1 /* Target-dependent code for GNU/Linux on MIPS processors.
3 Copyright 2001, 2002, 2004 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
25 #include "solib-svr4.h"
27 #include "mips-tdep.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
31 #include "trad-frame.h"
32 #include "tramp-frame.h"
34 /* Copied from <asm/elf.h>. */
38 typedef unsigned char elf_greg_t[4];
39 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
41 typedef unsigned char elf_fpreg_t[8];
42 typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
44 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
59 #define EF_CP0_BADVADDR 41
60 #define EF_CP0_STATUS 42
61 #define EF_CP0_CAUSE 43
65 /* Figure out where the longjmp will land.
66 We expect the first arg to be a pointer to the jmp_buf structure from
67 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
68 is copied into PC. This routine returns 1 on success. */
70 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
71 #define MIPS_LINUX_JB_PC 0
74 mips_linux_get_longjmp_target (CORE_ADDR *pc)
77 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
79 jb_addr = read_register (A0_REGNUM);
81 if (target_read_memory (jb_addr
82 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
83 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
86 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
91 /* Transform the bits comprising a 32-bit register to the right size
92 for regcache_raw_supply(). This is needed when mips_isa_regsize()
96 supply_32bit_reg (int regnum, const void *addr)
98 char buf[MAX_REGISTER_SIZE];
99 store_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum),
100 extract_signed_integer (addr, 4));
101 regcache_raw_supply (current_regcache, regnum, buf);
104 /* Unpack an elf_gregset_t into GDB's register cache. */
107 supply_gregset (elf_gregset_t *gregsetp)
110 elf_greg_t *regp = *gregsetp;
111 char zerobuf[MAX_REGISTER_SIZE];
113 memset (zerobuf, 0, MAX_REGISTER_SIZE);
115 for (regi = EF_REG0; regi <= EF_REG31; regi++)
116 supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
118 supply_32bit_reg (mips_regnum (current_gdbarch)->lo,
119 (char *)(regp + EF_LO));
120 supply_32bit_reg (mips_regnum (current_gdbarch)->hi,
121 (char *)(regp + EF_HI));
123 supply_32bit_reg (mips_regnum (current_gdbarch)->pc,
124 (char *)(regp + EF_CP0_EPC));
125 supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr,
126 (char *)(regp + EF_CP0_BADVADDR));
127 supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
128 supply_32bit_reg (mips_regnum (current_gdbarch)->cause,
129 (char *)(regp + EF_CP0_CAUSE));
131 /* Fill inaccessible registers with zero. */
132 regcache_raw_supply (current_regcache, UNUSED_REGNUM, zerobuf);
133 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
134 regcache_raw_supply (current_regcache, regi, zerobuf);
137 /* Pack our registers (or one register) into an elf_gregset_t. */
140 fill_gregset (elf_gregset_t *gregsetp, int regno)
143 elf_greg_t *regp = *gregsetp;
148 memset (regp, 0, sizeof (elf_gregset_t));
149 for (regi = 0; regi < 32; regi++)
150 fill_gregset (gregsetp, regi);
151 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
152 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
153 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
154 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
155 fill_gregset (gregsetp, PS_REGNUM);
156 fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
163 dst = regp + regno + EF_REG0;
164 regcache_raw_collect (current_regcache, regno, dst);
168 if (regno == mips_regnum (current_gdbarch)->lo)
170 else if (regno == mips_regnum (current_gdbarch)->hi)
172 else if (regno == mips_regnum (current_gdbarch)->pc)
173 regaddr = EF_CP0_EPC;
174 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
175 regaddr = EF_CP0_BADVADDR;
176 else if (regno == PS_REGNUM)
177 regaddr = EF_CP0_STATUS;
178 else if (regno == mips_regnum (current_gdbarch)->cause)
179 regaddr = EF_CP0_CAUSE;
185 dst = regp + regaddr;
186 regcache_raw_collect (current_regcache, regno, dst);
190 /* Likewise, unpack an elf_fpregset_t. */
193 supply_fpregset (elf_fpregset_t *fpregsetp)
196 char zerobuf[MAX_REGISTER_SIZE];
198 memset (zerobuf, 0, MAX_REGISTER_SIZE);
200 for (regi = 0; regi < 32; regi++)
201 regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
202 (char *)(*fpregsetp + regi));
204 regcache_raw_supply (current_regcache,
205 mips_regnum (current_gdbarch)->fp_control_status,
206 (char *)(*fpregsetp + 32));
208 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
209 regcache_raw_supply (current_regcache,
210 mips_regnum (current_gdbarch)->fp_implementation_revision,
214 /* Likewise, pack one or all floating point registers into an
218 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
222 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
224 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
225 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
226 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
228 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
230 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
231 to = (char *) (*fpregsetp + 32);
232 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
234 else if (regno == -1)
238 for (regi = 0; regi < 32; regi++)
239 fill_fpregset (fpregsetp, FP0_REGNUM + regi);
240 fill_fpregset(fpregsetp, mips_regnum (current_gdbarch)->fp_control_status);
244 /* Map gdb internal register number to ptrace ``address''.
