GDB copyright headers update after running GDB's copyright.py script.
[external/binutils.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3    Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "target.h"
23 #include "solib-svr4.h"
24 #include "osabi.h"
25 #include "mips-tdep.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "trad-frame.h"
29 #include "tramp-frame.h"
30 #include "gdbtypes.h"
31 #include "objfiles.h"
32 #include "solib.h"
33 #include "solist.h"
34 #include "symtab.h"
35 #include "target-descriptions.h"
36 #include "regset.h"
37 #include "mips-linux-tdep.h"
38 #include "glibc-tdep.h"
39 #include "linux-tdep.h"
40 #include "xml-syscall.h"
41 #include "gdb_signals.h"
42
43 static struct target_so_ops mips_svr4_so_ops;
44
45 /* This enum represents the signals' numbers on the MIPS
46    architecture.  It just contains the signal definitions which are
47    different from the generic implementation.
48
49    It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
50    from the Linux kernel tree.  */
51
52 enum
53   {
54     MIPS_LINUX_SIGEMT = 7,
55     MIPS_LINUX_SIGBUS = 10,
56     MIPS_LINUX_SIGSYS = 12,
57     MIPS_LINUX_SIGUSR1 = 16,
58     MIPS_LINUX_SIGUSR2 = 17,
59     MIPS_LINUX_SIGCHLD = 18,
60     MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
61     MIPS_LINUX_SIGPWR = 19,
62     MIPS_LINUX_SIGWINCH = 20,
63     MIPS_LINUX_SIGURG = 21,
64     MIPS_LINUX_SIGIO = 22,
65     MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
66     MIPS_LINUX_SIGSTOP = 23,
67     MIPS_LINUX_SIGTSTP = 24,
68     MIPS_LINUX_SIGCONT = 25,
69     MIPS_LINUX_SIGTTIN = 26,
70     MIPS_LINUX_SIGTTOU = 27,
71     MIPS_LINUX_SIGVTALRM = 28,
72     MIPS_LINUX_SIGPROF = 29,
73     MIPS_LINUX_SIGXCPU = 30,
74     MIPS_LINUX_SIGXFSZ = 31,
75
76     MIPS_LINUX_SIGRTMIN = 32,
77     MIPS_LINUX_SIGRT64 = 64,
78     MIPS_LINUX_SIGRTMAX = 127,
79   };
80
81 /* Figure out where the longjmp will land.
82    We expect the first arg to be a pointer to the jmp_buf structure
83    from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
84    at.  The pc is copied into PC.  This routine returns 1 on
85    success.  */
86
87 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
88 #define MIPS_LINUX_JB_PC 0
89
90 static int
91 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
92 {
93   CORE_ADDR jb_addr;
94   struct gdbarch *gdbarch = get_frame_arch (frame);
95   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96   gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
97
98   jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
99
100   if (target_read_memory ((jb_addr
101                            + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
102                           buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
103     return 0;
104
105   *pc = extract_unsigned_integer (buf,
106                                   gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
107                                   byte_order);
108
109   return 1;
110 }
111
112 /* Transform the bits comprising a 32-bit register to the right size
113    for regcache_raw_supply().  This is needed when mips_isa_regsize()
114    is 8.  */
115
116 static void
117 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
118 {
119   struct gdbarch *gdbarch = get_regcache_arch (regcache);
120   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
121   gdb_byte buf[MAX_REGISTER_SIZE];
122   store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
123                         extract_signed_integer ((const gdb_byte *) addr, 4,
124                                                 byte_order));
125   regcache_raw_supply (regcache, regnum, buf);
126 }
127
128 /* Unpack an elf_gregset_t into GDB's register cache.  */
129
130 void
131 mips_supply_gregset (struct regcache *regcache,
132                      const mips_elf_gregset_t *gregsetp)
133 {
134   int regi;
135   const mips_elf_greg_t *regp = *gregsetp;
136   char zerobuf[MAX_REGISTER_SIZE];
137   struct gdbarch *gdbarch = get_regcache_arch (regcache);
138
139   memset (zerobuf, 0, MAX_REGISTER_SIZE);
140
141   for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
142     supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
143
144   if (mips_linux_restart_reg_p (gdbarch))
145     supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
146
147   supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
148   supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
149
150   supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
151                     regp + EF_CP0_EPC);
152   supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
153                     regp + EF_CP0_BADVADDR);
154   supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
155   supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
156                     regp + EF_CP0_CAUSE);
157
158   /* Fill the inaccessible zero register with zero.  */
159   regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
160 }
161
162 static void
163 mips_supply_gregset_wrapper (const struct regset *regset,
164                              struct regcache *regcache,
165                              int regnum, const void *gregs, size_t len)
166 {
167   gdb_assert (len >= sizeof (mips_elf_gregset_t));
168
169   mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
170 }
171
172 /* Pack our registers (or one register) into an elf_gregset_t.  */
173
174 void
175 mips_fill_gregset (const struct regcache *regcache,
176                    mips_elf_gregset_t *gregsetp, int regno)
177 {
178   struct gdbarch *gdbarch = get_regcache_arch (regcache);
179   int regaddr, regi;
180   mips_elf_greg_t *regp = *gregsetp;
181   void *dst;
182
183   if (regno == -1)
184     {
185       memset (regp, 0, sizeof (mips_elf_gregset_t));
186       for (regi = 1; regi < 32; regi++)
187         mips_fill_gregset (regcache, gregsetp, regi);
188       mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
189       mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
190       mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
191       mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
192       mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
193       mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
194       mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
195       return;
196    }
197
198   if (regno > 0 && regno < 32)
199     {
200       dst = regp + regno + EF_REG0;
201       regcache_raw_collect (regcache, regno, dst);
202       return;
203     }
204
205   if (regno == mips_regnum (gdbarch)->lo)
206      regaddr = EF_LO;
207   else if (regno == mips_regnum (gdbarch)->hi)
208     regaddr = EF_HI;
209   else if (regno == mips_regnum (gdbarch)->pc)
210     regaddr = EF_CP0_EPC;
211   else if (regno == mips_regnum (gdbarch)->badvaddr)
212     regaddr = EF_CP0_BADVADDR;
213   else if (regno == MIPS_PS_REGNUM)
214     regaddr = EF_CP0_STATUS;
215   else if (regno == mips_regnum (gdbarch)->cause)
216     regaddr = EF_CP0_CAUSE;
217   else if (mips_linux_restart_reg_p (gdbarch)
218            && regno == MIPS_RESTART_REGNUM)
219     regaddr = EF_REG0;
220   else
221     regaddr = -1;
222
223   if (regaddr != -1)
224     {
225       dst = regp + regaddr;
226       regcache_raw_collect (regcache, regno, dst);
227     }
228 }
229
230 static void
231 mips_fill_gregset_wrapper (const struct regset *regset,
232                            const struct regcache *regcache,
233                            int regnum, void *gregs, size_t len)
234 {
235   gdb_assert (len >= sizeof (mips_elf_gregset_t));
236
237   mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
238 }
239
240 /* Likewise, unpack an elf_fpregset_t.  */
241
242 void
243 mips_supply_fpregset (struct regcache *regcache,
244                       const mips_elf_fpregset_t *fpregsetp)
245 {
246   struct gdbarch *gdbarch = get_regcache_arch (regcache);
247   int regi;
248   char zerobuf[MAX_REGISTER_SIZE];
249
250   memset (zerobuf, 0, MAX_REGISTER_SIZE);
251
252   for (regi = 0; regi < 32; regi++)
253     regcache_raw_supply (regcache,
254                          gdbarch_fp0_regnum (gdbarch) + regi,
255                          *fpregsetp + regi);
256
257   regcache_raw_supply (regcache,
258                        mips_regnum (gdbarch)->fp_control_status,
259                        *fpregsetp + 32);
260
261   /* FIXME: how can we supply FCRIR?  The ABI doesn't tell us.  */
262   regcache_raw_supply (regcache,
263                        mips_regnum (gdbarch)->fp_implementation_revision,
264                        zerobuf);
265 }
266
267 static void
268 mips_supply_fpregset_wrapper (const struct regset *regset,
269                               struct regcache *regcache,
270                               int regnum, const void *gregs, size_t len)
271 {
272   gdb_assert (len >= sizeof (mips_elf_fpregset_t));
273
274   mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
275 }
276
277 /* Likewise, pack one or all floating point registers into an
278    elf_fpregset_t.  */
279
280 void
281 mips_fill_fpregset (const struct regcache *regcache,
282                     mips_elf_fpregset_t *fpregsetp, int regno)
283 {
284   struct gdbarch *gdbarch = get_regcache_arch (regcache);
285   char *to;
286
287   if ((regno >= gdbarch_fp0_regnum (gdbarch))
288       && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
289     {
290       to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
291       regcache_raw_collect (regcache, regno, to);
292     }
293   else if (regno == mips_regnum (gdbarch)->fp_control_status)
294     {
295       to = (char *) (*fpregsetp + 32);
296       regcache_raw_collect (regcache, regno, to);
297     }
298   else if (regno == -1)
299     {
300       int regi;
301
302       for (regi = 0; regi < 32; regi++)
303         mips_fill_fpregset (regcache, fpregsetp,
304                             gdbarch_fp0_regnum (gdbarch) + regi);
305       mips_fill_fpregset (regcache, fpregsetp,
306                           mips_regnum (gdbarch)->fp_control_status);
307     }
308 }
309
310 static void
311 mips_fill_fpregset_wrapper (const struct regset *regset,
312                             const struct regcache *regcache,
313                             int regnum, void *gregs, size_t len)
314 {
315   gdb_assert (len >= sizeof (mips_elf_fpregset_t));
316
317   mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
318 }
319
320 /* Support for 64-bit ABIs.  */
321
322 /* Figure out where the longjmp will land.
