 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2836 /* This field starts at or before the requested offset, and
2837 overlaps it. If it is a structure, recurse inwards. */
2838 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2845 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2846 struct regcache *regcache, CORE_ADDR bp_addr,
2847 int nargs, struct value **args, CORE_ADDR sp,
2848 int struct_return, CORE_ADDR struct_addr)
2854 int stack_offset = 0;
2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856 CORE_ADDR func_addr = find_function_addr (function, NULL);
2858 /* For shared libraries, "t9" needs to point at the function
2860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2862 /* Set the return address register to point to the entry point of
2863 the program, where a breakpoint lies in wait. */
2864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2866 /* First ensure that the stack and structure return address (if any)
2867 are properly aligned. The stack has to be at least 64-bit
2868 aligned even on 32-bit machines, because doubles must be 64-bit
2869 aligned. For n32 and n64, stack frames need to be 128-bit
2870 aligned, so we round to this widest known alignment. */
2872 sp = align_down (sp, 16);
2873 struct_addr = align_down (struct_addr, 16);
2875 /* Now make space on the stack for the args. */
2876 for (argnum = 0; argnum < nargs; argnum++)
2877 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2878 sp -= align_up (len, 16);
2881 fprintf_unfiltered (gdb_stdlog,
2882 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2883 paddr_nz (sp), (long) align_up (len, 16));
2885 /* Initialize the integer and float register pointers. */
2886 argreg = MIPS_A0_REGNUM;
2887 float_argreg = mips_fpa0_regnum (current_gdbarch);
2889 /* The struct_return pointer occupies the first parameter-passing reg. */
2893 fprintf_unfiltered (gdb_stdlog,
2894 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2895 argreg, paddr_nz (struct_addr));
2896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2899 /* Now load as many as possible of the first arguments into
2900 registers, and push the rest onto the stack. Loop thru args
2901 from first to last. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2904 const gdb_byte *val;
2905 struct value *arg = args[argnum];
2906 struct type *arg_type = check_typedef (value_type (arg));
2907 int len = TYPE_LENGTH (arg_type);
2908 enum type_code typecode = TYPE_CODE (arg_type);
2911 fprintf_unfiltered (gdb_stdlog,
2912 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2913 argnum + 1, len, (int) typecode);
2915 val = value_contents (arg);
2917 if (fp_register_arg_p (typecode, arg_type)
2918 && argreg <= MIPS_LAST_ARG_REGNUM)
2920 /* This is a floating point value that fits entirely
2921 in a single register. */
2922 LONGEST regval = extract_unsigned_integer (val, len);
2924 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2925 float_argreg, phex (regval, len));
2926 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
2929 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2930 argreg, phex (regval, len));
2931 regcache_cooked_write_unsigned (regcache, argreg, regval);
2937 /* Copy the argument to general registers or the stack in
2938 register-sized pieces. Large arguments are split between
2939 registers and stack. */
2940 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
2941 are treated specially: Irix cc passes them in registers
2942 where gcc sometimes puts them on the stack. For maximum
2943 compatibility, we will put them in both places. */
2944 int odd_sized_struct = (len > MIPS64_REGSIZE
2945 && len % MIPS64_REGSIZE != 0);
2946 /* Note: Floating-point values that didn't fit into an FP
2947 register are only written to memory. */
2950 /* Remember if the argument was written to the stack. */
2951 int stack_used_p = 0;
2952 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
2955 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2958 if (fp_register_arg_p (typecode, arg_type))
2959 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2961 /* Write this portion of the argument to the stack. */
2962 if (argreg > MIPS_LAST_ARG_REGNUM
2963 || odd_sized_struct)
2965 /* Should shorter than int integer values be
2966 promoted to int before being stored? */
2967 int longword_offset = 0;
2970 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2972 if ((typecode == TYPE_CODE_INT
2973 || typecode == TYPE_CODE_PTR
2974 || typecode == TYPE_CODE_FLT)
2976 longword_offset = MIPS64_REGSIZE - len;
2981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2982 paddr_nz (stack_offset));
2983 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2984 paddr_nz (longword_offset));
2987 addr = sp + stack_offset + longword_offset;
2992 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2994 for (i = 0; i < partial_len; i++)
2996 fprintf_unfiltered (gdb_stdlog, "%02x",
3000 write_memory (addr, val, partial_len);
3003 /* Note!!! This is NOT an else clause. Odd sized
3004 structs may go thru BOTH paths. */
3005 /* Write this portion of the argument to a general
3006 purpose register. */
3007 if (argreg <= MIPS_LAST_ARG_REGNUM)
3010 extract_unsigned_integer (val, partial_len);
3012 /* A non-floating-point argument being passed in a
3013 general register. If a struct or union, and if
3014 the remaining length is smaller than the register
3015 size, we have to adjust the register value on
3018 It does not seem to be necessary to do the
3019 same for integral types. */
3021 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3022 && partial_len < MIPS64_REGSIZE
3023 && (typecode == TYPE_CODE_STRUCT
3024 || typecode == TYPE_CODE_UNION))
3025 regval <<= ((MIPS64_REGSIZE - partial_len)
3029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3031 phex (regval, MIPS64_REGSIZE));
3032 regcache_cooked_write_unsigned (regcache, argreg, regval);
3034 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3035 TYPE_LENGTH (arg_type) - len))
3038 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3040 phex (regval, MIPS64_REGSIZE));
3041 regcache_cooked_write_unsigned (regcache, float_argreg,
3052 /* Compute the the offset into the stack at which we
3053 will copy the next parameter.
3055 In N32 (N64?), the stack_offset only needs to be
3056 adjusted when it has been used. */
3059 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3063 fprintf_unfiltered (gdb_stdlog, "\n");
3066 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3068 /* Return adjusted stack pointer. */
3072 static enum return_value_convention
3073 mips_n32n64_return_value (struct gdbarch *gdbarch,
3074 struct type *type, struct regcache *regcache,
3075 gdb_byte *readbuf, const gdb_byte *writebuf)
3077 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3078 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3079 || TYPE_CODE (type) == TYPE_CODE_UNION
3080 || TYPE_CODE (type) == TYPE_CODE_ARRAY
3081 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3082 return RETURN_VALUE_STRUCT_CONVENTION;
3083 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3084 && TYPE_LENGTH (type) == 16
3085 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3087 /* A 128-bit floating-point value fills both $f0 and $f2. The
3088 two registers are used in the same as memory order, so the
3089 eight bytes with the lower memory address are in $f0. */
3091 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3092 mips_xfer_register (regcache,
3093 gdbarch_num_regs (current_gdbarch)
3094 + mips_regnum (current_gdbarch)->fp0,
3095 8, gdbarch_byte_order (current_gdbarch),
3096 readbuf, writebuf, 0);
3097 mips_xfer_register (regcache,
3098 gdbarch_num_regs (current_gdbarch)
3099 + mips_regnum (current_gdbarch)->fp0 + 2,
3100 8, gdbarch_byte_order (current_gdbarch),
3101 readbuf ? readbuf + 8 : readbuf,
3102 writebuf ? writebuf + 8 : writebuf, 0);
3103 return RETURN_VALUE_REGISTER_CONVENTION;
3105 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3106 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3108 /* A floating-point value belongs in the least significant part
3111 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3112 mips_xfer_register (regcache,
3113 gdbarch_num_regs (current_gdbarch)
3114 + mips_regnum (current_gdbarch)->fp0,
3116 gdbarch_byte_order (current_gdbarch),
3117 readbuf, writebuf, 0);
3118 return RETURN_VALUE_REGISTER_CONVENTION;
3120 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3121 && TYPE_NFIELDS (type) <= 2
3122 && TYPE_NFIELDS (type) >= 1
3123 && ((TYPE_NFIELDS (type) == 1
3124 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3126 || (TYPE_NFIELDS (type) == 2
3127 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3129 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3131 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3133 /* A struct that contains one or two floats. Each value is part
3134 in the least significant part of their floating point
3138 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3139 field < TYPE_NFIELDS (type); field++, regnum += 2)
3141 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3144 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3146 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3148 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3149 gdbarch_byte_order (current_gdbarch),
3150 readbuf, writebuf, offset);
3152 return RETURN_VALUE_REGISTER_CONVENTION;
3154 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3155 || TYPE_CODE (type) == TYPE_CODE_UNION)
3157 /* A structure or union. Extract the left justified value,
3158 regardless of the byte order. I.e. DO NOT USE
3162 for (offset = 0, regnum = MIPS_V0_REGNUM;
3163 offset < TYPE_LENGTH (type);
3164 offset += register_size (current_gdbarch, regnum), regnum++)
3166 int xfer = register_size (current_gdbarch, regnum);
3167 if (offset + xfer > TYPE_LENGTH (type))
3168 xfer = TYPE_LENGTH (type) - offset;
3170 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3171 offset, xfer, regnum);