245 These ``addresses'' are normally defined in <asm/ptrace.h>. */
248 mips_linux_register_addr (int regno, CORE_ADDR blockend)
252 if (regno < 0 || regno >= NUM_REGS)
253 error ("Bogon register number %d.", regno);
257 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
258 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
259 regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0);
260 else if (regno == mips_regnum (current_gdbarch)->pc)
262 else if (regno == mips_regnum (current_gdbarch)->cause)
264 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
266 else if (regno == mips_regnum (current_gdbarch)->lo)
268 else if (regno == mips_regnum (current_gdbarch)->hi)
270 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
272 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
275 error ("Unknowable register number %d.", regno);
281 /* Fetch (and possibly build) an appropriate link_map_offsets
282 structure for native GNU/Linux MIPS targets using the struct offsets
283 defined in link.h (but without actual reference to that file).
285 This makes it possible to access GNU/Linux MIPS shared libraries from a
286 GDB that was built on a different host platform (for cross debugging). */
288 static struct link_map_offsets *
289 mips_linux_svr4_fetch_link_map_offsets (void)
291 static struct link_map_offsets lmo;
292 static struct link_map_offsets *lmp = NULL;
298 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
299 this is all we need. */
300 lmo.r_map_offset = 4;
303 lmo.link_map_size = 20;
305 lmo.l_addr_offset = 0;
308 lmo.l_name_offset = 4;
311 lmo.l_next_offset = 12;
314 lmo.l_prev_offset = 16;
321 /* Support for 64-bit ABIs. */
323 /* Copied from <asm/elf.h>. */
324 #define MIPS64_ELF_NGREG 45
325 #define MIPS64_ELF_NFPREG 33
327 typedef unsigned char mips64_elf_greg_t[8];
328 typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
330 typedef unsigned char mips64_elf_fpreg_t[8];
331 typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
333 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
334 #define MIPS64_FPR_BASE 32
336 #define MIPS64_CAUSE 65
337 #define MIPS64_BADVADDR 66
338 #define MIPS64_MMHI 67
339 #define MIPS64_MMLO 68
340 #define MIPS64_FPC_CSR 69
341 #define MIPS64_FPC_EIR 70
343 #define MIPS64_EF_REG0 0
344 #define MIPS64_EF_REG31 31
345 #define MIPS64_EF_LO 32
346 #define MIPS64_EF_HI 33
347 #define MIPS64_EF_CP0_EPC 34
348 #define MIPS64_EF_CP0_BADVADDR 35
349 #define MIPS64_EF_CP0_STATUS 36
350 #define MIPS64_EF_CP0_CAUSE 37
352 #define MIPS64_EF_SIZE 304
354 /* Figure out where the longjmp will land.