323    We expect the first arg to be a pointer to the jmp_buf structure
324    from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
325    at.  The pc is copied into PC.  This routine returns 1 on
326    success.  */
327
328 /* Details about jmp_buf.  */
329
330 #define MIPS64_LINUX_JB_PC 0
331
332 static int
333 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
334 {
335   CORE_ADDR jb_addr;
336   struct gdbarch *gdbarch = get_frame_arch (frame);
337   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338   gdb_byte *buf
339     = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
340   int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
341
342   jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
343
344   if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
345                           buf,
346                           gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
347     return 0;
348
349   *pc = extract_unsigned_integer (buf,
350                                   gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
351                                   byte_order);
352
353   return 1;
354 }
355
356 /* Register set support functions.  These operate on standard 64-bit
357    regsets, but work whether the target is 32-bit or 64-bit.  A 32-bit
358    target will still use the 64-bit format for PTRACE_GETREGS.  */
359
360 /* Supply a 64-bit register.  */
361
362 static void
363 supply_64bit_reg (struct regcache *regcache, int regnum,
364                   const gdb_byte *buf)
365 {
366   struct gdbarch *gdbarch = get_regcache_arch (regcache);
367   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
368       && register_size (gdbarch, regnum) == 4)
369     regcache_raw_supply (regcache, regnum, buf + 4);
370   else
371     regcache_raw_supply (regcache, regnum, buf);
372 }
373
374 /* Unpack a 64-bit elf_gregset_t into GDB's register cache.  */
375
376 void
377 mips64_supply_gregset (struct regcache *regcache,
378                        const mips64_elf_gregset_t *gregsetp)
379 {
380   int regi;
381   const mips64_elf_greg_t *regp = *gregsetp;
382   gdb_byte zerobuf[MAX_REGISTER_SIZE];
383   struct gdbarch *gdbarch = get_regcache_arch (regcache);
384
385   memset (zerobuf, 0, MAX_REGISTER_SIZE);
386
387   for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
388     supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
389                       (const gdb_byte *) (regp + regi));
390
391   if (mips_linux_restart_reg_p (gdbarch))
392     supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
393                       (const gdb_byte *) (regp + MIPS64_EF_REG0));
394
395   supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
396                     (const gdb_byte *) (regp + MIPS64_EF_LO));
397   supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
398                     (const gdb_byte *) (regp + MIPS64_EF_HI));
399
400   supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
401                     (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
402   supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
403                     (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
404   supply_64bit_reg (regcache, MIPS_PS_REGNUM,
405                     (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
406   supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
407                     (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
408
409   /* Fill the inaccessible zero register with zero.  */
410   regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
411 }
412
413 static void
414 mips64_supply_gregset_wrapper (const struct regset *regset,
415                                struct regcache *regcache,
416                                int regnum, const void *gregs, size_t len)
417 {
418   gdb_assert (len >= sizeof (mips64_elf_gregset_t));
419
420   mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
421 }
422
423 /* Pack our registers (or one register) into a 64-bit elf_gregset_t.  */
424
425 void
426 mips64_fill_gregset (const struct regcache *regcache,
427                      mips64_elf_gregset_t *gregsetp, int regno)
428 {
429   struct gdbarch *gdbarch = get_regcache_arch (regcache);
430   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431   int regaddr, regi;
432   mips64_elf_greg_t *regp = *gregsetp;
433   void *dst;
434
435   if (regno == -1)
436     {
437       memset (regp, 0, sizeof (mips64_elf_gregset_t));
438       for (regi = 1; regi < 32; regi++)
439         mips64_fill_gregset (regcache, gregsetp, regi);
440       mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
441       mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
442       mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
443       mips64_fill_gregset (regcache, gregsetp,
444                            mips_regnum (gdbarch)->badvaddr);
445       mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
446       mips64_fill_gregset (regcache, gregsetp,  mips_regnum (gdbarch)->cause);
447       mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
448       return;
449    }
450
451   if (regno > 0 && regno < 32)
452     regaddr = regno + MIPS64_EF_REG0;
453   else if (regno == mips_regnum (gdbarch)->lo)
454     regaddr = MIPS64_EF_LO;
455   else if (regno == mips_regnum (gdbarch)->hi)
456     regaddr = MIPS64_EF_HI;
457   else if (regno == mips_regnum (gdbarch)->pc)
458     regaddr = MIPS64_EF_CP0_EPC;
459   else if (regno == mips_regnum (gdbarch)->badvaddr)
460     regaddr = MIPS64_EF_CP0_BADVADDR;
461   else if (regno == MIPS_PS_REGNUM)
462     regaddr = MIPS64_EF_CP0_STATUS;
463   else if (regno == mips_regnum (gdbarch)->cause)
464     regaddr = MIPS64_EF_CP0_CAUSE;
465   else if (mips_linux_restart_reg_p (gdbarch)
466            && regno == MIPS_RESTART_REGNUM)
467     regaddr = MIPS64_EF_REG0;
468   else
469     regaddr = -1;
470
471   if (regaddr != -1)
472     {
473       gdb_byte buf[MAX_REGISTER_SIZE];
474       LONGEST val;
475
476       regcache_raw_collect (regcache, regno, buf);
477       val = extract_signed_integer (buf, register_size (gdbarch, regno),
478                                     byte_order);
479       dst = regp + regaddr;
480       store_signed_integer ((gdb_byte *) dst, 8, byte_order, val);
481     }
482 }
483
484 static void
485 mips64_fill_gregset_wrapper (const struct regset *regset,
486                              const struct regcache *regcache,
487                              int regnum, void *gregs, size_t len)
488 {
489   gdb_assert (len >= sizeof (mips64_elf_gregset_t));
490
491   mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
492 }
493
494 /* Likewise, unpack an elf_fpregset_t.  */
495
496 void
497 mips64_supply_fpregset (struct regcache *regcache,
498                         const mips64_elf_fpregset_t *fpregsetp)
499 {
500   struct gdbarch *gdbarch = get_regcache_arch (regcache);
501   int regi;
502
503   /* See mips_linux_o32_sigframe_init for a description of the