3172 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3174 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3176 return RETURN_VALUE_REGISTER_CONVENTION;
3180 /* A scalar extract each part but least-significant-byte
3184 for (offset = 0, regnum = MIPS_V0_REGNUM;
3185 offset < TYPE_LENGTH (type);
3186 offset += register_size (current_gdbarch, regnum), regnum++)
3188 int xfer = register_size (current_gdbarch, regnum);
3189 if (offset + xfer > TYPE_LENGTH (type))
3190 xfer = TYPE_LENGTH (type) - offset;
3192 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3193 offset, xfer, regnum);
3194 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3196 gdbarch_byte_order (current_gdbarch),
3197 readbuf, writebuf, offset);
3199 return RETURN_VALUE_REGISTER_CONVENTION;
3203 /* O32 ABI stuff. */
3206 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3207 struct regcache *regcache, CORE_ADDR bp_addr,
3208 int nargs, struct value **args, CORE_ADDR sp,
3209 int struct_return, CORE_ADDR struct_addr)
3215 int stack_offset = 0;
3216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3217 CORE_ADDR func_addr = find_function_addr (function, NULL);
3219 /* For shared libraries, "t9" needs to point at the function
3221 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3223 /* Set the return address register to point to the entry point of
3224 the program, where a breakpoint lies in wait. */
3225 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3227 /* First ensure that the stack and structure return address (if any)
3228 are properly aligned. The stack has to be at least 64-bit
3229 aligned even on 32-bit machines, because doubles must be 64-bit
3230 aligned. For n32 and n64, stack frames need to be 128-bit
3231 aligned, so we round to this widest known alignment. */
3233 sp = align_down (sp, 16);
3234 struct_addr = align_down (struct_addr, 16);
3236 /* Now make space on the stack for the args. */
3237 for (argnum = 0; argnum < nargs; argnum++)
3239 struct type *arg_type = check_typedef (value_type (args[argnum]));
3240 int arglen = TYPE_LENGTH (arg_type);
3242 /* Align to double-word if necessary. */
3243 if (mips_type_needs_double_align (arg_type))
3244 len = align_up (len, MIPS32_REGSIZE * 2);
3245 /* Allocate space on the stack. */
3246 len += align_up (arglen, MIPS32_REGSIZE);
3248 sp -= align_up (len, 16);
3251 fprintf_unfiltered (gdb_stdlog,
3252 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3253 paddr_nz (sp), (long) align_up (len, 16));
3255 /* Initialize the integer and float register pointers. */
3256 argreg = MIPS_A0_REGNUM;
3257 float_argreg = mips_fpa0_regnum (current_gdbarch);
3259 /* The struct_return pointer occupies the first parameter-passing reg. */
3263 fprintf_unfiltered (gdb_stdlog,
3264 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3265 argreg, paddr_nz (struct_addr));
3266 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3267 stack_offset += MIPS32_REGSIZE;
3270 /* Now load as many as possible of the first arguments into
3271 registers, and push the rest onto the stack. Loop thru args
3272 from first to last. */
3273 for (argnum = 0; argnum < nargs; argnum++)
3275 const gdb_byte *val;
3276 struct value *arg = args[argnum];
3277 struct type *arg_type = check_typedef (value_type (arg));
3278 int len = TYPE_LENGTH (arg_type);
3279 enum type_code typecode = TYPE_CODE (arg_type);
3282 fprintf_unfiltered (gdb_stdlog,
3283 "mips_o32_push_dummy_call: %d len=%d type=%d",
3284 argnum + 1, len, (int) typecode);
3286 val = value_contents (arg);
3288 /* 32-bit ABIs always start floating point arguments in an
3289 even-numbered floating point register. Round the FP register
3290 up before the check to see if there are any FP registers
3291 left. O32/O64 targets also pass the FP in the integer
3292 registers so also round up normal registers. */
3293 if (fp_register_arg_p (typecode, arg_type))
3295 if ((float_argreg & 1))
3299 /* Floating point arguments passed in registers have to be
3300 treated specially. On 32-bit architectures, doubles
3301 are passed in register pairs; the even register gets
3302 the low word, and the odd register gets the high word.
3303 On O32/O64, the first two floating point arguments are
3304 also copied to general registers, because MIPS16 functions
3305 don't use float registers for arguments. This duplication of
3306 arguments in general registers can't hurt non-MIPS16 functions
3307 because those registers are normally skipped. */
3309 if (fp_register_arg_p (typecode, arg_type)
3310 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3312 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3314 int low_offset = gdbarch_byte_order (current_gdbarch)
3315 == BFD_ENDIAN_BIG ? 4 : 0;
3316 unsigned long regval;
3318 /* Write the low word of the double to the even register(s). */
3319 regval = extract_unsigned_integer (val + low_offset, 4);
3321 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3322 float_argreg, phex (regval, 4));
3323 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3325 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3326 argreg, phex (regval, 4));
3327 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3329 /* Write the high word of the double to the odd register(s). */
3330 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3332 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3333 float_argreg, phex (regval, 4));
3334 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3337 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3338 argreg, phex (regval, 4));
3339 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3343 /* This is a floating point value that fits entirely
3344 in a single register. */
3345 /* On 32 bit ABI's the float_argreg is further adjusted
3346 above to ensure that it is even register aligned. */
3347 LONGEST regval = extract_unsigned_integer (val, len);
3349 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3350 float_argreg, phex (regval, len));
3351 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3352 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3353 registers for each argument. The below is (my
3354 guess) to ensure that the corresponding integer
3355 register has reserved the same space. */
3357 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3358 argreg, phex (regval, len));
3359 regcache_cooked_write_unsigned (regcache, argreg, regval);
3362 /* Reserve space for the FP register. */
3363 stack_offset += align_up (len, MIPS32_REGSIZE);
3367 /* Copy the argument to general registers or the stack in
3368 register-sized pieces. Large arguments are split between
3369 registers and stack. */
3370 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3371 are treated specially: Irix cc passes
3372 them in registers where gcc sometimes puts them on the
3373 stack. For maximum compatibility, we will put them in
3375 int odd_sized_struct = (len > MIPS32_REGSIZE
3376 && len % MIPS32_REGSIZE != 0);
3377 /* Structures should be aligned to eight bytes (even arg registers)
3378 on MIPS_ABI_O32, if their first member has double precision. */
3379 if (mips_type_needs_double_align (arg_type))
3384 stack_offset += MIPS32_REGSIZE;
3389 /* Remember if the argument was written to the stack. */
3390 int stack_used_p = 0;
3391 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3394 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3397 /* Write this portion of the argument to the stack. */
3398 if (argreg > MIPS_LAST_ARG_REGNUM
3399 || odd_sized_struct)
3401 /* Should shorter than int integer values be
3402 promoted to int before being stored? */
3403 int longword_offset = 0;
3409 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3410 paddr_nz (stack_offset));
3411 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3412 paddr_nz (longword_offset));
3415 addr = sp + stack_offset + longword_offset;
3420 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3422 for (i = 0; i < partial_len; i++)
3424 fprintf_unfiltered (gdb_stdlog, "%02x",
3428 write_memory (addr, val, partial_len);
3431 /* Note!!! This is NOT an else clause. Odd sized
3432 structs may go thru BOTH paths. */
3433 /* Write this portion of the argument to a general
3434 purpose register. */
3435 if (argreg <= MIPS_LAST_ARG_REGNUM)
3437 LONGEST regval = extract_signed_integer (val, partial_len);
3438 /* Value may need to be sign extended, because
3439 mips_isa_regsize() != mips_abi_regsize(). */
3441 /* A non-floating-point argument being passed in a
3442 general register. If a struct or union, and if
3443 the remaining length is smaller than the register
3444 size, we have to adjust the register value on
3447 It does not seem to be necessary to do the
3448 same for integral types.
3450 Also don't do this adjustment on O64 binaries.
3452 cagney/2001-07-23: gdb/179: Also, GCC, when
3453 outputting LE O32 with sizeof (struct) <
3454 mips_abi_regsize(), generates a left shift
3455 as part of storing the argument in a register
3456 (the left shift isn't generated when
3457 sizeof (struct) >= mips_abi_regsize()). Since
3458 it is quite possible that this is GCC
3459 contradicting the LE/O32 ABI, GDB has not been
3460 adjusted to accommodate this. Either someone
3461 needs to demonstrate that the LE/O32 ABI
3462 specifies such a left shift OR this new ABI gets
3463 identified as such and GDB gets tweaked
3466 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3467 && partial_len < MIPS32_REGSIZE
3468 && (typecode == TYPE_CODE_STRUCT
3469 || typecode == TYPE_CODE_UNION))
3470 regval <<= ((MIPS32_REGSIZE - partial_len)
3474 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3476 phex (regval, MIPS32_REGSIZE));
3477 regcache_cooked_write_unsigned (regcache, argreg, regval);
3480 /* Prevent subsequent floating point arguments from
3481 being passed in floating point registers. */
3482 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3488 /* Compute the the offset into the stack at which we
3489 will copy the next parameter.
