1 /* Target-dependent code for GNU/Linux on MIPS processors.
3 Copyright 2001, 2002, 2004 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
25 #include "solib-svr4.h"
27 #include "mips-tdep.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
32 /* Copied from <asm/elf.h>. */
36 typedef unsigned char elf_greg_t[4];
37 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
39 typedef unsigned char elf_fpreg_t[8];
40 typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
42 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
57 #define EF_CP0_BADVADDR 41
58 #define EF_CP0_STATUS 42
59 #define EF_CP0_CAUSE 43
63 /* Figure out where the longjmp will land.
64 We expect the first arg to be a pointer to the jmp_buf structure from
65 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
66 is copied into PC. This routine returns 1 on success. */
68 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
69 #define MIPS_LINUX_JB_PC 0
72 mips_linux_get_longjmp_target (CORE_ADDR *pc)
75 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
77 jb_addr = read_register (A0_REGNUM);
79 if (target_read_memory (jb_addr
80 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
81 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
84 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
89 /* Transform the bits comprising a 32-bit register to the right size
90 for supply_register(). This is needed when mips_regsize() is 8. */
93 supply_32bit_reg (int regnum, const void *addr)
95 char buf[MAX_REGISTER_SIZE];
96 store_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum),
97 extract_signed_integer (addr, 4));
98 supply_register (regnum, buf);
101 /* Unpack an elf_gregset_t into GDB's register cache. */
104 supply_gregset (elf_gregset_t *gregsetp)
107 elf_greg_t *regp = *gregsetp;
108 char zerobuf[MAX_REGISTER_SIZE];
110 memset (zerobuf, 0, MAX_REGISTER_SIZE);
112 for (regi = EF_REG0; regi <= EF_REG31; regi++)
113 supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
115 supply_32bit_reg (mips_regnum (current_gdbarch)->lo,
116 (char *)(regp + EF_LO));
117 supply_32bit_reg (mips_regnum (current_gdbarch)->hi,
118 (char *)(regp + EF_HI));
120 supply_32bit_reg (mips_regnum (current_gdbarch)->pc,
121 (char *)(regp + EF_CP0_EPC));
122 supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr,
123 (char *)(regp + EF_CP0_BADVADDR));
124 supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
125 supply_32bit_reg (mips_regnum (current_gdbarch)->cause,
126 (char *)(regp + EF_CP0_CAUSE));
128 /* Fill inaccessible registers with zero. */
129 supply_register (UNUSED_REGNUM, zerobuf);
130 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
131 supply_register (regi, zerobuf);
134 /* Pack our registers (or one register) into an elf_gregset_t. */
137 fill_gregset (elf_gregset_t *gregsetp, int regno)
140 elf_greg_t *regp = *gregsetp;
145 memset (regp, 0, sizeof (elf_gregset_t));
146 for (regi = 0; regi < 32; regi++)
147 fill_gregset (gregsetp, regi);
148 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
149 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
150 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
151 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
152 fill_gregset (gregsetp, PS_REGNUM);
153 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
160 dst = regp + regno + EF_REG0;
161 regcache_collect (regno, dst);
165 if (regno == mips_regnum (current_gdbarch)->lo)
167 else if (regno == mips_regnum (current_gdbarch)->hi)
169 else if (regno == mips_regnum (current_gdbarch)->pc)
170 regaddr = EF_CP0_EPC;
171 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
172 regaddr = EF_CP0_BADVADDR;
173 else if (regno == PS_REGNUM)
174 regaddr = EF_CP0_STATUS;
175 else if (regno == mips_regnum (current_gdbarch)->cause)
176 regaddr = EF_CP0_CAUSE;
182 dst = regp + regaddr;
183 regcache_collect (regno, dst);
187 /* Likewise, unpack an elf_fpregset_t. */
190 supply_fpregset (elf_fpregset_t *fpregsetp)
193 char zerobuf[MAX_REGISTER_SIZE];
195 memset (zerobuf, 0, MAX_REGISTER_SIZE);
197 for (regi = 0; regi < 32; regi++)
198 supply_register (FP0_REGNUM + regi,
199 (char *)(*fpregsetp + regi));
201 supply_register (mips_regnum (current_gdbarch)->fp_control_status,
202 (char *)(*fpregsetp + 32));
204 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
205 supply_register (mips_regnum (current_gdbarch)->fp_implementation_revision,
209 /* Likewise, pack one or all floating point registers into an
213 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
217 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
219 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
220 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
221 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
223 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
225 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
226 to = (char *) (*fpregsetp + 32);
227 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
229 else if (regno == -1)
233 for (regi = 0; regi < 32; regi++)
234 fill_fpregset (fpregsetp, FP0_REGNUM + regi);
235 fill_fpregset(fpregsetp, mips_regnum (current_gdbarch)->fp_control_status);
239 /* Map gdb internal register number to ptrace ``address''.
