1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
43 #include "filenames.h"
50 #include "cp-support.h"
52 #include "cli/cli-utils.h"
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 per-BFD storage obstack. */
59 #define BUNCH_SIZE 127
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
70 msymbol_hash_iw (const char *string)
72 unsigned int hash = 0;
74 while (*string && *string != '(')
76 string = skip_spaces_const (string);
77 if (*string && *string != '(')
79 hash = SYMBOL_HASH_NEXT (hash, *string);
89 msymbol_hash (const char *string)
91 unsigned int hash = 0;
93 for (; *string; ++string)
94 hash = SYMBOL_HASH_NEXT (hash, *string);
98 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
100 add_minsym_to_hash_table (struct minimal_symbol *sym,
101 struct minimal_symbol **table)
103 if (sym->hash_next == NULL)
106 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
108 sym->hash_next = table[hash];
113 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
116 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
117 struct minimal_symbol **table)
119 if (sym->demangled_hash_next == NULL)
121 unsigned int hash = msymbol_hash_iw (MSYMBOL_SEARCH_NAME (sym))
122 % MINIMAL_SYMBOL_HASH_SIZE;
124 sym->demangled_hash_next = table[hash];
129 /* Look through all the current minimal symbol tables and find the
130 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
131 the search to that objfile. If SFILE is non-NULL, the only file-scope
132 symbols considered will be from that source file (global symbols are
133 still preferred). Returns a pointer to the minimal symbol that
134 matches, or NULL if no match is found.
136 Note: One instance where there may be duplicate minimal symbols with
137 the same name is when the symbol tables for a shared library and the
138 symbol tables for an executable contain global symbols with the same
139 names (the dynamic linker deals with the duplication).
141 It's also possible to have minimal symbols with different mangled
142 names, but identical demangled names. For example, the GNU C++ v3
143 ABI requires the generation of two (or perhaps three) copies of
144 constructor functions --- "in-charge", "not-in-charge", and
145 "allocate" copies; destructors may be duplicated as well.
146 Obviously, there must be distinct mangled names for each of these,
147 but the demangled names are all the same: S::S or S::~S. */
149 struct bound_minimal_symbol
150 lookup_minimal_symbol (const char *name, const char *sfile,
151 struct objfile *objf)
153 struct objfile *objfile;
154 struct bound_minimal_symbol found_symbol = { NULL, NULL };
155 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
156 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
158 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
159 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
161 int needtofreename = 0;
162 const char *modified_name;
165 sfile = lbasename (sfile);
167 /* For C++, canonicalize the input name. */
168 modified_name = name;
169 if (current_language->la_language == language_cplus)
171 char *cname = cp_canonicalize_string (name);
175 modified_name = cname;
180 for (objfile = object_files;
181 objfile != NULL && found_symbol.minsym == NULL;
182 objfile = objfile->next)
184 struct minimal_symbol *msymbol;
186 if (objf == NULL || objf == objfile
187 || objf == objfile->separate_debug_objfile_backlink)
189 /* Do two passes: the first over the ordinary hash table,
190 and the second over the demangled hash table. */
193 if (symbol_lookup_debug)
195 fprintf_unfiltered (gdb_stdlog,
196 "lookup_minimal_symbol (%s, %s, %s)\n",
197 name, sfile != NULL ? sfile : "NULL",
198 objfile_debug_name (objfile));
201 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
203 /* Select hash list according to pass. */
205 msymbol = objfile->per_bfd->msymbol_hash[hash];
207 msymbol = objfile->per_bfd->msymbol_demangled_hash[dem_hash];
209 while (msymbol != NULL && found_symbol.minsym == NULL)
215 int (*cmp) (const char *, const char *);
217 cmp = (case_sensitivity == case_sensitive_on
218 ? strcmp : strcasecmp);
219 match = cmp (MSYMBOL_LINKAGE_NAME (msymbol),
224 /* The function respects CASE_SENSITIVITY. */
225 match = MSYMBOL_MATCHES_SEARCH_NAME (msymbol,
231 switch (MSYMBOL_TYPE (msymbol))