355 We expect the first arg to be a pointer to the jmp_buf structure from
356 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
357 is copied into PC. This routine returns 1 on success. */
359 /* Details about jmp_buf. */
361 #define MIPS64_LINUX_JB_PC 0
364 mips64_linux_get_longjmp_target (CORE_ADDR *pc)
367 void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
368 int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
370 jb_addr = read_register (A0_REGNUM);
372 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
373 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
376 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
381 /* Unpack an elf_gregset_t into GDB's register cache. */
384 mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
387 mips64_elf_greg_t *regp = *gregsetp;
388 char zerobuf[MAX_REGISTER_SIZE];
390 memset (zerobuf, 0, MAX_REGISTER_SIZE);
392 for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
393 regcache_raw_supply (current_regcache, (regi - MIPS64_EF_REG0),
394 (char *)(regp + regi));
396 regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->lo,
397 (char *)(regp + MIPS64_EF_LO));
398 regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->hi,
399 (char *)(regp + MIPS64_EF_HI));
401 regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->pc,
402 (char *)(regp + MIPS64_EF_CP0_EPC));
403 regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->badvaddr,
404 (char *)(regp + MIPS64_EF_CP0_BADVADDR));
405 regcache_raw_supply (current_regcache, PS_REGNUM,
406 (char *)(regp + MIPS64_EF_CP0_STATUS));
407 regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->cause,
408 (char *)(regp + MIPS64_EF_CP0_CAUSE));
410 /* Fill inaccessible registers with zero. */
411 regcache_raw_supply (current_regcache, UNUSED_REGNUM, zerobuf);
412 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
413 regcache_raw_supply (current_regcache, regi, zerobuf);
416 /* Pack our registers (or one register) into an elf_gregset_t. */
419 mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
422 mips64_elf_greg_t *regp = *gregsetp;
427 memset (regp, 0, sizeof (mips64_elf_gregset_t));
428 for (regi = 0; regi < 32; regi++)
429 mips64_fill_gregset (gregsetp, regi);
430 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
431 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
432 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
433 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
434 mips64_fill_gregset (gregsetp, PS_REGNUM);
435 mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
442 dst = regp + regno + MIPS64_EF_REG0;
443 regcache_raw_collect (current_regcache, regno, dst);
447 if (regno == mips_regnum (current_gdbarch)->lo)
448 regaddr = MIPS64_EF_LO;
449 else if (regno == mips_regnum (current_gdbarch)->hi)
450 regaddr = MIPS64_EF_HI;
451 else if (regno == mips_regnum (current_gdbarch)->pc)
452 regaddr = MIPS64_EF_CP0_EPC;
453 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
454 regaddr = MIPS64_EF_CP0_BADVADDR;
455 else if (regno == PS_REGNUM)
456 regaddr = MIPS64_EF_CP0_STATUS;
457 else if (regno == mips_regnum (current_gdbarch)->cause)
458 regaddr = MIPS64_EF_CP0_CAUSE;
464 dst = regp + regaddr;
465 regcache_raw_collect (current_regcache, regno, dst);
469 /* Likewise, unpack an elf_fpregset_t. */
472 mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
475 char zerobuf[MAX_REGISTER_SIZE];
477 memset (zerobuf, 0, MAX_REGISTER_SIZE);
479 for (regi = 0; regi < 32; regi++)
480 regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
481 (char *)(*fpregsetp + regi));
483 regcache_raw_supply (current_regcache,
484 mips_regnum (current_gdbarch)->fp_control_status,
485 (char *)(*fpregsetp + 32));
487 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
488 regcache_raw_supply (current_regcache,
489 mips_regnum (current_gdbarch)->fp_implementation_revision,
493 /* Likewise, pack one or all floating point registers into an
497 mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
501 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
503 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
504 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
505 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
507 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
509 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
510 to = (char *) (*fpregsetp + 32);
511 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
513 else if (regno == -1)
517 for (regi = 0; regi < 32; regi++)
518 mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
519 mips64_fill_fpregset(fpregsetp,
520 mips_regnum (current_gdbarch)->fp_control_status);
525 /* Map gdb internal register number to ptrace ``address''.