240 These ``addresses'' are normally defined in <asm/ptrace.h>. */
243 mips_linux_register_addr (int regno, CORE_ADDR blockend)
247 if (regno < 0 || regno >= NUM_REGS)
248 error ("Bogon register number %d.", regno);
252 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
253 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
254 regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0);
255 else if (regno == mips_regnum (current_gdbarch)->pc)
257 else if (regno == mips_regnum (current_gdbarch)->cause)
259 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
261 else if (regno == mips_regnum (current_gdbarch)->lo)
263 else if (regno == mips_regnum (current_gdbarch)->hi)
265 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
267 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
270 error ("Unknowable register number %d.", regno);
276 /* Fetch (and possibly build) an appropriate link_map_offsets
277 structure for native GNU/Linux MIPS targets using the struct offsets
278 defined in link.h (but without actual reference to that file).
280 This makes it possible to access GNU/Linux MIPS shared libraries from a
281 GDB that was built on a different host platform (for cross debugging). */
283 static struct link_map_offsets *
284 mips_linux_svr4_fetch_link_map_offsets (void)
286 static struct link_map_offsets lmo;
287 static struct link_map_offsets *lmp = NULL;
293 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
294 this is all we need. */
295 lmo.r_map_offset = 4;
298 lmo.link_map_size = 20;
300 lmo.l_addr_offset = 0;
303 lmo.l_name_offset = 4;
306 lmo.l_next_offset = 12;
309 lmo.l_prev_offset = 16;
316 /* Support for 64-bit ABIs. */
318 /* Copied from <asm/elf.h>. */
319 #define MIPS64_ELF_NGREG 45
320 #define MIPS64_ELF_NFPREG 33
322 typedef unsigned char mips64_elf_greg_t[8];
323 typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
325 typedef unsigned char mips64_elf_fpreg_t[8];
326 typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
328 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
329 #define MIPS64_FPR_BASE 32
331 #define MIPS64_CAUSE 65
332 #define MIPS64_BADVADDR 66
333 #define MIPS64_MMHI 67
334 #define MIPS64_MMLO 68
335 #define MIPS64_FPC_CSR 69
336 #define MIPS64_FPC_EIR 70
338 #define MIPS64_EF_REG0 0
339 #define MIPS64_EF_REG31 31
340 #define MIPS64_EF_LO 32
341 #define MIPS64_EF_HI 33
342 #define MIPS64_EF_CP0_EPC 34
343 #define MIPS64_EF_CP0_BADVADDR 35
344 #define MIPS64_EF_CP0_STATUS 36
345 #define MIPS64_EF_CP0_CAUSE 37
347 #define MIPS64_EF_SIZE 304
349 /* Figure out where the longjmp will land.
350 We expect the first arg to be a pointer to the jmp_buf structure from
351 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
352 is copied into PC. This routine returns 1 on success. */
354 /* Details about jmp_buf. */
356 #define MIPS64_LINUX_JB_PC 0
359 mips64_linux_get_longjmp_target (CORE_ADDR *pc)
362 void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
363 int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
365 jb_addr = read_register (A0_REGNUM);
367 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
368 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
371 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
376 /* Unpack an elf_gregset_t into GDB's register cache. */
379 mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
382 mips64_elf_greg_t *regp = *gregsetp;
383 char zerobuf[MAX_REGISTER_SIZE];
385 memset (zerobuf, 0, MAX_REGISTER_SIZE);
387 for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
388 supply_register ((regi - MIPS64_EF_REG0), (char *)(regp + regi));
390 supply_register (mips_regnum (current_gdbarch)->lo,
391 (char *)(regp + MIPS64_EF_LO));
392 supply_register (mips_regnum (current_gdbarch)->hi,
393 (char *)(regp + MIPS64_EF_HI));
395 supply_register (mips_regnum (current_gdbarch)->pc,
396 (char *)(regp + MIPS64_EF_CP0_EPC));
397 supply_register (mips_regnum (current_gdbarch)->badvaddr,
398 (char *)(regp + MIPS64_EF_CP0_BADVADDR));
399 supply_register (PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS));
400 supply_register (mips_regnum (current_gdbarch)->cause,
401 (char *)(regp + MIPS64_EF_CP0_CAUSE));
403 /* Fill inaccessible registers with zero. */
404 supply_register (UNUSED_REGNUM, zerobuf);
405 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
406 supply_register (regi, zerobuf);
409 /* Pack our registers (or one register) into an elf_gregset_t. */
412 mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
415 mips64_elf_greg_t *regp = *gregsetp;
420 memset (regp, 0, sizeof (mips64_elf_gregset_t));
421 for (regi = 0; regi < 32; regi++)
422 mips64_fill_gregset (gregsetp, regi);
423 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
424 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
425 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