237 || filename_cmp (msymbol->filename, sfile) == 0)
239 found_file_symbol.minsym = msymbol;
240 found_file_symbol.objfile = objfile;
244 case mst_solib_trampoline:
246 /* If a trampoline symbol is found, we prefer to
247 keep looking for the *real* symbol. If the
248 actual symbol is not found, then we'll use the
250 if (trampoline_symbol.minsym == NULL)
252 trampoline_symbol.minsym = msymbol;
253 trampoline_symbol.objfile = objfile;
259 found_symbol.minsym = msymbol;
260 found_symbol.objfile = objfile;
265 /* Find the next symbol on the hash chain. */
267 msymbol = msymbol->hash_next;
269 msymbol = msymbol->demangled_hash_next;
276 xfree ((void *) modified_name);
278 /* External symbols are best. */
279 if (found_symbol.minsym != NULL)
281 if (symbol_lookup_debug)
283 fprintf_unfiltered (gdb_stdlog,
284 "lookup_minimal_symbol (...) = %s"
286 host_address_to_string (found_symbol.minsym));
291 /* File-local symbols are next best. */
292 if (found_file_symbol.minsym != NULL)
294 if (symbol_lookup_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lookup_minimal_symbol (...) = %s"
299 host_address_to_string
300 (found_file_symbol.minsym));
302 return found_file_symbol;
305 /* Symbols for shared library trampolines are next best. */
306 if (symbol_lookup_debug)
308 fprintf_unfiltered (gdb_stdlog,
309 "lookup_minimal_symbol (...) = %s%s\n",
310 trampoline_symbol.minsym != NULL
311 ? host_address_to_string (trampoline_symbol.minsym)
313 trampoline_symbol.minsym != NULL
314 ? " (trampoline)" : "");
316 return trampoline_symbol;
321 struct bound_minimal_symbol
322 lookup_bound_minimal_symbol (const char *name)
324 return lookup_minimal_symbol (name, NULL, NULL);
327 /* See common/symbol.h. */
330 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
331 struct objfile *objfile)
333 struct bound_minimal_symbol sym
334 = lookup_minimal_symbol (name, NULL, objfile);
336 if (sym.minsym != NULL)
337 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
339 return sym.minsym == NULL;
345 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
346 void (*callback) (struct minimal_symbol *,
351 struct minimal_symbol *iter;
352 int (*cmp) (const char *, const char *);
354 /* The first pass is over the ordinary hash table. */
355 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
356 iter = objf->per_bfd->msymbol_hash[hash];
357 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
360 if (cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
361 (*callback) (iter, user_data);
362 iter = iter->hash_next;
365 /* The second pass is over the demangled table. */
366 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
367 iter = objf->per_bfd->msymbol_demangled_hash[hash];
370 if (MSYMBOL_MATCHES_SEARCH_NAME (iter, name))
371 (*callback) (iter, user_data);
372 iter = iter->demangled_hash_next;
378 struct bound_minimal_symbol
379 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
381 struct objfile *objfile;
382 struct minimal_symbol *msymbol;
383 struct bound_minimal_symbol found_symbol = { NULL, NULL };
384 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
386 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
388 for (objfile = object_files;
389 objfile != NULL && found_symbol.minsym == NULL;
390 objfile = objfile->next)
392 if (objf == NULL || objf == objfile
393 || objf == objfile->separate_debug_objfile_backlink)
395 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
396 msymbol != NULL && found_symbol.minsym == NULL;
397 msymbol = msymbol->hash_next)
399 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
400 (MSYMBOL_TYPE (msymbol) == mst_text
401 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
402 || MSYMBOL_TYPE (msymbol) == mst_file_text))
404 switch (MSYMBOL_TYPE (msymbol))
407 found_file_symbol.minsym = msymbol;
408 found_file_symbol.objfile = objfile;
411 found_symbol.minsym = msymbol;
412 found_symbol.objfile = objfile;
419 /* External symbols are best. */
420 if (found_symbol.minsym)
423 /* File-local symbols are next best. */
424 return found_file_symbol;
429 struct minimal_symbol *
430 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
431 struct objfile *objf)
433 struct objfile *objfile;
434 struct minimal_symbol *msymbol;
436 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
438 for (objfile = object_files;