526 These ``addresses'' are normally defined in <asm/ptrace.h>. */
529 mips64_linux_register_addr (int regno, CORE_ADDR blockend)
533 if (regno < 0 || regno >= NUM_REGS)
534 error ("Bogon register number %d.", regno);
538 else if ((regno >= mips_regnum (current_gdbarch)->fp0)
539 && (regno < mips_regnum (current_gdbarch)->fp0 + 32))
540 regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
541 else if (regno == mips_regnum (current_gdbarch)->pc)
543 else if (regno == mips_regnum (current_gdbarch)->cause)
544 regaddr = MIPS64_CAUSE;
545 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
546 regaddr = MIPS64_BADVADDR;
547 else if (regno == mips_regnum (current_gdbarch)->lo)
548 regaddr = MIPS64_MMLO;
549 else if (regno == mips_regnum (current_gdbarch)->hi)
550 regaddr = MIPS64_MMHI;
551 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
552 regaddr = MIPS64_FPC_CSR;
553 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
554 regaddr = MIPS64_FPC_EIR;
556 error ("Unknowable register number %d.", regno);
561 /* Use a local version of this function to get the correct types for
562 regsets, until multi-arch core support is ready. */
565 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
566 int which, CORE_ADDR reg_addr)
568 elf_gregset_t gregset;
569 elf_fpregset_t fpregset;
570 mips64_elf_gregset_t gregset64;
571 mips64_elf_fpregset_t fpregset64;
575 if (core_reg_size == sizeof (gregset))
577 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
578 supply_gregset (&gregset);
580 else if (core_reg_size == sizeof (gregset64))
582 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
583 mips64_supply_gregset (&gregset64);
587 warning ("wrong size gregset struct in core file");
592 if (core_reg_size == sizeof (fpregset))
594 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
595 supply_fpregset (&fpregset);
597 else if (core_reg_size == sizeof (fpregset64))
599 memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
600 mips64_supply_fpregset (&fpregset64);
604 warning ("wrong size fpregset struct in core file");
609 /* Register that we are able to handle ELF file formats using standard
610 procfs "regset" structures. */
612 static struct core_fns regset_core_fns =
614 bfd_target_elf_flavour, /* core_flavour */
615 default_check_format, /* check_format */
616 default_core_sniffer, /* core_sniffer */
617 fetch_core_registers, /* core_read_registers */
621 /* Fetch (and possibly build) an appropriate link_map_offsets
622 structure for native GNU/Linux MIPS targets using the struct offsets
623 defined in link.h (but without actual reference to that file).
625 This makes it possible to access GNU/Linux MIPS shared libraries from a
626 GDB that was built on a different host platform (for cross debugging). */
628 static struct link_map_offsets *
629 mips64_linux_svr4_fetch_link_map_offsets (void)
631 static struct link_map_offsets lmo;
632 static struct link_map_offsets *lmp = NULL;
638 lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
639 this is all we need. */
640 lmo.r_map_offset = 8;
643 lmo.link_map_size = 40;
645 lmo.l_addr_offset = 0;
648 lmo.l_name_offset = 8;
651 lmo.l_next_offset = 24;
654 lmo.l_prev_offset = 32;
661 /* Handle for obtaining pointer to the current register_addr() function
662 for a given architecture. */
663 static struct gdbarch_data *register_addr_data;
666 register_addr (int regno, CORE_ADDR blockend)
668 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
669 gdbarch_data (current_gdbarch, register_addr_data);
671 gdb_assert (register_addr_ptr != 0);
673 return register_addr_ptr (regno, blockend);
677 set_mips_linux_register_addr (struct gdbarch *gdbarch,
678 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
680 deprecated_set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
684 init_register_addr_data (struct gdbarch *gdbarch)
689 /* Check the code at PC for a dynamic linker lazy resolution stub. Because