3491 In older ABIs, the caller reserved space for
3492 registers that contained arguments. This was loosely
3493 refered to as their "home". Consequently, space is
3494 always allocated. */
3496 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3500 fprintf_unfiltered (gdb_stdlog, "\n");
3503 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3505 /* Return adjusted stack pointer. */
3509 static enum return_value_convention
3510 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3511 struct regcache *regcache,
3512 gdb_byte *readbuf, const gdb_byte *writebuf)
3514 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3516 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3517 || TYPE_CODE (type) == TYPE_CODE_UNION
3518 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3519 return RETURN_VALUE_STRUCT_CONVENTION;
3520 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3521 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3523 /* A single-precision floating-point value. It fits in the
3524 least significant part of FP0. */
3526 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3527 mips_xfer_register (regcache,
3528 gdbarch_num_regs (current_gdbarch)
3529 + mips_regnum (current_gdbarch)->fp0,
3531 gdbarch_byte_order (current_gdbarch),
3532 readbuf, writebuf, 0);
3533 return RETURN_VALUE_REGISTER_CONVENTION;
3535 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3536 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3538 /* A double-precision floating-point value. The most
3539 significant part goes in FP1, and the least significant in
3542 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3543 switch (gdbarch_byte_order (current_gdbarch))
3545 case BFD_ENDIAN_LITTLE:
3546 mips_xfer_register (regcache,
3547 gdbarch_num_regs (current_gdbarch)
3548 + mips_regnum (current_gdbarch)->fp0 +
3549 0, 4, gdbarch_byte_order (current_gdbarch),
3550 readbuf, writebuf, 0);
3551 mips_xfer_register (regcache,
3552 gdbarch_num_regs (current_gdbarch)
3553 + mips_regnum (current_gdbarch)->fp0 + 1,
3554 4, gdbarch_byte_order (current_gdbarch),
3555 readbuf, writebuf, 4);
3557 case BFD_ENDIAN_BIG:
3558 mips_xfer_register (regcache,
3559 gdbarch_num_regs (current_gdbarch)
3560 + mips_regnum (current_gdbarch)->fp0 + 1,
3561 4, gdbarch_byte_order (current_gdbarch),
3562 readbuf, writebuf, 0);
3563 mips_xfer_register (regcache,
3564 gdbarch_num_regs (current_gdbarch)
3565 + mips_regnum (current_gdbarch)->fp0 + 0,
3566 4, gdbarch_byte_order (current_gdbarch),
3567 readbuf, writebuf, 4);
3570 internal_error (__FILE__, __LINE__, _("bad switch"));
3572 return RETURN_VALUE_REGISTER_CONVENTION;
3575 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3576 && TYPE_NFIELDS (type) <= 2
3577 && TYPE_NFIELDS (type) >= 1
3578 && ((TYPE_NFIELDS (type) == 1
3579 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3581 || (TYPE_NFIELDS (type) == 2
3582 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3584 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3586 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3588 /* A struct that contains one or two floats. Each value is part
3589 in the least significant part of their floating point
3591 gdb_byte reg[MAX_REGISTER_SIZE];
3594 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3595 field < TYPE_NFIELDS (type); field++, regnum += 2)
3597 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3600 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3602 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3604 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3605 gdbarch_byte_order (current_gdbarch),
3606 readbuf, writebuf, offset);
3608 return RETURN_VALUE_REGISTER_CONVENTION;
3612 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3613 || TYPE_CODE (type) == TYPE_CODE_UNION)
3615 /* A structure or union. Extract the left justified value,
3616 regardless of the byte order. I.e. DO NOT USE
3620 for (offset = 0, regnum = MIPS_V0_REGNUM;
3621 offset < TYPE_LENGTH (type);
3622 offset += register_size (current_gdbarch, regnum), regnum++)
3624 int xfer = register_size (current_gdbarch, regnum);
3625 if (offset + xfer > TYPE_LENGTH (type))
3626 xfer = TYPE_LENGTH (type) - offset;
3628 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3629 offset, xfer, regnum);
3630 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3632 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3634 return RETURN_VALUE_REGISTER_CONVENTION;
3639 /* A scalar extract each part but least-significant-byte
3640 justified. o32 thinks registers are 4 byte, regardless of
3644 for (offset = 0, regnum = MIPS_V0_REGNUM;
3645 offset < TYPE_LENGTH (type);
3646 offset += MIPS32_REGSIZE, regnum++)
3648 int xfer = MIPS32_REGSIZE;
3649 if (offset + xfer > TYPE_LENGTH (type))
3650 xfer = TYPE_LENGTH (type) - offset;
3652 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3653 offset, xfer, regnum);
3654 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3656 gdbarch_byte_order (current_gdbarch),
3657 readbuf, writebuf, offset);
3659 return RETURN_VALUE_REGISTER_CONVENTION;
3663 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3667 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3668 struct regcache *regcache, CORE_ADDR bp_addr,
3670 struct value **args, CORE_ADDR sp,
3671 int struct_return, CORE_ADDR struct_addr)
3677 int stack_offset = 0;
3678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3679 CORE_ADDR func_addr = find_function_addr (function, NULL);
3681 /* For shared libraries, "t9" needs to point at the function
3683 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3685 /* Set the return address register to point to the entry point of
3686 the program, where a breakpoint lies in wait. */
3687 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3689 /* First ensure that the stack and structure return address (if any)
3690 are properly aligned. The stack has to be at least 64-bit
3691 aligned even on 32-bit machines, because doubles must be 64-bit
3692 aligned. For n32 and n64, stack frames need to be 128-bit
3693 aligned, so we round to this widest known alignment. */
3695 sp = align_down (sp, 16);
3696 struct_addr = align_down (struct_addr, 16);
3698 /* Now make space on the stack for the args. */
3699 for (argnum = 0; argnum < nargs; argnum++)
3701 struct type *arg_type = check_typedef (value_type (args[argnum]));
3702 int arglen = TYPE_LENGTH (arg_type);
3704 /* Allocate space on the stack. */
3705 len += align_up (arglen, MIPS64_REGSIZE);
3707 sp -= align_up (len, 16);
3710 fprintf_unfiltered (gdb_stdlog,
3711 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3712 paddr_nz (sp), (long) align_up (len, 16));
3714 /* Initialize the integer and float register pointers. */
3715 argreg = MIPS_A0_REGNUM;
3716 float_argreg = mips_fpa0_regnum (current_gdbarch);
3718 /* The struct_return pointer occupies the first parameter-passing reg. */
3722 fprintf_unfiltered (gdb_stdlog,
3723 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3724 argreg, paddr_nz (struct_addr));
3725 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3726 stack_offset += MIPS64_REGSIZE;
3729 /* Now load as many as possible of the first arguments into
3730 registers, and push the rest onto the stack. Loop thru args
3731 from first to last. */
3732 for (argnum = 0; argnum < nargs; argnum++)
3734 const gdb_byte *val;
3735 struct value *arg = args[argnum];
3736 struct type *arg_type = check_typedef (value_type (arg));
3737 int len = TYPE_LENGTH (arg_type);
3738 enum type_code typecode = TYPE_CODE (arg_type);
3741 fprintf_unfiltered (gdb_stdlog,
3742 "mips_o64_push_dummy_call: %d len=%d type=%d",
3743 argnum + 1, len, (int) typecode);
3745 val = value_contents (arg);
3747 /* Floating point arguments passed in registers have to be
3748 treated specially. On 32-bit architectures, doubles
3749 are passed in register pairs; the even register gets
3750 the low word, and the odd register gets the high word.
3751 On O32/O64, the first two floating point arguments are
3752 also copied to general registers, because MIPS16 functions
3753 don't use float registers for arguments. This duplication of
3754 arguments in general registers can't hurt non-MIPS16 functions
3755 because those registers are normally skipped. */
3757 if (fp_register_arg_p (typecode, arg_type)
3758 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3760 LONGEST regval = extract_unsigned_integer (val, len);
3762 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3763 float_argreg, phex (regval, len));
3764 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3766 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3767 argreg, phex (regval, len));
3768 regcache_cooked_write_unsigned (regcache, argreg, regval);
3770 /* Reserve space for the FP register. */
3771 stack_offset += align_up (len, MIPS64_REGSIZE);
3775 /* Copy the argument to general registers or the stack in
3776 register-sized pieces. Large arguments are split between
3777 registers and stack. */
3778 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3779 are treated specially: Irix cc passes them in registers
3780 where gcc sometimes puts them on the stack. For maximum
3781 compatibility, we will put them in both places. */
3782 int odd_sized_struct = (len > MIPS64_REGSIZE
3783 && len % MIPS64_REGSIZE != 0);
3786 /* Remember if the argument was written to the stack. */
3787 int stack_used_p = 0;
3788 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3791 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3794 /* Write this portion of the argument to the stack. */
3795 if (argreg > MIPS_LAST_ARG_REGNUM
3796 || odd_sized_struct)
3798 /* Should shorter than int integer values be
3799 promoted to int before being stored? */
3800 int longword_offset = 0;
3803 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3805 if ((typecode == TYPE_CODE_INT
3806 || typecode == TYPE_CODE_PTR
3807 || typecode == TYPE_CODE_FLT)
3809 longword_offset = MIPS64_REGSIZE - len;
3814 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3815 paddr_nz (stack_offset));
3816 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3817 paddr_nz (longword_offset));
3820 addr = sp + stack_offset + longword_offset;
3825 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3827 for (i = 0; i < partial_len; i++)
3829 fprintf_unfiltered (gdb_stdlog, "%02x",
3833 write_memory (addr, val, partial_len);
3836 /* Note!!! This is NOT an else clause. Odd sized
3837 structs may go thru BOTH paths. */
3838 /* Write this portion of the argument to a general
3839 purpose register. */
3840 if (argreg <= MIPS_LAST_ARG_REGNUM)
3842 LONGEST regval = extract_signed_integer (val, partial_len);
3843 /* Value may need to be sign extended, because
3844 mips_isa_regsize() != mips_abi_regsize(). */
3846 /* A non-floating-point argument being passed in a
3847 general register. If a struct or union, and if
3848 the remaining length is smaller than the register
3849 size, we have to adjust the register value on
3852 It does not seem to be necessary to do the
3853 same for integral types. */
3855 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3856 && partial_len < MIPS64_REGSIZE
3857 && (typecode == TYPE_CODE_STRUCT
3858 || typecode == TYPE_CODE_UNION))
3859 regval <<= ((MIPS64_REGSIZE - partial_len)
3863 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3865 phex (regval, MIPS64_REGSIZE));
3866 regcache_cooked_write_unsigned (regcache, argreg, regval);
3869 /* Prevent subsequent floating point arguments from
3870 being passed in floating point registers. */
3871 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3877 /* Compute the the offset into the stack at which we
3878 will copy the next parameter.