440 objfile = objfile->next)
442 if (objf == NULL || objf == objfile
443 || objf == objfile->separate_debug_objfile_backlink)
445 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
447 msymbol = msymbol->hash_next)
449 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
450 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
461 struct bound_minimal_symbol
462 lookup_minimal_symbol_solib_trampoline (const char *name,
463 struct objfile *objf)
465 struct objfile *objfile;
466 struct minimal_symbol *msymbol;
467 struct bound_minimal_symbol found_symbol = { NULL, NULL };
469 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
471 for (objfile = object_files;
473 objfile = objfile->next)
475 if (objf == NULL || objf == objfile
476 || objf == objfile->separate_debug_objfile_backlink)
478 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
480 msymbol = msymbol->hash_next)
482 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
483 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
485 found_symbol.objfile = objfile;
486 found_symbol.minsym = msymbol;
496 /* A helper function that makes *PC section-relative. This searches
497 the sections of OBJFILE and if *PC is in a section, it subtracts
498 the section offset and returns true. Otherwise it returns
502 frob_address (struct objfile *objfile, CORE_ADDR *pc)
504 struct obj_section *iter;
506 ALL_OBJFILE_OSECTIONS (objfile, iter)
508 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
510 *pc -= obj_section_offset (iter);
518 /* Search through the minimal symbol table for each objfile and find
519 the symbol whose address is the largest address that is still less
520 than or equal to PC, and matches SECTION (which is not NULL).
521 Returns a pointer to the minimal symbol if such a symbol is found,
522 or NULL if PC is not in a suitable range.
523 Note that we need to look through ALL the minimal symbol tables
524 before deciding on the symbol that comes closest to the specified PC.
525 This is because objfiles can overlap, for example objfile A has .text
526 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
529 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
530 there are text and trampoline symbols at the same address.
531 Otherwise prefer mst_text symbols. */
533 static struct bound_minimal_symbol
534 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
535 struct obj_section *section,
541 struct objfile *objfile;
542 struct minimal_symbol *msymbol;
543 struct minimal_symbol *best_symbol = NULL;
544 struct objfile *best_objfile = NULL;
545 struct bound_minimal_symbol result;
546 enum minimal_symbol_type want_type, other_type;
548 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
549 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
551 /* We can not require the symbol found to be in section, because
552 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
553 symbol - but find_pc_section won't return an absolute section and
554 hence the code below would skip over absolute symbols. We can
555 still take advantage of the call to find_pc_section, though - the
556 object file still must match. In case we have separate debug
557 files, search both the file and its separate debug file. There's
558 no telling which one will have the minimal symbols. */
560 gdb_assert (section != NULL);
562 for (objfile = section->objfile;
564 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
566 CORE_ADDR pc = pc_in;
568 /* If this objfile has a minimal symbol table, go search it using
569 a binary search. Note that a minimal symbol table always consists
570 of at least two symbols, a "real" symbol and the terminating
571 "null symbol". If there are no real symbols, then there is no
572 minimal symbol table at all. */
574 if (objfile->per_bfd->minimal_symbol_count > 0)
576 int best_zero_sized = -1;
578 msymbol = objfile->per_bfd->msymbols;
580 hi = objfile->per_bfd->minimal_symbol_count - 1;
582 /* This code assumes that the minimal symbols are sorted by
583 ascending address values. If the pc value is greater than or
584 equal to the first symbol's address, then some symbol in this
585 minimal symbol table is a suitable candidate for being the
586 "best" symbol. This includes the last real symbol, for cases
587 where the pc value is larger than any address in this vector.