426 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
427 mips64_fill_gregset (gregsetp, PS_REGNUM);
428 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
435 dst = regp + regno + MIPS64_EF_REG0;
436 regcache_collect (regno, dst);
440 if (regno == mips_regnum (current_gdbarch)->lo)
441 regaddr = MIPS64_EF_LO;
442 else if (regno == mips_regnum (current_gdbarch)->hi)
443 regaddr = MIPS64_EF_HI;
444 else if (regno == mips_regnum (current_gdbarch)->pc)
445 regaddr = MIPS64_EF_CP0_EPC;
446 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
447 regaddr = MIPS64_EF_CP0_BADVADDR;
448 else if (regno == PS_REGNUM)
449 regaddr = MIPS64_EF_CP0_STATUS;
450 else if (regno == mips_regnum (current_gdbarch)->cause)
451 regaddr = MIPS64_EF_CP0_CAUSE;
457 dst = regp + regaddr;
458 regcache_collect (regno, dst);
462 /* Likewise, unpack an elf_fpregset_t. */
465 mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
468 char zerobuf[MAX_REGISTER_SIZE];
470 memset (zerobuf, 0, MAX_REGISTER_SIZE);
472 for (regi = 0; regi < 32; regi++)
473 supply_register (FP0_REGNUM + regi,
474 (char *)(*fpregsetp + regi));
476 supply_register (mips_regnum (current_gdbarch)->fp_control_status,
477 (char *)(*fpregsetp + 32));
479 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
480 supply_register (mips_regnum (current_gdbarch)->fp_implementation_revision,
484 /* Likewise, pack one or all floating point registers into an
488 mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
492 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
494 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
495 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
496 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
498 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
500 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
501 to = (char *) (*fpregsetp + 32);
502 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
504 else if (regno == -1)
508 for (regi = 0; regi < 32; regi++)
509 mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
510 mips64_fill_fpregset(fpregsetp,
511 mips_regnum (current_gdbarch)->fp_control_status);
516 /* Map gdb internal register number to ptrace ``address''.
517 These ``addresses'' are normally defined in <asm/ptrace.h>. */
520 mips64_linux_register_addr (int regno, CORE_ADDR blockend)
524 if (regno < 0 || regno >= NUM_REGS)
525 error ("Bogon register number %d.", regno);
529 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
530 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
531 regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
532 else if (regno == mips_regnum (current_gdbarch)->pc)
534 else if (regno == mips_regnum (current_gdbarch)->cause)
535 regaddr = MIPS64_CAUSE;
536 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
537 regaddr = MIPS64_BADVADDR;
538 else if (regno == mips_regnum (current_gdbarch)->lo)
539 regaddr = MIPS64_MMLO;
540 else if (regno == mips_regnum (current_gdbarch)->hi)
541 regaddr = MIPS64_MMHI;
542 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
543 regaddr = MIPS64_FPC_CSR;
544 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
545 regaddr = MIPS64_FPC_EIR;
547 error ("Unknowable register number %d.", regno);
552 /* Use a local version of this function to get the correct types for
553 regsets, until multi-arch core support is ready. */
556 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
557 int which, CORE_ADDR reg_addr)
559 elf_gregset_t gregset;
560 elf_fpregset_t fpregset;
561 mips64_elf_gregset_t gregset64;
562 mips64_elf_fpregset_t fpregset64;
566 if (core_reg_size == sizeof (gregset))
568 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
569 supply_gregset (&gregset);
571 else if (core_reg_size == sizeof (gregset64))
573 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
574 mips64_supply_gregset (&gregset64);
578 warning ("wrong size gregset struct in core file");
583 if (core_reg_size == sizeof (fpregset))
585 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
586 supply_fpregset (&fpregset);
588 else if (core_reg_size == sizeof (fpregset64))
590 memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
591 mips64_supply_fpregset (&fpregset64);
595 warning ("wrong size fpregset struct in core file");
600 /* Register that we are able to handle ELF file formats using standard
601 procfs "regset" structures. */
603 static struct core_fns regset_core_fns =
605 bfd_target_elf_flavour, /* core_flavour */
606 default_check_format, /* check_format */
607 default_core_sniffer, /* core_sniffer */
608 fetch_core_registers, /* core_read_registers */
612 /* Fetch (and possibly build) an appropriate link_map_offsets
613 structure for native GNU/Linux MIPS targets using the struct offsets
614 defined in link.h (but without actual reference to that file).