3880 In older ABIs, the caller reserved space for
3881 registers that contained arguments. This was loosely
3882 refered to as their "home". Consequently, space is
3883 always allocated. */
3885 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3889 fprintf_unfiltered (gdb_stdlog, "\n");
3892 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3894 /* Return adjusted stack pointer. */
3898 static enum return_value_convention
3899 mips_o64_return_value (struct gdbarch *gdbarch,
3900 struct type *type, struct regcache *regcache,
3901 gdb_byte *readbuf, const gdb_byte *writebuf)
3903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3905 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3906 || TYPE_CODE (type) == TYPE_CODE_UNION
3907 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3908 return RETURN_VALUE_STRUCT_CONVENTION;
3909 else if (fp_register_arg_p (TYPE_CODE (type), type))
3911 /* A floating-point value. It fits in the least significant
3914 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3915 mips_xfer_register (regcache,
3916 gdbarch_num_regs (current_gdbarch)
3917 + mips_regnum (current_gdbarch)->fp0,
3919 gdbarch_byte_order (current_gdbarch),
3920 readbuf, writebuf, 0);
3921 return RETURN_VALUE_REGISTER_CONVENTION;
3925 /* A scalar extract each part but least-significant-byte
3929 for (offset = 0, regnum = MIPS_V0_REGNUM;
3930 offset < TYPE_LENGTH (type);
3931 offset += MIPS64_REGSIZE, regnum++)
3933 int xfer = MIPS64_REGSIZE;
3934 if (offset + xfer > TYPE_LENGTH (type))
3935 xfer = TYPE_LENGTH (type) - offset;
3937 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3938 offset, xfer, regnum);
3939 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3941 gdbarch_byte_order (current_gdbarch),
3942 readbuf, writebuf, offset);
3944 return RETURN_VALUE_REGISTER_CONVENTION;
3948 /* Floating point register management.
3950 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3951 64bit operations, these early MIPS cpus treat fp register pairs
3952 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3953 registers and offer a compatibility mode that emulates the MIPS2 fp
3954 model. When operating in MIPS2 fp compat mode, later cpu's split
3955 double precision floats into two 32-bit chunks and store them in
3956 consecutive fp regs. To display 64-bit floats stored in this
3957 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3958 Throw in user-configurable endianness and you have a real mess.
3960 The way this works is:
3961 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3962 double-precision value will be split across two logical registers.
3963 The lower-numbered logical register will hold the low-order bits,
3964 regardless of the processor's endianness.
3965 - If we are on a 64-bit processor, and we are looking for a
3966 single-precision value, it will be in the low ordered bits
3967 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3968 save slot in memory.
3969 - If we are in 64-bit mode, everything is straightforward.
3971 Note that this code only deals with "live" registers at the top of the
3972 stack. We will attempt to deal with saved registers later, when
3973 the raw/cooked register interface is in place. (We need a general
3974 interface that can deal with dynamic saved register sizes -- fp
3975 regs could be 32 bits wide in one frame and 64 on the frame above
3978 static struct type *
3979 mips_float_register_type (void)
3981 return builtin_type_ieee_single;
3984 static struct type *
3985 mips_double_register_type (void)
3987 return builtin_type_ieee_double;
3990 /* Copy a 32-bit single-precision value from the current frame
3991 into rare_buffer. */
3994 mips_read_fp_register_single (struct frame_info *frame, int regno,
3995 gdb_byte *rare_buffer)
3997 int raw_size = register_size (current_gdbarch, regno);
3998 gdb_byte *raw_buffer = alloca (raw_size);
4000 if (!frame_register_read (frame, regno, raw_buffer))
4001 error (_("can't read register %d (%s)"),
4002 regno, gdbarch_register_name (current_gdbarch, regno));
4005 /* We have a 64-bit value for this register. Find the low-order
4009 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4014 memcpy (rare_buffer, raw_buffer + offset, 4);
4018 memcpy (rare_buffer, raw_buffer, 4);
4022 /* Copy a 64-bit double-precision value from the current frame into
4023 rare_buffer. This may include getting half of it from the next
4027 mips_read_fp_register_double (struct frame_info *frame, int regno,
4028 gdb_byte *rare_buffer)
4030 int raw_size = register_size (current_gdbarch, regno);
4032 if (raw_size == 8 && !mips2_fp_compat (frame))
4034 /* We have a 64-bit value for this register, and we should use
4036 if (!frame_register_read (frame, regno, rare_buffer))
4037 error (_("can't read register %d (%s)"),
4038 regno, gdbarch_register_name (current_gdbarch, regno));
4042 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4043 internal_error (__FILE__, __LINE__,
4044 _("mips_read_fp_register_double: bad access to "
4045 "odd-numbered FP register"));
4047 /* mips_read_fp_register_single will find the correct 32 bits from
4049 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4051 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4052 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4056 mips_read_fp_register_single (frame, regno, rare_buffer);
4057 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4063 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4065 { /* do values for FP (float) regs */
4066 gdb_byte *raw_buffer;
4067 double doub, flt1; /* doubles extracted from raw hex data */
4070 raw_buffer = alloca (2 * register_size (current_gdbarch,
4071 mips_regnum (current_gdbarch)->fp0));
4073 fprintf_filtered (file, "%s:",
4074 gdbarch_register_name (current_gdbarch, regnum));
4075 fprintf_filtered (file, "%*s",
4076 4 - (int) strlen (gdbarch_register_name
4077 (current_gdbarch, regnum)),
4080 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4082 /* 4-byte registers: Print hex and floating. Also print even
4083 numbered registers as doubles. */
4084 mips_read_fp_register_single (frame, regnum, raw_buffer);
4085 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4087 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4090 fprintf_filtered (file, " flt: ");
4092 fprintf_filtered (file, " <invalid float> ");
4094 fprintf_filtered (file, "%-17.9g", flt1);
4096 if (regnum % 2 == 0)
4098 mips_read_fp_register_double (frame, regnum, raw_buffer);
4099 doub = unpack_double (mips_double_register_type (), raw_buffer,
4102 fprintf_filtered (file, " dbl: ");
4104 fprintf_filtered (file, "<invalid double>");
4106 fprintf_filtered (file, "%-24.17g", doub);
4111 /* Eight byte registers: print each one as hex, float and double. */
4112 mips_read_fp_register_single (frame, regnum, raw_buffer);
4113 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4115 mips_read_fp_register_double (frame, regnum, raw_buffer);
4116 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4119 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4122 fprintf_filtered (file, " flt: ");
4124 fprintf_filtered (file, "<invalid float>");
4126 fprintf_filtered (file, "%-17.9g", flt1);
4128 fprintf_filtered (file, " dbl: ");
4130 fprintf_filtered (file, "<invalid double>");
4132 fprintf_filtered (file, "%-24.17g", doub);
4137 mips_print_register (struct ui_file *file, struct frame_info *frame,
4140 struct gdbarch *gdbarch = get_frame_arch (frame);
4141 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4144 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4146 mips_print_fp_register (file, frame, regnum);
4150 /* Get the data in raw format. */
4151 if (!frame_register_read (frame, regnum, raw_buffer))
4153 fprintf_filtered (file, "%s: [Invalid]",
4154 gdbarch_register_name (current_gdbarch, regnum));
4158 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
4160 /* The problem with printing numeric register names (r26, etc.) is that
4161 the user can't use them on input. Probably the best solution is to
4162 fix it so that either the numeric or the funky (a2, etc.) names
4163 are accepted on input. */
4164 if (regnum < MIPS_NUMREGS)
4165 fprintf_filtered (file, "(r%d): ", regnum);
4167 fprintf_filtered (file, ": ");
4169 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4171 register_size (current_gdbarch,
4172 regnum) - register_size (current_gdbarch, regnum);
4176 print_scalar_formatted (raw_buffer + offset,
4177 register_type (gdbarch, regnum), 'x', 0,
4181 /* Replacement for generic do_registers_info.