690 they aren't in the .plt section, we pattern-match on the code generated
691 by GNU ld. They look like this:
698 (with the appropriate doubleword instructions for N64). Also return the
699 dynamic symbol index used in the last instruction. */
702 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
704 unsigned char buf[28], *p;
705 ULONGEST insn, insn1;
706 int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
708 read_memory (pc - 12, buf, 28);
712 /* ld t9,0x8010(gp) */
717 /* lw t9,0x8010(gp) */
724 insn = extract_unsigned_integer (p, 4);
732 insn = extract_unsigned_integer (p + 4, 4);
736 if (insn != 0x03e0782d)
742 if (insn != 0x03e07821)
746 insn = extract_unsigned_integer (p + 8, 4);
748 if (insn != 0x0320f809)
751 insn = extract_unsigned_integer (p + 12, 4);
754 /* daddiu t8,zero,0 */
755 if ((insn & 0xffff0000) != 0x64180000)
760 /* addiu t8,zero,0 */
761 if ((insn & 0xffff0000) != 0x24180000)
765 return (insn & 0xffff);
768 /* Return non-zero iff PC belongs to the dynamic linker resolution code
772 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
774 /* Check whether PC is in the dynamic linker. This also checks whether
775 it is in the .plt section, which MIPS does not use. */
776 if (in_solib_dynsym_resolve_code (pc))
779 /* Pattern match for the stub. It would be nice if there were a more
780 efficient way to avoid this check. */
781 if (mips_linux_in_dynsym_stub (pc, NULL))
787 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
788 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
789 implementation of this triggers at "fixup" from the same objfile as
790 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
791 "__dl_runtime_resolve" directly. An unresolved PLT entry will
792 point to _dl_runtime_resolve, which will first call
793 __dl_runtime_resolve, and then pass control to the resolved
797 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
799 struct minimal_symbol *resolver;
801 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
803 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
804 return frame_pc_unwind (get_current_frame ());
809 /* Signal trampoline support. There are four supported layouts for a
810 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
811 n64 rt_sigframe. We handle them all independently; not the most
812 efficient way, but simplest. First, declare all the unwinders. */
814 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
815 struct frame_info *next_frame,
816 struct trad_frame_cache *this_cache,
819 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
820 struct frame_info *next_frame,
821 struct trad_frame_cache *this_cache,
824 #define MIPS_NR_LINUX 4000
825 #define MIPS_NR_N64_LINUX 5000
826 #define MIPS_NR_N32_LINUX 6000
828 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
829 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
830 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
831 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
833 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
834 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
835 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
836 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
837 #define MIPS_INST_SYSCALL 0x0000000c
839 static const struct tramp_frame mips_linux_o32_sigframe = {
843 { MIPS_INST_LI_V0_SIGRETURN, -1 },
844 { MIPS_INST_SYSCALL, -1 },
845 { TRAMP_SENTINEL_INSN, -1 }
847 mips_linux_o32_sigframe_init
850 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
854 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
855 { MIPS_INST_SYSCALL, -1 },
856 { TRAMP_SENTINEL_INSN, -1 } },
857 mips_linux_o32_sigframe_init
860 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
864 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
865 { MIPS_INST_SYSCALL, -1 },
866 { TRAMP_SENTINEL_INSN, -1 }
868 mips_linux_n32n64_sigframe_init
871 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