504      peculiar FP register layout.  */
505   if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
506     for (regi = 0; regi < 32; regi++)
507       {
508         const gdb_byte *reg_ptr
509           = (const gdb_byte *) (*fpregsetp + (regi & ~1));
510         if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
511           reg_ptr += 4;
512         regcache_raw_supply (regcache,
513                              gdbarch_fp0_regnum (gdbarch) + regi,
514                              reg_ptr);
515       }
516   else
517     for (regi = 0; regi < 32; regi++)
518       regcache_raw_supply (regcache,
519                            gdbarch_fp0_regnum (gdbarch) + regi,
520                            (const char *) (*fpregsetp + regi));
521
522   supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
523                     (const gdb_byte *) (*fpregsetp + 32));
524
525   /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
526      include it - but the result of PTRACE_GETFPREGS does.  The best we
527      can do is to assume that its value is present.  */
528   supply_32bit_reg (regcache,
529                     mips_regnum (gdbarch)->fp_implementation_revision,
530                     (const gdb_byte *) (*fpregsetp + 32) + 4);
531 }
532
533 static void
534 mips64_supply_fpregset_wrapper (const struct regset *regset,
535                                 struct regcache *regcache,
536                                 int regnum, const void *gregs, size_t len)
537 {
538   gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
539
540   mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
541 }
542
543 /* Likewise, pack one or all floating point registers into an
544    elf_fpregset_t.  */
545
546 void
547 mips64_fill_fpregset (const struct regcache *regcache,
548                       mips64_elf_fpregset_t *fpregsetp, int regno)
549 {
550   struct gdbarch *gdbarch = get_regcache_arch (regcache);
551   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
552   gdb_byte *to;
553
554   if ((regno >= gdbarch_fp0_regnum (gdbarch))
555       && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
556     {
557       /* See mips_linux_o32_sigframe_init for a description of the
558          peculiar FP register layout.  */
559       if (register_size (gdbarch, regno) == 4)
560         {
561           int regi = regno - gdbarch_fp0_regnum (gdbarch);
562
563           to = (gdb_byte *) (*fpregsetp + (regi & ~1));
564           if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
565             to += 4;
566           regcache_raw_collect (regcache, regno, to);
567         }
568       else
569         {
570           to = (gdb_byte *) (*fpregsetp + regno
571                              - gdbarch_fp0_regnum (gdbarch));
572           regcache_raw_collect (regcache, regno, to);
573         }
574     }
575   else if (regno == mips_regnum (gdbarch)->fp_control_status)
576     {
577       gdb_byte buf[MAX_REGISTER_SIZE];
578       LONGEST val;
579
580       regcache_raw_collect (regcache, regno, buf);
581       val = extract_signed_integer (buf, register_size (gdbarch, regno),
582                                     byte_order);
583       to = (gdb_byte *) (*fpregsetp + 32);
584       store_signed_integer (to, 4, byte_order, val);
585     }
586   else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
587     {
588       gdb_byte buf[MAX_REGISTER_SIZE];
589       LONGEST val;
590
591       regcache_raw_collect (regcache, regno, buf);
592       val = extract_signed_integer (buf, register_size (gdbarch, regno),
593                                     byte_order);
594       to = (gdb_byte *) (*fpregsetp + 32) + 4;
595       store_signed_integer (to, 4, byte_order, val);
596     }
597   else if (regno == -1)
598     {
599       int regi;
600
601       for (regi = 0; regi < 32; regi++)
602         mips64_fill_fpregset (regcache, fpregsetp,
603                               gdbarch_fp0_regnum (gdbarch) + regi);
604       mips64_fill_fpregset (regcache, fpregsetp,
605                             mips_regnum (gdbarch)->fp_control_status);
606       mips64_fill_fpregset (regcache, fpregsetp,
607                             mips_regnum (gdbarch)->fp_implementation_revision);
608     }
609 }
610
611 static void
612 mips64_fill_fpregset_wrapper (const struct regset *regset,
613                               const struct regcache *regcache,
614                               int regnum, void *gregs, size_t len)
615 {
616   gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
617
618   mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
619 }
620
621 static const struct regset mips_linux_gregset =
622   {
623     NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
624   };
625
626 static const struct regset mips64_linux_gregset =
627   {
628     NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
629   };
630
631 static const struct regset mips_linux_fpregset =
632   {
633     NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
634   };
635
636 static const struct regset mips64_linux_fpregset =
637   {
638     NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
639   };
640
641 static void
642 mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
643                                          iterate_over_regset_sections_cb *cb,
644                                          void *cb_data,
645                                          const struct regcache *regcache)
646 {
647   if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
648     {
649       cb (".reg", sizeof (mips_elf_gregset_t), &mips_linux_gregset,
650           NULL, cb_data);
651       cb (".reg2", sizeof (mips_elf_fpregset_t), &mips_linux_fpregset,
652           NULL, cb_data);
653     }
654   else
655     {
656       cb (".reg", sizeof (mips64_elf_gregset_t), &mips64_linux_gregset,
657           NULL, cb_data);
658       cb (".reg2", sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
659           NULL, cb_data);
660     }
661 }
662
663 static const struct target_desc *
664 mips_linux_core_read_description (struct gdbarch *gdbarch,
665                                   struct target_ops *target,
666                                   bfd *abfd)
667 {
668   asection *section = bfd_get_section_by_name (abfd, ".reg");
669   if (! section)
670     return NULL;
671
672   switch (bfd_section_size (abfd, section))
673     {
674     case sizeof (mips_elf_gregset_t):
675       return mips_tdesc_gp32;
676
677     case sizeof (mips64_elf_gregset_t):
678       return mips_tdesc_gp64;
679
680     default:
681       return NULL;
682     }
683 }
684
685
686 /* Check the code at PC for a dynamic linker lazy resolution stub.
687    GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
688    section uniformly since version 2.15.  If the pc is in that section,
689    then we are in such a stub.  Before that ".stub" was used in 32-bit
690    ELF binaries, however we do not bother checking for that since we
691    have never had and that case should be extremely rare these days.