4182 Print regs in pretty columns. */
4185 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4188 fprintf_filtered (file, " ");
4189 mips_print_fp_register (file, frame, regnum);
4190 fprintf_filtered (file, "\n");
4195 /* Print a row's worth of GP (int) registers, with name labels above */
4198 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4201 struct gdbarch *gdbarch = get_frame_arch (frame);
4202 /* do values for GP (int) regs */
4203 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4204 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4208 /* For GP registers, we print a separate row of names above the vals */
4209 for (col = 0, regnum = start_regnum;
4210 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4211 + gdbarch_num_pseudo_regs (current_gdbarch);
4214 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4215 continue; /* unused register */
4216 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4218 break; /* end the row: reached FP register */
4219 /* Large registers are handled separately. */
4220 if (register_size (current_gdbarch, regnum)
4221 > mips_abi_regsize (current_gdbarch))
4224 break; /* End the row before this register. */
4226 /* Print this register on a row by itself. */
4227 mips_print_register (file, frame, regnum);
4228 fprintf_filtered (file, "\n");
4232 fprintf_filtered (file, " ");
4233 fprintf_filtered (file,
4234 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4235 gdbarch_register_name (current_gdbarch, regnum));
4242 /* print the R0 to R31 names */
4243 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4244 fprintf_filtered (file, "\n R%-4d",
4245 start_regnum % gdbarch_num_regs (current_gdbarch));
4247 fprintf_filtered (file, "\n ");
4249 /* now print the values in hex, 4 or 8 to the row */
4250 for (col = 0, regnum = start_regnum;
4251 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4252 + gdbarch_num_pseudo_regs (current_gdbarch);
4255 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4256 continue; /* unused register */
4257 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4259 break; /* end row: reached FP register */
4260 if (register_size (current_gdbarch, regnum)
4261 > mips_abi_regsize (current_gdbarch))
4262 break; /* End row: large register. */
4264 /* OK: get the data in raw format. */
4265 if (!frame_register_read (frame, regnum, raw_buffer))
4266 error (_("can't read register %d (%s)"),
4267 regnum, gdbarch_register_name (current_gdbarch, regnum));
4268 /* pad small registers */
4270 byte < (mips_abi_regsize (current_gdbarch)
4271 - register_size (current_gdbarch, regnum)); byte++)
4272 printf_filtered (" ");
4273 /* Now print the register value in hex, endian order. */
4274 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4276 register_size (current_gdbarch,
4277 regnum) - register_size (current_gdbarch, regnum);
4278 byte < register_size (current_gdbarch, regnum); byte++)
4279 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4281 for (byte = register_size (current_gdbarch, regnum) - 1;
4283 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4284 fprintf_filtered (file, " ");
4287 if (col > 0) /* ie. if we actually printed anything... */
4288 fprintf_filtered (file, "\n");
4293 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4296 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4297 struct frame_info *frame, int regnum, int all)
4299 if (regnum != -1) /* do one specified register */
4301 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
4302 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
4303 error (_("Not a valid register for the current processor type"));
4305 mips_print_register (file, frame, regnum);
4306 fprintf_filtered (file, "\n");
4309 /* do all (or most) registers */
4311 regnum = gdbarch_num_regs (current_gdbarch);
4312 while (regnum < gdbarch_num_regs (current_gdbarch)
4313 + gdbarch_num_pseudo_regs (current_gdbarch))
4315 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4318 if (all) /* true for "INFO ALL-REGISTERS" command */
4319 regnum = print_fp_register_row (file, frame, regnum);
4321 regnum += MIPS_NUMREGS; /* skip floating point regs */
4324 regnum = print_gp_register_row (file, frame, regnum);
4329 /* Is this a branch with a delay slot? */
4332 is_delayed (unsigned long insn)
4335 for (i = 0; i < NUMOPCODES; ++i)
4336 if (mips_opcodes[i].pinfo != INSN_MACRO
4337 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4339 return (i < NUMOPCODES
4340 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4341 | INSN_COND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_LIKELY)));
4346 mips_single_step_through_delay (struct gdbarch *gdbarch,
4347 struct frame_info *frame)
4349 CORE_ADDR pc = get_frame_pc (frame);
4350 gdb_byte buf[MIPS_INSN32_SIZE];
4352 /* There is no branch delay slot on MIPS16. */
4353 if (mips_pc_is_mips16 (pc))
4356 if (!breakpoint_here_p (pc + 4))
4359 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4360 /* If error reading memory, guess that it is not a delayed
4363 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4366 /* To skip prologues, I use this predicate. Returns either PC itself
4367 if the code at PC does not look like a function prologue; otherwise
4368 returns an address that (if we're lucky) follows the prologue. If
4369 LENIENT, then we must skip everything which is involved in setting
4370 up the frame (it's OK to skip more, just so long as we don't skip
4371 anything which might clobber the registers which are being saved.
4372 We must skip more in the case where part of the prologue is in the
4373 delay slot of a non-prologue instruction). */
4376 mips_skip_prologue (CORE_ADDR pc)
4379 CORE_ADDR func_addr;
4381 /* See if we can determine the end of the prologue via the symbol table.
4382 If so, then return either PC, or the PC after the prologue, whichever
4384 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4386 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4387 if (post_prologue_pc != 0)
4388 return max (pc, post_prologue_pc);
4391 /* Can't determine prologue from the symbol table, need to examine
4394 /* Find an upper limit on the function prologue using the debug
4395 information. If the debug information could not be used to provide
4396 that bound, then use an arbitrary large number as the upper bound. */
4397 limit_pc = skip_prologue_using_sal (pc);
4399 limit_pc = pc + 100; /* Magic. */
4401 if (mips_pc_is_mips16 (pc))
4402 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4404 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4407 /* Check whether the PC is in a function epilogue (32-bit version).
4408 This is a helper function for mips_in_function_epilogue_p. */
4410 mips32_in_function_epilogue_p (CORE_ADDR pc)
4412 CORE_ADDR func_addr = 0, func_end = 0;
4414 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4416 /* The MIPS epilogue is max. 12 bytes long. */
4417 CORE_ADDR addr = func_end - 12;
4419 if (addr < func_addr + 4)
4420 addr = func_addr + 4;
4424 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4426 unsigned long high_word;
4429 inst = mips_fetch_instruction (pc);
4430 high_word = (inst >> 16) & 0xffff;
4432 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4433 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4434 && inst != 0x03e00008 /* jr $ra */
4435 && inst != 0x00000000) /* nop */
4445 /* Check whether the PC is in a function epilogue (16-bit version).
4446 This is a helper function for mips_in_function_epilogue_p. */
4448 mips16_in_function_epilogue_p (CORE_ADDR pc)
4450 CORE_ADDR func_addr = 0, func_end = 0;
4452 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4454 /* The MIPS epilogue is max. 12 bytes long. */
4455 CORE_ADDR addr = func_end - 12;
4457 if (addr < func_addr + 4)
4458 addr = func_addr + 4;
4462 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4464 unsigned short inst;
4466 inst = mips_fetch_instruction (pc);
4468 if ((inst & 0xf800) == 0xf000) /* extend */
4471 if (inst != 0x6300 /* addiu $sp,offset */
4472 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4473 && inst != 0xe820 /* jr $ra */
4474 && inst != 0xe8a0 /* jrc $ra */
4475 && inst != 0x6500) /* nop */
4485 /* The epilogue is defined here as the area at the end of a function,
4486 after an instruction which destroys the function's stack frame. */
4488 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4490 if (mips_pc_is_mips16 (pc))
4491 return mips16_in_function_epilogue_p (pc);
4493 return mips32_in_function_epilogue_p (pc);
4496 /* Root of all "set mips "/"show mips " commands. This will eventually be
4497 used for all MIPS-specific commands. */
4500 show_mips_command (char *args, int from_tty)
4502 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4506 set_mips_command (char *args, int from_tty)
4509 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4510 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4513 /* Commands to show/set the MIPS FPU type. */
4516 show_mipsfpu_command (char *args, int from_tty)
4519 switch (MIPS_FPU_TYPE)
4521 case MIPS_FPU_SINGLE:
4522 fpu = "single-precision";
4524 case MIPS_FPU_DOUBLE:
4525 fpu = "double-precision";
4528 fpu = "absent (none)";
4531 internal_error (__FILE__, __LINE__, _("bad switch"));
4533 if (mips_fpu_type_auto)
4535 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4539 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4544 set_mipsfpu_command (char *args, int from_tty)
4547 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4548 show_mipsfpu_command (args, from_tty);
4552 set_mipsfpu_single_command (char *args, int from_tty)
4554 struct gdbarch_info info;
4555 gdbarch_info_init (&info);
4556 mips_fpu_type = MIPS_FPU_SINGLE;
4557 mips_fpu_type_auto = 0;
4558 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4559 instead of relying on globals. Doing that would let generic code
4560 handle the search for this specific architecture. */
4561 if (!gdbarch_update_p (info))
4562 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4566 set_mipsfpu_double_command (char *args, int from_tty)
4568 struct gdbarch_info info;
4569 gdbarch_info_init (&info);
4570 mips_fpu_type = MIPS_FPU_DOUBLE;
4571 mips_fpu_type_auto = 0;
4572 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4573 instead of relying on globals. Doing that would let generic code
4574 handle the search for this specific architecture. */
4575 if (!gdbarch_update_p (info))
4576 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4580 set_mipsfpu_none_command (char *args, int from_tty)
4582 struct gdbarch_info info;
4583 gdbarch_info_init (&info);
4584 mips_fpu_type = MIPS_FPU_NONE;
4585 mips_fpu_type_auto = 0;
4586 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4587 instead of relying on globals. Doing that would let generic code
4588 handle the search for this specific architecture. */
4589 if (!gdbarch_update_p (info))
4590 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4594 set_mipsfpu_auto_command (char *args, int from_tty)
4596 mips_fpu_type_auto = 1;
4599 /* Attempt to identify the particular processor model by reading the
4600 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4601 the relevant processor still exists (it dates back to '94) and
4602 secondly this is not the way to do this. The processor type should
4603 be set by forcing an architecture change. */
4606 deprecated_mips_set_processor_regs_hack (void)
4608 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4611 regcache_cooked_read_unsigned (get_current_regcache (),
4612 MIPS_PRID_REGNUM, &prid);
4613 if ((prid & ~0xf) == 0x700)
4614 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4617 /* Just like reinit_frame_cache, but with the right arguments to be
4618 callable as an sfunc. */
4621 reinit_frame_cache_sfunc (char *args, int from_tty,
4622 struct cmd_list_element *c)
4624 reinit_frame_cache ();
4628 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4632 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4633 disassembler needs to be able to locally determine the ISA, and
4634 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4636 if (mips_pc_is_mips16 (memaddr))
4637 info->mach = bfd_mach_mips16;
4639 /* Round down the instruction address to the appropriate boundary. */
4640 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4642 /* Set the disassembler options. */
4643 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4645 /* Set up the disassembler info, so that we get the right
4646 register names from libopcodes. */
4647 if (tdep->mips_abi == MIPS_ABI_N32)
4648 info->disassembler_options = "gpr-names=n32";
4650 info->disassembler_options = "gpr-names=64";
4651 info->flavour = bfd_target_elf_flavour;
4654 /* This string is not recognized explicitly by the disassembler,
4655 but it tells the disassembler to not try to guess the ABI from
4656 the bfd elf headers, such that, if the user overrides the ABI
4657 of a program linked as NewABI, the disassembly will follow the
4658 register naming conventions specified by the user. */
4659 info->disassembler_options = "gpr-names=32";
4661 /* Call the appropriate disassembler based on the target endian-ness. */
4662 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4663 return print_insn_big_mips (memaddr, info);
4665 return print_insn_little_mips (memaddr, info);
4668 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4669 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4670 It returns a pointer to a string of bytes that encode a breakpoint
4671 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4672 necessary) to point to the actual memory location where the breakpoint
4673 should be inserted. */
4675 static const gdb_byte *
4676 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4678 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4680 if (mips_pc_is_mips16 (*pcptr))
4682 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4683 *pcptr = unmake_mips16_addr (*pcptr);
4684 *lenptr = sizeof (mips16_big_breakpoint);
4685 return mips16_big_breakpoint;
4689 /* The IDT board uses an unusual breakpoint value, and
4690 sometimes gets confused when it sees the usual MIPS
4691 breakpoint instruction. */
4692 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4693 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4694 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4696 *lenptr = sizeof (big_breakpoint);
4698 if (strcmp (target_shortname, "mips") == 0)
4699 return idt_big_breakpoint;
4700 else if (strcmp (target_shortname, "ddb") == 0
4701 || strcmp (target_shortname, "pmon") == 0
4702 || strcmp (target_shortname, "lsi") == 0)
4703 return pmon_big_breakpoint;
4705 return big_breakpoint;
4710 if (mips_pc_is_mips16 (*pcptr))
4712 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4713 *pcptr = unmake_mips16_addr (*pcptr);
4714 *lenptr = sizeof (mips16_little_breakpoint);
4715 return mips16_little_breakpoint;
4719 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4720 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4721 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4723 *lenptr = sizeof (little_breakpoint);
4725 if (strcmp (target_shortname, "mips") == 0)
4726 return idt_little_breakpoint;
4727 else if (strcmp (target_shortname, "ddb") == 0
4728 || strcmp (target_shortname, "pmon") == 0
4729 || strcmp (target_shortname, "lsi") == 0)
4730 return pmon_little_breakpoint;
4732 return little_breakpoint;
4737 /* If PC is in a mips16 call or return stub, return the address of the target
4738 PC, which is either the callee or the caller. There are several
4739 cases which must be handled:
4741 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4742 target PC is in $31 ($ra).