589 By iterating until the address associated with the current
590 hi index (the endpoint of the test interval) is less than
591 or equal to the desired pc value, we accomplish two things:
592 (1) the case where the pc value is larger than any minimal
593 symbol address is trivially solved, (2) the address associated
594 with the hi index is always the one we want when the interation
595 terminates. In essence, we are iterating the test interval
596 down until the pc value is pushed out of it from the high end.
598 Warning: this code is trickier than it would appear at first. */
600 if (frob_address (objfile, &pc)
601 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
603 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
605 /* pc is still strictly less than highest address. */
606 /* Note "new" will always be >= lo. */
607 newobj = (lo + hi) / 2;
608 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
619 /* If we have multiple symbols at the same address, we want
620 hi to point to the last one. That way we can find the
621 right symbol if it has an index greater than hi. */
622 while (hi < objfile->per_bfd->minimal_symbol_count - 1
623 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
624 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
627 /* Skip various undesirable symbols. */
630 /* Skip any absolute symbols. This is apparently
631 what adb and dbx do, and is needed for the CM-5.
632 There are two known possible problems: (1) on
633 ELF, apparently end, edata, etc. are absolute.
634 Not sure ignoring them here is a big deal, but if
635 we want to use them, the fix would go in
636 elfread.c. (2) I think shared library entry
637 points on the NeXT are absolute. If we want
638 special handling for this it probably should be
639 triggered by a special mst_abs_or_lib or some
642 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
648 /* If SECTION was specified, skip any symbol from
651 /* Some types of debug info, such as COFF,
652 don't fill the bfd_section member, so don't
653 throw away symbols on those platforms. */
654 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
655 && (!matching_obj_sections
656 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
663 /* If we are looking for a trampoline and this is a
664 text symbol, or the other way around, check the
665 preceding symbol too. If they are otherwise
666 identical prefer that one. */
668 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
669 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
670 && (MSYMBOL_SIZE (&msymbol[hi])
671 == MSYMBOL_SIZE (&msymbol[hi - 1]))
672 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
673 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
674 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
675 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
681 /* If the minimal symbol has a zero size, save it
682 but keep scanning backwards looking for one with
683 a non-zero size. A zero size may mean that the
684 symbol isn't an object or function (e.g. a
685 label), or it may just mean that the size was not
687 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
689 if (best_zero_sized == -1)
690 best_zero_sized = hi;
695 /* If we are past the end of the current symbol, try
696 the previous symbol if it has a larger overlapping
697 size. This happens on i686-pc-linux-gnu with glibc;
698 the nocancel variants of system calls are inside
699 the cancellable variants, but both have sizes. */
701 && MSYMBOL_SIZE (&msymbol[hi]) != 0
702 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
703 + MSYMBOL_SIZE (&msymbol[hi]))
704 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
705 + MSYMBOL_SIZE (&msymbol[hi - 1])))
711 /* Otherwise, this symbol must be as good as we're going
716 /* If HI has a zero size, and best_zero_sized is set,
717 then we had two or more zero-sized symbols; prefer
718 the first one we found (which may have a higher
719 address). Also, if we ran off the end, be sure
721 if (best_zero_sized != -1
722 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
723 hi = best_zero_sized;
725 /* If the minimal symbol has a non-zero size, and this
726 PC appears to be outside the symbol's contents, then
727 refuse to use this symbol. If we found a zero-sized
728 symbol with an address greater than this symbol's,
729 use that instead. We assume that if symbols have
730 specified sizes, they do not overlap. */
733 && MSYMBOL_SIZE (&msymbol[hi]) != 0
734 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
735 + MSYMBOL_SIZE (&msymbol[hi])))
737 if (best_zero_sized != -1)
738 hi = best_zero_sized;
740 /* Go on to the next object file. */
744 /* The minimal symbol indexed by hi now is the best one in this
745 objfile's minimal symbol table. See if it is the best one
749 && ((best_symbol == NULL) ||
750 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
751 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
753 best_symbol = &msymbol[hi];
754 best_objfile = objfile;
760 result.minsym = best_symbol;
761 result.objfile = best_objfile;
765 struct bound_minimal_symbol
766 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
770 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
771 force the section but that (well unless you're doing overlay
772 debugging) always returns NULL making the call somewhat useless. */
773 section = find_pc_section (pc);
776 struct bound_minimal_symbol result;
778 memset (&result, 0, sizeof (result));
782 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
787 struct bound_minimal_symbol
788 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
790 struct obj_section *section = find_pc_section (pc);
794 struct bound_minimal_symbol result;
796 memset (&result, 0, sizeof (result));