692    Instead we pattern-match on the code generated by GNU ld.  They look
693    like this:
694
695    lw t9,0x8010(gp)
696    addu t7,ra
697    jalr t9,ra
698    addiu t8,zero,INDEX
699
700    (with the appropriate doubleword instructions for N64).  As any lazy
701    resolution stubs in microMIPS binaries will always be in a
702    ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
703
704 static int
705 mips_linux_in_dynsym_stub (CORE_ADDR pc)
706 {
707   gdb_byte buf[28], *p;
708   ULONGEST insn, insn1;
709   int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
710   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
711
712   if (in_mips_stubs_section (pc))
713     return 1;
714
715   read_memory (pc - 12, buf, 28);
716
717   if (n64)
718     {
719       /* ld t9,0x8010(gp) */
720       insn1 = 0xdf998010;
721     }
722   else
723     {
724       /* lw t9,0x8010(gp) */
725       insn1 = 0x8f998010;
726     }
727
728   p = buf + 12;
729   while (p >= buf)
730     {
731       insn = extract_unsigned_integer (p, 4, byte_order);
732       if (insn == insn1)
733         break;
734       p -= 4;
735     }
736   if (p < buf)
737     return 0;
738
739   insn = extract_unsigned_integer (p + 4, 4, byte_order);
740   if (n64)
741     {
742       /* 'daddu t7,ra' or 'or t7, ra, zero'*/
743       if (insn != 0x03e0782d || insn != 0x03e07825)
744         return 0;
745
746     }
747   else
748     {
749       /* 'addu t7,ra'  or 'or t7, ra, zero'*/
750       if (insn != 0x03e07821 || insn != 0x03e07825)
751         return 0;
752
753     }
754
755   insn = extract_unsigned_integer (p + 8, 4, byte_order);
756   /* jalr t9,ra */
757   if (insn != 0x0320f809)
758     return 0;
759
760   insn = extract_unsigned_integer (p + 12, 4, byte_order);
761   if (n64)
762     {
763       /* daddiu t8,zero,0 */
764       if ((insn & 0xffff0000) != 0x64180000)
765         return 0;
766     }
767   else
768     {
769       /* addiu t8,zero,0 */
770       if ((insn & 0xffff0000) != 0x24180000)
771         return 0;
772     }
773
774   return 1;
775 }
776
777 /* Return non-zero iff PC belongs to the dynamic linker resolution
778    code, a PLT entry, or a lazy binding stub.  */
779
780 static int
781 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
782 {
783   /* Check whether PC is in the dynamic linker.  This also checks
784      whether it is in the .plt section, used by non-PIC executables.  */
785   if (svr4_in_dynsym_resolve_code (pc))
786     return 1;
787
788   /* Likewise for the stubs.  They live in the .MIPS.stubs section these
789      days, so we check if the PC is within, than fall back to a pattern
790      match.  */
791   if (mips_linux_in_dynsym_stub (pc))
792     return 1;
793
794   return 0;
795 }
796
797 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
798    and glibc_skip_solib_resolver in glibc-tdep.c.  The normal glibc
799    implementation of this triggers at "fixup" from the same objfile as
800    "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
801    "__dl_runtime_resolve" directly.  An unresolved lazy binding
802    stub will point to _dl_runtime_resolve, which will first call
803    __dl_runtime_resolve, and then pass control to the resolved
804    function.  */
805
806 static CORE_ADDR
807 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
808 {
809   struct bound_minimal_symbol resolver;
810
811   resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
812
813   if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
814     return frame_unwind_caller_pc (get_current_frame ());
815
816   return glibc_skip_solib_resolver (gdbarch, pc);
817 }
818
819 /* Signal trampoline support.  There are four supported layouts for a
820    signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
821    n64 rt_sigframe.  We handle them all independently; not the most
822    efficient way, but simplest.  First, declare all the unwinders.  */
823
824 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
825                                           struct frame_info *this_frame,
826                                           struct trad_frame_cache *this_cache,
827                                           CORE_ADDR func);
828
829 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
830                                              struct frame_info *this_frame,
831                                              struct trad_frame_cache *this_cache,
832                                              CORE_ADDR func);
833
834 static int mips_linux_sigframe_validate (const struct tramp_frame *self,
835                                          struct frame_info *this_frame,
836                                          CORE_ADDR *pc);
837
838 static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
839                                               struct frame_info *this_frame,
840                                               CORE_ADDR *pc);
841
842 #define MIPS_NR_LINUX 4000
843 #define MIPS_NR_N64_LINUX 5000
844 #define MIPS_NR_N32_LINUX 6000
845
846 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
847 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
848 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
849 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
850
851 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
852 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
853 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
854 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
855 #define MIPS_INST_SYSCALL 0x0000000c
856
857 #define MICROMIPS_INST_LI_V0 0x3040
858 #define MICROMIPS_INST_POOL32A 0x0000
859 #define MICROMIPS_INST_SYSCALL 0x8b7c
860
861 static const struct tramp_frame mips_linux_o32_sigframe = {
862   SIGTRAMP_FRAME,
863   4,
864   {
865     { MIPS_INST_LI_V0_SIGRETURN, -1 },
866     { MIPS_INST_SYSCALL, -1 },
867     { TRAMP_SENTINEL_INSN, -1 }
868   },
869   mips_linux_o32_sigframe_init,
870   mips_linux_sigframe_validate
871 };
872
873 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
874   SIGTRAMP_FRAME,
875   4,
876   {
877     { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
878     { MIPS_INST_SYSCALL, -1 },
879     { TRAMP_SENTINEL_INSN, -1 } },
880   mips_linux_o32_sigframe_init,
881   mips_linux_sigframe_validate
882 };
883
884 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
885   SIGTRAMP_FRAME,
886   4,
887   {
888     { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
889     { MIPS_INST_SYSCALL, -1 },
890     { TRAMP_SENTINEL_INSN, -1 }
891   },
892   mips_linux_n32n64_sigframe_init,
893   mips_linux_sigframe_validate
894 };
895
896 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
897   SIGTRAMP_FRAME,
898   4,
899   {
900     { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
901     { MIPS_INST_SYSCALL, -1 },
902     { TRAMP_SENTINEL_INSN, -1 }
903   },
904   mips_linux_n32n64_sigframe_init,
905   mips_linux_sigframe_validate
906 };
907
908 static const struct tramp_frame micromips_linux_o32_sigframe = {
909   SIGTRAMP_FRAME,
910   2,
911   {
912     { MICROMIPS_INST_LI_V0, -1 },
913     { MIPS_NR_sigreturn, -1 },
914     { MICROMIPS_INST_POOL32A, -1 },
915     { MICROMIPS_INST_SYSCALL, -1 },
916     { TRAMP_SENTINEL_INSN, -1 }
917   },
918   mips_linux_o32_sigframe_init,
919   micromips_linux_sigframe_validate
920 };
921
922 static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
923   SIGTRAMP_FRAME,
924   2,
925   {
926     { MICROMIPS_INST_LI_V0, -1 },
927     { MIPS_NR_rt_sigreturn, -1 },
928     { MICROMIPS_INST_POOL32A, -1 },
929     { MICROMIPS_INST_SYSCALL, -1 },
930     { TRAMP_SENTINEL_INSN, -1 }
931   },
932   mips_linux_o32_sigframe_init,
933   micromips_linux_sigframe_validate
934 };
935
936 static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
937   SIGTRAMP_FRAME,
938   2,
939   {
940     { MICROMIPS_INST_LI_V0, -1 },
941     { MIPS_NR_N32_rt_sigreturn, -1 },
942     { MICROMIPS_INST_POOL32A, -1 },
943     { MICROMIPS_INST_SYSCALL, -1 },
944     { TRAMP_SENTINEL_INSN, -1 }
945   },
946   mips_linux_n32n64_sigframe_init,
947   micromips_linux_sigframe_validate
948 };
949
950 static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
951   SIGTRAMP_FRAME,
952   2,
953   {
954     { MICROMIPS_INST_LI_V0, -1 },
955     { MIPS_NR_N64_rt_sigreturn, -1 },
956     { MICROMIPS_INST_POOL32A, -1 },
957     { MICROMIPS_INST_SYSCALL, -1 },
958     { TRAMP_SENTINEL_INSN, -1 }
959   },
960   mips_linux_n32n64_sigframe_init,
961   micromips_linux_sigframe_validate
962 };
963
964 /* *INDENT-OFF* */
965 /* The unwinder for o32 signal frames.  The legacy structures look
966    like this:
967
968    struct sigframe {
969      u32 sf_ass[4];            [argument save space for o32]
970      u32 sf_code[2];           [signal trampoline or fill]
971      struct sigcontext sf_sc;
972      sigset_t sf_mask;
973    };
974
975    Pre-2.6.12 sigcontext:
976
977    struct sigcontext {
978         unsigned int       sc_regmask;          [Unused]
979         unsigned int       sc_status;
980         unsigned long long sc_pc;
981         unsigned long long sc_regs[32];
982         unsigned long long sc_fpregs[32];
983         unsigned int       sc_ownedfp;
984         unsigned int       sc_fpc_csr;
985         unsigned int       sc_fpc_eir;          [Unused]
986         unsigned int       sc_used_math;