4743 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4744 and the target PC is in $2.
4745 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4746 before the jal instruction, this is effectively a call stub
4747 and the the target PC is in $2. Otherwise this is effectively
4748 a return stub and the target PC is in $18.
4750 See the source code for the stubs in gcc/config/mips/mips16.S for
4754 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4757 CORE_ADDR start_addr;
4759 /* Find the starting address and name of the function containing the PC. */
4760 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4763 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4764 target PC is in $31 ($ra). */
4765 if (strcmp (name, "__mips16_ret_sf") == 0
4766 || strcmp (name, "__mips16_ret_df") == 0)
4767 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4769 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4771 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4772 and the target PC is in $2. */
4773 if (name[19] >= '0' && name[19] <= '9')
4774 return get_frame_register_signed (frame, 2);
4776 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4777 before the jal instruction, this is effectively a call stub
4778 and the the target PC is in $2. Otherwise this is effectively
4779 a return stub and the target PC is in $18. */
4780 else if (name[19] == 's' || name[19] == 'd')
4782 if (pc == start_addr)
4784 /* Check if the target of the stub is a compiler-generated
4785 stub. Such a stub for a function bar might have a name
4786 like __fn_stub_bar, and might look like this:
4791 la $1,bar (becomes a lui/addiu pair)
4793 So scan down to the lui/addi and extract the target
4794 address from those two instructions. */
4796 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4800 /* See if the name of the target function is __fn_stub_*. */
4801 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4804 if (strncmp (name, "__fn_stub_", 10) != 0
4805 && strcmp (name, "etext") != 0
4806 && strcmp (name, "_etext") != 0)
4809 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4810 The limit on the search is arbitrarily set to 20
4811 instructions. FIXME. */
4812 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4814 inst = mips_fetch_instruction (target_pc);
4815 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4816 pc = (inst << 16) & 0xffff0000; /* high word */
4817 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4818 return pc | (inst & 0xffff); /* low word */
4821 /* Couldn't find the lui/addui pair, so return stub address. */
4825 /* This is the 'return' part of a call stub. The return
4826 address is in $r18. */
4827 return get_frame_register_signed (frame, 18);
4830 return 0; /* not a stub */
4833 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4834 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4837 mips_stab_reg_to_regnum (int num)
4840 if (num >= 0 && num < 32)
4842 else if (num >= 38 && num < 70)
4843 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4845 regnum = mips_regnum (current_gdbarch)->hi;
4847 regnum = mips_regnum (current_gdbarch)->lo;
4849 /* This will hopefully (eventually) provoke a warning. Should
4850 we be calling complaint() here? */
4851 return gdbarch_num_regs (current_gdbarch)
4852 + gdbarch_num_pseudo_regs (current_gdbarch);
4853 return gdbarch_num_regs (current_gdbarch) + regnum;
4857 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4858 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4861 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4864 if (num >= 0 && num < 32)
4866 else if (num >= 32 && num < 64)
4867 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4869 regnum = mips_regnum (current_gdbarch)->hi;
4871 regnum = mips_regnum (current_gdbarch)->lo;
4873 /* This will hopefully (eventually) provoke a warning. Should we
4874 be calling complaint() here? */
4875 return gdbarch_num_regs (current_gdbarch)
4876 + gdbarch_num_pseudo_regs (current_gdbarch);
4877 return gdbarch_num_regs (current_gdbarch) + regnum;
4881 mips_register_sim_regno (int regnum)
4883 /* Only makes sense to supply raw registers. */
4884 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4885 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4886 decide if it is valid. Should instead define a standard sim/gdb
4887 register numbering scheme. */
4888 if (gdbarch_register_name (current_gdbarch,
4890 (current_gdbarch) + regnum) != NULL
4891 && gdbarch_register_name (current_gdbarch,
4893 (current_gdbarch) + regnum)[0] != '\0')
4896 return LEGACY_SIM_REGNO_IGNORE;
4900 /* Convert an integer into an address. Extracting the value signed
4901 guarantees a correctly sign extended address. */
4904 mips_integer_to_address (struct gdbarch *gdbarch,
4905 struct type *type, const gdb_byte *buf)
4907 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4911 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4913 enum mips_abi *abip = (enum mips_abi *) obj;
4914 const char *name = bfd_get_section_name (abfd, sect);
4916 if (*abip != MIPS_ABI_UNKNOWN)
4919 if (strncmp (name, ".mdebug.", 8) != 0)
4922 if (strcmp (name, ".mdebug.abi32") == 0)
4923 *abip = MIPS_ABI_O32;
4924 else if (strcmp (name, ".mdebug.abiN32") == 0)
4925 *abip = MIPS_ABI_N32;
4926 else if (strcmp (name, ".mdebug.abi64") == 0)
4927 *abip = MIPS_ABI_N64;
4928 else if (strcmp (name, ".mdebug.abiO64") == 0)
4929 *abip = MIPS_ABI_O64;
4930 else if (strcmp (name, ".mdebug.eabi32") == 0)
4931 *abip = MIPS_ABI_EABI32;
4932 else if (strcmp (name, ".mdebug.eabi64") == 0)
4933 *abip = MIPS_ABI_EABI64;
4935 warning (_("unsupported ABI %s."), name + 8);
4939 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4941 int *lbp = (int *) obj;
4942 const char *name = bfd_get_section_name (abfd, sect);
4944 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4946 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4948 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4949 warning (_("unrecognized .gcc_compiled_longXX"));
4952 static enum mips_abi
4953 global_mips_abi (void)
4957 for (i = 0; mips_abi_strings[i] != NULL; i++)
4958 if (mips_abi_strings[i] == mips_abi_string)
4959 return (enum mips_abi) i;
4961 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4965 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4967 /* If the size matches the set of 32-bit or 64-bit integer registers,
4968 assume that's what we've got. */
4969 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
4970 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
4972 /* If the size matches the full set of registers GDB traditionally
4973 knows about, including floating point, for either 32-bit or
4974 64-bit, assume that's what we've got. */
4975 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
4976 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
4978 /* Otherwise we don't have a useful guess. */
4981 static struct value *
4982 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
4984 const int *reg_p = baton;
4985 return value_of_register (*reg_p, frame);
4988 static struct gdbarch *
4989 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4991 struct gdbarch *gdbarch;
4992 struct gdbarch_tdep *tdep;
4994 enum mips_abi mips_abi, found_abi, wanted_abi;
4996 enum mips_fpu_type fpu_type;
4997 struct tdesc_arch_data *tdesc_data = NULL;
4998 int elf_fpu_type = 0;
5000 /* Check any target description for validity. */
5001 if (tdesc_has_registers (info.target_desc))
5003 static const char *const mips_gprs[] = {
5004 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5005 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5006 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5007 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5009 static const char *const mips_fprs[] = {
5010 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5011 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5012 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5013 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5016 const struct tdesc_feature *feature;
5019 feature = tdesc_find_feature (info.target_desc,
5020 "org.gnu.gdb.mips.cpu");
5021 if (feature == NULL)
5024 tdesc_data = tdesc_data_alloc ();
5027 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5028 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5032 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5033 MIPS_EMBED_LO_REGNUM, "lo");
5034 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5035 MIPS_EMBED_HI_REGNUM, "hi");
5036 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5037 MIPS_EMBED_PC_REGNUM, "pc");
5041 tdesc_data_cleanup (tdesc_data);
5045 feature = tdesc_find_feature (info.target_desc,
5046 "org.gnu.gdb.mips.cp0");
5047 if (feature == NULL)
5049 tdesc_data_cleanup (tdesc_data);
5054 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5055 MIPS_EMBED_BADVADDR_REGNUM,
5057 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5058 MIPS_PS_REGNUM, "status");
5059 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5060 MIPS_EMBED_CAUSE_REGNUM, "cause");
5064 tdesc_data_cleanup (tdesc_data);
5068 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5069 backend is not prepared for that, though. */
5070 feature = tdesc_find_feature (info.target_desc,
5071 "org.gnu.gdb.mips.fpu");
5072 if (feature == NULL)
5074 tdesc_data_cleanup (tdesc_data);
5079 for (i = 0; i < 32; i++)
5080 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5081 i + MIPS_EMBED_FP0_REGNUM,
5084 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5085 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5086 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5087 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5091 tdesc_data_cleanup (tdesc_data);
5095 /* It would be nice to detect an attempt to use a 64-bit ABI
5096 when only 32-bit registers are provided. */
5099 /* First of all, extract the elf_flags, if available. */
5100 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5101 elf_flags = elf_elfheader (info.abfd)->e_flags;
5102 else if (arches != NULL)
5103 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5107 fprintf_unfiltered (gdb_stdlog,
5108 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5110 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5111 switch ((elf_flags & EF_MIPS_ABI))
5113 case E_MIPS_ABI_O32:
5114 found_abi = MIPS_ABI_O32;
5116 case E_MIPS_ABI_O64:
5117 found_abi = MIPS_ABI_O64;
5119 case E_MIPS_ABI_EABI32:
5120 found_abi = MIPS_ABI_EABI32;
5122 case E_MIPS_ABI_EABI64:
5123 found_abi = MIPS_ABI_EABI64;
5126 if ((elf_flags & EF_MIPS_ABI2))
5127 found_abi = MIPS_ABI_N32;
5129 found_abi = MIPS_ABI_UNKNOWN;
5133 /* GCC creates a pseudo-section whose name describes the ABI. */