799 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
802 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
805 in_gnu_ifunc_stub (CORE_ADDR pc)
807 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
809 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
812 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
815 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
817 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
818 "the ELF support compiled in."),
819 paddress (gdbarch, pc));
822 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
825 stub_gnu_ifunc_resolve_name (const char *function_name,
826 CORE_ADDR *function_address_p)
828 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
829 "the ELF support compiled in."),
833 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
836 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
838 internal_error (__FILE__, __LINE__,
839 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
842 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
845 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
847 internal_error (__FILE__, __LINE__,
848 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
851 /* See elf_gnu_ifunc_fns for its real implementation. */
853 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
855 stub_gnu_ifunc_resolve_addr,
856 stub_gnu_ifunc_resolve_name,
857 stub_gnu_ifunc_resolver_stop,
858 stub_gnu_ifunc_resolver_return_stop,
861 /* A placeholder for &elf_gnu_ifunc_fns. */
863 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
867 struct bound_minimal_symbol
868 lookup_minimal_symbol_and_objfile (const char *name)
870 struct bound_minimal_symbol result;
871 struct objfile *objfile;
872 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
874 ALL_OBJFILES (objfile)
876 struct minimal_symbol *msym;
878 for (msym = objfile->per_bfd->msymbol_hash[hash];
880 msym = msym->hash_next)
882 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
884 result.minsym = msym;
885 result.objfile = objfile;
891 memset (&result, 0, sizeof (result));
896 /* Return leading symbol character for a BFD. If BFD is NULL,
897 return the leading symbol character from the main objfile. */
900 get_symbol_leading_char (bfd *abfd)
903 return bfd_get_symbol_leading_char (abfd);
904 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
905 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
911 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
914 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
915 first call to save a minimal symbol to allocate the memory for
917 m_msym_bunch_index (BUNCH_SIZE),
922 /* Discard the currently collected minimal symbols, if any. If we wish
923 to save them for later use, we must have already copied them somewhere
924 else before calling this function.
926 FIXME: We could allocate the minimal symbol bunches on their own
927 obstack and then simply blow the obstack away when we are done with
928 it. Is it worth the extra trouble though? */
930 minimal_symbol_reader::~minimal_symbol_reader ()
932 struct msym_bunch *next;
934 while (m_msym_bunch != NULL)
936 next = m_msym_bunch->next;
937 xfree (m_msym_bunch);
945 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
946 enum minimal_symbol_type ms_type)
953 case mst_text_gnu_ifunc:
955 case mst_solib_trampoline:
956 section = SECT_OFF_TEXT (m_objfile);
960 section = SECT_OFF_DATA (m_objfile);
964 section = SECT_OFF_BSS (m_objfile);
970 record_with_info (name, address, ms_type, section);
975 struct minimal_symbol *
976 minimal_symbol_reader::record_full (const char *name, int name_len,
977 bool copy_name, CORE_ADDR address,
978 enum minimal_symbol_type ms_type,
981 struct msym_bunch *newobj;
982 struct minimal_symbol *msymbol;
984 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
985 the minimal symbols, because if there is also another symbol
986 at the same address (e.g. the first function of the file),
987 lookup_minimal_symbol_by_pc would have no way of getting the
989 if (ms_type == mst_file_text && name[0] == 'g'
990 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
991 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
994 /* It's safe to strip the leading char here once, since the name
995 is also stored stripped in the minimal symbol table. */
996 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1002 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1005 if (m_msym_bunch_index == BUNCH_SIZE)
1007 newobj = XCNEW (struct msym_bunch);
1008 m_msym_bunch_index = 0;
1009 newobj->next = m_msym_bunch;
1010 m_msym_bunch = newobj;
1012 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1013 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1014 &m_objfile->per_bfd->storage_obstack);
1015 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1017 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1018 MSYMBOL_SECTION (msymbol) = section;
1020 MSYMBOL_TYPE (msymbol) = ms_type;
1021 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1022 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1023 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1024 as it would also set the has_size flag. */
1027 /* The hash pointers must be cleared! If they're not,
1028 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1029 msymbol->hash_next = NULL;
1030 msymbol->demangled_hash_next = NULL;
1032 /* If we already read minimal symbols for this objfile, then don't
1033 ever allocate a new one. */
1034 if (!m_objfile->per_bfd->minsyms_read)
1036 m_msym_bunch_index++;
1037 m_objfile->per_bfd->n_minsyms++;
1043 /* Compare two minimal symbols by address and return a signed result based
1044 on unsigned comparisons, so that we sort into unsigned numeric order.