987         unsigned int       sc_ssflags;          [Unused]
988         [Alignment hole of four bytes]
989         unsigned long long sc_mdhi;
990         unsigned long long sc_mdlo;
991
992         unsigned int       sc_cause;            [Unused]
993         unsigned int       sc_badvaddr;         [Unused]
994
995         unsigned long      sc_sigset[4];        [kernel's sigset_t]
996    };
997
998    Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
999
1000    struct sigcontext {
1001         unsigned int       sc_regmask;          [Unused]
1002         unsigned int       sc_status;           [Unused]
1003         unsigned long long sc_pc;
1004         unsigned long long sc_regs[32];
1005         unsigned long long sc_fpregs[32];
1006         unsigned int       sc_acx;
1007         unsigned int       sc_fpc_csr;
1008         unsigned int       sc_fpc_eir;          [Unused]
1009         unsigned int       sc_used_math;
1010         unsigned int       sc_dsp;
1011         [Alignment hole of four bytes]
1012         unsigned long long sc_mdhi;
1013         unsigned long long sc_mdlo;
1014         unsigned long      sc_hi1;
1015         unsigned long      sc_lo1;
1016         unsigned long      sc_hi2;
1017         unsigned long      sc_lo2;
1018         unsigned long      sc_hi3;
1019         unsigned long      sc_lo3;
1020    };
1021
1022    The RT signal frames look like this:
1023
1024    struct rt_sigframe {
1025      u32 rs_ass[4];            [argument save space for o32]
1026      u32 rs_code[2]            [signal trampoline or fill]
1027      struct siginfo rs_info;
1028      struct ucontext rs_uc;
1029    };
1030
1031    struct ucontext {
1032      unsigned long     uc_flags;
1033      struct ucontext  *uc_link;
1034      stack_t           uc_stack;
1035      [Alignment hole of four bytes]
1036      struct sigcontext uc_mcontext;
1037      sigset_t          uc_sigmask;
1038    };  */
1039 /* *INDENT-ON* */
1040
1041 #define SIGFRAME_SIGCONTEXT_OFFSET   (6 * 4)
1042
1043 #define RTSIGFRAME_SIGINFO_SIZE      128
1044 #define STACK_T_SIZE                 (3 * 4)
1045 #define UCONTEXT_SIGCONTEXT_OFFSET   (2 * 4 + STACK_T_SIZE + 4)
1046 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1047                                       + RTSIGFRAME_SIGINFO_SIZE \
1048                                       + UCONTEXT_SIGCONTEXT_OFFSET)
1049
1050 #define SIGCONTEXT_PC       (1 * 8)
1051 #define SIGCONTEXT_REGS     (2 * 8)
1052 #define SIGCONTEXT_FPREGS   (34 * 8)
1053 #define SIGCONTEXT_FPCSR    (66 * 8 + 4)
1054 #define SIGCONTEXT_DSPCTL   (68 * 8 + 0)
1055 #define SIGCONTEXT_HI       (69 * 8)
1056 #define SIGCONTEXT_LO       (70 * 8)
1057 #define SIGCONTEXT_CAUSE    (71 * 8 + 0)
1058 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
1059 #define SIGCONTEXT_HI1      (71 * 8 + 0)
1060 #define SIGCONTEXT_LO1      (71 * 8 + 4)
1061 #define SIGCONTEXT_HI2      (72 * 8 + 0)
1062 #define SIGCONTEXT_LO2      (72 * 8 + 4)
1063 #define SIGCONTEXT_HI3      (73 * 8 + 0)
1064 #define SIGCONTEXT_LO3      (73 * 8 + 4)
1065
1066 #define SIGCONTEXT_REG_SIZE 8
1067
1068 static void
1069 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
1070                               struct frame_info *this_frame,
1071                               struct trad_frame_cache *this_cache,
1072                               CORE_ADDR func)
1073 {
1074   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1075   int ireg;
1076   CORE_ADDR frame_sp = get_frame_sp (this_frame);
1077   CORE_ADDR sigcontext_base;
1078   const struct mips_regnum *regs = mips_regnum (gdbarch);
1079   CORE_ADDR regs_base;
1080
1081   if (self == &mips_linux_o32_sigframe
1082       || self == &micromips_linux_o32_sigframe)
1083     sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
1084   else
1085     sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
1086
1087   /* I'm not proud of this hack.  Eventually we will have the
1088      infrastructure to indicate the size of saved registers on a
1089      per-frame basis, but right now we don't; the kernel saves eight
1090      bytes but we only want four.  Use regs_base to access any
1091      64-bit fields.  */
1092   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1093     regs_base = sigcontext_base + 4;
1094   else
1095     regs_base = sigcontext_base;
1096
1097   if (mips_linux_restart_reg_p (gdbarch))
1098     trad_frame_set_reg_addr (this_cache,
1099                              (MIPS_RESTART_REGNUM
1100                               + gdbarch_num_regs (gdbarch)),
1101                              regs_base + SIGCONTEXT_REGS);
1102
1103   for (ireg = 1; ireg < 32; ireg++)
1104     trad_frame_set_reg_addr (this_cache,
1105                              (ireg + MIPS_ZERO_REGNUM
1106                               + gdbarch_num_regs (gdbarch)),
1107                              (regs_base + SIGCONTEXT_REGS
1108                               + ireg * SIGCONTEXT_REG_SIZE));
1109
1110   /* The way that floating point registers are saved, unfortunately,
1111      depends on the architecture the kernel is built for.  For the r3000 and
1112      tx39, four bytes of each register are at the beginning of each of the
1113      32 eight byte slots.  For everything else, the registers are saved
1114      using double precision; only the even-numbered slots are initialized,
1115      and the high bits are the odd-numbered register.  Assume the latter
1116      layout, since we can't tell, and it's much more common.  Which bits are
1117      the "high" bits depends on endianness.  */
1118   for (ireg = 0; ireg < 32; ireg++)
1119     if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
1120       trad_frame_set_reg_addr (this_cache,
1121                                ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1122                                (sigcontext_base + SIGCONTEXT_FPREGS + 4
1123                                 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1124     else
1125       trad_frame_set_reg_addr (this_cache,
1126                                ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1127                                (sigcontext_base + SIGCONTEXT_FPREGS
1128                                 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1129
1130   trad_frame_set_reg_addr (this_cache,
1131                            regs->pc + gdbarch_num_regs (gdbarch),
1132                            regs_base + SIGCONTEXT_PC);
1133
1134   trad_frame_set_reg_addr (this_cache,
1135                            (regs->fp_control_status
1136                             + gdbarch_num_regs (gdbarch)),
1137                            sigcontext_base + SIGCONTEXT_FPCSR);
1138
1139   if (regs->dspctl != -1)
1140     trad_frame_set_reg_addr (this_cache,
1141                              regs->dspctl + gdbarch_num_regs (gdbarch),
1142                              sigcontext_base + SIGCONTEXT_DSPCTL);
1143
1144   trad_frame_set_reg_addr (this_cache,
1145                            regs->hi + gdbarch_num_regs (gdbarch),
1146                            regs_base + SIGCONTEXT_HI);
1147   trad_frame_set_reg_addr (this_cache,
1148                            regs->lo + gdbarch_num_regs (gdbarch),
1149                            regs_base + SIGCONTEXT_LO);
1150
1151   if (regs->dspacc != -1)
1152     {
1153       trad_frame_set_reg_addr (this_cache,
1154                                regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1155                                sigcontext_base + SIGCONTEXT_HI1);
1156       trad_frame_set_reg_addr (this_cache,
1157                                regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1158                                sigcontext_base + SIGCONTEXT_LO1);
1159       trad_frame_set_reg_addr (this_cache,
1160                                regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1161                                sigcontext_base + SIGCONTEXT_HI2);
1162       trad_frame_set_reg_addr (this_cache,
1163                                regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1164                                sigcontext_base + SIGCONTEXT_LO2);
1165       trad_frame_set_reg_addr (this_cache,
1166                                regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1167                                sigcontext_base + SIGCONTEXT_HI3);
1168       trad_frame_set_reg_addr (this_cache,
1169                                regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1170                                sigcontext_base + SIGCONTEXT_LO3);
1171     }
1172   else
1173     {
1174       trad_frame_set_reg_addr (this_cache,
1175                                regs->cause + gdbarch_num_regs (gdbarch),
1176                                sigcontext_base + SIGCONTEXT_CAUSE);
1177       trad_frame_set_reg_addr (this_cache,
1178                                regs->badvaddr + gdbarch_num_regs (gdbarch),
1179                                sigcontext_base + SIGCONTEXT_BADVADDR);
1180     }
1181
1182   /* Choice of the bottom of the sigframe is somewhat arbitrary.  */
1183   trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1184 }
1185
1186 /* *INDENT-OFF* */
1187 /* For N32/N64 things look different.  There is no non-rt signal frame.