5134 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5135 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5137 /* If we have no useful BFD information, use the ABI from the last
5138 MIPS architecture (if there is one). */
5139 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5140 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5142 /* Try the architecture for any hint of the correct ABI. */
5143 if (found_abi == MIPS_ABI_UNKNOWN
5144 && info.bfd_arch_info != NULL
5145 && info.bfd_arch_info->arch == bfd_arch_mips)
5147 switch (info.bfd_arch_info->mach)
5149 case bfd_mach_mips3900:
5150 found_abi = MIPS_ABI_EABI32;
5152 case bfd_mach_mips4100:
5153 case bfd_mach_mips5000:
5154 found_abi = MIPS_ABI_EABI64;
5156 case bfd_mach_mips8000:
5157 case bfd_mach_mips10000:
5158 /* On Irix, ELF64 executables use the N64 ABI. The
5159 pseudo-sections which describe the ABI aren't present
5160 on IRIX. (Even for executables created by gcc.) */
5161 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5162 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5163 found_abi = MIPS_ABI_N64;
5165 found_abi = MIPS_ABI_N32;
5170 /* Default 64-bit objects to N64 instead of O32. */
5171 if (found_abi == MIPS_ABI_UNKNOWN
5172 && info.abfd != NULL
5173 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5174 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5175 found_abi = MIPS_ABI_N64;
5178 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5181 /* What has the user specified from the command line? */
5182 wanted_abi = global_mips_abi ();
5184 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5187 /* Now that we have found what the ABI for this binary would be,
5188 check whether the user is overriding it. */
5189 if (wanted_abi != MIPS_ABI_UNKNOWN)
5190 mips_abi = wanted_abi;
5191 else if (found_abi != MIPS_ABI_UNKNOWN)
5192 mips_abi = found_abi;
5194 mips_abi = MIPS_ABI_O32;
5196 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5199 /* Also used when doing an architecture lookup. */
5201 fprintf_unfiltered (gdb_stdlog,
5202 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5203 mips64_transfers_32bit_regs_p);
5205 /* Determine the MIPS FPU type. */
5208 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5209 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5210 Tag_GNU_MIPS_ABI_FP);
5211 #endif /* HAVE_ELF */
5213 if (!mips_fpu_type_auto)
5214 fpu_type = mips_fpu_type;
5215 else if (elf_fpu_type != 0)
5217 switch (elf_fpu_type)
5220 fpu_type = MIPS_FPU_DOUBLE;
5223 fpu_type = MIPS_FPU_SINGLE;
5227 /* Soft float or unknown. */
5228 fpu_type = MIPS_FPU_NONE;
5232 else if (info.bfd_arch_info != NULL
5233 && info.bfd_arch_info->arch == bfd_arch_mips)
5234 switch (info.bfd_arch_info->mach)
5236 case bfd_mach_mips3900:
5237 case bfd_mach_mips4100:
5238 case bfd_mach_mips4111:
5239 case bfd_mach_mips4120:
5240 fpu_type = MIPS_FPU_NONE;
5242 case bfd_mach_mips4650:
5243 fpu_type = MIPS_FPU_SINGLE;
5246 fpu_type = MIPS_FPU_DOUBLE;
5249 else if (arches != NULL)
5250 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5252 fpu_type = MIPS_FPU_DOUBLE;
5254 fprintf_unfiltered (gdb_stdlog,
5255 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5257 /* Check for blatant incompatibilities. */
5259 /* If we have only 32-bit registers, then we can't debug a 64-bit
5261 if (info.target_desc
5262 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5263 && mips_abi != MIPS_ABI_EABI32
5264 && mips_abi != MIPS_ABI_O32)
5266 if (tdesc_data != NULL)
5267 tdesc_data_cleanup (tdesc_data);
5271 /* try to find a pre-existing architecture */
5272 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5274 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5276 /* MIPS needs to be pedantic about which ABI the object is
5278 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5280 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5282 /* Need to be pedantic about which register virtual size is
5284 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5285 != mips64_transfers_32bit_regs_p)
5287 /* Be pedantic about which FPU is selected. */
5288 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5291 if (tdesc_data != NULL)
5292 tdesc_data_cleanup (tdesc_data);
5293 return arches->gdbarch;
5296 /* Need a new architecture. Fill in a target specific vector. */
5297 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5298 gdbarch = gdbarch_alloc (&info, tdep);
5299 tdep->elf_flags = elf_flags;
5300 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5301 tdep->found_abi = found_abi;
5302 tdep->mips_abi = mips_abi;
5303 tdep->mips_fpu_type = fpu_type;
5304 tdep->register_size_valid_p = 0;
5305 tdep->register_size = 0;
5307 if (info.target_desc)
5309 /* Some useful properties can be inferred from the target. */
5310 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5312 tdep->register_size_valid_p = 1;
5313 tdep->register_size = 4;
5315 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5317 tdep->register_size_valid_p = 1;
5318 tdep->register_size = 8;
5322 /* Initially set everything according to the default ABI/ISA. */
5323 set_gdbarch_short_bit (gdbarch, 16);
5324 set_gdbarch_int_bit (gdbarch, 32);
5325 set_gdbarch_float_bit (gdbarch, 32);
5326 set_gdbarch_double_bit (gdbarch, 64);
5327 set_gdbarch_long_double_bit (gdbarch, 64);
5328 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5329 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5330 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5332 set_gdbarch_elf_make_msymbol_special (gdbarch,
5333 mips_elf_make_msymbol_special);
5335 /* Fill in the OS dependant register numbers and names. */
5337 const char **reg_names;
5338 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5339 struct mips_regnum);
5340 if (tdesc_has_registers (info.target_desc))
5342 regnum->lo = MIPS_EMBED_LO_REGNUM;
5343 regnum->hi = MIPS_EMBED_HI_REGNUM;
5344 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5345 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5346 regnum->pc = MIPS_EMBED_PC_REGNUM;
5347 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5348 regnum->fp_control_status = 70;
5349 regnum->fp_implementation_revision = 71;
5350 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5353 else if (info.osabi == GDB_OSABI_IRIX)
5358 regnum->badvaddr = 66;
5361 regnum->fp_control_status = 69;
5362 regnum->fp_implementation_revision = 70;
5364 reg_names = mips_irix_reg_names;
5368 regnum->lo = MIPS_EMBED_LO_REGNUM;
5369 regnum->hi = MIPS_EMBED_HI_REGNUM;
5370 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5371 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5372 regnum->pc = MIPS_EMBED_PC_REGNUM;
5373 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5374 regnum->fp_control_status = 70;
5375 regnum->fp_implementation_revision = 71;
5377 if (info.bfd_arch_info != NULL
5378 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5379 reg_names = mips_tx39_reg_names;
5381 reg_names = mips_generic_reg_names;
5383 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5384 replaced by read_pc? */
5385 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5386 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5387 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5388 set_gdbarch_num_regs (gdbarch, num_regs);
5389 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5390 set_gdbarch_register_name (gdbarch, mips_register_name);
5391 tdep->mips_processor_reg_names = reg_names;
5392 tdep->regnum = regnum;
5398 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5399 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5400 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5401 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5402 tdep->default_mask_address_p = 0;
5403 set_gdbarch_long_bit (gdbarch, 32);
5404 set_gdbarch_ptr_bit (gdbarch, 32);
5405 set_gdbarch_long_long_bit (gdbarch, 64);
5408 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5409 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5410 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5411 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5412 tdep->default_mask_address_p = 0;
5413 set_gdbarch_long_bit (gdbarch, 32);
5414 set_gdbarch_ptr_bit (gdbarch, 32);
5415 set_gdbarch_long_long_bit (gdbarch, 64);
5417 case MIPS_ABI_EABI32:
5418 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5419 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5420 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5421 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5422 tdep->default_mask_address_p = 0;
5423 set_gdbarch_long_bit (gdbarch, 32);
5424 set_gdbarch_ptr_bit (gdbarch, 32);
5425 set_gdbarch_long_long_bit (gdbarch, 64);
5427 case MIPS_ABI_EABI64:
5428 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5429 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5430 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5431 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5432 tdep->default_mask_address_p = 0;
5433 set_gdbarch_long_bit (gdbarch, 64);
5434 set_gdbarch_ptr_bit (gdbarch, 64);
5435 set_gdbarch_long_long_bit (gdbarch, 64);
5438 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5439 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5440 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5441 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5442 tdep->default_mask_address_p = 0;
5443 set_gdbarch_long_bit (gdbarch, 32);
5444 set_gdbarch_ptr_bit (gdbarch, 32);
5445 set_gdbarch_long_long_bit (gdbarch, 64);
5446 set_gdbarch_long_double_bit (gdbarch, 128);
5447 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5450 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5451 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5452 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5453 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5454 tdep->default_mask_address_p = 0;
5455 set_gdbarch_long_bit (gdbarch, 64);
5456 set_gdbarch_ptr_bit (gdbarch, 64);
5457 set_gdbarch_long_long_bit (gdbarch, 64);
5458 set_gdbarch_long_double_bit (gdbarch, 128);
5459 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5462 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5465 /* GCC creates a pseudo-section whose name specifies the size of
5466 longs, since -mlong32 or -mlong64 may be used independent of
5467 other options. How those options affect pointer sizes is ABI and
5468 architecture dependent, so use them to override the default sizes
5469 set by the ABI. This table shows the relationship between ABI,
5470 -mlongXX, and size of pointers:
5472 ABI -mlongXX ptr bits
5473 --- -------- --------
5487 Note that for o32 and eabi32, pointers are always 32 bits
5488 regardless of any -mlongXX option. For all others, pointers and
5489 longs are the same, as set by -mlongXX or set by defaults.