1045 Within groups with the same address, sort by name. */
1048 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1050 const struct minimal_symbol *fn1;
1051 const struct minimal_symbol *fn2;
1053 fn1 = (const struct minimal_symbol *) fn1p;
1054 fn2 = (const struct minimal_symbol *) fn2p;
1056 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1058 return (-1); /* addr 1 is less than addr 2. */
1060 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1062 return (1); /* addr 1 is greater than addr 2. */
1065 /* addrs are equal: sort by name */
1067 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1068 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1070 if (name1 && name2) /* both have names */
1071 return strcmp (name1, name2);
1073 return 1; /* fn1 has no name, so it is "less". */
1074 else if (name1) /* fn2 has no name, so it is "less". */
1077 return (0); /* Neither has a name, so they're equal. */
1081 /* Compact duplicate entries out of a minimal symbol table by walking
1082 through the table and compacting out entries with duplicate addresses
1083 and matching names. Return the number of entries remaining.
1085 On entry, the table resides between msymbol[0] and msymbol[mcount].
1086 On exit, it resides between msymbol[0] and msymbol[result_count].
1088 When files contain multiple sources of symbol information, it is
1089 possible for the minimal symbol table to contain many duplicate entries.
1090 As an example, SVR4 systems use ELF formatted object files, which
1091 usually contain at least two different types of symbol tables (a
1092 standard ELF one and a smaller dynamic linking table), as well as
1093 DWARF debugging information for files compiled with -g.
1095 Without compacting, the minimal symbol table for gdb itself contains
1096 over a 1000 duplicates, about a third of the total table size. Aside
1097 from the potential trap of not noticing that two successive entries
1098 identify the same location, this duplication impacts the time required
1099 to linearly scan the table, which is done in a number of places. So we
1100 just do one linear scan here and toss out the duplicates.
1102 Note that we are not concerned here about recovering the space that
1103 is potentially freed up, because the strings themselves are allocated
1104 on the storage_obstack, and will get automatically freed when the symbol
1105 table is freed. The caller can free up the unused minimal symbols at
1106 the end of the compacted region if their allocation strategy allows it.
1108 Also note we only go up to the next to last entry within the loop
1109 and then copy the last entry explicitly after the loop terminates.