874 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, MIPS_INST_SYSCALL, TRAMP_SENTINEL_INSN },
875 mips_linux_n32n64_sigframe_init
879 /* The unwinder for o32 signal frames. The legacy structures look
883 u32 sf_ass[4]; [argument save space for o32]
884 u32 sf_code[2]; [signal trampoline]
885 struct sigcontext sf_sc;
890 unsigned int sc_regmask; [Unused]
891 unsigned int sc_status;
892 unsigned long long sc_pc;
893 unsigned long long sc_regs[32];
894 unsigned long long sc_fpregs[32];
895 unsigned int sc_ownedfp;
896 unsigned int sc_fpc_csr;
897 unsigned int sc_fpc_eir; [Unused]
898 unsigned int sc_used_math;
899 unsigned int sc_ssflags; [Unused]
900 [Alignment hole of four bytes]
901 unsigned long long sc_mdhi;
902 unsigned long long sc_mdlo;
904 unsigned int sc_cause; [Unused]
905 unsigned int sc_badvaddr; [Unused]
907 unsigned long sc_sigset[4]; [kernel's sigset_t]
910 The RT signal frames look like this:
913 u32 rs_ass[4]; [argument save space for o32]
914 u32 rs_code[2] [signal trampoline]
915 struct siginfo rs_info;
916 struct ucontext rs_uc;
920 unsigned long uc_flags;
921 struct ucontext *uc_link;
923 [Alignment hole of four bytes]
924 struct sigcontext uc_mcontext;
929 #define SIGFRAME_CODE_OFFSET (4 * 4)
930 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
932 #define RTSIGFRAME_SIGINFO_SIZE 128
933 #define STACK_T_SIZE (3 * 4)
934 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
935 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
936 + RTSIGFRAME_SIGINFO_SIZE \
937 + UCONTEXT_SIGCONTEXT_OFFSET)
939 #define SIGCONTEXT_PC (1 * 8)
940 #define SIGCONTEXT_REGS (2 * 8)
941 #define SIGCONTEXT_FPREGS (34 * 8)
942 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
943 #define SIGCONTEXT_HI (69 * 8)
944 #define SIGCONTEXT_LO (70 * 8)
945 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
946 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
948 #define SIGCONTEXT_REG_SIZE 8
951 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
952 struct frame_info *next_frame,
953 struct trad_frame_cache *this_cache,
956 int ireg, reg_position;
957 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
958 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
960 if (self == &mips_linux_o32_sigframe)
961 sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
963 sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
965 /* I'm not proud of this hack. Eventually we will have the infrastructure
966 to indicate the size of saved registers on a per-frame basis, but
967 right now we don't; the kernel saves eight bytes but we only want
969 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
970 sigcontext_base += 4;
973 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
974 sigcontext_base + SIGCONTEXT_REGS);
977 for (ireg = 1; ireg < 32; ireg++)
978 trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS,
979 sigcontext_base + SIGCONTEXT_REGS
980 + ireg * SIGCONTEXT_REG_SIZE);
982 for (ireg = 0; ireg < 32; ireg++)
983 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
984 sigcontext_base + SIGCONTEXT_FPREGS
985 + ireg * SIGCONTEXT_REG_SIZE);
987 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
988 sigcontext_base + SIGCONTEXT_PC);
990 trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS,
991 sigcontext_base + SIGCONTEXT_FPCSR);
992 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
993 sigcontext_base + SIGCONTEXT_HI);
994 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
995 sigcontext_base + SIGCONTEXT_LO);
996 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
997 sigcontext_base + SIGCONTEXT_CAUSE);
998 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
999 sigcontext_base + SIGCONTEXT_BADVADDR);
1001 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1002 trad_frame_set_id (this_cache,
1003 frame_id_build (func - SIGFRAME_CODE_OFFSET, func));
1007 /* For N32/N64 things look different. There is no non-rt signal frame.