1188
1189   struct rt_sigframe_n32 {
1190     u32 rs_ass[4];                  [ argument save space for o32 ]
1191     u32 rs_code[2];                 [ signal trampoline or fill ]
1192     struct siginfo rs_info;
1193     struct ucontextn32 rs_uc;
1194   };
1195
1196   struct ucontextn32 {
1197     u32                 uc_flags;
1198     s32                 uc_link;
1199     stack32_t           uc_stack;
1200     struct sigcontext   uc_mcontext;
1201     sigset_t            uc_sigmask;   [ mask last for extensibility ]
1202   };
1203
1204   struct rt_sigframe {
1205     u32 rs_ass[4];                  [ argument save space for o32 ]
1206     u32 rs_code[2];                 [ signal trampoline ]
1207     struct siginfo rs_info;
1208     struct ucontext rs_uc;
1209   };
1210
1211   struct ucontext {
1212     unsigned long     uc_flags;
1213     struct ucontext  *uc_link;
1214     stack_t           uc_stack;
1215     struct sigcontext uc_mcontext;
1216     sigset_t          uc_sigmask;   [ mask last for extensibility ]
1217   };
1218
1219   And the sigcontext is different (this is for both n32 and n64):
1220
1221   struct sigcontext {
1222     unsigned long long sc_regs[32];
1223     unsigned long long sc_fpregs[32];
1224     unsigned long long sc_mdhi;
1225     unsigned long long sc_hi1;
1226     unsigned long long sc_hi2;
1227     unsigned long long sc_hi3;
1228     unsigned long long sc_mdlo;
1229     unsigned long long sc_lo1;
1230     unsigned long long sc_lo2;
1231     unsigned long long sc_lo3;
1232     unsigned long long sc_pc;
1233     unsigned int       sc_fpc_csr;
1234     unsigned int       sc_used_math;
1235     unsigned int       sc_dsp;
1236     unsigned int       sc_reserved;
1237   };
1238
1239   That is the post-2.6.12 definition of the 64-bit sigcontext; before
1240   then, there were no hi1-hi3 or lo1-lo3.  Cause and badvaddr were
1241   included too.  */
1242 /* *INDENT-ON* */
1243
1244 #define N32_STACK_T_SIZE                STACK_T_SIZE
1245 #define N64_STACK_T_SIZE                (2 * 8 + 4)
1246 #define N32_UCONTEXT_SIGCONTEXT_OFFSET  (2 * 4 + N32_STACK_T_SIZE + 4)
1247 #define N64_UCONTEXT_SIGCONTEXT_OFFSET  (2 * 8 + N64_STACK_T_SIZE + 4)
1248 #define N32_SIGFRAME_SIGCONTEXT_OFFSET  (SIGFRAME_SIGCONTEXT_OFFSET \
1249                                          + RTSIGFRAME_SIGINFO_SIZE \
1250                                          + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1251 #define N64_SIGFRAME_SIGCONTEXT_OFFSET  (SIGFRAME_SIGCONTEXT_OFFSET \
1252                                          + RTSIGFRAME_SIGINFO_SIZE \
1253                                          + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1254
1255 #define N64_SIGCONTEXT_REGS     (0 * 8)
1256 #define N64_SIGCONTEXT_FPREGS   (32 * 8)
1257 #define N64_SIGCONTEXT_HI       (64 * 8)
1258 #define N64_SIGCONTEXT_HI1      (65 * 8)
1259 #define N64_SIGCONTEXT_HI2      (66 * 8)
1260 #define N64_SIGCONTEXT_HI3      (67 * 8)
1261 #define N64_SIGCONTEXT_LO       (68 * 8)
1262 #define N64_SIGCONTEXT_LO1      (69 * 8)
1263 #define N64_SIGCONTEXT_LO2      (70 * 8)
1264 #define N64_SIGCONTEXT_LO3      (71 * 8)
1265 #define N64_SIGCONTEXT_PC       (72 * 8)
1266 #define N64_SIGCONTEXT_FPCSR    (73 * 8 + 0)
1267 #define N64_SIGCONTEXT_DSPCTL   (74 * 8 + 0)
1268
1269 #define N64_SIGCONTEXT_REG_SIZE 8
1270
1271 static void
1272 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1273                                  struct frame_info *this_frame,
1274                                  struct trad_frame_cache *this_cache,
1275                                  CORE_ADDR func)
1276 {
1277   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1278   int ireg;
1279   CORE_ADDR frame_sp = get_frame_sp (this_frame);
1280   CORE_ADDR sigcontext_base;
1281   const struct mips_regnum *regs = mips_regnum (gdbarch);
1282
1283   if (self == &mips_linux_n32_rt_sigframe
1284       || self == &micromips_linux_n32_rt_sigframe)
1285     sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1286   else
1287     sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1288
1289   if (mips_linux_restart_reg_p (gdbarch))
1290     trad_frame_set_reg_addr (this_cache,
1291                              (MIPS_RESTART_REGNUM
1292                               + gdbarch_num_regs (gdbarch)),
1293                              sigcontext_base + N64_SIGCONTEXT_REGS);
1294
1295   for (ireg = 1; ireg < 32; ireg++)
1296     trad_frame_set_reg_addr (this_cache,
1297                              (ireg + MIPS_ZERO_REGNUM
1298                               + gdbarch_num_regs (gdbarch)),
1299                              (sigcontext_base + N64_SIGCONTEXT_REGS
1300                               + ireg * N64_SIGCONTEXT_REG_SIZE));
1301
1302   for (ireg = 0; ireg < 32; ireg++)
1303     trad_frame_set_reg_addr (this_cache,
1304                              ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1305                              (sigcontext_base + N64_SIGCONTEXT_FPREGS
1306                               + ireg * N64_SIGCONTEXT_REG_SIZE));
1307
1308   trad_frame_set_reg_addr (this_cache,
1309                            regs->pc + gdbarch_num_regs (gdbarch),
1310                            sigcontext_base + N64_SIGCONTEXT_PC);
1311
1312   trad_frame_set_reg_addr (this_cache,
1313                            (regs->fp_control_status
1314                             + gdbarch_num_regs (gdbarch)),
1315                            sigcontext_base + N64_SIGCONTEXT_FPCSR);
1316
1317   trad_frame_set_reg_addr (this_cache,
1318                            regs->hi + gdbarch_num_regs (gdbarch),
1319                            sigcontext_base + N64_SIGCONTEXT_HI);
1320   trad_frame_set_reg_addr (this_cache,
1321                            regs->lo + gdbarch_num_regs (gdbarch),
1322                            sigcontext_base + N64_SIGCONTEXT_LO);
1323
1324   if (regs->dspacc != -1)
1325     {
1326       trad_frame_set_reg_addr (this_cache,
1327                                regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1328                                sigcontext_base + N64_SIGCONTEXT_HI1);
1329       trad_frame_set_reg_addr (this_cache,
1330                                regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1331                                sigcontext_base + N64_SIGCONTEXT_LO1);
1332       trad_frame_set_reg_addr (this_cache,
1333                                regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1334                                sigcontext_base + N64_SIGCONTEXT_HI2);
1335       trad_frame_set_reg_addr (this_cache,
1336                                regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1337                                sigcontext_base + N64_SIGCONTEXT_LO2);
1338       trad_frame_set_reg_addr (this_cache,