616 This makes it possible to access GNU/Linux MIPS shared libraries from a
617 GDB that was built on a different host platform (for cross debugging). */
619 static struct link_map_offsets *
620 mips64_linux_svr4_fetch_link_map_offsets (void)
622 static struct link_map_offsets lmo;
623 static struct link_map_offsets *lmp = NULL;
629 lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
630 this is all we need. */
631 lmo.r_map_offset = 8;
634 lmo.link_map_size = 40;
636 lmo.l_addr_offset = 0;
639 lmo.l_name_offset = 8;
642 lmo.l_next_offset = 24;
645 lmo.l_prev_offset = 32;
652 /* Handle for obtaining pointer to the current register_addr() function
653 for a given architecture. */
654 static struct gdbarch_data *register_addr_data;
657 register_addr (int regno, CORE_ADDR blockend)
659 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
660 gdbarch_data (current_gdbarch, register_addr_data);
662 gdb_assert (register_addr_ptr != 0);
664 return register_addr_ptr (regno, blockend);
668 set_mips_linux_register_addr (struct gdbarch *gdbarch,
669 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
671 set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
675 init_register_addr_data (struct gdbarch *gdbarch)
680 /* Check the code at PC for a dynamic linker lazy resolution stub. Because
681 they aren't in the .plt section, we pattern-match on the code generated
682 by GNU ld. They look like this:
689 (with the appropriate doubleword instructions for N64). Also return the
690 dynamic symbol index used in the last instruction. */
693 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
695 unsigned char buf[28], *p;
696 ULONGEST insn, insn1;
697 int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
699 read_memory (pc - 12, buf, 28);
703 /* ld t9,0x8010(gp) */
708 /* lw t9,0x8010(gp) */
715 insn = extract_unsigned_integer (p, 4);
723 insn = extract_unsigned_integer (p + 4, 4);
727 if (insn != 0x03e0782d)
733 if (insn != 0x03e07821)
737 insn = extract_unsigned_integer (p + 8, 4);
739 if (insn != 0x0320f809)
742 insn = extract_unsigned_integer (p + 12, 4);
745 /* daddiu t8,zero,0 */
746 if ((insn & 0xffff0000) != 0x64180000)
751 /* addiu t8,zero,0 */
752 if ((insn & 0xffff0000) != 0x24180000)
756 return (insn & 0xffff);
759 /* Return non-zero iff PC belongs to the dynamic linker resolution code
763 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
765 /* Check whether PC is in the dynamic linker. This also checks whether
766 it is in the .plt section, which MIPS does not use. */
767 if (in_solib_dynsym_resolve_code (pc))
770 /* Pattern match for the stub. It would be nice if there were a more
771 efficient way to avoid this check. */
772 if (mips_linux_in_dynsym_stub (pc, NULL))
778 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
779 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
780 implementation of this triggers at "fixup" from the same objfile as
781 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
782 "__dl_runtime_resolve" directly. An unresolved PLT entry will
783 point to _dl_runtime_resolve, which will first call
784 __dl_runtime_resolve, and then pass control to the resolved
788 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
790 struct minimal_symbol *resolver;
792 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
794 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
795 return frame_pc_unwind (get_current_frame ());
801 mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 enum mips_abi abi = mips_abi (gdbarch);
809 set_gdbarch_get_longjmp_target (gdbarch,
810 mips_linux_get_longjmp_target);
811 set_solib_svr4_fetch_link_map_offsets
812 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
813 set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
816 set_gdbarch_get_longjmp_target (gdbarch,
817 mips_linux_get_longjmp_target);
818 set_solib_svr4_fetch_link_map_offsets
819 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
820 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
823 set_gdbarch_get_longjmp_target (gdbarch,
824 mips64_linux_get_longjmp_target);
825 set_solib_svr4_fetch_link_map_offsets
826 (gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
827 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
830 internal_error (__FILE__, __LINE__, "can't handle ABI");
834 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
836 /* This overrides the MIPS16 stub support from mips-tdep. But no
837 one uses MIPS16 on GNU/Linux yet, so this isn't much of a loss. */
838 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_linux_in_dynsym_stub);
842 _initialize_mips_linux_tdep (void)
844 const struct bfd_arch_info *arch_info;
847 register_gdbarch_data (init_register_addr_data);
849 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
851 arch_info = arch_info->next)
853 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
854 mips_linux_init_abi);
857 add_core_fns (®set_core_fns);