1009 struct rt_sigframe_n32 {
1010 u32 rs_ass[4]; [ argument save space for o32 ]
1011 u32 rs_code[2]; [ signal trampoline ]
1012 struct siginfo rs_info;
1013 struct ucontextn32 rs_uc;
1016 struct ucontextn32 {
1020 struct sigcontext uc_mcontext;
1021 sigset_t uc_sigmask; [ mask last for extensibility ]
1024 struct rt_sigframe_n32 {
1025 u32 rs_ass[4]; [ argument save space for o32 ]
1026 u32 rs_code[2]; [ signal trampoline ]
1027 struct siginfo rs_info;
1028 struct ucontext rs_uc;
1032 unsigned long uc_flags;
1033 struct ucontext *uc_link;
1035 struct sigcontext uc_mcontext;
1036 sigset_t uc_sigmask; [ mask last for extensibility ]
1039 And the sigcontext is different (this is for both n32 and n64):
1042 unsigned long long sc_regs[32];
1043 unsigned long long sc_fpregs[32];
1044 unsigned long long sc_mdhi;
1045 unsigned long long sc_mdlo;
1046 unsigned long long sc_pc;
1047 unsigned int sc_status;
1048 unsigned int sc_fpc_csr;
1049 unsigned int sc_fpc_eir;
1050 unsigned int sc_used_math;
1051 unsigned int sc_cause;
1052 unsigned int sc_badvaddr;
1056 #define N32_STACK_T_SIZE STACK_T_SIZE
1057 #define N64_STACK_T_SIZE (2 * 8 + 4)
1058 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1059 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1060 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1061 + RTSIGFRAME_SIGINFO_SIZE \
1062 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1063 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1064 + RTSIGFRAME_SIGINFO_SIZE \
1065 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1067 #define N64_SIGCONTEXT_REGS (0 * 8)
1068 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1069 #define N64_SIGCONTEXT_HI (64 * 8)
1070 #define N64_SIGCONTEXT_LO (65 * 8)
1071 #define N64_SIGCONTEXT_PC (66 * 8)
1072 #define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
1073 #define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
1074 #define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
1075 #define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
1077 #define N64_SIGCONTEXT_REG_SIZE 8
1080 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1081 struct frame_info *next_frame,
1082 struct trad_frame_cache *this_cache,
1085 int ireg, reg_position;
1086 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
1087 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
1089 if (self == &mips_linux_n32_rt_sigframe)
1090 sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
1092 sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
1095 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
1096 sigcontext_base + N64_SIGCONTEXT_REGS);
1099 for (ireg = 1; ireg < 32; ireg++)
1100 trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS,
1101 sigcontext_base + N64_SIGCONTEXT_REGS
1102 + ireg * N64_SIGCONTEXT_REG_SIZE);
1104 for (ireg = 0; ireg < 32; ireg++)
1105 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
1106 sigcontext_base + N64_SIGCONTEXT_FPREGS
1107 + ireg * N64_SIGCONTEXT_REG_SIZE);
1109 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
1110 sigcontext_base + N64_SIGCONTEXT_PC);
1112 trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS,
1113 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1114 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
1115 sigcontext_base + N64_SIGCONTEXT_HI);
1116 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
1117 sigcontext_base + N64_SIGCONTEXT_LO);
1118 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
1119 sigcontext_base + N64_SIGCONTEXT_CAUSE);
1120 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
1121 sigcontext_base + N64_SIGCONTEXT_BADVADDR);
1123 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1124 trad_frame_set_id (this_cache,
1125 frame_id_build (func - SIGFRAME_CODE_OFFSET, func));
1128 /* Initialize one of the GNU/Linux OS ABIs. */
1131 mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1133 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1134 enum mips_abi abi = mips_abi (gdbarch);
1139 set_gdbarch_get_longjmp_target (gdbarch,
1140 mips_linux_get_longjmp_target);
1141 set_solib_svr4_fetch_link_map_offsets
1142 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
1143 set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
1144 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1145 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1148 set_gdbarch_get_longjmp_target (gdbarch,
1149 mips_linux_get_longjmp_target);
1150 set_solib_svr4_fetch_link_map_offsets
1151 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
1152 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
1153 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1156 set_gdbarch_get_longjmp_target (gdbarch,
1157 mips64_linux_get_longjmp_target);
1158 set_solib_svr4_fetch_link_map_offsets
1159 (gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
1160 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
1161 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1164 internal_error (__FILE__, __LINE__, "can't handle ABI");
1168 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1170 /* This overrides the MIPS16 stub support from mips-tdep. But no
1171 one uses MIPS16 on GNU/Linux yet, so this isn't much of a loss. */
1172 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_linux_in_dynsym_stub);
1176 _initialize_mips_linux_tdep (void)
1178 const struct bfd_arch_info *arch_info;
1180 register_addr_data =
1181 gdbarch_data_register_post_init (init_register_addr_data);
1183 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1185 arch_info = arch_info->next)
1187 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
1188 mips_linux_init_abi);
1191 deprecated_add_core_fns (®set_core_fns);