1 /* Low level DECstation interface to ptrace, for GDB when running native.
2 Copyright 1988, 1989, 1991, 1992, 1995 Free Software Foundation, Inc.
3 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
4 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
26 #include <sys/ptrace.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
43 #include <setjmp.h> /* For JB_XXX. */
45 /* Size of elements in jmpbuf */
47 #define JB_ELEMENT_SIZE 4
49 /* Map gdb internal register number to ptrace ``address''.
50 These ``addresses'' are defined in DECstation <sys/ptrace.h> */
52 #define REGISTER_PTRACE_ADDR(regno) \
53 (regno < 32 ? GPR_BASE + regno \
54 : regno == PC_REGNUM ? PC \
55 : regno == CAUSE_REGNUM ? CAUSE \
56 : regno == HI_REGNUM ? MMHI \
57 : regno == LO_REGNUM ? MMLO \
58 : regno == FCRCS_REGNUM ? FPC_CSR \
59 : regno == FCRIR_REGNUM ? FPC_EIR \
60 : regno >= FP0_REGNUM ? FPR_BASE + (regno - FP0_REGNUM) \
63 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
66 static void fetch_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR));
68 /* Get all registers from the inferior */
71 fetch_inferior_registers (regno)
74 register unsigned int regaddr;
75 char buf[MAX_REGISTER_RAW_SIZE];
80 for (regno = 1; regno < NUM_REGS; regno++)
82 regaddr = REGISTER_PTRACE_ADDR (regno);
83 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
85 *(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
86 (PTRACE_ARG3_TYPE) regaddr, 0);
87 regaddr += sizeof (int);
89 supply_register (regno, buf);
92 supply_register (ZERO_REGNUM, zerobuf);
93 /* Frame ptr reg must appear to be 0; it is faked by stack handling code. */
94 supply_register (FP_REGNUM, zerobuf);
97 /* Store our register values back into the inferior.
98 If REGNO is -1, do this for all registers.
99 Otherwise, REGNO specifies which register (so we can save time). */
102 store_inferior_registers (regno)
105 register unsigned int regaddr;
110 if (regno == ZERO_REGNUM || regno == PS_REGNUM
111 || regno == BADVADDR_REGNUM || regno == CAUSE_REGNUM
112 || regno == FCRIR_REGNUM || regno == FP_REGNUM
113 || (regno >= FIRST_EMBED_REGNUM && regno <= LAST_EMBED_REGNUM))
115 regaddr = REGISTER_PTRACE_ADDR (regno);
117 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
118 read_register (regno));
121 sprintf (buf, "writing register number %d", regno);
122 perror_with_name (buf);
127 for (regno = 0; regno < NUM_REGS; regno++)
128 store_inferior_registers (regno);
133 /* Figure out where the longjmp will land.
134 We expect the first arg to be a pointer to the jmp_buf structure from which
135 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
136 This routine returns true on success. */
139 get_longjmp_target (pc)
143 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
145 jb_addr = read_register (A0_REGNUM);
147 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
148 TARGET_PTR_BIT / TARGET_CHAR_BIT))
151 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
156 /* Extract the register values out of the core file and store
157 them where `read_register' will find them.
159 CORE_REG_SECT points to the register values themselves, read into memory.
160 CORE_REG_SIZE is the size of that area.
161 WHICH says which set of registers we are handling (0 = int, 2 = float
162 on machines where they are discontiguous).
163 REG_ADDR is the offset from u.u_ar0 to the register values relative to
164 core_reg_sect. This is used with old-fashioned core files to
165 locate the registers in a large upage-plus-stack ".reg" section.
166 Original upage address X is at location core_reg_sect+x+reg_addr.
170 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
172 unsigned core_reg_size;
177 register unsigned int addr;
179 register reg_ptr = -reg_addr; /* Original u.u_ar0 is -reg_addr. */
181 /* If u.u_ar0 was an absolute address in the core file, relativize it now,
182 so we can use it as an offset into core_reg_sect. When we're done,
183 "register 0" will be at core_reg_sect+reg_ptr, and we can use
184 register_addr to offset to the other registers. If this is a modern
185 core file without a upage, reg_ptr will be zero and this is all a big
187 if (reg_ptr > core_reg_size)
189 reg_ptr -= KERNEL_U_ADDR;
191 error ("Old mips core file can't be processed on this machine.");
194 for (regno = 0; regno < NUM_REGS; regno++)
196 addr = register_addr (regno, reg_ptr);
197 if (addr >= core_reg_size)
204 supply_register (regno, core_reg_sect + addr);
209 error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
211 supply_register (ZERO_REGNUM, zerobuf);
212 /* Frame ptr reg must appear to be 0; it is faked by stack handling code. */
213 supply_register (FP_REGNUM, zerobuf);
216 /* Return the address in the core dump or inferior of register REGNO.
217 BLOCKEND is the address of the end of the user structure. */
220 register_addr (regno, blockend)
226 if (regno < 0 || regno >= NUM_REGS)
227 error ("Invalid register number %d.", regno);
229 REGISTER_U_ADDR (addr, blockend, regno);
235 /* Register that we are able to handle mips core file formats.
236 FIXME: is this really bfd_target_unknown_flavour? */
238 static struct core_fns mips_core_fns =
240 bfd_target_unknown_flavour,
241 fetch_core_registers,
246 _initialize_core_mips ()
248 add_core_fns (&mips_core_fns);