1111 Since the different sources of information for each symbol may
1112 have different levels of "completeness", we may have duplicates
1113 that have one entry with type "mst_unknown" and the other with a
1114 known type. So if the one we are leaving alone has type mst_unknown,
1115 overwrite its type with the type from the one we are compacting out. */
1118 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1119 struct objfile *objfile)
1121 struct minimal_symbol *copyfrom;
1122 struct minimal_symbol *copyto;
1126 copyfrom = copyto = msymbol;
1127 while (copyfrom < msymbol + mcount - 1)
1129 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1130 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1131 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1132 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1133 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1135 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1137 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1142 *copyto++ = *copyfrom++;
1144 *copyto++ = *copyfrom++;
1145 mcount = copyto - msymbol;
1150 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1151 after compacting or sorting the table since the entries move around
1152 thus causing the internal minimal_symbol pointers to become jumbled. */
1155 build_minimal_symbol_hash_tables (struct objfile *objfile)
1158 struct minimal_symbol *msym;
1160 /* Clear the hash tables. */
1161 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1163 objfile->per_bfd->msymbol_hash[i] = 0;
1164 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1167 /* Now, (re)insert the actual entries. */
1168 for ((i = objfile->per_bfd->minimal_symbol_count,
1169 msym = objfile->per_bfd->msymbols);
1173 msym->hash_next = 0;
1174 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1176 msym->demangled_hash_next = 0;
1177 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1178 add_minsym_to_demangled_hash_table (msym,
1179 objfile->per_bfd->msymbol_demangled_hash);
1183 /* Add the minimal symbols in the existing bunches to the objfile's official
1184 minimal symbol table. In most cases there is no minimal symbol table yet
1185 for this objfile, and the existing bunches are used to create one. Once
1186 in a while (for shared libraries for example), we add symbols (e.g. common
1187 symbols) to an existing objfile.
1189 Because of the way minimal symbols are collected, we generally have no way
1190 of knowing what source language applies to any particular minimal symbol.
1191 Specifically, we have no way of knowing if the minimal symbol comes from a
1192 C++ compilation unit or not. So for the sake of supporting cached
1193 demangled C++ names, we have no choice but to try and demangle each new one
1194 that comes in. If the demangling succeeds, then we assume it is a C++
1195 symbol and set the symbol's language and demangled name fields
1196 appropriately. Note that in order to avoid unnecessary demanglings, and
1197 allocating obstack space that subsequently can't be freed for the demangled
1198 names, we mark all newly added symbols with language_auto. After
1199 compaction of the minimal symbols, we go back and scan the entire minimal
1200 symbol table looking for these new symbols. For each new symbol we attempt
1201 to demangle it, and if successful, record it as a language_cplus symbol
1202 and cache the demangled form on the symbol obstack. Symbols which don't
1203 demangle are marked as language_unknown symbols, which inhibits future
1204 attempts to demangle them if we later add more minimal symbols. */
1207 minimal_symbol_reader::install ()
1211 struct msym_bunch *bunch;
1212 struct minimal_symbol *msymbols;
1215 if (m_objfile->per_bfd->minsyms_read)
1218 if (m_msym_count > 0)
1220 if (symtab_create_debug)
1222 fprintf_unfiltered (gdb_stdlog,
1223 "Installing %d minimal symbols of objfile %s.\n",
1224 m_msym_count, objfile_name (m_objfile));
1227 /* Allocate enough space in the obstack, into which we will gather the
1228 bunches of new and existing minimal symbols, sort them, and then
1229 compact out the duplicate entries. Once we have a final table,
1230 we will give back the excess space. */
1232 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1233 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1234 alloc_count * sizeof (struct minimal_symbol));
1235 msymbols = (struct minimal_symbol *)
1236 obstack_base (&m_objfile->per_bfd->storage_obstack);
1238 /* Copy in the existing minimal symbols, if there are any. */
1240 if (m_objfile->per_bfd->minimal_symbol_count)
1241 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1242 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1244 /* Walk through the list of minimal symbol bunches, adding each symbol
1245 to the new contiguous array of symbols. Note that we start with the
1246 current, possibly partially filled bunch (thus we use the current
1247 msym_bunch_index for the first bunch we copy over), and thereafter
1248 each bunch is full. */
1250 mcount = m_objfile->per_bfd->minimal_symbol_count;
1252 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1254 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1255 msymbols[mcount] = bunch->contents[bindex];
1256 m_msym_bunch_index = BUNCH_SIZE;
1259 /* Sort the minimal symbols by address. */
1261 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1262 compare_minimal_symbols);
1264 /* Compact out any duplicates, and free up whatever space we are
1267 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1269 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1270 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1271 msymbols = (struct minimal_symbol *)
1272 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1274 /* We also terminate the minimal symbol table with a "null symbol",
1275 which is *not* included in the size of the table. This makes it
1276 easier to find the end of the table when we are handed a pointer
1277 to some symbol in the middle of it. Zero out the fields in the
1278 "null symbol" allocated at the end of the array. Note that the
1279 symbol count does *not* include this null symbol, which is why it
1280 is indexed by mcount and not mcount-1. */
1282 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1284 /* Attach the minimal symbol table to the specified objfile.