5492 if (info.abfd != NULL)
5496 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5499 set_gdbarch_long_bit (gdbarch, long_bit);
5503 case MIPS_ABI_EABI32:
5508 case MIPS_ABI_EABI64:
5509 set_gdbarch_ptr_bit (gdbarch, long_bit);
5512 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5517 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5518 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5521 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5522 flag in object files because to do so would make it impossible to
5523 link with libraries compiled without "-gp32". This is
5524 unnecessarily restrictive.
5526 We could solve this problem by adding "-gp32" multilibs to gcc,
5527 but to set this flag before gcc is built with such multilibs will
5528 break too many systems.''
5530 But even more unhelpfully, the default linker output target for
5531 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5532 for 64-bit programs - you need to change the ABI to change this,
5533 and not all gcc targets support that currently. Therefore using
5534 this flag to detect 32-bit mode would do the wrong thing given
5535 the current gcc - it would make GDB treat these 64-bit programs
5536 as 32-bit programs by default. */
5538 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5539 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5541 /* Add/remove bits from an address. The MIPS needs be careful to
5542 ensure that all 32 bit addresses are sign extended to 64 bits. */
5543 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5545 /* Unwind the frame. */
5546 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5547 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5548 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5550 /* Map debug register numbers onto internal register numbers. */
5551 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5552 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5553 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5554 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5555 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5556 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5557 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5558 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5560 /* MIPS version of CALL_DUMMY */
5562 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5563 replaced by a command, and all targets will default to on stack
5564 (regardless of the stack's execute status). */
5565 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5566 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5568 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5569 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5570 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5572 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5573 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5575 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5577 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5579 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5580 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5581 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5583 set_gdbarch_register_type (gdbarch, mips_register_type);
5585 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5587 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5589 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5590 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5591 need to all be folded into the target vector. Since they are
5592 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5593 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5595 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5597 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5599 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5601 /* Virtual tables. */
5602 set_gdbarch_vbit_in_delta (gdbarch, 1);
5604 mips_register_g_packet_guesses (gdbarch);
5606 /* Hook in OS ABI-specific overrides, if they have been registered. */
5607 info.tdep_info = (void *) tdesc_data;
5608 gdbarch_init_osabi (info, gdbarch);
5610 /* Unwind the frame. */
5611 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5612 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5613 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5614 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5615 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5616 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5617 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5618 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5622 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5623 tdesc_use_registers (gdbarch, tdesc_data);
5625 /* Override the normal target description methods to handle our
5626 dual real and pseudo registers. */
5627 set_gdbarch_register_name (gdbarch, mips_register_name);
5628 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5630 num_regs = gdbarch_num_regs (gdbarch);
5631 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5632 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5633 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5636 /* Add ABI-specific aliases for the registers. */
5637 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5638 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5639 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5640 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5642 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5643 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5644 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5646 /* Add some other standard aliases. */
5647 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5648 user_reg_add (gdbarch, mips_register_aliases[i].name,
5649 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5655 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5657 struct gdbarch_info info;
5659 /* Force the architecture to update, and (if it's a MIPS architecture)
5660 mips_gdbarch_init will take care of the rest. */
5661 gdbarch_info_init (&info);
5662 gdbarch_update_p (info);
5665 /* Print out which MIPS ABI is in use. */
5668 show_mips_abi (struct ui_file *file,
5670 struct cmd_list_element *ignored_cmd,
5671 const char *ignored_value)
5673 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5676 "The MIPS ABI is unknown because the current architecture "
5680 enum mips_abi global_abi = global_mips_abi ();
5681 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5682 const char *actual_abi_str = mips_abi_strings[actual_abi];
5684 if (global_abi == MIPS_ABI_UNKNOWN)
5687 "The MIPS ABI is set automatically (currently \"%s\").\n",
5689 else if (global_abi == actual_abi)
5692 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5696 /* Probably shouldn't happen... */
5699 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5700 actual_abi_str, mips_abi_strings[global_abi]);
5706 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5708 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5712 int ef_mips_32bitmode;
5713 /* Determine the ISA. */
5714 switch (tdep->elf_flags & EF_MIPS_ARCH)
5732 /* Determine the size of a pointer. */
5733 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5734 fprintf_unfiltered (file,
5735 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5737 fprintf_unfiltered (file,
5738 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5740 fprintf_unfiltered (file,
5741 "mips_dump_tdep: ef_mips_arch = %d\n",
5743 fprintf_unfiltered (file,
5744 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5745 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5746 fprintf_unfiltered (file,
5747 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5748 mips_mask_address_p (tdep),
5749 tdep->default_mask_address_p);
5751 fprintf_unfiltered (file,
5752 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5753 MIPS_DEFAULT_FPU_TYPE,
5754 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5755 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5756 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5758 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5759 fprintf_unfiltered (file,
5760 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5762 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5763 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5764 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5768 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5771 _initialize_mips_tdep (void)
5773 static struct cmd_list_element *mipsfpulist = NULL;
5774 struct cmd_list_element *c;
5776 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5777 if (MIPS_ABI_LAST + 1
5778 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5779 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5781 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5783 mips_pdr_data = register_objfile_data ();
5785 /* Create feature sets with the appropriate properties. The values
5786 are not important. */
5787 mips_tdesc_gp32 = allocate_target_description ();
5788 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5790 mips_tdesc_gp64 = allocate_target_description ();
5791 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5793 /* Add root prefix command for all "set mips"/"show mips" commands */
5794 add_prefix_cmd ("mips", no_class, set_mips_command,
5795 _("Various MIPS specific commands."),
5796 &setmipscmdlist, "set mips ", 0, &setlist);
5798 add_prefix_cmd ("mips", no_class, show_mips_command,
5799 _("Various MIPS specific commands."),
5800 &showmipscmdlist, "show mips ", 0, &showlist);
5802 /* Allow the user to override the ABI. */
5803 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5804 &mips_abi_string, _("\
5805 Set the MIPS ABI used by this program."), _("\
5806 Show the MIPS ABI used by this program."), _("\
5807 This option can be set to one of:\n\
5808 auto - the default ABI associated with the current binary\n\
5817 &setmipscmdlist, &showmipscmdlist);
5819 /* Let the user turn off floating point and set the fence post for
5820 heuristic_proc_start. */
5822 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5823 _("Set use of MIPS floating-point coprocessor."),
5824 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5825 add_cmd ("single", class_support, set_mipsfpu_single_command,
5826 _("Select single-precision MIPS floating-point coprocessor."),
5828 add_cmd ("double", class_support, set_mipsfpu_double_command,
5829 _("Select double-precision MIPS floating-point coprocessor."),
5831 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5832 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5833 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5834 add_cmd ("none", class_support, set_mipsfpu_none_command,
5835 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5836 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5837 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5838 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5839 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5840 _("Select MIPS floating-point coprocessor automatically."),
5842 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5843 _("Show current use of MIPS floating-point coprocessor target."),
5846 /* We really would like to have both "0" and "unlimited" work, but
5847 command.c doesn't deal with that. So make it a var_zinteger
5848 because the user can always use "999999" or some such for unlimited. */
5849 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5850 &heuristic_fence_post, _("\
5851 Set the distance searched for the start of a function."), _("\
5852 Show the distance searched for the start of a function."), _("\
5853 If you are debugging a stripped executable, GDB needs to search through the\n\
5854 program for the start of a function. This command sets the distance of the\n\
5855 search. The only need to set it is when debugging a stripped executable."),
5856 reinit_frame_cache_sfunc,
5857 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5858 &setlist, &showlist);
5860 /* Allow the user to control whether the upper bits of 64-bit
5861 addresses should be zeroed. */
5862 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5863 &mask_address_var, _("\
5864 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5865 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5866 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5867 allow GDB to determine the correct value."),
5868 NULL, show_mask_address,
5869 &setmipscmdlist, &showmipscmdlist);
5871 /* Allow the user to control the size of 32 bit registers within the
5872 raw remote packet. */
5873 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5874 &mips64_transfers_32bit_regs_p, _("\
5875 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5877 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5879 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5880 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5881 64 bits for others. Use \"off\" to disable compatibility mode"),
5882 set_mips64_transfers_32bit_regs,
5883 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5884 &setlist, &showlist);
5886 /* Debug this files internals. */
5887 add_setshow_zinteger_cmd ("mips", class_maintenance,
5889 Set mips debugging."), _("\
5890 Show mips debugging."), _("\
5891 When non-zero, mips specific debugging is enabled."),
5893 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5894 &setdebuglist, &showdebuglist);