1339                                regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1340                                sigcontext_base + N64_SIGCONTEXT_HI3);
1341       trad_frame_set_reg_addr (this_cache,
1342                                regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1343                                sigcontext_base + N64_SIGCONTEXT_LO3);
1344     }
1345   if (regs->dspctl != -1)
1346     trad_frame_set_reg_addr (this_cache,
1347                              regs->dspctl + gdbarch_num_regs (gdbarch),
1348                              sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1349
1350   /* Choice of the bottom of the sigframe is somewhat arbitrary.  */
1351   trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1352 }
1353
1354 /* Implement struct tramp_frame's "validate" method for standard MIPS code.  */
1355
1356 static int
1357 mips_linux_sigframe_validate (const struct tramp_frame *self,
1358                               struct frame_info *this_frame,
1359                               CORE_ADDR *pc)
1360 {
1361   return mips_pc_is_mips (*pc);
1362 }
1363
1364 /* Implement struct tramp_frame's "validate" method for microMIPS code.  */
1365
1366 static int
1367 micromips_linux_sigframe_validate (const struct tramp_frame *self,
1368                                    struct frame_info *this_frame,
1369                                    CORE_ADDR *pc)
1370 {
1371   if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
1372     {
1373       *pc = mips_unmake_compact_addr (*pc);
1374       return 1;
1375     }
1376   else
1377     return 0;
1378 }
1379
1380 /* Implement the "write_pc" gdbarch method.  */
1381
1382 static void
1383 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1384 {
1385   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1386
1387   mips_write_pc (regcache, pc);
1388
1389   /* Clear the syscall restart flag.  */
1390   if (mips_linux_restart_reg_p (gdbarch))
1391     regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1392 }
1393
1394 /* Return 1 if MIPS_RESTART_REGNUM is usable.  */
1395
1396 int
1397 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1398 {
1399   /* If we do not have a target description with registers, then
1400      MIPS_RESTART_REGNUM will not be included in the register set.  */
1401   if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1402     return 0;
1403
1404   /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1405      either be GPR-sized or missing.  */
1406   return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1407 }
1408
1409 /* When FRAME is at a syscall instruction, return the PC of the next
1410    instruction to be executed.  */
1411
1412 static CORE_ADDR
1413 mips_linux_syscall_next_pc (struct frame_info *frame)
1414 {
1415   CORE_ADDR pc = get_frame_pc (frame);
1416   ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1417
1418   /* If we are about to make a sigreturn syscall, use the unwinder to
1419      decode the signal frame.  */
1420   if (v0 == MIPS_NR_sigreturn
1421       || v0 == MIPS_NR_rt_sigreturn
1422       || v0 == MIPS_NR_N64_rt_sigreturn
1423       || v0 == MIPS_NR_N32_rt_sigreturn)
1424     return frame_unwind_caller_pc (get_current_frame ());
1425
1426   return pc + 4;
1427 }
1428
1429 /* Return the current system call's number present in the
1430    v0 register.  When the function fails, it returns -1.  */
1431
1432 static LONGEST
1433 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1434                                ptid_t ptid)
1435 {
1436   struct regcache *regcache = get_thread_regcache (ptid);
1437   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1438   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1439   int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1440   /* The content of a register */
1441   gdb_byte buf[8];
1442   /* The result */
1443   LONGEST ret;
1444
1445   /* Make sure we're in a known ABI */
1446   gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1447               || tdep->mips_abi == MIPS_ABI_N32
1448               || tdep->mips_abi == MIPS_ABI_N64);
1449
1450   gdb_assert (regsize <= sizeof (buf));
1451
1452   /* Getting the system call number from the register.
1453      syscall number is in v0 or $2.  */
1454   regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1455
1456   ret = extract_signed_integer (buf, regsize, byte_order);
1457
1458   return ret;
1459 }
1460
1461 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1462    gdbarch.h.  */
1463
1464 static int
1465 mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1466                            enum gdb_signal signal)
1467 {
1468   switch (signal)
1469     {
1470     case GDB_SIGNAL_EMT:
1471       return MIPS_LINUX_SIGEMT;
1472
1473     case GDB_SIGNAL_BUS:
1474       return MIPS_LINUX_SIGBUS;
1475
1476     case GDB_SIGNAL_SYS:
1477       return MIPS_LINUX_SIGSYS;
1478
1479     case GDB_SIGNAL_USR1:
1480       return MIPS_LINUX_SIGUSR1;
1481
1482     case GDB_SIGNAL_USR2:
1483       return MIPS_LINUX_SIGUSR2;
1484
1485     case GDB_SIGNAL_CHLD:
1486       return MIPS_LINUX_SIGCHLD;
1487
1488     case GDB_SIGNAL_PWR:
1489       return MIPS_LINUX_SIGPWR;
1490
1491     case GDB_SIGNAL_WINCH:
1492       return MIPS_LINUX_SIGWINCH;
1493
1494     case GDB_SIGNAL_URG:
1495       return MIPS_LINUX_SIGURG;
1496
1497     case GDB_SIGNAL_IO:
1498       return MIPS_LINUX_SIGIO;
1499
1500     case GDB_SIGNAL_POLL:
1501       return MIPS_LINUX_SIGPOLL;
1502
1503     case GDB_SIGNAL_STOP:
1504       return MIPS_LINUX_SIGSTOP;
1505
1506     case GDB_SIGNAL_TSTP:
1507       return MIPS_LINUX_SIGTSTP;
1508
1509     case GDB_SIGNAL_CONT:
1510       return MIPS_LINUX_SIGCONT;
1511
1512     case GDB_SIGNAL_TTIN:
1513       return MIPS_LINUX_SIGTTIN;
1514
1515     case GDB_SIGNAL_TTOU:
1516       return MIPS_LINUX_SIGTTOU;
1517
1518     case GDB_SIGNAL_VTALRM:
1519       return MIPS_LINUX_SIGVTALRM;
1520
1521     case GDB_SIGNAL_PROF:
1522       return MIPS_LINUX_SIGPROF;
1523
1524     case GDB_SIGNAL_XCPU:
1525       return MIPS_LINUX_SIGXCPU;
1526
1527     case GDB_SIGNAL_XFSZ:
1528       return MIPS_LINUX_SIGXFSZ;
1529
1530     /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1531        therefore we have to handle it here.  */
1532     case GDB_SIGNAL_REALTIME_32:
1533       return MIPS_LINUX_SIGRTMIN;
1534     }
1535
1536   if (signal >= GDB_SIGNAL_REALTIME_33
1537       && signal <= GDB_SIGNAL_REALTIME_63)
1538     {
1539       int offset = signal - GDB_SIGNAL_REALTIME_33;
1540
1541       return MIPS_LINUX_SIGRTMIN + 1 + offset;
1542     }
1543   else if (signal >= GDB_SIGNAL_REALTIME_64
1544            && signal <= GDB_SIGNAL_REALTIME_127)
1545     {
1546       int offset = signal - GDB_SIGNAL_REALTIME_64;
1547
1548       return MIPS_LINUX_SIGRT64 + offset;
1549     }
1550
1551   return linux_gdb_signal_to_target (gdbarch, signal);
1552 }
1553
1554 /* Translate signals based on MIPS signal values.