1285 The strings themselves are also located in the storage_obstack
1288 m_objfile->per_bfd->minimal_symbol_count = mcount;
1289 m_objfile->per_bfd->msymbols = msymbols;
1291 /* Now build the hash tables; we can't do this incrementally
1292 at an earlier point since we weren't finished with the obstack
1293 yet. (And if the msymbol obstack gets moved, all the internal
1294 pointers to other msymbols need to be adjusted.) */
1295 build_minimal_symbol_hash_tables (m_objfile);
1299 /* See minsyms.h. */
1302 terminate_minimal_symbol_table (struct objfile *objfile)
1304 if (! objfile->per_bfd->msymbols)
1305 objfile->per_bfd->msymbols
1306 = ((struct minimal_symbol *)
1307 obstack_alloc (&objfile->per_bfd->storage_obstack,
1308 sizeof (struct minimal_symbol)));
1311 struct minimal_symbol *m
1312 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1314 memset (m, 0, sizeof (*m));
1315 /* Don't rely on these enumeration values being 0's. */
1316 MSYMBOL_TYPE (m) = mst_unknown;
1317 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1318 &objfile->per_bfd->storage_obstack);
1322 /* Check if PC is in a shared library trampoline code stub.
1323 Return minimal symbol for the trampoline entry or NULL if PC is not
1324 in a trampoline code stub. */
1326 static struct minimal_symbol *
1327 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1329 struct obj_section *section = find_pc_section (pc);
1330 struct bound_minimal_symbol msymbol;
1332 if (section == NULL)
1334 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1336 if (msymbol.minsym != NULL
1337 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1338 return msymbol.minsym;
1342 /* If PC is in a shared library trampoline code stub, return the
1343 address of the `real' function belonging to the stub.
1344 Return 0 if PC is not in a trampoline code stub or if the real
1345 function is not found in the minimal symbol table.
1347 We may fail to find the right function if a function with the
1348 same name is defined in more than one shared library, but this
1349 is considered bad programming style. We could return 0 if we find
1350 a duplicate function in case this matters someday. */
1353 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1355 struct objfile *objfile;
1356 struct minimal_symbol *msymbol;
1357 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1359 if (tsymbol != NULL)
1361 ALL_MSYMBOLS (objfile, msymbol)
1363 if ((MSYMBOL_TYPE (msymbol) == mst_text
1364 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1365 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1366 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1367 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1369 /* Also handle minimal symbols pointing to function descriptors. */
1370 if (MSYMBOL_TYPE (msymbol) == mst_data
1371 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1372 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1376 func = gdbarch_convert_from_func_ptr_addr
1377 (get_objfile_arch (objfile),
1378 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1381 /* Ignore data symbols that are not function descriptors. */
1382 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1390 /* See minsyms.h. */
1393 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1397 struct obj_section *obj_section;
1399 struct minimal_symbol *msymbol;
1401 gdb_assert (minsym.minsym != NULL);
1403 /* If the minimal symbol has a size, use it. Otherwise use the
1404 lesser of the next minimal symbol in the same section, or the end
1405 of the section, as the end of the function. */
1407 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1408 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1410 /* Step over other symbols at this same address, and symbols in
1411 other sections, to find the next symbol in this section with a
1412 different address. */
1414 msymbol = minsym.minsym;
1415 section = MSYMBOL_SECTION (msymbol);
1416 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1418 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1419 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1420 && MSYMBOL_SECTION (msymbol + i) == section)
1424 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1425 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1426 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1427 < obj_section_endaddr (obj_section)))
1428 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1430 /* We got the start address from the last msymbol in the objfile.
1431 So the end address is the end of the section. */
1432 result = obj_section_endaddr (obj_section);