1555    Adapted from gdb/common/signals.c.  */
1556
1557 static enum gdb_signal
1558 mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1559 {
1560   switch (signal)
1561     {
1562     case MIPS_LINUX_SIGEMT:
1563       return GDB_SIGNAL_EMT;
1564
1565     case MIPS_LINUX_SIGBUS:
1566       return GDB_SIGNAL_BUS;
1567
1568     case MIPS_LINUX_SIGSYS:
1569       return GDB_SIGNAL_SYS;
1570
1571     case MIPS_LINUX_SIGUSR1:
1572       return GDB_SIGNAL_USR1;
1573
1574     case MIPS_LINUX_SIGUSR2:
1575       return GDB_SIGNAL_USR2;
1576
1577     case MIPS_LINUX_SIGCHLD:
1578       return GDB_SIGNAL_CHLD;
1579
1580     case MIPS_LINUX_SIGPWR:
1581       return GDB_SIGNAL_PWR;
1582
1583     case MIPS_LINUX_SIGWINCH:
1584       return GDB_SIGNAL_WINCH;
1585
1586     case MIPS_LINUX_SIGURG:
1587       return GDB_SIGNAL_URG;
1588
1589     /* No way to differentiate between SIGIO and SIGPOLL.
1590        Therefore, we just handle the first one.  */
1591     case MIPS_LINUX_SIGIO:
1592       return GDB_SIGNAL_IO;
1593
1594     case MIPS_LINUX_SIGSTOP:
1595       return GDB_SIGNAL_STOP;
1596
1597     case MIPS_LINUX_SIGTSTP:
1598       return GDB_SIGNAL_TSTP;
1599
1600     case MIPS_LINUX_SIGCONT:
1601       return GDB_SIGNAL_CONT;
1602
1603     case MIPS_LINUX_SIGTTIN:
1604       return GDB_SIGNAL_TTIN;
1605
1606     case MIPS_LINUX_SIGTTOU:
1607       return GDB_SIGNAL_TTOU;
1608
1609     case MIPS_LINUX_SIGVTALRM:
1610       return GDB_SIGNAL_VTALRM;
1611
1612     case MIPS_LINUX_SIGPROF:
1613       return GDB_SIGNAL_PROF;
1614
1615     case MIPS_LINUX_SIGXCPU:
1616       return GDB_SIGNAL_XCPU;
1617
1618     case MIPS_LINUX_SIGXFSZ:
1619       return GDB_SIGNAL_XFSZ;
1620     }
1621
1622   if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
1623     {
1624       /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1625          the MIPS block to the respective GDB_SIGNAL_REALTIME blocks.  */
1626       int offset = signal - MIPS_LINUX_SIGRTMIN;
1627
1628       if (offset == 0)
1629         return GDB_SIGNAL_REALTIME_32;
1630       else if (offset < 32)
1631         return (enum gdb_signal) (offset - 1
1632                                   + (int) GDB_SIGNAL_REALTIME_33);
1633       else
1634         return (enum gdb_signal) (offset - 32
1635                                   + (int) GDB_SIGNAL_REALTIME_64);
1636     }
1637
1638   return linux_gdb_signal_from_target (gdbarch, signal);
1639 }
1640
1641 /* Initialize one of the GNU/Linux OS ABIs.  */
1642
1643 static void
1644 mips_linux_init_abi (struct gdbarch_info info,
1645                      struct gdbarch *gdbarch)
1646 {
1647   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1648   enum mips_abi abi = mips_abi (gdbarch);
1649   struct tdesc_arch_data *tdesc_data
1650     = (struct tdesc_arch_data *) info.tdep_info;
1651
1652   linux_init_abi (info, gdbarch);
1653
1654   /* Get the syscall number from the arch's register.  */
1655   set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1656
1657   switch (abi)
1658     {
1659       case MIPS_ABI_O32:
1660         set_gdbarch_get_longjmp_target (gdbarch,
1661                                         mips_linux_get_longjmp_target);
1662         set_solib_svr4_fetch_link_map_offsets
1663           (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1664         tramp_frame_prepend_unwinder (gdbarch, &micromips_linux_o32_sigframe);
1665         tramp_frame_prepend_unwinder (gdbarch,
1666                                       &micromips_linux_o32_rt_sigframe);
1667         tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1668         tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1669         set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
1670         break;
1671       case MIPS_ABI_N32:
1672         set_gdbarch_get_longjmp_target (gdbarch,
1673                                         mips_linux_get_longjmp_target);
1674         set_solib_svr4_fetch_link_map_offsets
1675           (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1676         set_gdbarch_long_double_bit (gdbarch, 128);
1677         /* These floatformats should probably be renamed.  MIPS uses
1678            the same 128-bit IEEE floating point format that IA-64 uses,
1679            except that the quiet/signalling NaN bit is reversed (GDB
1680            does not distinguish between quiet and signalling NaNs).  */
1681         set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1682         tramp_frame_prepend_unwinder (gdbarch,
1683                                       &micromips_linux_n32_rt_sigframe);
1684         tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1685         set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
1686         break;
1687       case MIPS_ABI_N64:
1688         set_gdbarch_get_longjmp_target (gdbarch,
1689                                         mips64_linux_get_longjmp_target);
1690         set_solib_svr4_fetch_link_map_offsets
1691           (gdbarch, svr4_lp64_fetch_link_map_offsets);
1692         set_gdbarch_long_double_bit (gdbarch, 128);
1693         /* These floatformats should probably be renamed.  MIPS uses
1694            the same 128-bit IEEE floating point format that IA-64 uses,
1695            except that the quiet/signalling NaN bit is reversed (GDB
1696            does not distinguish between quiet and signalling NaNs).  */
1697         set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1698         tramp_frame_prepend_unwinder (gdbarch,
1699                                       &micromips_linux_n64_rt_sigframe);
1700         tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1701         set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
1702         break;
1703       default:
1704         break;
1705     }
1706
1707   set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1708
1709   set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1710
1711   /* Enable TLS support.  */
1712   set_gdbarch_fetch_tls_load_module_address (gdbarch,
1713                                              svr4_fetch_objfile_link_map);
1714
1715   /* Initialize this lazily, to avoid an initialization order
1716      dependency on solib-svr4.c's _initialize routine.  */
1717   if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1718     {
1719       mips_svr4_so_ops = svr4_so_ops;
1720       mips_svr4_so_ops.in_dynsym_resolve_code
1721         = mips_linux_in_dynsym_resolve_code;
1722     }
1723   set_solib_ops (gdbarch, &mips_svr4_so_ops);
1724
1725   set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1726
1727   set_gdbarch_core_read_description (gdbarch,
1728                                      mips_linux_core_read_description);
1729
1730   set_gdbarch_iterate_over_regset_sections
1731     (gdbarch, mips_linux_iterate_over_regset_sections);
1732
1733   set_gdbarch_gdb_signal_from_target (gdbarch,
1734                                       mips_gdb_signal_from_target);
1735
1736   set_gdbarch_gdb_signal_to_target (gdbarch,
1737                                     mips_gdb_signal_to_target);
1738
1739   tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1740
1741   if (tdesc_data)
1742     {
1743       const struct tdesc_feature *feature;
1744
1745       /* If we have target-described registers, then we can safely
1746          reserve a number for MIPS_RESTART_REGNUM (whether it is
1747          described or not).  */
1748       gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1749       set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1750       set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1751
1752       /* If it's present, then assign it to the reserved number.  */
1753       feature = tdesc_find_feature (info.target_desc,
1754                                     "org.gnu.gdb.mips.linux");
1755       if (feature != NULL)
1756         tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1757                                  "restart");
1758     }
1759 }
1760
1761 /* Provide a prototype to silence -Wmissing-prototypes.  */
1762 extern initialize_file_ftype _initialize_mips_linux_tdep;
1763
1764 void
1765 _initialize_mips_linux_tdep (void)
1766 {
1767   const struct bfd_arch_info *arch_info;
1768
1769   for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1770        arch_info != NULL;
1771        arch_info = arch_info->next)
1772     {
1773       gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1774                               GDB_OSABI_LINUX,
1775                               mips_linux_init_abi);
1776     }
1777 }